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Abstract

In an electrical network/circuit we know that current flows in a closed circuit and
every component has some capacity. We now define some standard concepts in this
connection and formulate them in terms of labels and finally apply these to electrical
networks/circuits. We define an operation on graphs which results in realizing a
capacitated network as a combination of two graphs. In this paper we have shown
how theorem 1 on capacitated network finds its natural application in electrical
network/circuit (theorem 1.1), of course a large number of definitions have to be
introduced for this purpose, this is the price we have to pay. All new/modified
definitions are underlined. A generalized electrical network version of theorem 1 is
theorem 1.2 applicable to electrical networks with more than one source and one
sink. We apply theorem 1.1 to an electrical network/circuit obtained by translating
a capacitated network graph. We translate an electrical network/circuit to its
corresponding capacitated network and verify theorem 1. We have demonstrated
how theorem 2 when applied to electrical network (theorem 2.1) becomes so obvious
and clear. A generalized version of theorem 2 is theorem 2.2 applicable to electrical
networks/circuits with more than one switch.
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Section 1

1. Introduction

We have studied and defined concepts required for translating a graph to its corre-

sponding electrical network/circuit and recovering the graph for a given circuit. For

this purpose we have defined some new concepts in graph theory so as to uniquely rep-

resent a graph by a circuit and conversely. In this paper we look at concepts and results

in graph theory which are directly applicable to electrical network/circuit. The present

work is on translating these concepts and results to the corresponding ones in electrical

circuit theory. In this connection we found that the capacitated network along with

some theorems are directly applicable to electrical network/circuit.

This paper is organized into 6 sections. In section 2 we recall some definitions from

standard books on graph theory and electrical network/circuit along with some impor-

tant results and then we formulate these in terms of labels which is section 3. In section

4 we apply these definitions to electrical network/circuit. In section 5 we apply these

concepts and results on the capacitated/ labeled network to electrical network/circuit

followed by the conclusion in section 6.

In this paper for practical purposes labeled graphs are treated quite differently from

their usual treatment in graph theory and hence many definitions seems to be similar

but are necessary for applications. We state the difference and similarity between the

usual treatment and our treatment of graph theory as and when needed. We also note

here that in the usual definition of the labeled graphs[3], the labels are just symbols

assigned to edge/vertex of a graph but this is not of practical use, specially in electrical

circuit theory. Here labels of a graph are defined to be either integers or rational num-

bers.

Section 2

Definition 2.1 Capacity function [5] : Let D = (V,E) be a digraph, then a mapping

CE : E → R is called an edge capacity/labeled function. The value CE(e) is called the

edge capacity/label of the edge ‘e’. Similarly a mapping Cv(v) : V → R is called a

vertex capacity/labeled function. The value CV (v) is called the vertex capacity/label

of the vertex ‘v’. The difference between edge/vertex capacity of a digraph and labels

of a digraph is only in the range of the above mapping, while the range of the usual
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labels are symbols, the range of the capacity are mostly integers and rational numbers

though here we have taken the range as entire R. Further note here that the usual

labels can be defined on any graphs but capacity is only defined for directed graphs. To

differentiate between a capacity and a labeled function we denote the labeled functions

on edge /vertex by LE/LV .

Definition 2.2 Capacitated network [5] : A diagraph (D,CE)/(D,CV ) is called an

edge/vertex capacitated network.

A diagraph {D,CE , CV } is called a mixed capacitated network. Again note here

that these are labeled graphs.

Note : We always denote a diagraph by D = (V,E) and the corresponding undirected

graph G = (V,E).

Definition 2.3 Edge/Vertex flow [5] : A real valued function fE : E → R is called

an edge flow function and the value fE(e) is called the edge flow along the edge ‘e’.

Similarly a real valued function fV : V → R is called a vertex flow function and the

value fV (v) is called the vertex flow at the vertex ‘v’.

Note : We have defined two function CE(e) and fE(e) on the edge ‘e’. CE(e) is the

numerical value that can be associated with edge e and fE(e) represents the actual value

associated with the edge e, satisfying the condition 0 ≤ fE(e) ≤ CE(e). An example

to see the difference between the capacity and flow on a lighter side is to observe that

the capacity(weight) of a six foot tall person say is 70 kgs but the actual flow(actual

weight) may be less or more. Let us illustrate the concepts of capacity and flow by the

following example.

Consider a capacity flow network (D,CE , fE)
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In the above example we see that each edge is associated with two real numbers separated

by a comma. The first number indicates the flow along the edge and the second number

indicates the edge capacity. The value CE(e) (capacity of the edge (1,2)) = 5 and the

value fE(1, 2) (flow of the edge (1,2) ) = 3. Here CE(1, 2) indicates that the edge has a

capacity of 5 units on which 3 units flow. Similar explanation holds for other edges of

the graph.

From the above example we see that the capacity edge flow network (D,CE , fE) can be

realized as a combination of two graphs namely an edge flow network digraph and an

edge labeled graph as shown in the figure below

This combination is defined by the following rule (D,CE , FE) = (D, fE)∗(G, LE) where

‘∗’ is defined by (fE ∗LE) = (fE , LE), where G is the undirected graph corresponding to

the directed graph D and LE is the edge labeled function on the edge set E. Similarly

a vertex flow network (D,CV , FV ) is a combination of a capacity vertex flow network

digraph and a vertex labeled graph. In general this combination is defined by the rule

(D,CV , FV ) = (D, fV ) ∗ (G, LV ) where ‘∗’ is defined by (fV ∗ Lv) = (fV , Lv). This is

illustrated in the following example.
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Here we see that the value CV (A) (capacity of the vertex A) = 3 and the value fV (A)

(flow at the vertex A ) = 2. The value CV (A) indicates that the vertex has a capacity of

3 units where as fV (A) indicates the actual value (Flow at vertex A) is 2 units. Similar

explanation hold good for all other vertices of the graph.

Definition 2.4 Source and sink [5] : A vertex in a capacitated network with indegree

zero is called a source and the vertex with outdegree zero is called the sink. Observe

that the indegree and outdegree are defined only for digraphs. For our purpose we give

new definition for these in terms of labels in section 3.

Definition 2.5 Inflow/Outflow [5] : The sum of the flows along all the edges directed

to vertex ‘i’ /directed from a vertex ‘i’ is called inflow/outflow respectively.

i.e Inflow =
∑
e→i

f(e) and Outflow =
∑
i→e

f(e).

Definition 2.6 Feasible Flow [5] : A flow in a network is called a feasible flow if the

inflow is equal to the outflow. If f is a feasible flow in a capacitated network G, the

value f(G) of the flow is the outflow from the source.

Definition 2.7 Edge Cutset [5] : In an edge capacitated network G = (V,E), a

subset (S, T ) = {(i, j)/(i, j) ∈ E, i ∈ S, j ∈ T} is called an edge cutest if

(i) S, T are partition of V

(ii) Source is in S and sink is in T

(iii) There is no flow from source to sink if all the edges of the cutset are deleted from

G.
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Definition 2.8 Capacity of the edge cutset [5] : The edge capacity of the edge

cutset (S, T ) is denoted as CE(S, T ) and defined by CE(S, T ) =
∑

e∈(S,T )

fE(e).

Definition 2.9 Flow of an edge cutset [5] : The flow of an edge cutset (S, T ) is

denoted as fE(S, T ) and defined by fE(S, T ) =
∑

e∈(S,T )

fE(e).

Definition 2.10 Vertex cutset [5] : Let (D,Cv) be a vertex capacitated network. A

subset W of V is called a vertex cutset if

(i) W does not contain source and sink

(ii) there is no flow from source to sink if all the vertices of the cutset are deleted from

G.

Definition 2.11 Capacity of the vertex cutset [5] : The vertex capacity of the

vertex cutset W is denoted as CV (W ) and defined by CV (W ) =
∑

v∈W

CV (v).

Definition 2.12 Flow of a vertex cutset [5] : The flow of a vertex cutset W is

denoted as fv(W ) and defined by fv(W ) =
∑

v∈(W )

fv(v).

Section 3

In order to study electrical network through graphs we redefine these definition in terms

of labels (though some of these were used earlier).

Definition 3.1 Dummy labeled Edge/ Vertex capacity function : Let G = (V,E)

be a graph, a mapping LE : E → R is called a dummy edge labeled capacity function.

The value. LE(e) is called the dummy labeled edge capacity of the edge ‘e’.

Observe here that the capacity function CE is the dummy labeled function

LE, while CE(e) is the actual capacity of the edge ‘e’, LE(e) is the dummy

label of ‘e.

Similarly let G = (V,E) be a graph, a mapping LV : V → R is called a dummy vertex

labeled capacity function. The value Lv(v) is called the dummy labeled vertex capacity

at the vertex ‘v’.

Note : This definition is needed in electrical circuit theory. We note here that the value

LE(e) and Lv(v) (dummy edge/vertex label) is not the actual label. It only indicates

the maximum label that can be assigned to an edge/vertex which is a real number. We
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again observe here that in case of ordinary labeled graphs an edge/vertex is labeled at

random . Hence dummy labeled and labels are synonymous.

Definition 3.2 Dummy labeled capacitated network : A diagraph (D,LE)/(D,LV )

is called dummy edge/vertex labeled capacitated network. A diagraph {D,LE , LV }
is called a mixed dummy labeled capacitated network.

Definition 3.3 Labeled Edge/ Vertex flow : A real valued function fLE : E → R

is called an edge labeled flow function and the value fLE(e) is called the labeled edge

flow along the labeled edges. Similarly a real valued function fLV : V → R is called a

vertex labeled flow function and the value fLV (v) is called the labeled vertex flow at

the labeled vertex ‘v’.

Note : We observe that the value fLE(e) and fLV (v) are the actual value associated with

the labeled edge ‘e’ and the labeled vertex ‘v’. For example LE(e) = 5 and fLE(e) = 3.

The value 5 represents the dummy label of the labeled edge e where as 3 represents

its actual label. In the case of usual graph, labels and dummy labels are synonymous

as noted early, however for a multi labeled graphs the two labels may be different. If

LE(e) = 5 and fLE(e) = 3 then we can say that the edge e is multi labeled with labels

3 and 5. For application purpose we consider an edge with two labels, one of them is

called the capacity of the edge e and other is called the flow along the edge e.

Definition 3.4 Labeled Inflow/ Outfolw : In a dummy labeled capacitated network

the sum of all the labeled flow directed to a vertex ‘v’/directed from a vertex ‘v’f is called

labeled inflow/outflow respectively.

Note : The difference between the sum of the indegree at a vertex ’v’ and sum of the

labels on these edges at a vertex ‘v’ is explained by the following example
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From the above example we see that the indegree of the vertex A is 3 (figure - 4 (a))

and the labeled indegree of the vertex A is 7 (figure - 4(b)).

Definition 3.5 (a) Labeled Indegree/Outdegree : The sum of all the labels

on the edges incident with/incident away from a vertex ‘v’ is called labeled

indegree/outdegree. Labeled indegree and outdegree are defined for digraphs.

Definition 3.5 (b) Labeled feasible flow : A labeled flow is called feasible if∑
e→v

f(e) =
∑
v→e

f(e), where vertex v is neither source nor sink.

Definition 3.6 Labeled edge cutest : In a dummy labeled edge capacitated network

G = V,E,LE , a subset (S, T ) = {(i, j)/(i, j) ∈ E, i ∈ S, j ∈ T} is called a labeled edge

cutest if

(i) S, T are partition of V

(ii) Source is in S and sink in T

(iii) There is no flow from source to sink if all the labeled are deleted from G.

Definition 3.7 Capacity of the labeled edge cutest : The capacity of the labeled

edge cutset (S, T ) is denoted by LE(S, T ) and defined by fLE(S, T ) =
∑

e∈(S,T )

fLE(e).

Definition 3.8 Flow of a labeled edge cutset : The flow of a labeled edge cutset

(S, T ) is denoted as fLE(S, T ) and defined by fLE(S, T ) =
∑

e∈(S,T )

fLE(e).

Definition 3.9 Labeled vertex cutset : Let (D,Lv) be a labeled vertex capacitated

network. A subset W of V is called a labeled vertex cutset if there is no flow from

source to sink if all the labeled vertices of the cutset are deleted from G.

Definition 3.9 Capacity of the labeled vertex cutset : The capacity of the labeled

vertex cutset W is denoted as LV (W ) and defined by LV (W ) =
∑

v∈W

LV (v). If f is a

labeled feasible flow in a dummy labeled capacitated network G then the value L(G) is

the outflow from the source.

Definition 3.10 Flow of a labeled vertex cutset : The flow of a labeled vertex

cutset (W ) is denoted as fLV (W ) and defined by fLV (W ) =
∑

v∈W

fLV (v).

Section 4

In this session we first recall some classical definition of electrical networks/ circuits

from standard book along with new definition. We apply the definitions from session 3
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to electrical network/circuit.

Definition 4.1 Circuit board (CB) : A circuit board is a board on which electronic

components can be used to construct an electronic device. The two major kinds of

circuit board(CB) are

1. Bread Board (BB)

2. Printed Circuit Boards (PCB).

Definition 4.1 : (a) Bread board (BB) : BB [2] are simple boards which have

only terminals which can be used to connect electronic devices. BB is used to make

temporary circuit for testing a designed circuit/network. Such boards are also called

proto boards.

Definition 4.1 (b) Printed Circuit board (PCB) : A simple PCB [1] is a plastic

board which has connecting tracks between terminals.

The PCB’s are of two types

• The PCB’s which has no embedded components is called Printed Wiring Board.

In these boards the printed connecting pathways are marked with the capacity of

the components that may be used to built a network/circuit.
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• The PCB populated with electronic components is called a Printed Circuit As-

sembly(PCA). In these board the printed connecting pathways are labeled with

the capacity of the components are equipped with the electronic component with

specified capacity.

We have defined dummy labeled edges and vertices earlier. We now define these terms

in electrical network/circuit.

Definition 4.2 A non labeled PCB : A simple PCB without any electrical component

or any indication on the interconnection between two terminals is called a non labeled

PCB. Such a PCB, looks like an usual graph as shown in figure 8.
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Definition 4.3 Dummy labeled PCB : In a PCB, sometimes there is an indica-

tion on the interconnection between the terminals about the capacity of the electrical

equipments to be used. In this case the graph is dummy labeled graph.

In a PCB the interconnection between the terminals are equipped with a electrical

component of the specified capacity. Such a PCB is called a printed circuit assembly

(PCA) [2]. The graph corresponding to a PCA is called an edge labeled graph . Each

edge of the graph has two labels one indicating capacity of the interconnection and the

other indicating the capacity of the component. Sometimes the edge labeled graphs has

three labels. The first label indicating the capacity of the interconnection, the second

indicating the presence of the electrical component(either 0 or 1)and the third indicating

the capacity of the component as shown in the figure -10.
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Definition 4.4 Dummy edge/vertex capacity function (In electrical network)

: In a PCB there are interconnecting tracks that are labeled with numbers (usually

integer or real number). The number on the tracks indicates the capacity of the electrical

component to be used along the track (edge).

A function EcE : edgeset of the PCB → R is the dummy edge capacity function and

the value ECE(e) is the capacity of the track (edge).

A function EcV : Vertex set of the PCB → R is the dummy vertex capacity function

and the value EcV (v) is the capacity of the junction (vertex).

Note : We note here that the value ECE(e) and EcV (v) is not the actual label. EcE(e)

indicates the maximum capacity of the electrical component that can be assigned be-

tween the terminals of the circuit, which is a real number. EcV (v) indicates the maxi-

mum potentials at the terminals of the circuit.

Definition 4.5 Dummy labeled capacitated network (In electrical network)

: A PCB equipped with electrical components is called a dummy labeled capacitated

network.

Definition 4.6 Source and Sink(In electrical circuit) : All electrical networks/circuit

are energized with dc voltage(battery). The positive terminal of the battery is desig-

nated as source and the negative terminal is designated as sink.

Definition 4.7 Edge/vertex flow(In electrical circuit) : When a PCB is energized

with dc voltage supply there is flow of current through the circuit. This current flow in

the circuit is due to the potential difference between the terminals. Thus there is a real

number associated with the terminals of the circuit. An edge flow in a closed network
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refers to current (i.e Flow of electrons). Mathematically a flow/current is a function iE

: edge set of a PCB → R. The value iE(e) is the current across the track (edge ‘e’). A

vertex flow in a closed network refers to the potentials at the terminals.

Mathematically its a function PV : vertex set of a PCB → R. The value PV (v) is the

potential at the terminal (vertex ‘v’) of the circuit.

Note : iE and Pv are the actual values indicating the flow/current along the edge and

the potential at the vertex.

Definition 4.8 Inflow/Outflow (In electrical circuit) : The total current enter-

ing/leaving a junction (node) is called inflow/outflow in a network.

Definition 4.9 A feasible flow (In electrical circuit) : A feasible flow in a circuit

refers to Kirchhoff current law (KCL).

[KCL[2] : The law states that the sum of currents entering a node is equal to sum of

currents leaving from that node].

Definition 4.10 Edge cut in an electrical circuit : Let us consider a PCB equipped

with electrical components. Let a set V be set of terminals of the PCB and the set E

be set of electrical components that are equipped between the terminals of the PCB.

A subset (S, T ) = {(i, j)/(i, j) ∈ E, i ∈ S, j ∈ T} is called an edge cut, set if

(i) S, T are partitions of V

(ii) Source is in S and sink is in T

(iii) There is no flow from source to sink if all the electrical components from the set

(S, T ) are removed.

Definition 4.11 Capacity of the edge cutest (In electrical circuit) : The ca-

pacity of the edge cutset (S, T ) is denoted by CE(S, T ) and defined by CE(S, t) =∑
e∈(S,T )

EcE(e).

Definition 4.12 Flow of the edge cutset (In electrical circuits) : The total flow

of current through all the edges in the edge cutset (S, T ) is called the flow of the edge

cutset.

Definition 4.13 Vertex cut in an electrical circuit : In a PCB let E represents the

set of electrical components and V represents set of terminals. The removal of terminals



44 S. SHEEBA & B. R. SRINIVASA

(vertices) from T ⊂ V (other than source and sink), resulting in no current/flow in the

circuit is called vertex cut.

Definition 4.14 Capacity of the vertex cutest (In electrical circuit) : The

capacity of the edge cutset T is denoted by Cv(T ) and defined by Cv(T ) =
∑
v∈T

Ecv(v).

Definition 4.15 Flow of the vertex cutset (In electrical circuits) : The total

flow of current across all the vertices in the vertex cutset T is called the flow of the

vertex cutset.

Section 5

In this session we see that how some theorems of capacitated network and cutsets find

their natural application to electrical networks/circuits. Here we verify the theorem by

taking a capacitated network graph and represent its corresponding electrical circuit .

Theorem 1[5] : If f is feasible flow in a capacitated network G and if (S, T ) is any cut

in the network, f(G) = f(S, T )− f(T, S).

Proof : The vertex set is V = {1, 2, 3, · · · , n}, S is any set of vertices that contains

vertex 1 ( the source) and T is its compliment that contains vertex n (the sink). Notice

that
∑
j

f(i, j) −
∑
j

f(j, i) is f(G) when i = 1. So
∑
i∈S

∑
j

f(i, j) −
∑
i∈S

∑
j

f(j, i) = f(G).

If i and j are both in S, the term f(i, j) appears in the first summation
∑
i∈S

∑
j

f(i, j) as

well as in the second summation
∑
i∈S

∑
j

f(j, i). So it is enough if we let the subscript j

vary for all j in T . Hence
∑
i∈S

∑
j

f(i, j)−
∑
i∈S

∑
j

f(j, i) = f(G).

Let us verify theorem 1 by taking an example of a capacitated network graph.
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Let V = {1, 2, 3, 4, 5, 6} be the vertex set of the graph. Let vertex 1 be the source

and vertex 6 be the sink. Let S = {1, 4, 3} and T = {2, 5, 6} be the two partitions of

the vertex set V and (S, T ) be the cutset of the graph. In this network each edge is

associated with two values, the flow value fE(e) and the capacity value CE(e).

Flow calculations for the capacitated network graph (figure -11):

The total flow from the source

f(G) = 5 + 6 = 11. (1)

The total inflow into the sink

3 + 2 + 6 = 11. (2)

From equations 1 and 2 we observe that

f(G) = the total outflow from the source = the total inflow into the sink.

For the cutset (S, T ), the flow f(S, T ) = 5 + 4 + 2 + 3 + 2 = 16 and for the cutset (T, S)

the flow f(T, S) = 0 + 5 = 12.

Let us consider the equation

f(S, T )− f(T, S) = 16− 5 = 11. (3)

From equations 1 and 3 we observe f(G) = f(S, T )− f(T, S).

Hence verifying theorem 1.

In general theory of capacitated network, capacity and flow along the edges are not

important and hence the difference between these two is sense to be artificial. But

when we apply this to electrical networks/ circuits the difference becomes predominant

and is extremely important. We first formulate theorem 1 in terms of electrical networks

and also translate the capacitated network in figure 11 to electrical networks/circuits

and see how the theorem holds. In this connection we observe that

(1) Flow along an edge refers to flow of current between two terminals (potential

difference between the two terminals).

(2) Capacity of the edge refers to the maximum flow of current along the edge.

(3) The actual capacity flow of current depends on the electrical components used(resistance).
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(4) While the general capacitated network can be thought of as two labeled edges, the

electrical network is multi-labeled. Further while the capacitated network is not

vertex labeled it is so in electrical network. For simplicity of understanding we

consider networks with two labeled edges and verify the electrical network theorem

as stated below.

The electrical network version of theorem 1.

Theorem 1.1 : A printed circuit assembly (PCA) with a cutset (S, T ), the total flow

of current from the source is equal to the difference in the total flow of current along

the electrical components in the cutset (S, T ) and in the cutset (T, S).

Proof : The proof of the theorem is on same lines as of theorem 1.

Note : The condition in the theorem that the flow ‘f ’ should be feasible is automatically

satisfied by Kirchhoff current law in a PCB.

We now demonstrate the verification of the theorem 1 by constructing the circuit for

the capacitated network graph ( figure 11).

The electrical networks/circuits are energized by a voltage supply. For the network/circuit

let us consider the positive terminal of the voltage supply as source and negative termi-

nal as the sink. The terminals of the circuit are defined as the set V = {1, 2, 3, 4, 5, 6}.
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Let S = {1, 2, 4} and T = {3, 5, 6} be the two partitions of the set V with a cutset

(S, T ).

Current / Flow calculations for an electrical network (figure 12) :

The total current /outflow from the source

f(G) = 5 + 6 = 11. (4)

The total current/ inflow into the sink

3 + 2 + 6 = 11 (5)

From equations 4 and 5 we observe that

f(G) = the total current/ outflow from the source = the total current/ inflow

into the sink.

For the cutset (S, T ), the current/flow f(S, T ) = 5 + 0 + 3 + 3 = 11 and for the cutset

(T, S) the current / flow f(T, S) = 0.

Let us consider the equation

f(S, T )− f(T, S) = 11− 0 = 11. (6)

From equations 4 and 6 we observe f(G) = f(S, T ) − f(T, S). Thus verifying the

theorem 1.1.

Let us consider a simple series - parallel circuit, construct its corresponding capacitated

network graph and then verify theorem 1.1 for this graph.



48 S. SHEEBA & B. R. SRINIVASA

The capacitated network graph for the above circuit is as shown in figure 14.

Let V = {1, 2, 3, 4, 5, 6} be the set of terminals of the circuit. Let S = {1, 2, 4} and

T = {3, 5, 6} be the two partitions of the set V with a cutset (S, T ).

From the circuit we observe the total current / outflow from the source f(G) = 31.55

and the total current / inflow into the sink = 31.55.

Current / Flow calculations for an electrical network (figure 14) :

The total current/flow f(S, T ) along the branches (edges) in the cutset (S, T ), f(S, T ) =

18.08 + 13.46 + 18.08 = 49.62.

The total current/ flow f(T, S) along the branches (edges) in the cutset (T, S)

f(T, S) = 18.08.

Consider f(S, T )− f(T, S) = 49.62− 18.08 = 31.55.

Thus we observe f(S, T )− f(T, S) = f(G). Thus verifying the theorem 1.1.

Note : In theorem 1 we consider a capacitated network with one source and one sink,

however the theorem can be generalized to multi source and multi sink capacitated

network graphs. We observe here that normally that any electrical network has more

one source of power and one source of sink. Let us consider an electrical network /

circuit with two source and two sink.The corresponding graph for such an electrical

network/circuit can be separated into two capacitated network graphs and we see that

theorem 1 holds for these network graphs.
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The generalized version of theorem 1 when applied to a general electrical network /cir-

cuit having multi - source and multi sink is as follows.

Theorem 1.2 : An electrical network with more than one source and one sink can

be separated into two electrical networks and in each network theorem 1.1 holds. The

proof of the above theorem is similar to the proof of theorem 1.

Figure 15 represents a circuit with two voltage sources. We can see that the given circuit

with two sources and sinks can be represented as two separate capacitated network

graphs as shown in figure 16 and figure 17.
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The set of terminals is V = {1, 2, 3, 6, 7, 8} with vertex 1 as source and vertex 8 as sink.

Let S = {1, 2, 4} and T = {3, 5, 6} be two partition of V with cutsets (S, T ) and (T, S).

The total flow for the cutset (S, T ) is f(S, T ) = 0.5 + 2.25 + 0.5 = 3.25 and the total

flow for the cutset (T, S) is f(T, S) = 0.5.

Therefore f(S, T )− f(T, S) = 3.25− 0.5 = 2.75 = f(G). Thus verifying theorem 1.

The set of terminals for the capacitated network graph is V = {4, 2, 3, 7, 6, 5} with

vertex 4 as source and vertex 5 as sink. Let S = {4, 2, 7} and T = {3, 6, 5} be two

partition of V with cutsets (S, T ) and (T, S). We have f(S, T ) = 16 + 8 = 24 and

f(T, S) = 4 + 4 = 8. We have f(S, T )− f(T, S) = 24− 8 = 16 = f(G). Hence theorem

1.

Now let us consider another theorem in graph theory and look at its application in

electrical circuits.

Theorem 2[4] : A vertex W in a connected graph G is a cutvertex if and only if there

exists two vertices X and Y in G such that every path between X and Y passes through

W .

Let us verify this theorem by taking an example of a simple connected graph G.
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From the figure we observe that all the paths from the vertices X and Y passes through

the vertex W . Thus if the vertex W is deleted all the edges incident on W are also

deleted. Thus clearly we see that vertex W is a cutvertex.

Let us interpret the theorem 2 in terms of electrical circuits and see how the theorem

holds.

A switch is an electrical component that can make or break an electrical circuit inter-

rupting the current or diverting it from one conductor to another. The mechanism of a

switch removes or restores the conducting path in a circuit when it is operated. Most

electronic circuit contains an on/off switch . in addition to on/off switches many circuits

contains switches that controls how a circuit works or activates different features of a

circuit. A simple on/off switch that connects or disconnects the two terminals when

the switch is closed the two terminals are connected and currents flows between them

(figure 19 ). When the switch is opened the terminals are not connected so current does

not flow (figure 20).
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Here we see that in an electrical network/circuit a switch in off mode acts as a cutvertex

disconnecting all the paths from source to sink and when in on mode there is a flow of

current through out the circuit from source to the sink.

The electrical version of theorem 2.

Theorem 2.1 : An electrical network has a switch if and only if every links between

two terminals passes through the switch.

The proof of the above theorem is obvious when an electrical network contains only one

switch.

Note : For an electrical network with multi switches the set of all switches is a cutset

and all the interlinks between two terminals passes through these switches.

The generalized version of theorem 2.

Theorem 2.2 : A set of vertices W in a connected graph G is a cutset if and only if

every vertex of W is a cutvertex.

(or)

A set of vertices is a cutset in a connected graph G is a cutvertex set if and only if there

exists two vertices x and y such that every path between them passes through every

vertex in the cutset.

The proof of the above theorem is obvious.

Conclusion

From this work it can be seen that the capacitated networks in graph theory is directly

applicable to electrical networks/circuits. We have demonstrated this for theorem 1.

Several other theorems in capacitated network can be interpreted in terms of electrical
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networks/circuits. Vertex flow is not dealt with in capacitated networks but in the anal-

ysis of electrical network, the flow at a vertex is very important and is interpreted as

the potential at the terminals. Hence the numerical difference between the flow at the

terminals in an electrical circuit is the flow of current along the interlink between the

terminals. This allows us to study Ohm’s law, Kirchhoff’s law in terms of capacitated

networks. We can even formulate new electrical laws. Further, while a capacitated

network has only one source and one sink, the electrical networks has multi-sources and

multi-sinks. Though they can be separated into capacitated networks containing one

source and one sink, in fact theorem 1 can be generalized to networks having more than

one source and one sink. Our future work is in this direction.
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