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Abstract—This paper proposes a framework for chord progres-
sion generation that uses human perception as a discriminator
in a generative adversarial network model. By incorporating
human perception as a discriminator, chords that do not exist
in the distribution of training data can be treated as correct
answers. However, since symbolic chord progressions cannot be
calculated as numerical and continuous values, it is not clear how
to compute the perturbation of a chord progression for human
evaluation. Therefore, we formalized the perturbations of chord
progressions in the embedding space based on existing music
theory and devised a pairwise comparison task interface to collect
human feedback for training the generative model. To verify
the effectiveness of the proposed framework, we experimented to
generate chord progressions based on crowd workers’ evaluations
as a discriminator and then asked musicians to evaluate the
generated chord progressions. Consequently, the model generates
significantly more natural and more diverse chord progressions,
compared to the case where human perception is not incorpo-
rated.

I. INTRODUCTION

Chord progressions are essential in harmony and a key
element of music composition. One of the ways to compose
music is to generate chord progressions as a first step and then
write bass lines and melodies. Chord progressions determine
the mood and impression of the song and can help make the
melody. And even if no melody comes to your mind, you
can compose music just with chord progressions, rhythms,
and humming. However, chord progressions are difficult to
come up with, especially for some beginners. Thus, chord
builders have been developed to suggest chord progressions1

and an automatic generation system can be applied as a data
generation method to such support systems.

Various methods have been proposed for automatic mu-
sic and chord progression generation systems based on
probabilistic context-free grammar (PCFG) [1], deep neural
network(DNN)-based methods like long short-term memory
(LSTM) [2], [3], [4], [5], [6], generative adversarial networks
(GAN) [8], [9], [10], and the system with a network for
audio synthesis used in Magenta2 [11]. Thus, DNN- and
GAN-based methods have been realized on a practical level,
including models such as in Magenta. However, these methods
cannot generate data with features that do not exist in the
dataset, because the generator in the basic GAN aims to fit its
distribution with the real data’s distribution.

1https://steinberg.help/cubase pro artist/v9/en/cubase nuendo/topics/
chord pads/chord pads chord assistant c.html

2https://magenta.tensorflow.org/gansynth

By contrast, several methods have adopted the human-in-
the-loop approach (e.g., emotional music generation using the
interactive genetic algorithm by Zhu et al. [12], human-in-the-
loop drum loop generation by Alain et al. [13], human-in-the-
loop melody generation with Bayesian optimization by Zhou
et al. [14]). The advantage of incorporating human evaluation
is that data that does not exist in the dataset can be treated as
correct answers.

Fujii et al. [15] proposed HumanGAN, which uses human
perception as a discriminator in GAN for speech generation,
and Chu [16] used HumanGAN for face image. However,
there are no applications for automatic chord progression
generation, and it is not clear how HumanGAN works on
it. Since symbolic chord progressions cannot be calculated as
numerical and continuous values, it is not easy to compute the
perturbation of chord progressions for HumanGAN.

In this paper, we propose a framework for chord progression
generation, which utilizes human perception as a discriminator
in a GAN model (Figure 1). To achieve that, we formalize
perturbations of chord progressions in the embedding space
based on existing music theory (Tonal Pitch Space [17])
and devise a pairwise comparison task interface to collect
human feedback for training the model. Our framework can
be expected to generate more diverse and human-acceptable
chord progressions than basic GAN.

The contributions of this paper are as follows:
• Framework: We implemented the GAN-based chord pro-

gression generator with human feedback. We also design
the task interface to collect the listeners’ subjective eval-
uations.

• Formalization: We defined the chord progression simi-
larity and introduced a circle of fifths/chord embedding
space. Then, we formalized perturbations of chord pro-
gressions based on music theory.

• Experiment: We experimented to generate chord progres-
sions with crowdworkers evaluation as a discriminator,
and asked musicians to evaluate the generated chord
progressions. Experimental results showed that the model
generates significantly more natural and more diverse
chord progressions compared to the case where human
perception is not incorporated.
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II. METHODOLOGY

Model construction consists of two parts (Fig. 1); 1) Pre-
training loop of the generative model and 2) Training loop
with human feedback.

A. Pre-training Loop

The methods for model construction proposed in this paper
can be divided into two main parts, as shown in Fig. 1. The
former part is the pre-training loop, which is the first step for
the chord progression generator. The latter part is the second
step, a training loop based on human feedback. The latter part
can also be divided into collecting and training loop sections.

We first trained the generative model with a DNN-based
discriminator. This is because the generated data would look
like white noises during the early iterations and it is difficult to
acquire a large amount of human perceptual evaluations [16].
In this framework, we use SeqGAN[9], a generative model
intended to generate token sequences such as natural languages
and symbolic notated music, since we can regard chords as
“letters” and chord progressions as “sentences.”

B. Training Loop with Human Feedback

Next, we train the generative model with human feedback
based on the HumanGAN, GAN with human-based discrim-
inator. The HumanGAN trains a generator G to represent a
perception distribution and replace a DNN-based discriminator
with a human perceptual evaluation-based discriminator D.
Human perception is tolerant to deviations from the real data; a
human-acceptable distribution of this type is called a “percep-
tion distribution” [15]. When the perception distribution covers
a wider range than the real data distribution, the basic GAN
cannot represent the ranges. This is because the generator in
the basic GAN aims to fit the distribution of G based on the
real data distribution.

In this case, D is a perceptual evaluation-based discriminator
that outputs the posterior probability D = [0, 1] regarding how
perceptually acceptable the input x̂n is. The objective function
for training V is reformulated as follows:

V (G,D) =

N∑
n=1

D (G (zn)) (1)

The model parameters of the generator G, θG, are learned to
maximize (1). In this framework, θG are based on a gradient-
based iterative method and are updated iteratively

θ
(new)
G = θG +α

∂V (G,D)

∂θG
= θG +α

∂V (G,D)

∂x̂
· ∂x̂
∂θG

(2)

where α is the learning rate.
In the basic GAN, ∂V (G,D)/∂x̂ is estimated through stan-

dard backpropagation because of the computational processes
in G and D are differentiable. However, ∂V (G,D)/∂x̂ cannot
be estimated through backpropagation because D cannot not be
differentiated in a HumanGAN. Therefore, we regard humans
as black-box systems that output the differences between the

Fig. 1. An overview of model construction: Proposed framework utilizes
human perception as the discriminator D in a GAN model. This model can be
expected to generate more diverse and human-acceptable chord progressions
than basic GAN.

posterior probabilities of the generated data. We also estimate
∂V (G,D)/∂x̂ using an optimization algorithm for the black-
box system.

In a HumanGAN, we use natural evolution strategies
(NES) [18] to approximate the gradients using data per-
turbations. First, a perturbation ∆xr

n is generated from a
multivariate Gaussian distribution N (0, σ2I); here, σ is a
constant value of the standard deviation, r is the index of
the perturbation(1 ≤ r ≤ R), and I is the identity matrix. A
human then evaluates the differences between the posterior
probabilities of two perturbed data

{
x̂n +∆xr

n, x̂n −∆xr
n

}
as follows:

∆D
(
xr
n

)
≡ D

(
x̂n +∆xr

n

)
−D

(
x̂n −∆xr

n

)
(3)

where ∆D
(
xr
n

)
= [−1, 1]. These perturbations and evalu-

ation are iterated R times for x̂n. Thus, ∂V (G,D)/∂x̂ for
backpropagation is approximated as [18]:

∂V (G,D)

∂x̂
=

[
∂V (G,D)

∂x̂1
, . . . ,

∂V (G,D)

∂x̂N

]
(4)

∂V (G,D)

∂x̂n
=

1

2σR

R∑
r=1

∆D
(
xr
n

)
·∆xr

n (5)

C. Perturbation Based on Music Theory

1) Basic Idea: In the NES, we need to add perturbations
to generated data, as mentioned above, after (2) through (5).
The perturbations can be taken as numerical additions and
subtractions. And naturally, the smaller the perturbation, the
smaller the deviation; the larger the perturbation, the larger
the deviation from the original data (e.g., noisy images).
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Fig. 2. An example of the circle of fifths/chord embedding space.
We regard chord progressions as the label of coordinates. The diagonal chord of C in the circle of fifths will be E♭m/D♯m and G♭/F♯.

There are two possible methods of adding perturbations to
chord progressions. The first one is the method that considers
a chord as a set of notes on a staff and moves the components
of the chord on the staff according to the magnitude of the
perturbation. However, this method may cause dissonance in
a perturbed chord conflicting with the generation of a natural
chord progression.

The next one is the method that treats the key and degree
of chord symbolically and takes into account the function of
each chord in the chord progression. This method could not
generate dissonance, and we can expect to express the behavior
of the perturbed data. However, symbolic chord progressions
are not continuous values, unlike audio and images, and cannot
calculate as numerical values. Therefore, we attempt to treat
chord progressions as pseudo-continuous values by construct-
ing a circle of fifths/chord embedding space, a continuous one-
dimensional space like word embedding in natural language
processing, based on Tonal Pitch Space (TPS) [17], [19]. And
then we formulate perturbations for chord progressions to take
into account the function in the tonality of the chords.

2) Chord Progression Similarity: We first define the chord
progression similarity, the proximity between the previous
chord progression and the candidate perturbed chord pro-
gression. In the TPS, we can calculate chord proximity and
regional proximity as the similarity of two chords. Further,
two progressions with close chord/regional proximity can be
considered to have close functions in tonality3. For example,
δ (I/C→ IV/C) = 5 and δ (vi/C→ IV/C) = 7. If the
first chord on out of region C, δ (I/D→ IV/C) = 15,
where D/R is the chord of the degree D on region (key) R
and δ (DS/RS → DD/RD) is the chord/regional proximity of
chord progression DS/RS → DD/RD. The degree D is the
position of note or chord on a scale (R in this time) relative to
the tonic (the first note of the scale) and is written mainly in
upper and lower case Roman numerals, such as I and vi. Thus,
I/C indicates C-major, vi/C indicates A-minor, etc. The first
two examples, I and vi on region C, have the function of tonic
in C and have close value, as you can see.

Hereafter, Dx/Rx is denoted as Cx for sake of simplicity

3See the appendix for its formulation in https://giganticbite.github.io/
hil-CPGenerator

and the conversion from Cx to Dx/Rx (and Cy to Dy/Ry)
shall minimize δ (Dx/Rx → Dy/Ry). In general, the prox-
imity is smaller when interpreted without musical modulation
(e.g., δ (I/C→ IV/C) < δ (I/C→ I/F)) [19]. We now
define the chord progression similarity d as follows:

d (CS → CD, C → CD) :=√
(δ (CS → CD)− δ (C → CD))

2
(6)

where CS is the chord before adding the perturbation, CD is
the next chord, and C is any chord.

3) Circle of Fifths/Chord Embedding Space: To map chord
progressions into the circle of fifths/chord embedding space
(hereinafter called CCES), we assign a positive/negative sign
to a chord progression similarity. Here, let COF be the set of
chords in the circle of fifths (Fig. 2), as shown below:

COF ={C,Am,G,Em,D,Bm,A,F♯m,E,

C♯m,B,G♯m,G♭,E♭m,D♭,B♭m,

A♭,Fm,E♭,Cm,B♭,Gm,F,Dm}
(7)

First, we set the origin in the CCES. For any chord
C ∈ COF, let the chord progression C = CS hold up
d (CS → CD, C → CD) = 0 to be the origin in the CCES.

Then, we create two sets to assign positive/negative signs to
chord progression similarity and determine coordinates in the
CCES. Of the origin C = CS and the chord CSP in parallel
key of C, let DSmajor be the chord in a major key and DSminor

be the chord in a minor key. The chords on the right of CS

in the circle of fifths and DSminor are elements of the set
COFpositive, and the chords on the left of CS and DSmajor are
in COFnegative. Note that these chords are separated on the
diagonal of CS to hold up COF\COFpositive = COFnegative.
Now, we determine coordinates in the CCES ds as follows:

ds (CS → CD, C → CD) :=

(−1)kd (CS → CD, C → CD)

k =

{
0 (C ∈ COFpositive)
1 (otherwise)

(8)
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4) Perturbation for Chord Progressions: Using the CCES
defined in the previous section, we determine how to add a
perturbation to a chord progression. Let T be the length of
generated data x̂n, we first obtain a vector of random numbers
as S = N (0, σ2I) (0 ∈ RT−1, I is the (T −1)×(T −1) iden-
dity matrix). From (3), we can make a pair of perturbed data{
x̂n +∆xr

n, x̂n −∆xr
n

}
with x̂n = [C1, . . . , CT−1, CT ].

As x̂n,i +∆xr
n,i, we obtain the chord Cpp,i associated with

the coordinate ds(Ci → Ci+1, Cpp,i → Ci+1) in the CCES
closest to si ∈ S, where i is the index of each element of x̂n

(i.e., chord) and ∆xr
n is the perturbation to x̂n. If there are

multiple candidate chords, Cpp,i is determined completely at
random to avoid bias. In the same way, we obtain the chord
Cpn,i associated with the coordinate ds(Ci → Ci+1, Cpn,i →
Ci+1) in the CCES closest to −si as x̂n,i −∆xr

n,i. Through
this process, 1 ≤ i < T , we finally get the pair of perturbed
data:

x̂n +∆xr
n = [Cpp,1, . . . , Cpp,T−1, CT ]

x̂n −∆xr
n = [Cpn,1, . . . , Cpn,T−1, CT ]

(9)

D. Perception Distribution

We make the perception distribution using feedback data to
see the variety and the human-acceptable range of generated
chord progressions. The perceptual distribution is calculated
by weighting the transition probability of the perturbed chord
progressions as follows:

1) As we mention in Section III-B2, the feedback scale is
mapped to the differences between the posterior proba-
bilities ∆D

(
xr
n

)
.

2) Define the weight of the perturbed chord progressions
D

(
x̂n +∆xr

n

)
, D

(
x̂n −∆xr

n

)
.

3) Multiply the transition probability of each chord by
the weights determined by 2., to create the perception
distribution:

Ppd (Cpp,j |Cpp,i) = P (Cpp,j |Cpp,i) ·D
(
x̂n +∆xr

n

)
Ppd (Cpn,j |Cpn,i) = P (Cpn,j |Cpn,i) ·D

(
x̂n −∆xr

n

) (10)

where P (Cj |Ci) is a transition probability from a chord
Ci to a chord Cj (indicating each cell of Fig. IV-A), Cpp,i

and Cpp,j are the chords extracted from x̂n + ∆xr
n, Cpn,i

and Cpn,j are the chords extracted from x̂n − ∆xr
n, and

Ppd (Cj |Ci) is a transition probability of perception distribu-
tion (indicating each cell of Fig. IV-A). Thus, if you have
x̂n + ∆xr

n = [C,F,G], you can calculate transition proba-
bilities of (Cpp,i, Cpp,j) = (C,F) , (F,G). We also make a
distribution with the transition frequency F (Cj |Ci) used in
Section IV-A.

III. EXPERIMENT

A. Pre-training Loop and Dataset

We set the output length of the generative model T = 9
(mentioned below), the learning rate of the optimization algo-
rithm α = 0.001, the number of embedding layers to 32 for

Fig. 3. The flowchart of chord classification.
This procedure makes chords into triads and the vocabulary size of the
generative model less.

the generator and 64 for the discriminator, and the rest of the
parameters are the same as the PyTorch version4.

We also obtained the dataset for the pre-training from
HookTheory5 that is a database of chord progressions and
melodies. This dataset comprises 19,664 phrases (e.g., Intro
and Chorus), and we only used chord progressions in the
dataset, all of which were transposed into the key of C.

Many pieces of music consist of multiple 8 or 4 bars,
and there is a method generating 8 bars of music as an
experiment [20]. In the application of automatic generation,
however, 4 bars chord progressions would reduce the involve-
ment and variation of the chord progressions. And 16 bars
would increase the burden on the listeners and make it difficult
to catch the whole impression. Thus we decided to generate
T = 8 chord progressions (one chord per bar) in this study.

For all of the lengths of each chord progression T = 8, we
add *EOC* (End Of Chord progression) to the end of each
chord progression as a terminal symbol. This is the same as
the output length of the generative model. If the length of a
chord progression T < 8, we did not use it; if T > 8, we cut
it out from the back via T = 8 to give the chord progression
a cadence (a sense of resolution). Through this process, the
dataset comprised 14,776 chord progressions in the end. In
addition, we classified the 704 chords in the dataset into 24
major and minor triads, to reduce the number of chords, and
the vocabulary size of the generative model (Fig. 3).

B. Collecting Feedback from Crowdworkers

In order to collect listeners’ subjective feedback as (3) in
various countries, we used Lancers6 in Japan and Amazon Me-
chanical Turk7 in English-speaking countries. This feedback
consisted of two parts: a music screening and a feedback task.
The total number of listeners was 120, 60 each from Japan
and English-speaking countries. Hereafter, the crowdworkers
in the feedback are referred to as ”listeners.”

4https://github.com/ZiJianZhao/SeqGAN-PyTorch
5https://www.hooktheory.com/theorytab
6httpss://www.lancers.jp/
7https://www.mturk.com/
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Fig. 4. Experiment overview.
The training loop comprises collecting perceptual evaluations of pairs of chord progressions as feedback and training using collected feedback. The right part
of this image is the interface to feedback on the differences between the posterior probability of chord progressions.

1) Music Screening: The listeners took a test about their
musical background and musical experience using the Gold-
smiths Musical Sophistication Index (Gold-MSI) [21], [22].
In this study, we made a questionnaire form for two of the
five Gold-MSI indices: perceptual abilities for listening to
music, and musical training, for music and musical instrument
training.

2) Feedback Task: The listeners evaluated the naturalness
of the chord progressions and gave feedback on the difference
between the posterior probabilities to the generative model.
The stimuli in the task were a pair of two perturbed chord
progressions 8 , and the listener worked with 25 sets of this
stimulus and feedback as one set, as shown in Fig. 4.

The presented chord progressions were generated from the
generative model pre-trained for 5, 10, and 15 epochs. Since
the pre-training loop showed a tendency toward over-fitting
around epoch 15, we used models pre-trained before epoch
15. We prepared the generated N = 200 chord progressions
respectively and added R = 5 perturbations per data set. And
also we decide the standard deviation σ = 3 of random noise
S so that most of the random noise will be ±3σ = ±9 on
the normal distribution since a perturbed chord can lose its
sense of tonality when a random noise, a value of the circle
of fifths/chord embedding space is greater than 10 or less than
-10. Thus, we collected 200×5 = 1000 feedback data for each
model.

In this framework, the listeners’ feedback is the differences
between the posterior probabilities of the generated data,
instead of a discriminator. If this were applied to the SeqGAN,
it would be necessary to gather feedback on all posterior
probabilities of the token sequences, chord progressions in this
case, generated by a Monte Carlo (MC) search, as shown in
Fig. 4. However, if the length of token sequence T , the number
of MC search iterations for a token sequence of length t is
(number of tokens)(T−t) and the generator repeats it for

8Note that all the generated chord progressions are in root position.

T − 1 times (i.e.,
∑T−1

t=1 24T−t = 4, 785, 883, 224 feedback
data needed at this time). This is difficult to do, considering the
time required and the burden on the listeners, so the listeners
only evaluated the last generated token sequence of length
T = 8 in this study.

The subjective feedback scales have 6-point for evaluating
the naturalness of a pair of chord progressions, A and B: A is
much more natural, A is a little more natural, Both are natural,
Both are unnatural, B is a little more natural, and B is much
more natural. We also mapped these scales to the difference
between the posterior probabilities:

∆D
(
xr
n

)
= (1.0, 0.5, 0.0, 0.0,−0.5,−1.0) (11)

Then, we could get the weight of the perturbed chord pro-
gressions mentioned in Section II-D. Since the weighting
multiplies 0.0 for unnatural chord progressions and 1.0 for
natural chord progressions, we can assume that the percep-
tion distribution consists of chord progressions that humans
evaluate as natural.

D
(
x̂n +∆xr

n

)
= (1.0, 0.75, 1.0, 0.0, 0.25, 0.0) (12)

D
(
x̂n −∆xr

n

)
= (0.0, 0.25, 1.0, 0.0, 0.75, 1.0) (13)

C. Training Loop with Feedback Data

We finally trained the generative model with feedback data
according to (2), (4), (5). Here, the learning rate of the
optimization algorithm αh was set to be the same as for the
pre-training loop αh = α = 0.001, and we updated the model
parameters θ as follows:

θ ← θ + αh
∂V (G,D)

∂x̂
· ∂x̂
∂θG

(14)

where ∂V (G,D) /∂x̂ is the gradient of the objective function
of HumanGAN ((4)).
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Fig. 5. The most natural chord progressions generated from 15 (left) and 15 + feedback (right) rated in Section III-D.

D. Qualitative Evaluation

To verify the effectiveness of the generative model by the
training loop with human feedback, we experimented with a
qualitative evaluation approach. In this evaluation, we will use
the most trained and optimized generative models: pre-trained
for 15 epochs and 15 epochs + feedback (e.g., Fig. 5).

The subjects were seven university faculty members and
professional composers with academic degrees in music com-
position. We choose the semantic differential (SD) method
with a 5-point Likert scale (1: disagree – 5: agree) for seven
evaluation scales: smoothness, evolvement, the beauty of the
sound, simplicity, fun, naturalness, and cadence. In concrete,
the subjects evaluated a total of eight chord progressions, four
each from the models.

E. Results

Since both models were pre-trained at the same epochs and
the values were rating scales, we used the Wilcoxon signed-
rank test, a nonparametric test of the two matched samples.
Here, the significance level of the Wilcoxon signed-rank test
was αt = 0.05, the null hypothesis H0: the evaluation value
of chord progressions from the only pre-trained generator was
the same as that from the pre-training + feedback generator,
and the alternative hypothesis H1: the evaluation value of
chord progressions from the pre-training + feedback generator
was higher than that from only the pre-trained generator, thus
making it a one-sided test.

Tab. IV-A shows the test results. Focusing on the evaluation
of naturalness, the result showed that the null hypothesis was
rejected for epoch 15 and epoch 15 + FB, since p < 0.05,
and it was statistically significant that the evaluation of natu-
ralness increased with the training loop with human feedback.
Similarly, it was statistically significant for the evaluation of
cadence and the beauty of the sound.

IV. DISCUSSION AND LIMITATIONS

A. Discussion

Based on the result, we found that the training loop with
human feedback on the naturalness of chord progressions had
a positive effect on the naturalness of the generated data (i.e.,
the training increased the value of the naturalness of the data
generated from the model that had been relatively pre-trained,
and the same was true for cadence and beauty of sound).

We also checked the diversity of the output chord progres-
sions. Fig. 6 shows the root mean square errors (RMSE) of the
transition frequency F (Cj |Ci) from a chord Ci to a chord Cj

of the dataset and the perception distribution (formulated in
Section II-D and showed in Fig. 7) as the ground truth. When

TABLE I
THE RESULTS OF THE WILCOXON SIGNED-RANK TEST. 15 AND 15+FB

INDICATE THE TRAINING EPOCH OF THE GENERATIVE MODEL,
PRE-TRAINED FOR 15 EPOCH AND 15 EPOCH + FEEDBACK.

15 15+FB
average statistic p-value

smoothness 3.04 3.54 229.0 0.08
cadence 2.04 2.79 176.0 <0.05

naturalness 2.79 3.75 223.5 <0.01
fun 2.54 2.71 137.5 0.36

simplicity 3.11 3.68 156.0 0.08
beauty of sound 3.21 3.93 195.5 <0.05

evolvement 2.96 2.79 101.0 0.70

Fig. 6. The comparison on the average of five attempts for the RMSE of
transition frequencies.

Each caption indicates the ground truth, and triangles in the box plots indicate
the average of each RMSE. The dataset: the larger the RMSE, the more various
the chord progression. The perception distribution: the smaller the RMSE, the
more natural the chord progression.

the dataset is the ground truth, the larger the RMSE, the better
the model can generate the chord progression that represents
a feature not found in the dataset, and when the perception
distribution is the ground truth, the smaller the RMSE, so the
more natural chord progressions can be generated for humans.
From Fig. 6 and Fig. 5, it can be said that our framework
generates significantly more natural and more diverse chord
progressions, compared to the case where human feedback is
not incorporated.

B. Limitation

For vocabulary reduction of the generative model and the
dataset, we classified chords into triads, as in Section III-A.
However, this operation leads to reducing the feature of chord
progressions that cannot be expressed by triads (e.g., seventh
chords and ninth chords, which are found in jazz). And this
system cannot be used when a user wants to generate other
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Fig. 7. The transition probabilities matrices of chord progressions.
The real-data on the left and the perception distribution on the right. The vertical axis indicates a from-chord Ci and horizontal axis indicates a to-chord Cj ,

Ci → Cj . The perception distribution has some peaks that don’t or a little exist in the real-data (e.g., C-minor to C-major and C-minor to E-minor).

than 8 bars because we limited T = 8 for generating chord
progressions. It also reduces the number of available chord
progressions in dataset and leads to decrease a cadence since
we need to cut out chord progressions (see Section III). We
will take on this issue in future work and consider how to keep
the model small without this operation.

V. CONCLUSION

In this study, we propose a framework for chord progression
generation that uses human perception as a discriminator
in a generative adversarial network model. The qualitative
evaluation results show the positive effect on naturalness,
cadence, and evolvement of the chord progressions generated
by the relatively pre-trained model, and the model generates
significantly more natural and more diverse chord progres-
sions, compared to the case without human perception.
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