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Diet and habitat use impose mechanical constraints that may impact head morphology and bite force. Skinks 
(Scincidae) comprise the largest family of lizards with ~1700 species currently described. They also show an important 
morphological and ecological diversity. Using phylogenetically informed analyses, we studied the interrelationships 
between ecology (diet, habitat use), head morphology and bite force in these lizards. Our results show a strong link 
between body size, bite force and diet, with herbivorous species being larger and biting harder than species from 
other dietary groups. Despite a lack of differences in body size and head morphology, omnivorous species bite harder 
than insectivorous species, in order to process the fibrous plant material that is part of their diet. Overall, lineages 
that evolved greater bite forces also showed an increase in relative head height allowing for more vertically oriented 
jaw muscles. Moreover, we find evidence for correlated evolution between bite force and head length: skinks that bite 
harder tend to have shorter jaws that likely provide a greater mechanical advantage when biting at the tip of the 
jaw. Surprisingly, habitat use does not appear to be correlated with morphological traits or bite force, but this needs 
to explored further.
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INTRODUCTION

The vertebrate skull is a complex integrated system 
composed of numerous structural units (Herrel et 
al., 2007a). These units are forged by different biotic 
and abiotic interactions and are critical to several 
functions including defence (e.g. Cooper et al., 1999), 
locomotion (e.g. Gans, 1975; Teodecki et al., 1998), 
male-male combat (e.g. Huyghe et al., 2005; Lappin et 
al., 2006), mating (e.g. Herrel et al., 1999b), drinking 
(e.g. Bels et al., 1994; Cundall, 2000) and feeding (e.g. 
Wainwright & Richard, 1995; Cundall & Greene, 2000; 
Schwenk, 2000). As such the skull plays a key role in 
many different ecological and behavioural contexts 

(Hanken & Hall, 1993). Moreover, the skull houses 
and protects the brain and the main sensory organs 
(e.g. eyes, vomeronasal apparatus). As these organs 
take up space within this integrated system there 
may be competing demands for space (Barel, 1982) 
and function (Herrel et al., 2001c) between these 
different structural units. Thus, the skull is the result 
of structural integration and functional compromises 
(Wainwright & Richard, 1995; Vanhooydonck et al., 
2011; Corbin et al., 2015; Edwards et al., 2016; Maestri 
et al., 2016; Watanabe et al., 2019), which renders 
our understanding of the factors driving variation in 
cranial morphology complex.

The study of animal performance is important in 
this context as it allows variation in morphology to be 
linked to variation in ecology (Wainwright & Reilly, *Corresponding author. E-mail: anthony.herrel@mnhn.fr
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1994; Irschick & Higham, 2016). Indeed, selection acts 
at the level of whole-organism performance rather 
than on the underlying structural components (Arnold, 
1983; Careau & Garland, 2012; Lailvaux & Husak, 
2014). Consequently, performance traits reflect both 
the behaviour and the ecological context of a species 
(Irschick et al., 2005; Herrel et al., 2007a; Huyghe 
et al., 2007). One of the most relevant performance 
traits associated with the cranial system is bite force 
(Wainwright & Richard, 1995; Schluter, 2000; Anderson 
et al., 2008). This performance trait is important in 
the acquisition of resources, in fighting and in defence 
(Herrel et al., 1998; Erickson et al., 2003). The use of 
novel resources and the conquest of new ecological 
niches by an animal are consequently often associated 
with morphological adaptations of the jaw system 
resulting in variation in bite force across species 
(Herrel et al., 2004b; Cattau et al., 2018). Moreover, for 
some species, bite force has been demonstrated to be 
heritable (Zablocki-Thomas et al., 2021) and to impact 
survival in the field (Herrel et al., 2016), making it a 
key performance trait that is likely under selection.

Previous studies on lizards and other vertebrates 
have shown that the evolution towards higher bite force 
often goes hand in hand with the evolution of larger 
body size (Aguirre et al., 2002; Herrel et al., 2004a, 
2010; Chazeau et al., 2013). However, irrespective of 
variation in body size, the evolution of a bigger head 
also promotes stronger bites due to the larger absolute 
jaw muscle volume that can be housed (Herrel et 
al., 2001a, b, 2006). Bite force has been suggested to 
determine diet in lizards with an increase in bite force 
often leading to a greater trophic diversity (Wittorski 
et al., 2016; Taverne et al., 2021). Durophagy and 
herbivory, for example, are dietary specializations 
that require high bite force due to the mechanical 
resistance of hard and fibrous food items (Herrel et 
al., 1999a, 2004b; Schaerlaeken et al., 2012). It has 
consequently been suggested that lizards eating such 
food items should have higher and wider heads with 
more massive cranial muscles than lizards that eat 
softer foods (Herrel & Holanova, 2008; Schaerlaeken 
et al., 2012).

On the other hand, habitat use can also generate 
mechanical limitations affecting head size and shape 
and thus indirectly also drive bite force evolution. 
In fossorial lizards, for example, the time needed to 
burrow and the energetic cost of burrowing correlate 
with bite force given that both are determined by 
head width (e.g. Navas et al., 2004; Barros et al., 2011; 
Vanhooydonck et al., 2011; Le Guilloux et al., 2020). 
In addition, crevice dwellers or climbing lizards may 
show reduced head and body heights to be able to 
exploit crevices and to avoid toppling backwards 
during climbing (Herrel et al., 2001b, c; Kohlsdorf et 
al., 2008). Moreover, tree dwelling lizards typically 

have narrow heads allowing more stability when 
running on narrow branches (Herrel et al., 2001d; 
Kohlsdorf et al., 2008). Consequently, head size and 
shape may be the result of trade-offs between feeding, 
habitat use and locomotion and, as such, affect bite 
force (Vanhooydonck et al., 2011). Therefore, not only 
head size but also head shape is likely an important 
determinant of bite force (Herrel et al., 2007b; Fabre 
et al., 2014a, b).

In  th is  s tudy, we  analyse  the  proximate 
determinants of bite force across 56 species of the 
family Scincidae. This group of lizards was chosen as it 
is the most species-rich lizard family characterized by 
an exceptional morphological and ecological diversity 
(Chapple et al., 2021; Uetz et al., 2022). Skinks show 
a great diversity in diet ranging from insectivorous 
to herbivorous and durophagous species. Moreover, 
they can be found on all continents except Antarctica 
and exploit a wide variety of habitats ranging from 
arboreal over fossorial to terrestrial and even semi-
aquatic. In addition to this tremendous ecological 
diversity, scincid lizards are also morphologically 
diverse, yet remain relatively poorly studied (Greer, 
1974; William & Peterson, 1982; Paluh & Bauer, 2017; 
Foster et al., 2018). Capitalizing on the morphological, 
ecological and taxonomic diversity of skinks, we 
examine here the relationship between head 
morphology and bite force in the sample of skinks and 
assess whether this differs among lizards with distinct 
ecologies (diet, habitat use). We specifically predict 
that bite force will differ between diet groups with 
herbivorous species biting harder than insectivorous 
species as shown previously for other lizard groups 
(Herrel et al., 1999a, 2004b; Vitt et al., 2003; Metzger 
& Herrel, 2005). We further predict that fossorial 
species, climbers and saxicolous species will differ in 
head size and shape, and will have lower bite forces 
given the constraints on head size and shape in these 
habitats (Herrel et al., 2001d; Kohlsdorf et al., 2008; 
Barros et al., 2011; Vanhooydonck et al., 2011; Paluh 
& Bauer, 2017).

MATERIAL AND METHODS

Specimens

The sample consisted of data on head dimensions, body 
size and bite force for 331 individuals across 56 species 
of skinks. Seven of these belong to the Acontinae, 16 
to the Scincinae and 33 to the Lygosominae. We use 
binomial nomenclature as provided by the Reptile 
Database (Uetz et al., 2022). The number of individuals 
sampled per species (Table 1) varied according to the 
availability of specimens for morphological and in vivo 
measurements.
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Table 1.  Morphological traits and bite force of the species included in our study. Table entries are means ± standard 
deviations. N: number of specimens measured

Species N SVL (mm) Head length 
(mm)

Head width 
(mm)

Head height 
(mm)

Lower jaw 
length (mm)

Bite force (N)

Ablepharus 
kitaibelii

13 40.94 ± 2.43 6.44 ± 0.45 3.62 ± 0.28 2.55 ± 0.22 5.85 ± 0.57 0.3 ± 0.14

Acontias 
kgalagadi

5 116.12 ± 12.1 7.27 ± 0.49 3.6 ± 0.2 3.23 ± 0.86 5.7 ± 0.34 1.16 ± 0.4

Acontias litoralis 42 116.62 ± 11.72 6.22 ± 0.86 3.13 ± 0.24 2.66 ± 0.18 5.41 ± 0.62 0.77 ± 0.19
Acontias 

meleagris
6 194.24 ± 16.34 10.43 ± 1.08 5.81 ± 0.9 4.56 ± 0.55 7.67 ± 1.16 9 ± 1.77

Acontias percivali 13 224.3 ± 10.04 14.26 ± 0.15 8 ± 0.06 6.98 ± 0.08 13.25 ± 0.44 10.08 ± 2.62
Bellatorias frerei 1 188.36 31.56 22.48 17.9 35.7 81.47
Chalcides 

ocellatus
13 96.11 ± 24.98 13.46 ± 2.84 9.03 ± 2.24 7.7 ± 2 14.71 ± 3.18 8.51 ± 4.19

Chalcides 
sepsoides

17 83.41 ± 5.73 9.9 ± 0.48 5.93 ± 0.33 5.05 ± 0.24 9.97 ± 0.71 4.12 ± 0.75

Chalcides 
sphenopsiformis

1 83 7.99 4.97 4.25 7.51 3.16

Cophoscincopus 
greeri

4 65.73 ± 2.09 12.93 ± 0.55 8.19 ± 0.66 6.98 ± 0.56 12.14 ± 1 7.49 ± 0.79

Corucia zebrata 2 275 ± 7.07 50.6 ± 4.53 48.88 ± 2.37 36.03 ± 3.01 57.1 ± 1.63 206.85 ± 94.36
Ctenotus uber 3 86.26 ± 23.66 15.08 ± 3.61 9.99 ± 2.41 8.81 ± 2.54 17.5 ± 4.19 7.86 ± 4.19
Cyclodomorphus 

gerrardii
1 70.92 14.9 10.15 7.34 17.15 16.683

Cyclodomorphus 
michaeli

2 122.69 ± 14.11 15.49 ± 2.12 9.41 ± 1.07 9.12 ± 0.04 19.49 ± 2.7 9.74 ± 1.15

Eulamprus 
heatwolei

5 109.17 ± 23.2 21.37 ± 3.6 13.7 ± 2.9 11.24 ± 2.26 25.96 ± 5.23 16.66 ± 7.24

Eumeces 
schneiderii

3 122.01 ± 22.8 24.61 ± 1.57 16.16 ± 2.98 13.97 ± 2.53 27.48 ± 3.02 53.27 ± 6.25

Isopachys 
gyldenstolpei

1 180 10.54 6.6 5.82 8.77 5.89

Leptosiaphos 
kilimensis

5 69.81 ± 14.29 10.26 ± 1.14 5.63 ± 0.84 4.18 ± 0.61 10.5 ± 1.55 2.36 ± 1.87

Lerista edwardsae 16 81.03 ± 7.34 7.99 ± 0.45 4.91 ± 0.35 4.18 ± 0.34 7.4 ± 0.87 2.51 ± 0.63
Mochlus fernandi 2 124.75 ± 11.92 22.09 ± 1.94 15.96 ± 2.21 12.19 ± 2.04 25.36 ± 3.46 41.07 ± 0.95
Mochlus 

sundevallii
15 87.31 ± 29.36 12.73 ± 2.84 7.87 ± 1.87 6.37 ± 1.73 12.95 ± 3.08 8.84 ± 5.06

Morethia butleri 1 45.92 8.34 4.99 3.98 8.92 1.07
Panaspis 

togoensis
1 35.59 6.89 3.4 2.2 6.95 0.33

Panaspis 
wahlbergii

1 35.59 6.89 3.4 2.2 6.95 0.33

Plestiodon 
fasciatus

4 67.72 ± 1.68 13.8 ± 1.32 9.31 ± 0.95 6.33 ± 0.76 15.72 ± 1.04 6.58 ± 1.51

Plestiodon gilberti 1 89.92 16.77 11.32 8.39 18.86 10.19
Plestiodon laticeps 17 99.87 ± 11.14 19.59 ± 2.56 15.09 ± 2.84 9.75 ± 1.77 22.43 ± 3.01 17.86 ± 4.26
Plestiodon 

tetragrammus
2 58.72 ± 3.23 9.42 ± 0.25 6.38 ± 0.06 5.33 ± 0.31 11.36 ± 0.99 1.61 ± 0.33

Pygomeles 
braconnieri

1 165 13.31 8.17 6.65 12.33 9.36

Scelotes bipes 9 75.47 ± 11.8 6.2 ± 0.62 3.18 ± 0.61 2.7 ± 0.32 5.53 ± 0.62 1.38 ± 0.71
Scelotes 

limpopoensis
1 61.07 7.3 3.81 2.81 7.32 0.51
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Morphometrics

Five morphological measurements were taken for 
all specimens (Fig. 1; Table 1). We used the same 
measurements as described in Herrel & Holanova 
(2008). Snout-vent length (SVL) was measured from 
the tip of the snout to the posterior edge of the anal 

scale, head length (headl) from the back of the parietal 
bone to the tip of the upper jaw, head height (headh) at 
the highest part of the head and posterior to the orbit, 
head width (headw) at the widest part of the head 
and at the level of jugal bone, and lower jawl length 
(lj) was measured from the back of the retroarticular 

Species N SVL (mm) Head length 
(mm)

Head width 
(mm)

Head height 
(mm)

Lower jaw 
length (mm)

Bite force (N)

Scelotes 
montispectus

1 61.58 6.81 3.32 2.83 6.4 1.27

Scelotes 
sexlineatus

5 80.25 ± 18.98 7.51 ± 1.18 3.81 ± 0.66 3.16 ± 0.54 6.61 ± 1.34 0.54 ± 0.23

Scincella cherriei 1 33.08 7.57 4.26 3.15 7.84 0.37
Scincopus 

fasciatus
1 154.16 35.71 24.09 18.54 36 29.212

Scincus mitranus 9 90.72 ± 12.14 17.93 ± 2.29 9.99 ± 1.25 9.12 ± 1.13 15.53 ± 2.01 24.87 ± 9.37
Scincus scincus 5 91.02 ± 3.04 18.78 ± 3.96 10.72 ± 0.72 9.82 ± 0.88 17.74 ± 1.47 18.97 ± 3.59
Tiliqua 

multifasciata
4 181.85 ± 41.77 29.14 ± 4.28 31.8 ± 6.19 21.41 ± 3.06 35.68 ± 7.09 67.23 ± 2.47

Tiliqua occipitalis 1 292.42 58.91 42.32 30.4 49.77 58.89
Tiliqua rugosa 15 281.56 ± 27.79 45.84 ± 4.81 51.41 ± 5.34 32.89 ± 3.61 56.83 ± 7.11 157.11 ± 41.84
Tiliqua scincoides 14 262.09 ± 67.45 48.68 ± 9.63 38.49 ± 8.97 29.57 ± 6.8 52.93 ± 9.18 158.49 ± 38.08
Trachylepis 

capensis
2 85.72 ± 10.43 15.68 ± 1.07 10.63 ± 0.5 8.78 ± 0.1 17.26 ± 0.34 15.81 ± 1.23

Trachylepis 
homalocephala

2 62.86 ± 8.22 11.66 ± 0.91 8.02 ± 0.47 5.72 ± 0.93 12.36 ± 0.83 9.97 ± 0.58

Trachylepis 
punctatissima

1 67.4 13.21 8.3 5.79 13.47 8.07

Trachylepis 
quinquetaeniata

1 107.9 19.4 10 5.6 17.8 1.05

Trachylepis 
spilogaster

2 63.68 ± 23.03 13.53 ± 3.26 8.92 ± 3.01 5.78 ± 1.86 13.22 ± 3.15 5.94 ± 4.77

Trachylepis 
striata

4 89.4 ± 18.96 18.6 ± 4.9 11.31 ± 4.12 7.8 ± 2.73 20.34 ± 6.64 19.7 ± 24.25

Trachylepis 
sulcata

5 69.82 ± 4.65 14.92 ± 1.07 9.78 ± 0.64 6.3 ± 0.22 16.29 ± 1.06 6.76 ± 2.39

Trachylepis varia 3 72.7 ± 23.48 17.15 ± 5.83 10.53 ± 3.85 5.85 ± 1.34 16.74 ± 5.66 9.04 ± 3.78
Trachylepis 

variegata
3 48.48 ± 2.73 10.46 ± 0.72 6.24 ± 0.24 4.42 ± 0.31 10.68 ± 0.35 1.37 ± 0.32

Tribolonotus gra-
cilis

3 96.96 ± 9.91 31.1 ± 3.81 23.42 ± 2.49 15.64 ± 1.08 31.29 ± 2.94 55.88 ± 8.15

Tribolonotus 
novaeguineae

2 90.15 ± 2.69 25.52 ± 1.47 17.51 ± 1.54 12.23 ± 2.37 25.06 ± 0.1 42.41 ± 3.13

Tropidophorus 
baconi

1 126.17 29.48 20.07 15.41 31.17 43.99

Typhlosaurus 
caecus

25 186.08 ± 34.42 6.96 ± 0.8 3.59 ± 0.54 2.06 ± 0.27 4.88 ± 0.77 3.53 ± 1.6

Typhlosaurus 
lomiae

8 109.13 ± 6.75 5.57 ± 0.25 2.63 ± 0.06 2.15 ± 0.05 4.08 ± 0.45 0.45 ± 0.12

Typhlosaurus 
vermis

5 214.2 ± 48.57 6.93 ± 0.99 3.33 ± 0.37 2.79 ± 0.33 5.46 ± 0.86 1.02 ± 0.25

Table 1. Continued D
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process to the tip of lower jaw. The bones used in these 
measurements were easily identified by palpation. 
All measurements were taken using digital calipers 
(Mitutoyo CD-20DC, Kawasaki, Japan; precision: 0.01 
mm), and were taken on the right side of the specimens.

Bite force

In vivo bite forces were taken in captivity or in the field. 
Only data for adults were used for this study and the 
number of individuals per species varied (Table 1). Bite 
force measurements were taken using an isometric 
Kistler force transducer (type 9203, range ± 500 N; 
Kistler, Zurich, Switzerland) mounted on a purpose-
built holder and connected to a Kistler charge amplifier 
(Type 5995 A, Kistler; see Herrel et al., 1999b). When the 
bite plates were placed between the jaws of the animals, 
prolonged and repeated biting typically resulted. The 
place of application of bite forces was standardized for 
all animals by metal stops that were mounted on the 
bite plates, thus assuring that animals always bit at 
the same position along the tooth row. Gape angle was 
standardized by moving the bite plates away from each 
other for larger animals resulting in animals biting at 
a gape angle of 30°. Surgical tape was wrapped around 
the bite plates to provide grip and to prevent damage 
to the teeth. Bite forces were measured five times for 
each animal and only the highest measurement was 
retained and considered to be the maximal bite force. 

The maximal raw bite force recorded from the amplifier 
was multiplied by 0.67 to correct for the lever arms of 
the set-up.

Diet

Species were classified into one of three dietary 
categories: herbivory (four species), omnivory (seven 
species) and insectivory (45 species) (Table 2). Here, 
herbivorous species are considered to have a diet 
consisting of at least 70% fibrous plant material (i.e. all 
plant material except fruits and nectar), omnivorous 
species have a diet with 10% to 70% of plant material, 
and insectivorous species are those with less than 10% 
of plant material (Cooper & Vitt, 2002). As our study 
included a broad diversity of species, dietary data were 
not always available for each species. In that case the 
diet of a sister taxon of the same genus for which data 
were available was used. Sister taxa were used in only 
a few instances, and in all cases, diet did not show 
much variation within the genus. Moreover, we only 
extrapolated from other species in cases of insectivory 
to avoid inflating the number of independent origins of 
the less common diet types.

Habitat use

Skinks were classified into five habitat groups, in part 
based on Meiri (2018): arboreal (two species), fossorial (20 

Figure 1.  Illustration of The measurements taken on the heads of the lizards, illustrated on a picture of the head of 
Eumeces schneiderii.
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Table 2.  Ecological traits for each species included in the study and references

Species Family Diet Habitat References

Ablepharus kitaibelii Lygosominae Insectivorous Terrestrial Meiri, 2018
Acontias kgalagadi Acontinae Insectivorous Fossorial Meiri, 2018
Acontias litoralis Acontinae Insectivorous Fossorial Meiri, 2018
Acontias meleagris Acontinae Insectivorous Fossorial Meiri, 2018
Acontias percivali Acontinae Insectivorous Fossorial Meiri, 2018
Bellatorias frerei Lygosominae Omnivorous Terrestrial Meiri, 2018
Chalcides ocellatus Scincinae Insectivorous Fossorial Andrews et al., 1987; Carretero  

et al., 2010
Chalcides sepsoides Scincinae Omnivorous Fossorial Meiri, 2018
Chalcides sphenopsiformis Scincinae Insectivorous Fossorial Andrews & Kenney, 1990; Attum 

et al., 2004; Meiri, 2018
Cophoscincopus greeri Lygosominae Insectivorous Semi-aquatic Meiri, 2018
Corucia zebrata Lygosominae Herbivorous Arboreal Meiri, 2018
Ctenotus uber Lygosominae Omnivorous Terrestrial Meiri, 2018
Cyclodomorphus gerrardii Lygosominae Insectivorous Terrestrial Meiri, 2018
Cyclodomorphus michaeli Lygosominae Insectivorous Terrestrial Meiri, 2018
Eulamprus heatwolei Lygosominae Insectivorous Semi-aquatic Meiri, 2018
Eumeces schneiderii Scincinae Omnivorous Terrestrial Meiri, 2018
Isopachys gyldenstolpei Lygosominae Insectivorous Fossorial Das, 2010; Chan-Ard et al., 2015; 

Camaiti et al., 2022
Leptosiaphos kilimensis Lygosominae Insectivorous Terrestrial Meiri, 2018
Lerista edwardsae Lygosominae Insectivorous Fossorial Meiri, 2018
Mochlus fernandi Lygosominae Insectivorous Terrestrial Meiri, 2018
Mochlus sundevallii Lygosominae Insectivorous Terrestrial Meiri, 2018
Morethia butleri Lygosominae Insectivorous Terrestrial Meiri, 2018
Panaspis togoensis Lygosominae Insectivorous Terrestrial Meiri, 2018
Panaspis wahlbergii Lygosominae Insectivorous Terrestrial Razzetti & Msuya, 2002; Ceríaco 

et al., 2018
Plestiodon fasciatus Scincinae Insectivorous Terrestrial Meiri, 2018
Plestiodon gilberti Scincinae Insectivorous Terrestrial Meiri, 2018
Plestiodon laticeps Scincinae Insectivorous Terrestrial Meiri, 2018
Plestiodon tetragrammus Scincinae Insectivorous Terrestrial Meiri, 2018
Pygomeles braconnieri Scincinae Insectivorous Fossorial Glaw & Vences, 2007; Meiri, 2018
Scelotes bipes Scincinae Insectivorous Fossorial Meiri, 2018
Scelotes limpopoensis Scincinae Insectivorous Fossorial Meiri, 2018
Scelotes montispectus Scincinae Insectivorous Fossorial Fitzsimons, 1943; Branch & 

Braack, 1987; Bates et al., 2014
Scelotes sexlineatus Scincinae Insectivorous Fossorial Fitzsimons, 1943; Branch & 

Braack, 1987; Bates et al., 2014
Scincella cherriei Lygosominae Insectivorous Terrestrial Meiri, 2018
Scincopus fasciatus Scincinae Insectivorous Fossorial Meiri, 2018
Scincus mitranus Scincinae Omnivorous Fossorial Meiri, 2018
Scincus scincus Scincinae Omnivorous Fossorial Meiri, 2018
Tiliqua multifasciata Lygosominae Herbivorous Terrestrial Meiri, 2018
Tiliqua occipitalis Lygosominae Herbivorous Terrestrial Shea, 2006; Swan et al., 2017
Tiliqua rugosa Lygosominae Herbivorous Terrestrial Meiri, 2018
Tiliqua scincoides Lygosominae Omnivorous Terrestrial Meiri, 2018
Trachylepis capensis Lygosominae Insectivorous Terrestrial Meiri, 2018
Trachylepis homalocephala Lygosominae Insectivorous Saxicolous Meiri, 2018
Trachylepis punctatissima Lygosominae Insectivorous Terrestrial Meiri, 2018
Trachylepis 

quinquetaeniata
Lygosominae Insectivorous Saxicolous Spawls et al., 2001; Meiri, 2018; 

Dendi et al., 2019
Trachylepis spilogaster Lygosominae Insectivorous Arboreal Meiri, 2018
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species), saxicolous (three species), semi-aquatic (three 
species) and terrestrial (28 species) (Table 2). Arboreal 
species live in the vegetation and are rarely observed 
on the ground, unlike saxicolous species, which are as 
comfortable on the ground as in trees or rocks (Ribeiro et 
al., 2008). Semi-aquatic species spend significant amounts 
of time in water and are excellent swimmers, contrary to 
fossorial species which spend most of their time buried 
in the substrate. All other species were classified as 
terrestrial.

Statistical analysis

All statistical analyses were run in R (R Development 
Core Team, 2005). First, we calculated species means 

using only adults from the data set. Second, we pruned 
the time-calibrated phylogeny from Zheng & Wiens (2016) 
using the R packages ape (Paradis & Schliep, 2019) and 
geiger (Pennell et al., 2014) to include only the species in 
our data set (Fig. 2). To account for the non-independence 
of species due to shared ancestry (Felsenstein, 1985), 
all statistical analyses were performed in a strict 
phylogenetic comparative framework.

To explore the effect of diet and habitat on overall 
body size (SVL), we performed a two-way phylogenetic 
analysis of variance (PhylANOVA) using a Brownian 
motion model followed by phylogenetic post hoc tests 
using the aov.phylo function of geiger (Pennell et al., 
2014) and the phylANOVA function of the phytools 
package (Revell & Revell, 2014).

Species Family Diet Habitat References

Trachylepis striata Lygosominae Insectivorous Terrestrial Meiri, 2018
Trachylepis sulcata Lygosominae Insectivorous Saxicolous Meiri, 2018
Trachylepis varia Lygosominae Insectivorous Terrestrial Meiri, 2018
Trachylepis variegata Lygosominae Insectivorous Terrestrial Meiri, 2018
Tribolonotus gracilis Lygosominae Insectivorous Terrestrial Meiri, 2018
Tribolonotus novaeguineae Lygosominae Insectivorous Terrestrial Meiri, 2018
Tropidophorus baconi Lygosominae Insectivorous Semi-aquatic Hikida et al., 2003; Chuaynkern 

et al., 2014
Typhlosaurus caecus Acontinae Insectivorous Fossorial Meiri, 2018
Typhlosaurus lomiae Acontinae Insectivorous Fossorial Meiri, 2018
Typhlosaurus vermis Acontinae Insectivorous Fossorial Meiri, 2018

Table 2. Continued

Table 3.  Results of the phylogenetic ANOVAs. Significant results are in bold

Variable d.f. F Pphylo

Snout-vent length
Diet 2, 49 20.14 0.002
Habitat 4, 49 1.47 0.58
Bite force
Diet 2, 49 36.7 < 0.001
Habitat 4, 49 2.20 0.43
Relative bite force
Diet 2, 49 6.78 0.0499
Habitat 4, 49 5.32 0.12
Factor: diet
Head length 2, 53 6.22 0.062
Head height 2, 53 9.39 0.015
Head width 2, 53 8.31 0.02
Lower jaw length 2, 53 4.85 0.102
Factor: habitat
Head length 4, 51 9.44 0.033
Head height 4, 51 7.11 0.063
Head width 4, 51 10.44 0.028
Lower jaw length 4, 51 11.88 0.014
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To explore morphological differences according to diet 
and habitat, we performed multivariate phylogenetic 
analysis of covariance (phylogenetic MANOVA) using 
residual head dimensions. To do so all morphological 
variables were logarithmically transformed (log10) to 
fulfil assumptions of normality and homoscedasticity 
(Kachigan, 1991; Sokal & Rohlf, 1995). Subsequently, 
the log10-transformed head dimensions were regressed 
on log10-transformed SVL using generalized least 
squares regressions with phylogenetic size correction 
(phylogenetic generalized least squares [PGLS]; Mao et 
al., 2015) and unstandardized residuals were extracted. 
These were then used as input for a phylogenetic 
MANOVA to test the effects of diet and habitat irrespective 
of variation in head size. Subsequently phylogenetic 
ANOVAs and post hoc tests with the phylolm function 
from the phylolm package (Ho et al., 2016) were run to 
better understand which variables drove the results and 
which groups differed from one another.

To determine which morphological traits explained 
variation in bite force, all morphological and bite force 
measures were log10-transformed and used as input for 
a phylogenetic stepwise multiple regression analysis 
with bite force as the dependent variable and the 
morphological traits as the independent variables. To 
do this, the phylostep function of the phylolm package 
(Ho et al., 2016) was used with Brownian motion as 
the evolutionary model. This evolutionary model was 
selected by running the fitContinuous function from 
the geiger package (Pennell et al., 2014). The best 
regression model was selected based on the minimal 
Akaike Information Criterion (AIC) and variables 
in the model were selected using both forward and 
backward procedures. A phylogenetic regression was 
then carried out using the phylolm function from 
the phylolm package (Ho et al., 2016) to estimate the 
relationship between bite force and the morphological 
traits.

Figure 2.  Time-calibrated phylogeny representing the relationships between the species included in this study modified 
from Zheng & Wiens (2016). The family, diet, habitat and body form of each species are indicated.
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To investigate the effect of diet and habitat on bite 
force, we performed a PhylANOVA with a Brownian 
motion model and followed by phylogenetic post hoc 
tests using the aov.phylo function of geiger (Pennell et 
al., 2014) and the phylANOVA function of the phytools 
package (Revell & Revell, 2014). The post hoc pairwise 
comparison tests taking phylogeny into account were 
performed using the Bonferroni method. As bite force 
is correlated with overall body size, we analysed 
differences in bite force between diet and habitat 
groups using phylogenetic analysis of covariance 

(PhylANCOVA) with SVL as our co-variate. As no 
post hoc pairwise comparisons are possible using this 
approach we extracted the unstandardized residuals 
from a bite force—SVL phylogenetic regression. These 
residuals (further referred to as residual bite force in 
the manuscript) were used as input for a PhylANOVA 
coupled to phylogenetic post hoc pairwise comparison 
tests to test for differences between diet and habitat 
groups. Analyses were run separately for each diet 
and habitat use as our a priori predictions were 
different.

Table 5.  Results of linear regressions. Significant results are in bold

Variable Coefficient SE R2 P

Phylogenetic regression on bite force
Snout-vent length 1.73 0.217 0.54 < 0.001
Phylogenetic stepwise multiple regression with bite force as factor
Head height 9.68 0.45 0.7 < 0.001
Head length -3.02 0.37 0.46 < 0.001

SE; Standard Errors.

Table 4.  Bonferroni post hoc results testing for differences between diet categories. Significant results are in bold

Herbivorous Insectivorous Omnivorous

Snout-vent length
Herbivorous 0.003 0.015
Insectivorous 0.003 0.534
Omnivorous 0.015 0.534
Bite force
Herbivorous 0.003 0.003
Insectivorous 0.003 0.021
Omnivorous 0.003 0.021
Relative bite force
Herbivorous 0.594 1
Insectivorous 0.594 0.15
Omnivorous 1 0.15
Head length
Herbivorous 0.222 1
Insectivorous 0.222 0.282
Omnivorous 1 0.282
Head height
Herbivorous 0.075 1
Insectivorous 0.075 0.126
Omnivorous 1 0.126
Head width
Herbivorous 0.048 0.528
Insectivorous 0.048 0.396
Omnivorous 0.528 0.396
Lower jaw length
Herbivorous 0.33 1
Insectivorous 0.33 0.477
Omnivorous 1 0.477
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RESULTS

The two-way PhylANOVA testing for differences in SVL 
between species consuming different prey and utilizing 
different habitats showed significant differences 
between diet groups (F2, 49 = 20.14; P = 0.002), but 
not between species occupying different habitats (F4, 

49 = 1.47; P = 0.58). The interaction between habitat 
and diet was also significant (F2, 47 = 7.11; P = 0.003). 
Phylogenetic post hoc tests indicated that herbivorous 
species were larger than omnivorous (P = 0.015) and 
insectivorous species (P = 0.003).

A phylogenetic MANOVA detected significant 
differences in head shape between diet groups (Wilks’ 
Lambda = 0.36; F8, 100 = 8.23; P < 0.001). Subsequent 
univariate PhylANOVAs (Table 3) indicated that 
species were different for most variables with 
herbivorous species having relatively wider heads 
compared to insectivorous species (Table 4). A second 
phylogenetic MANOVA further indicated significant 
differences in head shape among species from different 
habitats (Wilks’ Lambda = 0.26; F16, 147.28 = 5.05; 
P = 0.018). However, the univariate PhylANOVAs 

indicated no differences after Bonferroni correction. 
An inspection of the means suggested that fossorial 
skinks differed the most from skinks occupying other 
habitats and had the smallest morphological traits 
suggesting they have small heads for their body size.

A phylogenetic regression of bite force on SVL 
was significant (P < 0.001; Fig. 3; Table 5) suggesting 
that larger species have higher bite forces. The 
phylogenetic stepwise multiple regression analysis 
with head dimensions as predictors of bite force 
retained a significant model explaining 78% of the 
variation of bite force (R2 = 0.78; AIC(k=2) = 485). Head 
height (β = 9.68) was the best predictor and positively 
impacted bite force, whereas head length (β = -3.02) 
negatively impacted bite force (Table 5).

A PhylANOVA indicated absolute bite force 
differences between dietary groups (F2, 49 = 36.7; 
P < 0.001) but not habitat groups (F4, 49 = 2.20; 
P = 0.43). The interaction between diet and habitat 
was significant (F2, 47 = 9.37; P = 0.002). Bonferroni 
phylogenetic post hoc tests indicated that herbivorous 
species were different from omnivorous and 

Figure 3.  Scatter plot of species mean bite force against species mean SVL. The diet and the habitat of species are indicated. 
The species depicted on the graph are: Corucia zebrata, Tiliqua occipitalis, Acontias meleagris, Typhlosaurus vermis, Scincus 
mitranus, Trachylepis quinquetaeniata and Ablepharus kitaibelii. The shaded area represents 95% confidence intervals. 
Note that the x- and y-axes are on a logarithmic scale.

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/advance-article/doi/10.1093/biolinnean/blad052/7197834 by M

useum
 N

ational d'H
istoire N

aturelle user on 15 June 2023



BITE FORCE EVOLUTION IN SCINCID LIZARDS  11

© 2023 The Linnean Society of London, Biological Journal of the Linnean Society, 2023, XX, 1–16

insectivorous species (all P < 0.01). Omnivorous 
species were also different from insectivorous species 
(P = 0.021). An inspection of the means showed that 
herbivorous species are characterized by higher bite 
forces followed by omnivorous and insectivorous 
species (Fig. 4).

A phylogenetic ANCOVA performed on the bite 
force indicated significant differences (F2, 52 = 11.23; 
P = 0.003) between diet, but not habitats groups 
(F4, 50 = 6.77; P = 0.078) when taking into account 
differences in SVL. The phylogenetic ANOVA using 
residual bite forces indicated significant differences 
between diet groups (F2, 49 = 6.78; P = 0.499). The same 
PhylANOVA on habitat groups indicated, however, 
no significant differences (F4, 49 = 5.32; P = 0.12). 
Phylogenetic post hoc tests showed that herbivorous 
species were different from omnivorous species 
(P = 0.036) and insectivorous species (P = 0.003) in 
residual bite force. Insectivorous species were also 
different from omnivorous species (P = 0.039). An 
inspection of the means showed that herbivorous 
species have the highest and insectivorous species the 
lowest relative bite forces.

DISCUSSION

As the lizard cranial system is implicated in many 
functions (e.g. Baeckens et al., 2017) that may require 
conflicting head morphologies (e.g. Paluh & Bauer, 
2017), trade-offs can occur that constrain its evolution 
(Vanhooydonck et al., 2011). Based on data on head 
morphology and bite force for 56 species of ecologically 
diverse skinks, we examined the interrelationships 
between head morphology, bite force and ecology to 
assess the ecological correlates of cranial design and 
performance. Phylogenetic comparative analyses 
showed that cranial morphology and performance 
were determined by dietary specialization but not 
habitat use.

Our results show that bite force is dependent on 
size with larger animals showing greater bite forces as 
expected based on scaling relationships. Herbivorous 
species stand out as being larger than insectivorous 
and omnivorous species, thus providing them with a 
functional advantage and allowing them to generate 
larger absolute bite forces (Herrel et al., 2001b, 2006, 
2014). The evolution towards a larger body size in 

Figure 4.  Plot of bite force against SVL. The regression lines for each diet group are represented. Red dots: insectivorous 
species; blue dots: omnivorous species; green dots: herbivorous species. The shaded areas represent 95% confidence intervals. 
Note the log-axes.
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herbivorous species could also be facilitated by reduced 
selection on agility which is essential for lizards 
hunting active prey like insects or small vertebrates 
(Van Damme, 1999). Moreover, the ubiquitous nature 
of plants in the environment and a presumably low 
foraging cost may provide additional advantages 
promoting large body size in herbivorous lizards 
(Pough, 1973). Large body size provides several other 
advantages including a longer intestinal tract, higher 
thermal inertia and a lower surface to volume ratio, 
and may thus allow herbivorous lizards to meet their 
energetic demands (Pough, 1973; Van Damme, 1999). 
Interestingly, no size difference was observed between 
omnivorous and insectivorous species. Omnivorous 
species are considered opportunistically herbivorous 
with much of their diet being based on arthropods. 
This may constrain their body size if agility is an 
important constraint during prey capture (Schwenk, 
2000; Herrel, 2007; Hoppe et al., 2021).

Our data further highlight that herbivorous species 
have relatively wider heads than insectivorous 
species. A wider head positively affects the maximum 
allowable muscle volume, and thus the cross-sectional 
area of the jaw adductors (Bowman, 1961; Herrel et al., 
2005). It is tempting to interpret this difference in head 
morphology as the result of natural selection. Indeed, 
fibrous plant material requires greater bite forces to 
be reduced before swallowing and thus a wider head 
may provide a solution to these physical constraints 
(Herrel & De Vree, 1999; Herrel et al., 1999c, 2004b). 
Although omnivorous species did not differ from 
insectivorous species in overall head shape, they did 
show a greater bite force. This difference might be 
explained by the inclusion of fibrous plant material 
into the diet, as highlighted for other taxa (Herrel et 
al., 1999b, 2001a; Metzger & Herrel, 2005). Indeed, it 
can be expected that the most demanding food item is 
the one driving the upper limit of bite force and as such 
omnivorous species can be expected to evolve a high 
enough force to allow them to reduce fibrous and tough 
plant matter. However, the generalist morphology 
in omnivorous species may be driven by conflicting 
demands imposed by dietary diversity (Herrel et al., 
2004b). Thus, an increase in bite force but not head size 
could allow a non-specialist to switch to an omnivorous 
diet by allowing the inclusion of harder or tougher 
food items. We might have expected insectivorous 
species to differ morphologically from omnivorous 
species with a smaller head and longer snout (Toyama, 
2016). This lack of morphological differences suggests 
that omnivorous species have retained the ancestral 
morphology of insectivorous species. In a second step, 
a specialization towards herbivory or a durophagous 
diet may be allowed by developing a wider, taller head 
(Herrel & Holanova, 2008; Schaerlaeken et al., 2012; 
Meyers et al., 2018).

Interestingly, and unlike what has been observed 
for other taxa (e.g. Barros et al., 2011; Openshaw & 
Keogh, 2014), no differences in overall body size were 
observed between species occupying different habitats. 
This suggests that habitat use may not impose strong 
constraints on size in skinks. Surprisingly, our results 
also indicated no differences in head shape and bite 
force between habitat groups other than a tendency 
for burrowers to have narrower heads. The tendency 
for burrowing species to differ in head morphology 
is not unexpected as a fossorial lifestyle may impose 
significant energetic constraints on head size (Teodecki 
et al., 1998; Navas et al., 2004). The lack of strong 
common morphological and functional specializations 
in species occupying different habitats is probably 
the result of functional compromises (e.g. fossorial 
and durophagous trade-offs; Baeckens et al., 2017) or 
of independent evolutionary trajectories of different 
habitat specialists and needs to be investigated 
further. Moreover, since habitat can impact the width 
or height of the body as well as limb morphology, 
further analyses of body shape are needed to better 
understand the constraints imposed by different 
habitat types on morphology in skinks (e.g. Pounds, 
1988; Goodman et al., 2008; Herrel et al., 2008; Meiri, 
2008).

Head height and head length were the primary 
determinants of bite force in the species of skinks 
included in our study. A taller head, just like a wider 
head, likely increases the space available for jaw 
adductors which may drive the observed increase in 
bite force (Bowman, 1961; Herrel et al., 2001b, 2006). 
Moreover, a taller head may also allow for more 
vertically placed jaw adductors providing them with a 
greater moment arm and a more efficient conversion 
ratio of muscle force into bite force (Herrel et al., 2001b). 
Conversely, head length had a negative effect on bite 
force (see also Westneat, 2004). An increase in head 
length involves an increase in the jaw outlever and 
given that animals were made to bite at the tips of the 
jaws this can be expected to negatively impact bite force 
(Herrel et al., 2001b, 2007a). Indeed, the jaws of lizards 
are in the form of a third-order lever, with the lower jaw 
being the lever arm (Kerr, 2010; Cox, 2017). Thus, the 
variation in the length of the head will influence the 
distance between the input force and the output force 
of the lever (Wainwright & Richard, 1995; Fabre et al., 
2014a). However, to better understand how head length 
may impact bite force a more in-depth analysis of the 
jaw in- and outlevers in relation to bite force is needed.

CONCLUSION

Our data demonstrate a strong link between body 
size, bite force and diet with herbivorous species being 
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larger and biting harder in absolute terms. Moreover, 
in Scincidae the evolution towards more powerful bites 
goes hand in hand with an increase in head height but 
a decrease in head length. Habitat use did not appear 
to be an important driver of head shape or bite force in 
the species included in our data set, yet this remains 
to be explored further using a broader and more 
comprehensive sample of species.
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