Internal Transcribed Spacer Sequence Phylogeny of Crambe L. (Brassicaceae): Molecular Data Reveal Two Old World Disjunctions

Javier Francisco-Ortega,*,1 J avier Fuertes-Aguilar,† César Gómez-Campo, \ddagger Arnoldo Santos-Guerra,§ and Robert K. Jansen||
*Department of Biological Sciences and Fairchild Tropical Garden, Florida International University, University Park, M iami, FL 33199;
†Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, Plaza de M urillo 2, M adrid, 28014, Spain;
\ddagger Departamento de Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Ciudad Universitaria, M adrid, 28040, Spain;
§Jardín Botánico de La Orotava, Calle Retama 2, Puerto de La Cruz, 38400, Tenerife, Canary Islands, Spain;
and ||Department of Botany and Institute of Cell and Molecular Biology, University of Texas, Austin, Texas 78713

Received January 12, 1998; revised August 20, 1998

Abstract

CrambeL. (Brassicaceae) is an Old World genus with a disjunct distribution among four major centers of species diversity. A phylogenetic analysis of nucleotide sequences of the internal transcribed spacers (ITS) of the nuclear ribosomal repeat was conducted with 27 species of Crambe and 18 related genera. Cladistic analyses using weighted and unweighted parsimony support Crambe as a monophyletic genus with three major lineages. The first comprises those taxa endemic to the Macaronesian archipelagos. Taxa with a predominant Mediterranean distribution form the second assemblage, and a disjunction between east Africa (C. abyssinica) and the Mediterranean (C. hispanica) occurs in this clade. The third lineage includes all Eurosiberian-Asian taxa and C. kilimandscharica, a species from the highlands of east Africa. A basal biogeographic split between east Africa and E urasia is present in the third clade. The patterns of relationships in the ITS tree are concordant with known climatic events in northern Africa and southwestern Asia since the middle Miocene. The ITS trees are congruent with the current sectional classification except for a few members of sections Crambe, Leptocrambe, and Orientecrambe (C. cordifolia, C. endentula, C. kilimandscharica, and C. kotschyana). Low levels of support in the basal branches do not allow resolution of which genera of the subtribes Raphaniae or Brassicinae are sister to Crambe. Both subtribes appear to be highly polyphyletic in the ITS trees. © 1999 Academic Press

INTRODUCTION

Plant groups with intercontinental disjunctions are relatively common in most floristic regions of the world

[^0](Thorne, 1972). Remarkable examples of these major disjunctions can be found between eastern Asia and eastern North America (Boufford and Spongberg, 1983) and between Africa and South America (Bremer, 1993). Other cases of congeneric disjunctions are limited to a single continent, such as to northern and southern Africa (Quézel, 1985; Coetzee, 1993) and to the Pacific coasts of North and South America (Constance et al., 1963). Molecular phylogenies can document the presence of major biogeographical disjunctions and distinguish whether these phytogeographical patterns are due to morphological convergence among closely related groups or to historical circumstances, such as long distance dispersal or vicariance (e.g., Parks and Wendel, 1990; Wen and Zimmer, 1996; Sang et al., 1997; Vargas et al., 1997).

One flowering plant group that exhibits major geographical disjunctions is Crambe (Brassicaceae). This genus comprises approximately 38 Old World species (Bramwell, 1969; Santos-Guerra, 1983, 1996; Khalilov, 1991a,b) and is the second largest member of the tribe Brassiceae, surpassed only in numbers of species by Brassica (Gómez-Campo, 1980; Warwick and Black, 1997a). Crambe has disjunct distributions among four major geographical regions: Macaronesian (12 species), Mediterranean (4 species), east African (3 species), and Eurosiberian-southwest Asian (ca. 20 species) (Bramwell, 1969, 1995; Gómez-Campo, 1980; Santos-Guerra, 1983, 1996; Khalivov, 1991a,b).

The Macaronesian species of Crambe occur in both theCanarian and Madeiran archipelagos. This group is similar to many other insular endemics in exhibiting woodiness (Carlquist, 1965). The island taxa have been suggested to represent an ancient lineage that remained in Macaronesia subsequent to major climatic and geol ogic events in the Mediterranean [6.5 million years ago (Mya)] (Gómez-Campo, 1980, 1993; Aguinagal de and Gómez-Campo, 1984).

TheM editerranean group includes four species. Three
of these (C. glabrata, C. kralikii, and C. filiformis) are restricted to the western Mediterranean, whereas C. hispanica has a wider distribution in Albania, Croatia, Cyprus, Greece, Israel, Italy, Lebanon, Spain, and Syria (Post, 1932; Ball, 1964; Zohary, 1966; M eikle, 1977; M outerde, 1986). Two species (C. hispanica and C. glabrata) are annual herbs, whereas C. kralikii and C. filiformis are suffructescent perennials.

The third group, which includes the three annual species C. abyssinica, C. kilimandscharica, and C. sinuato-dentata, is restricted to the Congo, Ethiopia, Kenya, Tanzania, and Uganda (Robyns and Boutique, 1951; J onsell, 1982). C. abyssinica is cultivated for its erucic acid-rich oils and high potential as food for livestock (Nieschlag and Wolff, 1971; Lessman and Meier, 1972; Van Dyne and Blase, 1989; Anderson et al., 1993; Lazzeri et al., 1994; Mulder and Mastebroek, 1996).

The remaining species occur from western China to eastern Europe, Bulgaria, and Turkey, mainly in the Caucasus and southwestern republics of the former Soviet Union (Kitamura, 1960; Ball, 1964; Chernyakovskaya, 1970; Czerepanov, 1995; J alas et al., 1996). Furthermore, one species (C. maritima) is found in coastal zones of the Black, Baltic, and North Seas. All species of this group are herbaceous perennials with swollen roots, which in some cases (i.e., C. edentula, C. gordjaginii, C. schugnana) are woody (Chernyakovskaya, 1970).

Crambe is placed within the subtribe Raphaninae in which it forms a distinct genus with unique biogeographical and morphological features (reviewed by Warwick and Black, 1997b). The genus is so distinctive within the Brassiceae that Gómez-Campo (1980) suggested that it could be recognized as a monotypic subtribe. The most recent infrageneric classification of Crambe recognizes seven sections (Kahlilov, 1991a,b). Two of these (Dendrocrambeand Rhi pocrambe) include only theM acaronesian taxa. Theseven species from the Mediterranean basin and east Africa are placed in sect. Leptocrambe The remaining four sections (Crambe, Astrocrambe, Flavocrambe, and Orientecrambe) include species with an Eurasian distribution. Most European species are placed within sect. Crambe while most Asian taxa are in sects. Astrocrambe, Flavocrambe, and Orientecrambe.

Palynological studies provide some support for this sectional classification because unique pollen ornamentation is found in sects. Astrocrambe, Crambe-Orientecrambe, Dendrocrambe, Flavocrambe, and Leptocrambe (Khalilov and Archangelsky, 1991). However, differences in pollen morphology are not present between sects. Crambeand Orientecrambe.

The basic chromosome number of Crambe is $\mathrm{x}=15$ [reviewed by Gómez-Campo and Hinata (1980); MaguIaev (1986); Fig. 1]. There are reports of species with $\mathrm{n}=30$ (C. hispanica), $\mathrm{n}=45$ (C. abyssinica), $\mathrm{n}=60$
(C. cordifolia, C. grandifolia), and $\mathrm{n}=75$ (C. gordjaginii).

A recent chloroplast DNA (cpDNA) restriction site analysis (Warwick and Black, 1997b) of the subtribes Raphaninae and Cakilinae included 15 species from three of the seven sections of Crambe recognized by Khalilov. The two major conclusions of this study were that: [1] three lineages corresponding to the sections recognized in an earlier classification by Schulz (1919) (i.e., sects. Crambe, Dendrocrambe, and Leptocrambe) aresupported within Crambeand [2] the M acaronesian taxa are sister to the other members of the genus. However, limited sampling and poor support (30\% bootstrap value) for the monophyly of Crambe weaken these conclusions.

In this paper, we present a phylogenetic analysis of nucleotide sequences of the Internal Transcribed Spacers (ITS) of the nuclear ribosomal DNA of Crambe and related genera. The three objectives are to: [1] test the monophyly of Crambe and its placement within the subtribe Raphaninae, [2] compare the groups in the ITS tree with the current sectional classification and with those groups identified in the cpDNA restriction site trees, and [3] relate the ITS phylogeny to the major climatic and geol ogic events since the middle Miocene (20 Mya) when the African and Eurasian plates collided.

MATERIALS AND METHODS

Plant Material

Our sampling included 27 species of Crambe, with at least 1 species from six of the seven sections of K halilov (1991a,b) (Table 1). Section Rhipocrambe was not included because ITS trees for all 12 Macaronesian species indi cate that this section should be merged with sect. Dendrocrambe (Francisco-Ortega et al., unpubl.).

Twenty-four of the 27 currently recognized continental species were examined (Table 1). These species represent the entire geographic distribution of the genus on the continent. The ingroup also included the five genera (Calepina Adans., Crambella Maire, HemicrambeWebb, Kremeridla Maire, and Muricaria Desv.) which have been proposed as closely related to Crambe (Clemente and Hernández-Bermejo, 1978a,b, 1980a,b; Gómez-Campoand Tortosa, 1974; Gómez-Campo, 1980). Three additional genera considered part of the core of the subtribeRaphaninae(Guiraoa Coss., Raphanus L., and Rapistrum Crantz) (Gómez-Campo, 1980) were also included. Furthermore, representatives of the core of the subtribes Brassicinae (Brassica L., Eruca Mill., Hirschfeddia Moench, Sinapidendron Lowe, and Sinapis L.) and Zillinae (Physorrhinchus Hook.) were sampled.

Four genera of the tribes (as defined by AI-Shehbaz, 1984, 1988) Alysseae (Camelina Crantz), Anchonieae (Erysimum L.), and Sisymbreae (Cardaminopsis (C. A. Mey.) Hayek, and Sisymbrium L.) were selected as outgroups.

DNA Isolation, PCR Amplification, and Sequencing
Genomic DNAs were isolated from both fresh material and herbarium specimens. Fresh material was obtained from plants cultivated in the greenhouses at The University of Texas at Austin and the Botanic Garden of La Orotava from seeds provided by several germplasm institutes (Table 1). TheCTAB technique of Doyle and Doyle (1987) was used for fresh material. I solations from herbarium specimens were performed as described in Loockerman and J ansen (1996). Primers ITS7A (Panero and Plovanich-J ones, unpubl.) and ITS4 (White et al., 1990) were used for double-stranded DNA amplification of the ITS region. Amplification and purification of the PCR product was conducted following Kim and J ansen (1994).

Direct sequencing of double-stranded DNA was performed using Sequenase version 2.0 (United States Biochemical Corp.) and the snap-chill method (Winship, 1989). Two forward (ITS3 and ITS5) and two reverse (ITS2 and ITS4) primers (White et al., 1990; Downie and Katz-Downie, 1996) were utilized to sequence both strands.

SequenceAnalysis

Boundaries of the ITS1 and ITS2 regions were determined by comparisons with the published sequences of Sinapis alba (Rathgeberg and Capesius, 1989). CLUSTAL W (Higgins et al., 1991) was used for multiple sequence alignment with minor manual corrections. Sequencing results were ambiguous and difficult to read due to compressions for the six nucleotides situated between positions 111 and 116 (Appendix 1). Therefore this region was excluded from all data analyses.

Transition/transversion ratios were calculated from the most parsimonious trees using MacClade (Maddison and Maddison, 1992, version 3.04). The software package MEGA (Kumar et al., 1993) was used to estimate sequence divergence based on Kimura's twoparameter model (Kimura, 1980) and the $+C$ content of both ITS1 and ITS2.

Relative rate tests (Sarich and Wilson, 1973; Wu and Li, 1985; Li and Tinamura, 1987; Li, 1997) were used to test for a molecular clock in Crambe based on nudeotide divergence values estimated from Kimura's twoparameter model. Standard errors of rate differences between lineages were computed using the Li and Tanimura (1987) and Kimura (1980) methods. Eight representative species of the major clades of Crambe (i.e., C. edentula, C. gordjaginii, C. hispanica, C. kilimandscharica, C. maritima, C. orientalis, C. schugnana, C. sventenii) were used for tests with Raphanus sativus serving as the reference taxon.

Phylogenetic Analysis
Parsimony analyses were conducted using PAUP 3.1.1 (Swofford, 1993) with ACCTRAN, MULPARS, and

TBR options. All searches involved 100 random entries to search for multiple islands of equally parsimonious trees (Maddison, 1991). Gaps were treated in four different ways: (1) missing data, (2) eliminated, (3) considered as missing data and each coded as a binary character (absent or present), or (4) eliminated from the matrix and each coded as a binary character (absent or present). Transversions were weighted over transitions by a 1.4:1 ratio using the USERTYPE STEPMATRIX command of PAUP. A weight of 1.4 was selected because this was the transition/transversion ratio obtained from one of the most parsimonious trees in the initial unweighted analysis.

The amount of support for monophyletic groups was evaluated by 100 bootstrap replicates (Felsenstein, 1985). The ACCTRAN, MULPARS, and TBR options were used in a heuristic search with simple addition sequence of taxa. Limitations of computer memory required constraining the maximum number of trees to 1000 and 500 in the unweighted and weighted analyses, respectively.

Consistency Index (CI) (Kluge and Farris, 1969), Retention Index (RI) (Farris, 1989), and the gl statistic (Hillis and Huelsenbeck, 1992) were also computed. The latter was obtained after computing the treelength distribution of 100,000 random parsimony trees by means of the RANDOM TREES command.

RESULTS

Length Variation, BaseComposition, and NucleotideDivergence
Although some species of Crambeare polyploids (i.e., C. cordifolia, $n=60$; C. gordjaginii, $n=75$), only one ITS type was detected in each individual of all 45 species examined. The length of the aligned ITS region, excluding the 5.8 s gene, was 488 bp (Table2) (ITS1 was 292 bp and ITS2 was 196 bp). Two of the outgroup species had the shortest (Sisymbrium, 440 bp) and Iongest (Erysimum, 459 bp) ITS sequences. Crambe varied between 448 bp (C. santosii) and 456 bp (C. amabilis) (Appendix 1). The number of indels after alignment was 41 , and most of these were 1,2 , and 3 bp . Two deletions of 10 and 16 bp were detected in the ITS1 of Brassica oleracea and Sisymbrium altissimum, respectively. The G + C content varied from 50.2\% (Crambehispanica and Muricaria prostrata) to 57.9\% (Erysimum wittmanii) with a mean value of 52.3%. The Crambe species with the highest $\mathrm{G}+\mathrm{C}$ content was C. aspera (52.3\%).

Nucleotide divergence values among the 45 species examined ranged between 0 and 28.1\% (Table 2). The highest divergence within Crambe (10.64\%) was between the Canarian endemic C. sventenii and the east African endemic C. abyssinica. Several divergence values within Crambe were zero, and most of these involved comparisons among the 9 species of the "orien-

TABLE 1

Taxa Included in the ITS Study and Their Provenance

Taxon	Taxon abbreviation	Voucher and germplasm origina ${ }^{\text {a }}$	Geographical origin	GenBank Accession No. (ITS1/ITS2)
Ingroup				
Brassica oleracea L.	BROLE	Franc.-Ort., TEX	Red cabbage from market, Austin	AF 03994/AF 040037
CrambeL.sect. Crambe				
C. aspera M. Bieb.	CRASP	FOM-1994/594, ORT	Ukraine	AF 039994/AF 040026
C. cordifolia Steven	CRCOR	ETSIA-0511/68, TEX	Unknown	AF 039966/AF 040009
C. gibberosa Rupr.	CRGIB	K orotyaev, 23-04-1990, LE	Dagestan	AF 039974/AF 040017
C. kotschyana Boiss.	CRKOT	GAT-CRA12/93, TEX	Russia	AF 039967/AF 040010
C. maritima L.	CRMAR	ETSIA-0510/67, TEX	France	AF 039970/AF 040013
C. pinnatifida R. Br.	CRPIN	LE-2211, TEX	Russia	AF 039965/AF040008
C. pontica Rupr.	CRPON	KRI-1993/1995/902, TEX	Ukraine	AF 039973/AF 040016
C. tataria Sebeók	CRTAT	ETSIA-0578/68, TEX	Hungary	AF 039964/AF 040007
Crambesect. Astrocrambel. Khalilov				
Crambesect. DendrocrambeDC.				
C. gomeraeH. Christ	CRGOM ${ }^{\text {f }}$	Franc.-Ort \& F dez.-Gal ván, 10-07-1995, TEX	Canary Islands	AF 039960/AF 040003
C. santosii Bramwell	CRSAN	ETSIA-4054/76, TEX	Canary Islands	AF 039959/AF 040002
C. sventenii Bramwell \& Sunding	CRSVE	ETSIA-5304/79, TEX	Canary Islands	AF 039976/AF 040019
Crambesect. Flavocrambel. Khalilov				
C. gordjaginii Spryg. \& M. Pop.	CRGOR	Bochantsev \& Mikhailova, 19-08-1978, LE	Turkmenistan	AF 039981/AF 040024
Crambesect. LeptocrambeDC.				
C. abyssinica Hochst.	CRABY ${ }^{\text {f }}$	PI-392326, TEX	Turkey	AF 039958/AF 040001
		PI-384522, TEX	Ethiopia	
		PI-279346, TEX	Ethiopia	
		PI-372925, TEX	Spain	
		ETSIA-1397/67, TEX	Spain	
		ETSIA-1182/67, TEX	Spain	AF 039963/AF 040006
C. glabrata DC.	CRGLA ${ }^{\text {f }}$	PI-388857, TEX	Portugal	AF 039962/AF 040005
		PI-388853, TEX	Portugal	
		PI-388783, TEX	M orocco	
		PI-388786, TEX	M orocco	
C. hispanica L.	CRHIS ${ }^{\text {f }}$	ETSIA-4004/75, TEX	Israel	AF 036209/AF 036210
		PI-378590, TEX	Spain	
		PI-337996, TEX	Israel	
		PI-388835, TEX	Italy	
		PI-388822, TEX	Cyprus	
C. kilimandscharica O. E. Schulz	CRKIL ${ }^{\text {f }}$	R. Gutzwiller, Num. 661, K	Zaire	AF 039975/AF 040018
		C. Mutiso s.n., ORT	Kenya	
C. kralikii Coss.	CRKRA	ETSIA-1104/67, TEX	M orocco	AF 039961/AF 040004
Crambesect. Orientecrambel. Khalilov				
C. aculeolata (N. Busch) Czerniak.	CRACU	K halilov, 24-06-1987, LE	Nakhichevan	AF 039978/AF 040021
C. amabilis Butk. \& Majlun	CRAMA	SO-22, TEX		AF 039971/AF 040014
C. edentula Korsh.	CREDE	Averianov, 9-05-1979, LE	Turkmenia	AF 039968/AF 040011
C. grossheimii I. Khalilov	CRGRO	K halilov, 22-06-1987, LE	Nakhichevan	AF 039982/AF 040025
C. juncea M. Bieb.	CRJ UN	PI-325274, TEX	Russia	AF 039979/AF 040022
C. koktebelica (J unge) N. Busch	CRKOK	ETSIA-0189/67, TEX	Unknown	AF 039972/AF 040015
C. orientalis L.	CRORI	ETSIA-6243/83, TEX	Turkey	AF 039969/AF 040012
C. persica Boiss.	CRPER	M. J afari, 07-1996, TEX	Iran	AF 039977/AF 040020
Crambella teretifolia (Batt.) Maire	CMTER	ETSIA-1971/71, TEX	M orocco	AF 039986/AF 040029
Eruca sativa Mill. ${ }^{\text {b }}$	ERSAT			AF 039996/AF 040039
Guiraoa arvensis Coss.	GUARV	ETSIA-1550/68, TEX	Spain	AF 039987/AF 040030
Hemicrambefruticul osa Webb	HEFRU	ETSIA-2232/73, TEX	M orocco	AF 039984/AF 040027
Hirschfeldia incana (L.) Lagr.-Foss.	HIINC	$\begin{aligned} & \text { Santos-Guerra \& Franc.-Ort. } \\ & \text { 2-02-1995, ORT } \end{aligned}$	Canary Islands	AF 039989/AF 040032
Kremeriella cordylocarpus (Coss. \& Durieu) Maire	KRCOR	ETSIA-1142/67, TEX	M orocco	AF 039985/AF 040028
Muricaria prostrata (Desf.) Desv.	MUPOS	ETSIA-1855/70, TEX	Algeria	AF 039992/AF 040035
Physorrhynchus chamaerapistrum Boiss.	PHCHA	ETSIA-3749/75, TEX	Iran	AF 039990/AF 040033
Raphanus sativus L.	RASAT	ETSIA-1279/67, TEX	Spain	AF 039988/AF040031

TABLE 1-Continued

Taxon	Taxon abbreviation	Voucher and germplasm origina ${ }^{\text {a }}$	Geographical origin	GenBank Accession No. (ITS1/ITS2)
Rapistrum rugosum (L.) All.	RPRUG	J. Franc.-Ort., 5-05-1994, TEX	Texas	AF 039991/AF 040034
Sinapidendron frutescens (Aiton) Lowe	SNFRU	ETSIA-4971/79, TEX	Madeira	AF 039993/AF040036
Sinapis alba L.c	SIALB			X15915
Outgroup				
Calepina irregularis (Asson) Thell.	CLIRR	ETSIA-2158/72, TEX	Spain	AF 039995/AF 040038
Camelina microcarpa Andrz. ${ }^{\text {d }}$	CMMIC	O'K ane \& Dihoru 3596, M O	Romania	AF 039999/AF 040042
Cardaminopsis arenosa (L.) Hayek ${ }^{\text {d }}$	CAARE	O'K ane \& Dihouru 3600, MO	Romania	AF 039998/AF 040041
Erysimum wittmanii Zawadzki ${ }^{\text {d }}$	ERWIT	O'K ane \& Dihoru 3596, MO	Romania	AF 040000/AF 040043
Sisymbrium altissimum L. ${ }^{\text {b }}$	SMALT	R. Price 1117, GA	California	AF 039997/AF 040041

[^1]TABLE 2
Main Features of the ITS Region of the 45 Taxa Included in This Study

	ITS1	ITS2	$\begin{aligned} & \text { ITS1 and } \\ & \text { ITS2 } \end{aligned}$
Length range (bp)	257-274	179-187	440-459
Aligned length (bp)	292	196	488
$\mathrm{G}+\mathrm{C}$ content range (\%)	47.8-58.0	52.1-57.9	50.2-57.9
Sequence divergence (\%) ${ }^{\text {a,b }}$			
Complete deletion of gaps and missing data	0.00-23.9	0.00-22.8	0.00-22.5
Pairwise deletion of gaps and missing data	0.00-33.9	0.00-24.4	0.00-28.1
Number of indels ${ }^{\text {b }}$			
1 bp	14	11	25
2 bp	3	4	7
3 bp	2	2	4
4 bp	1	0	1
5 bp	2	0	2
10 bp	1	0	1
16 bp	1	0	1
Number of variable sites ${ }^{\text {b,c }}$	154	89	243
Number of informative changes ${ }^{\text {b,c }}$	109	61	170
Number of constant sites ${ }^{\text {b,c }}$	132	107	239
Number of autapomorphic sites ${ }^{\text {b,c }}$	45	28	73
Transitions (unambiguous) ${ }^{\text {b,c }}$	188	102	290
Transversions (unambiguous) ${ }^{\text {b,c }}$	136	69	205
Transitions/transversions ${ }^{\text {b,c }}$	1.38	1.47	1.41
Skewness of tree-length distribution $\left(\mathrm{g}_{1}\right)^{\mathrm{b}, \mathrm{c}, \mathrm{d}}$	-0.900	-0.421	-0.799

[^2]talis" group and the 6 species of the "maritima" group (see discussion on these two groups). The two least divergent taxa from Crambe were Guiraoa arvensis (7.21\%, compared with C. koktebelica) and Raphanus sativus (7.52%, compared with C. koktebel ica).

Phylogenetic Analysis

A total of 243 variable sites was detected in the ITS region (Table 2). Approximately 70% of the sites (170 sites) were potentially phylogenetically informative, with most of these (109) in ITS1. The g1 value was -0.799 (100,000 random trees), suggesting that the ITS sequences have a substantial amount of phylogenetic signal (Hillis and Huelsenbeck, 1992). None of the initial weighted or unweighted analyses (trees not shown) included Calepina within the ingroup; therefore it was treated as an outgroup in subsequent phylogenetic analyses.

The number of equally parsimonious trees from the four unweighted analyses ranged from 468 (gaps removed from the data matrix) to 4674 (gaps removed from the data matrix and coded as binary characters) (Figs. 1 and 2). The strict consensus trees from these four analyses yielded Crambe as a monophyletic group supported by bootstrap values between 63 and 73% (Figs. 1 and 2).

All four unweighted analyses identified three major monophyletic groups within Crambe The first, which was strongly supported by an average bootstrap value of 99.75%, comprised the Macaronesian endemic section Dendrocrambe (Macaronesian clade). The second clade included all Mediterranean species and the east African endemic C. abyssinica (Mediterranean clade). The monophyly of this clade was also strongly supported by an average bootstrap value of 91.25%. All

FIG. 1. One of the 1491 shortest trees from the unweighted parsimony analysis that treated indels as missing data ($637 \mathrm{steps} ; \mathrm{CI}=0.478$, without autapomorphies; RI = 0.681). Branches which collapse in the strict consensus tree are indicated by dashed lines. Number of changes are indicated along each branch. Bootstrap values higher than 50% are indicated in parenthesis. Distribution of Crambe species are: closed circles, Mediterranean; open circles, east African; open squares, Macaronesian; closed squares, Eurasian. Haploid chromosome numbers are indicated in parentheses when known. Species examined to test the molecular clock hypothesis are underlined.

Eurosiberian-Asian taxa together with the east African endemic C. kilimandscharica were in the third clade (Eurasian clade) which had an average bootstrap support of 73%. C. kilimandscharica was sister to the Eurosiberian-Asian taxa, which was supported by an average bootstrap value of 59%. These three major clades formed an unresolved trichotomy in two of the analyses. However, when gaps were excluded (Figs. 2a and 2b) the Mediterranean clade was sister to the rest of the genus.

Five major lineages were identified in the Eurasian clade. F our of theseincluded only 1 species (C. kilimandscharica, C. gordjaginii, C. edentula, and C. schugnana). The fifth lineage comprised the remaining 15 species of the Eurasian clade, and it was strongly supported by an average bootstrap value of 95.25%. Two major groups could be distinguished within this lineage. The first ("maritima") was strongly supported by an average bootstrap value of 82.75%. This group included 6 species of sect. Crambe(C. aspera, C. gibber-

FIG. 2. Three strict consensus trees obtained after unweighted parsimony. (a) Indels removed from the analysis (468 most parsimonious trees, 566 steps each; $\mathrm{CI}=0.481$, without autapomorphies; $\mathrm{RI}=0.682$). (b) Indels removed from the analysis and coded as binary characters (4674 most parsimonious trees, 619 steps each; $\mathrm{CI}=0.574$, without autapomorphies; $\mathrm{RI}=0.686$). (c) Indels considered as missing data and coded as binary characters (2982 most parsimonious trees, 699 steps each; $\mathrm{CI}=0.481$, without autapomorphies; $\mathrm{RI}=0.680$). Bootstrap values higher than 50% are indicated along branches. Taxon abbreviations are given in Table 1. Distributions of Crambe species are: closed circles, Mediterranean; open circles, east African; open squares, Macaronesian; closed squares, Eurasian. Sectional abbreviations are: $\mathrm{A}=$ Astrocrambe; $\mathrm{C}=$ Crambe; $\mathrm{D}=$ Dendrocrambe; $\mathrm{F}=$ Flavocrambe; $\mathrm{L}=$ Leptocrambe; and $\mathrm{O}=$ Orientecrambe.
osa, C. maritima, C. pinnatifida, C. pontica, C. tataria). The second group ("orientalis") was supported by an average bootstrap value of 66%. It included species of both sects. Crambe (C. cordifolia and C. kotschyana) and Orientecrambe(C. aculeol ata, C. amabilis, C. cordifolia, C. grosheimii, C. koktebelica, C. juncea, C. orientalis, C. persica).

No single genus consistently appeared sister to Crambe. Three of the four strict consensus trees (Figs. 1, 2a, and 2c) identified an assemblage of eight genera (Brassica, Crambella, Eruca, Guiraoa, Hirschfeldia, Raphanus, Rapistrum, Sinapidendron) as the sister group of Crambe However, bootstrap support for this relationship was less than 50%. Although the main goal
of this paper was not to examine phylogenetic relationships of the subtribes Raphaninae and Brassicinae, the ITS tree does not support the monophyly of either subtribe. However, there were two generic groups, Crambella-Hirschfeldia-Raphanus and HemicrambeSinapis, which were strongly supported in all analyses.

Weighted and unweighted parsimony produced identical strict consensus trees when gaps were not coded as binary characters. Differences between weighted and unweighted trees were detected when gaps were coded as binary characters. These differences, however, were minor and did not change dramatically the main results of the unweighted parsimony (Fig. 3).

RelativeRateTests

Relative rate tests showed that only 1 of the 28 pairwise comparisons (C. gordjaginii vs C. orientalis) was significantly different at the 5% level (Table 3). This indicates that there is very little rate heterogeneity between the different lineages. Therefore, a molecular clock for ITS sequences cannot be rejected in most comparisons in Crambe.

DISCUSSION

Monophyly and Origin of Crambe

Brassica, Crambe, Diplotaxis, and Erucastrum are the only genera of the Brassiceae with more than 10 species. Among these genera, Crambe is the only genus that has been shown to be monophyletic using molecuIar data (Warwick et al., 1992; Warwick and Black, 1993, 1997a,b). Chloroplast DNA restriction site data provided only weak support (30% bootstrap value) for the monophyly of Crambe(Warwick and Black, 1997b). Our analysis of ITS variation provides stronger support for the monophyly of the genus (bootstrap values ranged between 63 and 71\%).

Both cpDNA restriction site and morphological data suggest that Crambemay represent a distinct subtribe within the Brassicaceae (Gómez-Campo, 1980; Warwick and Black, 1997b). The ITS data do not resolve this issue because relationships among genera of the Brassiceae are weakly supported in most cases.

No single genus is sister to Crambe in the ITS trees. Previous suggestions of a close phylogenetic relationship between Crambe and Calepina (Clemente and Hernández-Bermejo, 1978a,b, 1980a,b) or Hemi crambe (Gómez-Campoand Tortosa, 1974) are not supported by the ITS data. Our phylogeny agrees with other hypotheses (Gómez-Campo, 1980; Warwick and Black, 1997c), which suggested that Calepina should not be considered part of the Brassiceae.

Sectional Classification

The main incongruence between the ITS phylogeny and the current sectional classification concerns C .
kilimandscharica. This annual species from east Africa has been traditionally considered part of sect. Leptocrambe. In addition, this species has small, rugose fruits that are virtually identical to most of the Macaronesian species. C. kilimandscharica, however, is the basal member of a clade which includes the four Eurosiberian-Asian sections of K halilov (1991a,b). This placement may indi catethat the morphol ogi cal similarities between C. kilimandscharica and sect. Leptocrambe may be homologous and plesiomorphic for the Eurasian clade.

Another disagreement between the ITS trees and the current sectional classification concerns the monophyly of the four Eurosiberian-Asian sections (Khalilov 1991a,b). These sections are clearly not monophyletic in the ITS tree (Figs. 1-3). However, the ITS phylogeny is congruent with the earlier classification of Schulz (1919), which recognized one section for all taxa of the Eurasian clade with the exception of C. kilimandscharica. Within the Eurasian clade, the ITS trees identify two major lineages, here designated "maritima" and "orientalis". These two groups are also geographically distinct. All species in the "maritima" group have European distributions and do not occur east of the Caucasus region. In contrast, species in the "orientalis" group have a predominant Asian distribution.

The major disagreement between all previous treatments of the Eurasian taxa and the ITS trees concerns C. edentula. This species has been suggested to be closely related to C. orientalis by Khalilov (1991a,b). However, the ITS phylogenies do not place it in the "oriental is" group.

The ITS trees and previous taxonomic treatments (Candolle, 1821, 1824; Schulz, 1919; Gómez-Campo, 1980; Khalilov, 1991a,b) concur that the Macaronesian taxa are monophyletic. They also indicate a close phylogenetic relationship among the Mediterranean species (including C. abyssinica). The sister relationship of C. hispanica and C. abyssinica has strong support, confirming previous hypotheses of the taxonomic proximity of these species (White, 1975; J onsell, 1982).

Comparison of Nuclear and Plastid Phylogenies

Comparisons between our ITS phylogeny and the cpDNA restriction site tree of Warwick and Black (1997b) are complicated by the limited sampling in the cpDNA study. For example, C. kilimandscharica, C. edentula, or representatives of sects. Astrocrambe and Flavocrambe were not included in the cpDNA comparisons. Both DNA phylogenies agree in strongly supporting three major clades within the genus. The main disagreement between the ITS and cpDNA trees concerns the relationships among these three groups.

FIG. 3. Two strict consensus trees obtained after weighted parsimony (transversions were weighted over transitions by a 1.4:1 factor). (a) Indels removed from the analysis and coded as binary characters (468 most parsimonious trees, 7074 steps each; $\mathrm{Cl}=0.57 ; \mathrm{RI}=0.69$). (b) Indels considered as missing data and coded as binary characters (99 most parsimonious trees, 8024 steps each; $\mathrm{Cl}=0.56$; $\mathrm{RI}=0.68$). Bootstrap values higher than 50\% are indicated al ong branches. Taxon abbreviations aregiven in Table 1. Distributions of Crambespecies are: closed circles, Mediterranean; open circles, east African; open squares, Macaronesian; closed squares, Eurasian. Sectional abbreviations are: $A=$ Astrocrambe; $C=$ Crambe; $D=$ Dendrocrambe; $F=$ Flavocrambe; $L=$ Leptocrambe; and $O=$ Orientecrambe

The ITS phylogeny did not resolve these relationships, whereas the cpDNA tree strongly supported (100% bootstrap value) a sister relationship between the Eurasian and the Mediterranean clades. The Macaronesian taxa were sister to this clade. However, support for this relationship was weak (30% bootstrap value). One conflict between the plastid and the nuclear
phylogenies concerns relationships within the Eurasian clade. C. tataria is sister to C. orientalis in the cpDNA tree, whereas this species is a member of the "maritima" group in the ITS phylogeny. Furthermore, the three species that appear closely related to C. maritima in the cpDNA tree (C. cordifolia, C. kotschyana, C. koktebelica) are part of the "orientalis" group in the

TABLE 3
Evaluation of Molecular Clock Hypothesis between Eight Selected Species of Crambe (Underlined in Fig. 1)

	CREDE ${ }^{\text {a }}$	CRGOR ${ }^{\text {a }}$	CRHIS ${ }^{\text {b }}$	CRKIL ${ }^{\text {b }}$	CRMAR ${ }^{\text {a }}$	CRORIa	$\mathrm{CRSCH}^{\text {a }}$	CRSVE ${ }^{\text {c }}$
CREDE		0.019 (0.01)	0.011 (0.01)	0.007 (0.01)	0.013 (0.01)	0.014 (0.01)	0.003 (0.01)	0.016 (0.01)
CRGOR	ND		0.007 (0.02)	0.025 (0.02)	0.004 (0.01)	0.033 (0.01)	0.022 (0.02)	0.002 (0.01)
CRHIS	ND	ND		0.018 (0.01)	0.002 (0.01)	0.026 (0.02)	0.015 (0.01)	0.005 (0.02)
CRKIL	ND	ND	ND		0.020 (0.01)	0.007 (0.01)	0.003 (0.01)	0.023 (0.02)
CRMAR	ND	ND	ND	ND		0.027 (0.02)	0.016 (0.02)	0.003 (0.02)
CRORI	ND	**	ND	ND	ND		0.011 (0.01)	0.031 (0.02)
CRSCH	ND	ND	ND	ND	ND	ND		
CRSVE	ND							

[^3]ITS tree. The "maritima" and "orientalis" groups in the ITS tree clearly conform with geographical and morphological data. Thus, this incongruence may be due to hybridization, a phenomenon that has been implicated in many plant groups (Rieseberg and Soltis, 1991; Rieseberg et al., 1996). Support for this hypothesis comes from the polypl oid chromosome numbers of some Eurosiberian-Asian species and the sympatric distribution of these two groups in southern Russia, Ukraine, and the Caucasus.
Biogeography
There is a correlation between theITS phylogeny and the geographic distribution of Crambe One of the three major clades is restricted to Macaronesia, whereas the other two are distributed mainly in the Mediterranean and therest of Eurasia. In addition, the "maritima" and "orientalis" groups are confined primarily to Europe and Asia, respectively.

Previous biogeographic hypotheses in Crambe suggested that the M acaronesian taxa represent remnants of a Tertiary flora that existed in the Mediterranean basin (Gómez-Campo, 1980; Warwick and Black, 1997b). Two lines of evidence were used to support this hypothesis: (1) the Macaronesian taxa are woody and (2) there is a basal split between the Macaronesian taxa and the two other lineages in the cpDNA phylogeny, although this relationship is weakly supported by a 30% bootstrap value. Low levels of clade support in theITS trees does not enable resolution of this question. However, trees from five of the eight parsimony analyses do not agree with the cpDNA phylogeny because they place the Macaronesian species as sister to the Eurasian clade. This result suggests a biogeographical connection between Macaronesia, east Africa (C. kilimandscharica), and Eurasia.

There are several examples of biogeographical disjunctions between east Africa and Macaronesianorthwestern Africa [e.g., Aeonium Webb \& Berth. (Crassulaceae), Campyl anthus Roth (Scrophulariaceae),

Canarina L. (Campanulaceae), Erucastrum C. Presl. (Brassicaceae), Hemi crambefruticul osa, Euphorbia balsami fera Aiton (Euphorbiaceae), and Dracaena L. (Dracaenaceae)]. These phytogeographical links led Bramwell (1985) to suggest that the Macaronesian taxa of Crambe are phylogenetically related to C. kilimandscharica. A connection between Macaronesian and east Africa has been confirmed by a phylogenetic analysis of cpDNA restriction site data of the Canarian endemic Solanum vespertilio Aiton (Solanaceae) (Olmstead and Palmer, 1997). These biogeographical patterns are considered vestiges of an extinct flora that existed in northern Africa prior to desertification (Axel rod, 1975; Axelrod and Raven, 1978; Sunding, 1979; Bramwell, 1985; Potts and Behrensmeyer, 1992). The Sahara desert was well established approximately 2.5 Mya (Potts and Behrensmeyer, 1992) and the effects of Quaternary glacial aridity were so dramatic that they even made an impact in tropical Africa (Street, 1981; Elenga et al., 1994).

Phenetic studies of flavonoid data (Aguinagalde and Gómez-Campo, 1984) and floral traits (Clemente and Hernández-Bermejo, 1978a,b, 1980a,b) also suggested a close relationship between the M acaronesian Crambe and taxa from the Eurasian clade. Unfortunately, these studies did not include C. kilimandscharica. Furthermore, all Macaronesian taxa, except C. sventenii and C. fruticosa, have fruits that are virtually identical to those of C. kilimandscharica. These data, combined with geologic and climatic information, suggest that the Macaronesian clade may be related to the Eurasian clade, as suggested by the strict consensus ITS trees from five of the eight analyses.

Two strongly supported groups of taxa with disjunct geographical distributions are revealed in all ITS trees (Fig. 4). The first involves C. abyssinica and C. hispanica. The former species is restricted to east Africa, whereas the latter occurs in the Mediterranean basin. These two species occur in the most derived position in

FIG. 4. Strict consensus tree obtained after the eight weighted and unweighted cladistic analyses. The geographic distribution of Crambe species is indicated at each terminal branch. Average bootstrap values from these eight analyses are shown along each node. Thetwo major geographical disjunctions identified in theITS tree are indicated. Geographical distribution of the Crambe species included in the analysis is also indi cated at each terminal branch.
the Mediterranean clade and differ by only three nucleotide substitutions (Fig. 1). This derived position and the low level of divergence suggests that these species differentiated very recently, probably long after the desertification of northern Africa. This would be consistent with a hypothesis that this geographical disjunction is due to long distance dispersal. Populations of C. hispanica occur in the Middle East; therefore, it is possible that long-distance dispersal took place between this region and east Africa.

The second major biogeographic disjunction in the ITS trees concerns C . kilimandscharica and the taxa endemic to the Eurosiberian region and southwestern Asia. This disjunction is in a basal position in the Eurasian dadeand a large number of changes separate the EurosiberianAsian taxa from C. kilimandscharica (Fig. 1). Thus, this split probably occurred much earlier than the disjunction involving C. abyssinica and C. hispanica.

The possibility of an ancient long distance dispersal of Crambebetween the Eurosiberian-Asian region and east Africa cannot be ruled out. However, it is possible that prior to desertification of northern Africa and glaciation of the northern hemisphere, Crambe had a fairly continuous distribution between east Africa and
southwestern Asia. Axelrod (1973) and Coetzee (1993) argued that there was a continuous vegetation of savanna and sclerophyll thorn scrub in most of the Saharan region until thelatePliocene (3 Mya). Furthermore, there was a massive intercontinental interchange of the biota following the collision of theAfrican (including Arabia) and the Asian plates at Iran in the middle Miocene (Rögl and Steininger, 1984). This led to the establishment of a north-south corridor for plants and animals along east Africa (Hedberg, 1965; Axelrod and Raven, 1978). An increase in the aridity of northeastern Africa since the end of the Miocene (6 Mya) and a severe decrease of winter temperatures in most of Europe and Asia in the early Pleistocene (1.6 Mya) may have led to the extinction of many species along this corridor and the establishment of genera with disjunct distributions in some regions of Eurasia and Africa.

Therefore, many of the species of Crambe currently in the postglacial plains of Central Europe and the Baltic region would have had a post-Pliocene origin. If this hypothesis is correct it would mean that Crambein Eurasia originated from an area situated between the northern hemisphere ice shield and the deserts of northern Africa and southwestern Asia. C. schugnana, C. edentula, and C. gordjaginii are basal to the rest of the Eurosiberian-Asian taxa in all the ITS phylogenies. These three species occur in an area just north of the arid regions of southwestern Asia and the Middle East but south of theice shield limit.

There are several examples of biogeographical disjunctions between eastern Africa and western Africa, northern Africa, temperate Eurasia, or the Mediterranean basin (Burtt, 1971; Thorne, 1972; Hamilton, 1974; Quézel, 1978; Demissew, 1993; Lovett, 1993). However, we have been unable to find any examples of disjunct distributions between east Africa and the E urosi berianAsian region. The ITS phylogeny of Crambedocuments the first molecular evidence for such a connection and appears to support an old biogeographical link between these two regions.

Fossils of Crambe are not available to calibratetimes of divergence. Therefore, any estimates of divergence times for the two major disjunctions in Crambemust be based on rates of ITS sequence evolution from other plant groups [i.e., Betulaceae (Savard et al., 1993); Winteraceae (Suh et al., 1993); Dendroseris D. Don (Asteraceae) (Sang et al., 1994); Gossypium L. (Malvaceae) Wendel et al., 1995); R obinsonia DC. (Asteraceae) (Sang et al., 1995)]. As we would expect, across a broad range of taxa the rates among these groups show considerable variation, ranging between 11×10^{-10} substitutions per site per year for Alnus Mill. and Betula L. (Betulaceae) (Savard et al., 1993) to $2.5 \times$ 10^{-9} substitutions per site per year for ITS2 in Gossypium (Wendel et al., 1995). This wide range of substitution rates makes it difficult to use ITS sequences to estimate divergence times in Crambe An additional complication for estimation of divergence
times of Crambebased on molecular data is the possible existence of "generation-time effect" (K ohne, 1970; Li and Graur, 1991; Li, 1997). All Macaronesian and Eurosiberian-Asian taxa are perennial, whereas those from the Mediterranean and east Africa are annual. However, the molecular clock for Crambe was rejected in only one of the pairwise comparisons, suggesting that generation time has had minimal effect on rates of ITS evolution. We chose both the slowest and fastest rates for Gossypium (Wendel et al., 1995) to estimate divergence times because this genus has similar life forms to those of Crambe.

The highest nucleotide divergence value between C. kilimandscharica and other member of the Eurasian clade was 7.31\% (C. kilimandscharica vs C. gordjaginii). If we use the fastest published rate for sequence divergence [1.75\% nucleotide divergence per million years for Gossypium (Wendel et al., 1995)] this would date the current disjunction of Crambe between east Africa and Eurasia at approximately 4 Mya, before the establishment of the Sahara desert. This time of divergence corresponds with an arid interval of expansion of savannas and grasslands in most of northeastern Africa and the middle East. It appears that these extensive savannas were interrupted in these two regions only by isolated pockets of montane forests located in east Africa and southwestern Asia (P otts and Behrensmeyer, 1992). Some populations of Crambe could have found refuge in these mountains.
C. abyssinica and C. hispanica have a nucleotide
divergence value of 0.67%. Using the fastest rate of 1.75% nucleotide divergence per million years indicates that these species separated 383,000 years ago. If we use the slowest rate of 0.49% reported in Gossypium (Wendel et al., 1995) then the disjunction between C. abyssi nica and C. hispanica would be approximately 1.4 Mya. Both estimates date the disjunction after the late Pliocene (2.5 M ya) when desert conditions were already established in extended areas of the present Sahara region. These divergence times support our hypothesis that this disjunction is due to long-distance dispersal between East Africa and the Mediterranean basin. Since populations of C. hispanica also occur in the Middle East, it is possible that long-distancedispersal took place between this region and east Africa. It has been established that post-Pliocene corridors existed, which could have connected the least arid zones of northeastern Africa (K oeniguer, 1992). However, it is not known to what extent these corridors could have linked the Ethiopian highlands to Mediterranean enclaves.

Crambe, together with Brassica, Sinapis, and Raphanus, is one of the four major crops of the subtribe Brassiceae (Gómez-Campo, 1980). In this study, we have demonstrated that the genus consists of three major lineages. We have also established that it is likely that the major climatic and geological changes that occurred since the Middle Miocene in Africa and Eurasia had a dramatic effect on the morphological differentiation and evolution of Tethyan elements of the Brassicaceae.

APPENDIX 1

Aligned ITS sequences from the taxa studied (left column). Gaps are indicated by "-."Uncertain sites are shown as "?." Polymorphic sites are as follows: $M=A / C, R=A / G, S=C / G, W=A / T, Y=C / T$. Taxon abbreviations are in Table 1. The six uncertain positions which were not included in the analysis are indicated by "*." Length of the sequence is indicated in brackets at the end of the sequence.

\rightarrow ITS 1						
	10	20	30	40	50	60
BROLE	TCG-TACCC-	-GGGAAA-CA	GAACGACCCG	AGAACGTTGA	AA-CATCACT	CT-CGGTGGG
CMTER	TCG-TATCC-	-TGGAAA-CA	GAACGACCTG	AGAACGTTGA	AA-CATCACT	CC-CGGTGGG
CRABY	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	TT-TGGTGGG
CRACU	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRAMA	TCG?TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRASP	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CAWCACT	CT-CGGTGGG
CRCOR	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CREDE	TCG-?ATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRFIL	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	CT-TGGTGGG
CRGIB	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CAWCACT	CT-CGGTGGG
CRGLA	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	CT-TGGTGGG
CRGOM	TCG-CATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATTA	AA-CATCACT	CT-TGGTGGG
CRGOR	TCG-?ATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTAGG
CRGRO	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRHIS	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	TT-TGGTGGG
CRJUN	TCG-?ATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRKIL	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	CT-TGGTGGG
CRKOK	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRKOT	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRKRA	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACGATGA	AA-CATCACT	CT-TGGTGGG
CRMAR	TCG-?ATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAACGA	AA-CATCACT	CT-CGGTGGG
CRORI	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRPER	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CATCACT	CT-CGGTGGG
CRPIN	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAA?GA	AA-CATCACT	CT-CGGTGGG
CRPON	????TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AA-CA?CACT	CT-CGG?GGG

	10	20	30	40	50	60
CRSAN	TCG-CATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAATTA	AA-CATCACT	CT-TGGTGGG
CRSCH	TCG-?ATCC-	-TGGAAA-CA	GAACAACCCG	AGAACATTGA	AA-CATCACT	CT-CGGTAGG
CRSVE	TCG-CATCC-	-TGGAAA-CA	GAACAACCCG	AgAACAATTA	AA-CATCACT	CT-TGGTGGA
CRTAT	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	AGAACAA?GA	AA-CATCACT	CT-CGGTGGG
ERSAT	TCG-TACCC-	-TGGAAA-CA	GAACGACCCG	AgAACGATGA	AA-CATCACT	CT-CGGTGGG
GUARV	TCG-TACCC-	-TGGAAA-CA	GAACGACCCG	AgAACGATGA	AA-CATCACT	CT-CGGTAGG
HEFRU	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	?GAACGTTGA	AA-CATCACT	CT-CGGTGGG
HIINC	TCG-TATCC-	-TGGAAA-CA	GAACGACCCG	AGAACGTTGA	AA-CATCACT	CC-CGGTGGG
KRCOR	TCG-TATCC-	-TGGAAA-CA	GAACAACCCG	tGAACGTTGA	AA-CATCACT	CT-CGGTGGG
MUPOS	TCG-TATCC-	-TGGAAA-CA	GAACGACCCG	AgAACAATGA	AA-CATCACT	CTTCGGTGGG
PHCHA	TCG-TACCC-	-TGGAAA-CA	GAACAACCCG	AgAAC?ATGA	AA-C?CCACT	CT-CGGTGGG
RASAT	TCG-TATCC-	-TGGAAA-CA	GAACGACCCG	AGAACGTTGA	AA-CATCACT	CT-CGGTGGG
RPRUG	TCG-?A?CC-	-TGGAAA-CA	GAATGACCCG	AGA? CGATGA	AA-CATCACT	CT-CGGTGGG
SIALB	TCG-TATC--	-TGGAAA-CA	GAACAACCCG	AGAACAATGA	AAACATCACT	CT-CGGTGGG
SNFRU	TCG-?A?CC-	-TGGAAA-CA	GAAC?ACCCG	AGAAC??TGA	AA-CATCACT	CT-CGGTGGG
CAARE	TCGATACCT-	GTCCAAAACA	GAACGACCCG	CGAACCAACG	AT-CACCACT	CT-CGGTGGG
CLIRR	TCGATACCTT	GACCAAAACA	GAACGACCCG	CGAACGATtG	AT-CATCACT	CT-CGGTGCG
CMMIC	TCGATACCT-	GTCCAAA-CA	GAACGACCCG	CGAACCAACG	AT-CACCACT	CT-CGGTAGG
ERWIT	TCGATACCT	GTCCAAAACA	GAACGACCCG	CGAACCAACG	AT-CACTACT	CG-?GGTGGG
SMALT	TCGATACCTA	GAC-----CA	GAACGACCCG	AGAACGATCG	AT-CACCACT	CT-CGGCAGG
	70	80	90	100	110	120
BROLE	CCGG-TA-TC	TTAGCTGATT	TCGT-GCCTA	CCGATTCCGT	GGTTATGCGT	TC---GTCAC
CMTER	CTGG-TC-TC	TTAGCCGATT	CCAT-GCCTG	CCGA?TCCGT	GGttatglg	TC---GTCCT
CRABY	CCGG-TT-TC	TTAGTTGATT	CTGT-GCCTG	CCAATTCCGT	GGTTATGTGT	TTC--GTCCC
CRACU	CTGG-TT-TC	ttagctgatt	CCGT-GCCTG	CCACTTCCGT	GGttatgig	TTCTCGTCCC
CRAMA	CTGG-TT-TC	tTAGCTGATT	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	????CGTCCC
CRASP	CYGG-TT-TC	ttigctgatt	CCGT-GCCTG	CCACTICCGT	GGTtATGTGT	????CGTCCC
CRCOR	CYGG-TT-TC	ttagctgatt	CCGT-GCCTG	CCRCTTCCGT	GGTtATGTGT	TC????TCCC
CREDE	CYGG-TT-TC	tttrctgatt	CYGT-GCCTG	CCATTTCCGT	GGTtATGTGT	TTT--GTCCC
CRFIL	CCGG-TT-TC	tTAGCTGATT	CTGT-GCCTG	CCAATTCCGT	GGttatgig	TTC--GTCCC
CRGIB	CYGG-TT-TC	tttgctgatt	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	CTC--GTCCC
CRGLA	CCGG-TT-TC	TTAGTTGATT	CTGT-GCCTG	CCAATTCCGT	GGTtATGTGT	TTC--TTCCC
CRGOM	CCGG-TT-TC	TTAATTGATT	CTGT-GTCTG	CCAATTCCGT	GGTtATGTGT	TTT--GTCCC
CRGOR	CCGG-TT-TC	tTTGCTGATT	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	TTT--GTCCC
CRGRO	CTGG-TT-TC	tTAGCTGATT	CCGT-GCCTG	CCRCTTCCGT	GGTTATGTGT	T????GTCCC
CRHIS	CCGG-TT-TC	tTAGTTGATT	CTGT-GCCTG	CCAATTCCGT	GGTtATGTGT	TTC--GTCCC
CRJUN	C?GG-TT-TC	tTAGCTGATT	CCGT-GCCTG	CCGCTTCCGT	GGTtATGTGT	T????GTCCC
CRKIL	CCGG-TT-TC	ttagatgatt	CTGT-GCCTA	CCAATTCCGT	GGTtATGTGT	TTC--GTCCC
CRKOK	CCGG-TT-TC	ttagctgatt	CCGT-GCCTG	CCTATTCCGT	GGTtATGTGT	TTCTCGTCCT
CRKOT	C?GG-TT-TC	ttagctgatt	CCGT-GCCTG	CC??TTCCGT	GGttatgig	???--GTCCC
CRKRA	CCGG-TT-TC	tTAGCTGATT	CTGT-GCCTG	CCAATTCCGT	GGttatgig	TTC--GTCCT
CRMAR	CCGG-TT-TC	tTtGCTGATT	CCGT-GCCTG	CCACTTCCGT	GGTTATGTGT	CTC--GTCCC
CRORI	CTGG-TT-TC	tTAGCTGATT	CCGT-GCCTG	CCRCTTCCGT	GGttatgig	TT?TCGT?CC
CRPER	CTGG-TT-TC	tTAGCTGATT	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	?????GTCCC
CRPIN	C?GG-TT-TC	tT?GCTGATT	CCGT-GCCTG	CC??TTCCGT	GGttatgig	?????GTCCC
CRPON	CCGG-TT-TC	tttgctgatt	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	CTC--GTCC?
CRSAN	CCGG-TT-TC	ttanttgatt	CTGT-TTCTG	CCAATTCCGT	GGTtATGTGT	TTC--?TCCC
CRSCH	CCGG-TT-TC	TWAGCTGATT	CCGT-GCCTG	CCACTTCCGT	GGttatgtat	ATC--GTTCC
CRSVE	CCGG-TT-TC	ttgattgatt	CTGT-GTCTG	CCAATTCCGT	GGTTATGCGT	TTT--GTCCC
CRTAT	CCGG-TT-TC	tttgctgatt	CCGT-GCCTG	CCACTTCCGT	GGTtATGTGT	CTC--GTCCC
ERSAT	CCGG-TC-TC	tTAGTTGATT	CCGT-GCCTG	CCGATTCCGT	GGTtATGTGT	TCC--GTCCC
GUARV	CCGG-TT-TC	GTAACTGTTT	CTGT-GCCTG	CCGATTCCGT	GGTTATGTGT	TCC--GTCCC
HEFRU	CCGG-T? ${ }^{\text {a }}$ TC	TTTGCTGATT	CCGT-GCCTG	CCGATTCCGT	GGTTWTGCGT	CAT--GTTCC
HIINC	CTGG-TC-TC	TTAACCGATT	CCAT-GCCTT	CCGGTTCCGT	GGttatgtat	TCC--GT?CC
KRCOR	CCGG-TT-TC	ttagctgatt	CCGT-GCCTA	CCGATTCCGT	GGTtATGGGT	CTC--GTCCC
MUPOS	CCGG-TT-TC	ttanctgatt	CTGT-GCTCG	CCGATTCCGT	GGTtATGCGT	TAT??GTTCC
PHCHA	CATG-TC-TC	ttagctgatt	CTGT-GCCTG	CCGATTCCGT	GGTtATGCGT	GTC--GTCCA
RASAT	CTGGGTTCTC	TTACCGGAAT	CCAT-GCCTT	CCGATTCCGT	GGTTATGTGT	TTC--GTCCT
RPRUG	CCGG-TC?TC	ttanctgat	CTGT-GCTCA	CCGATTCCGT	GGTtATGTGT	TTC--GTTCC
SIALB	CCGG-TT-TC	TTTGCTGATT	CTGT-GCCTG	CCGATTCCGT	GGTTATGCGT	TAA--GTTCC
SNFRU	CCGG-T?-TC	TTAATTGACT	CCGT-GCCTA	CCGATTCCGT	GGTtATG?GT	TCC--GTCCC
CAARE	CCGG-TT-TC	TTAACCGATC	CCGT-GCTCG	CCGGATCCGT	GGTtTCGCGT	ATC--GCCCT
CLIRR	CCGA-TT-TC	TTAACGGATC	TCGT-GCCTG	CCGATTCCGT	GGTtTCGCGT	AAG--TTCCT
CMMIC	CCGG-TT-TC	ttagctgatc	CCGTtGCCtG	CCGTCTCCGT	GGTtTCGCGT	ATC--TTCCC
ERWIT	CTGG-TT-TC	TTAGCCGATC	CCTT-G?CC?	CCGGATCCGT	GG?TTCGTGT	ACC--GTCCC
SMALT	CCGG-TT-TC	tTAGCCGATC	CCGT-GCTTG	CCGAGTCCGC	GGTTATGTGT	$\underset{* * * * * *}{\text { AT }}$ - ${ }^{\text {GATCT }}$
	130	140	150	160	170	180
BROLE	CGGCCTAG?-	----T	TTCGGTT-GG	AT--TGTA-C	GCATAGCTTC	CGGATATCAC
CMTER	CGGTCAAGAC	TTCAG----T	CTTGGCT-GG	TT--CGTG-C	ACATAGCTTC	CGGATATAAC
CRABY	T---CAAGGC	GTTAG----T	CTTGGTT-GG	TT--CGTG-C	ACATAGCTTC	CGGATATAAC
CRACU	CGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--CGTG-C	ACATAGCTTC	CGGATATCAC
CRAMA	CGCTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--CGTG-C	ACATAGCTTC	CGGATATCAC
CRASP	TGWTCAAGGC	TTCAG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
CRCOR	CG? ?CAAGGC	TTCAG----T	CTTGGTT-GG	G?--CGTG-C	ACATAGCTTC	CGGATATCAC
CREDE	YGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GT--CATG-C	ACATAGCTTC	CGGATATCAC
CRFIL	TGGTCAAGGC	GTTAG----T	CTTGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATTTAAC
CRGIB	TGTTCAAGGC	TTCAG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC

APPENDIX 1-Continued

	130	140	150	160	170	180
CRGLA	TGGTCAAGGC	GTTAG----T	CTTGGTT-GG	GT--CGTG-C	GCATAGCTTC	CGGATATCAC
CRGOM	CGGTCAAGAC	TTCAG----T	CTTGGTT-GG	GT--CACG-C	GCATAGCTTC	CGGATATCAC
CRGOR	TGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATAAC
CRGRO	CGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--CGTG-C	AYATAGCTTC	CGGATATCAC
CRHIS	T----CAAGGC	GTTAG----T	CTTGGTT-GG	TT--CGTG-C	ACATAGCTTC	CGGATATAAC
CRJUN	TGGTCAAGGC	TTCAG---T	CttGgtt-Gg	G?--CGTG-C	ACATAGCTTC	CGGATATCAC
CRKIL	?AGTCAAGGC	TTCAG----T	CTTGGTT-GG	GT--CATG-C	ACATAGCTTC	CGGATATCAC
CRKOK	TGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--CGTG-C	ACATAGCTTT	CGGATATCAC
CRKOT	CG?TCAAGGC	TTCAG----T	CTTGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
CRKRA	TGGTCAAGGC	GTCAG----T	CTTGGIT-GG	GT--CGTG-C	GCATAGCTTC	-GGATATCAC
CRMAR	TGTTCAAGGC	TTCTG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
CRORI	CGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--C?TG-C	ACATAGCTTC	CGGATATCAC
CRPER	CGGTCAAGGC	TTCAG----T	CTTGGTT-GG	GG--CGTG-C	ACATAGCTTC	CGGATATCAC
CRPIN	?GTTCAAGGC	TTCAG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
CRPON	TGTTCAAGGC	TTCTG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
CRSAN	CRGTCAAGAC	TTCAG---T	CttGgtt-GG	GT--CATG-C	GCATAGCTTC	CGGATATCAC
CRSCH	CGGTCAAGGC	TTCAG----T	CTTGGTTTCG	GT--CGGG-C	ACATAGCTTC	CGGATATCAC
CRSVE	CGATGAAGAC	TTCAG----T	CTTGGTT-GG	GT--CATG-C	GCATAGCTTC	CGGATATCAC
CRTAT	TGTTCAAGGC	TTCTG----T	CTCGGTT-GG	GT--CGTG-C	ACATAGCTTC	CGGATATCAC
ERSAT	CGGTCAAGAT	TTTTG----T	CTTGGTT-GG	TT--CGTG-C	GCATAGCTTC	CGGATTTCAC
GUARV	CGGTCAAGAC	TTCAG----T	CTCGGTC-GG	AT--CGTG-C	GCATAGCTTC	CGGATTTCAC
HEFRU	CAGCCAATAC	TTCAG----T	CTTGGTT-GG	GT--CGTG-C	GCATTGCTTC	CGGAT?TCAC
HIINC	CGGTtGAGAC	TTCACCGAGT	CTCGGCT-GG	AT--CGTG-C	ACATAGCTTC	CGGATTTAAC
KRCOR	CGGCCGAGAT	TTCTT----T	CTCGGTT-GG	AT--CGTG-C	CCATGGCTTC	CGGATATCAC
MUPOS	CATCCAAGAT	TTCAA----T	CTCGCTT-GG	GT--CATG-C	GCATAGCTTC	CGGATATCAC
PHCHA	TGTCTGAGGC	GTTTG----T	CTCGATC-TG	GT--CGTC-C	GCATAGCTTC	CGGATATCAC
RASAT	CGGTCAAGGC	T?CAG----?	CTGGGCT-GG	GT--CGTG-C	--ACAGCTTC	CGGAGATCAC
RPRUG	CGGTCAAGAC	TTTAAG---T	CTTGGIT-GG	AT--CGTG-C	GCATAGCTTC	CGGATTTCAC
SIALB	CAGCCAGTAC	TTCAG----T	CTTGGTT-GG	GT--CTTG-C	GCATTGCTTC	CGGATATCAC
SNFRU	AGATCATGAC	TTCTG----T	CTCGAAC-TG	AT--CGTG-C	GCATAGCTTC	CGGATATCAC
CAARE	GGTCGGGAGC	TTTA-----T	CTCGGTC-TT	GT--CGTG-C	GCGTTGCTTC	CGGATATCAC
CLIRR	TGTCTTGAA?	TTCTT----G	GCTAGTA-GG	T---CTTG-C	GCGTTGCTTC	CGGATATCAC
CMMIC	GGTCGAGAGC	TCTA-----T	CTCGGTC-TG	GT--CGTG-C	GCGTTGCTTC	CGGATATCAC
ERWIT	GGTCGGGAGC	TCTA-----T	CTCGGTC-TG	GT--CGAGTC	ACGTTGCTTC	CGGATATCAC
SMALT	CAA-	-T	CTCGGTT-GT	ATATCATG-C	GCATAACTTG	TGGATTTCAC
	190	200	210	220	230	240
BROLE	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATTCAACTA	AACAGCCT?-	-?TTTCGCCA
CMTER	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATACAACTA	AACAGTCTG-	-CTTTCGCCA
CRABY	CAAACCCCGG	CAC-GAGAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TTTTCGCCA
CRACU	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRAMA	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRASP	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-CGTTCGGCA
CRCOR	CAAACCCCGG	CAY-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-YGTTYGGCA
CREDE	CAAACCACGG	CAY-GAAAAG	TGTCAAGGAA	CATGCAATTA	AACAGYCTG-	-AGTTCGGCA
CRFIL	CAAACCCCGG	CAC-GAGAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-TTTTCGCCA
CRGIB	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-CGTTCGGCA
CRGLA	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-TGTTCGCCA
CRGOM	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-CATTCGCCA
CRGOR	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACCA	AACAGCCTG-	-CGTTCGGCA
CRGRO	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRHIS	CAAACCCCGG	CAC-GAGAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TTTTCGCCA
CRJUN	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRKIL	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-CATTCGGCA
CRKOK	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRKOT	CAAACCCCGG	CACTGAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-YGTTYGGCA
CRKRA	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-TGTTCGCCA
CRMAR	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGTAACTA	AACAGCTTG-	-CGTTCGGCA
CRORI	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGTCA
CRPER	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-TGTTCGGCA
CRPIN	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCTTG-	-CGTTCGGCA
CRPON	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGYAACTA	AACAGCTTG-	-CGTTCGGCA
CRSAN	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-CATTCGCCA
CRSCH	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-CATTCGGCA
CRSVE	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCCTG-	-CATTCACCA
CRTAT	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGYAACTA	AACAGCTTG-	-CGTTCGGCA
ERSAT	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAATTA	AACAGCCTG-	-CGTTCGCCA
GUARV	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGTCTG-	-CTTTCGTCA
HEFRU	CAAACCCCGG	CAC-AACAAG	TGTCAAGGAA	CATTCAACTA	GGTAGCCTS-	-GTT-CGCCA
HIINC	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATACAACTA	AACAGTCTG-	-CTTTCACCA
KRCOR	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGCC? ?-	-?TTTCGCCG
MUPOS	CAAACCCCGg	CAC-GAAAAG	TGTCAAGGAA	YATGCAACTA	AACAGCCT?-	-CTT-CGCCA
PHCHA	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	AATGCAACTA	AACAGCCTG-	-GGTTTCGCA
RASAT	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGTCTC-	-GTTTCGCCA
RPRUG	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACTA	AACAGTCTG-	-CTTTCCGCA
SIALB	CAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATTCAACTA	GGTAGCCTG-	-CTTTCGCCA
SNFRU	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	AATGCAACTA	AACAGTCTG-	-CTTTCACCA
CAARE	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CAAGCAAACG	AACGGCTGG-	-CATTCGCCT
CLIRR	AAAACCCCGG	CAC-AAATAG	TGTCAAGGAA	CATGCAACCA	AACAGTCTG?	?TGTTCGCCT

APPENDIX 1-Continued

	190	200	210	220	230	240
CMMIC	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACCG	AACGGCtttg	GCATTCGCCT
ERWIT	CAAACCCCGG	?AC-GAAA?G	TGTC?AGGAA	CATGCAACCG	AACGGCCGG-	-CATTCGCCT
SMALT	AAAACCCCGG	CAC-GAAAAG	TGTCAAGGAA	CATGCAACAT	AACAGCCTG-	-CGTTCGCCT
	250	260	270	280	290	
	250				290	300
BROLE	ACCCGGAGAC	GGTGTTTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCYC
CMTER	ACCCGGAGAC	GGTGTTTGTT	CAGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRABY	ACCCGGAAAT	GGTGTtTGGT	CGGAAGTAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRACU	ACCCGGAAAC	GGTGTtTGTT	MGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRAMA	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	TAAAGTCTAT	CGTCGTCCCC
CRASP	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAWTGT	-AAAGTCTAT	CGTCGTCCCC
CRCOR	ACCCGGAAAC	GGtGttigtt	CGGAAGYAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CREDE	ACCCGGAGAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAWTGT	-AAAGTCTAT	CGTCGTCYCC
CRFIL	ACCCGGAAAC	GGTGTTTGGT	CGGAAGTTGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRGIB	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRGLA	ACCCGGAAAC	GGTGTtTGGT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRGOM	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCATTGT	-AAAGTCTAT	CGTCGTCCC-
CRGOR	ACCCGGAGAC	GGTGTtTGTT	TGAAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRGRO	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRHIS	ACCCGGAAAC	GGTGttigg	CGGAAGTAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRJUN	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRKIL	GCCCGGAGAC	GGtGttigtt	CGGAAGYAGT	GCTGCAATGT	-AAAATCTAT	CGTCGTCCCC
CRKOK	ACCCGGAAAC	GGTGTtTGAT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRKOT	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCART	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRKRA	ACCCGGAAAC	GGTGTtTGGT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRMAR	ACCCGGAAAC	GGTGTtTGTT	CAGAAGTAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRORI	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRPER	ACCCGGAAAC	GGTGTtTGTT	MGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRPIN	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRPON	ACCCGGAAAC	GGtGttigtt	CRGAAGYAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRSAN	ACCCGGAAAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCATTGT	-AAAGTCTAT	CGTCGTCCC-
CRSCH	ACCTGGAAAC	GGTGTTTGTT	CGAAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CRSVE	ACCCGGAGAC	GGTGTtTGTT	CGAAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCC-
CRTAT	ACCCGGAAAC	GGTGTtTGTT	CRGAAGYAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
ERSAT	ACCCGGAGAC	GGTGTtTGTG	CGGAAGTTGT	GCTGCAATTT	-AAAGTCTAT	CGTCGTCCCC
GUARV	ACCCGGAGAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
HEFRU	ACCCGGAGAC	GGTGTtTGTG	CGGAAGCTGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
HIINC	ACCCGGAGAC	GGTGTtTGTT	CGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
KRCOR	ACCCGGAGAC	GGTGTtTG?G	CGRAAGC???	GCTGCAA??T	-AAAGTCTAT	CGTCGTCCCC
mUPOS	ACCCGGAAAC	GGtgttigtg	CGGAAGTTGT	GCTGCAATTT	-AAAGTCTAT	CGTCGTCCCC
PHCHA	TCCCGGAGAC	GGTGTtTGTG	CGGAAGCTGT	GCTGCGATAG	?AAAGTCTAT	CGTCGTCCCC
RASAT	ACCCGGARAC	GGTGTtTGTt	CGGAAACAGT	GCTGAAATGT	-AAAGTCTAT	CGTCGTCCCC
RPRUG	ACCCGGAGAC	GGtgttigtg	TGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
SIALB	ACCCGGAGAC	GGTGTtTGTG	CGGAAGCTGT	GCTCCAATGT	-AAAGTCTAT	CGTCGTCCCC
SNFRU	ACCCGGAGAC	GGTGTtTGTA	AGGAAGCAGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CAARE	CCCCGGAGAC	GGTGTGTGCG	CGGATGCTGT	GCTGCGATAT	?AAAGTCTAT	CGTCGTCCCC
CLIRR	CCCCGGAGAC	GGTGTGTGTG	CGGATGCGGT	GCTGCAATGT	-AAAGTCTAT	CGTCGTCCCC
CMMIC	CCCCGGAGAC	GGtGtgtacg	CGGATGCTGA	GCTGCGATCT	-AAAGTCTAC	CGTCGTCCCC
ERWIT	CCC?GGAGAC	GGTGTGTGCG	TGGATGCTGA	GCTGCGATCT	-AAAGTCTAT	CATCGTCCCC
SMALT	ACCCGGAAAC	GGtGtttgcg	TGAACGTTGT	GCTGGAATCT	-AAAGTCTAT	CTTCGTCCCC
	310	320	330	340	350	360
BROLE	--CAA-TCCT	CTC-GAGGAT	ATCGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CMTER	--CCA-TCCT	CTC-GAGGAT	AttGgACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCATGCGG
CRABY	-TCCA-TCCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRACU	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRAMA	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRASP	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRCOR	--CCA-TCTT	CTCGGAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	C??CACGCGG
CREDE	--CCA-TCCT	CAC-CAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCACACGCGG
CRFIL	--CCA-TCCT	CAT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRGIB	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRGLA	--CCA-TCCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCG?
CRGOM	--CCA-TCCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRGOR	--CCA-ACCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRGRO	--CCA-TCTT	CTC-GAGGAT	ATGGGACRGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRHIS	?TCCA-TCCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRJUN	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRKIL	--CCA-TCCT	CTC-AAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRKOK	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	C-GCACGCGG
CRKOT	--CCA-TCTT	CT?-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRKRA	-TCCA-TCCT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	C-GCACGCGG
CRMAR	--CCA-TCTT	CTA-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRORI	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	C??CACGCGG
CRPER	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRPIN	--CCA-TCTT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRPON	--CCA-TCTT	CTM-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRSAN	--CCA-TCCT	CTC-GAG-AT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRSCH	--CCA-TCCW	CTC-TAGGAT	ATGGGACRGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG

APPENDIX 1-Continued

	310	320	330	340	350	360
CRSVE	--CCA-TCCT	ATC-GAGGAT	AAGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CRTAT	--CCA-TCTT	CTA-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	C?GCACGCGG
ERSAT	--CCA-TCCT	CTC-GAGGAT	AAGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
GUARV	--CCA-TCCT	CTA-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTtA	CCGCACGCGG
HEFRU	--CCA-TCCT	CTC-GAGGAT	ACGGGACGGA	AGCTGGTCTC	CCGTGTGTtA	CCGCACGCGG
HIINC	--CCA-TCCT	CTC-GAGGAT	ATCGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
KRCOR	--CCA-TCCT	CTC-GAGGAT	GTTGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
MUPOS	--CCA-TCCT	TTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
PHCHA	--CCA-TCCT	CTC-GAGGAT	ATTGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
RASAT	--CCA-TCCT	CTC-GAGGAT	ATAGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
RPRUG	--CCA-TCCT	CTC-CAGGAT	ATGGGACGGA	AgAtGgTCTC	CCGTGTGTTA	CCGCACGCGG
SIALB	--CCA-TCCT	CTC-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
SNFRU	--CCA-TCCT	CTT-GAGGAT	ATGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CAARE	-TATATTCCT	TTG--CGGAT	GCGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CLIRR	--CCA-TCCT	CTT--TGGAT	AAGGGACGGA	AGTTGGTCTC	CCGTGTGTTA	CCGCACGCGG
CMmIC	-CAAA-TCCT	TTG--CGGAT	ACGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
ERWIT	ССТСА-TСС	CTA--AGGAT	TCGGGACGGA	A?CTGGTCTC	CCGTGTRTTA	CCGCACGCGG
SMALT	-CCCA-TCCT	TTC--AGGAT	AAGGGACGGA	AGCTGGTCTC	CCGTGTGTTA	CCGCACGCGG
	370	380	390	400	410	420
BROLE	TTGGCCAAAA	TCCGAGCTAA	GGAt-GCCAG	-GAGCGTCTT	GACATGCGGT	GGTGAATT-C
CMTER	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRABY	ttg cciana	TCGGAGTGAA	GGAC-GCTAG	-GAGCGTCTC	GACATGCGGT	GGTTAATT-C
CRACU	TTGGCCAAAA	tCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRAMA	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRASP	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRCOR	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CREDE	ttg cciana	TCTGAGCTAA	GGAt-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRFIL	TTGGCCAAAA	TCTGAGCAAA	GGAC-GCTAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRGIB	TtGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRGLA	ttg cciana	TCTGAGCAAA	GGAC-GCCAG	-GTGCGTCTC	GACATGCGGT	GGTGAATT-A
CRGOM	TTGGCCAAAA	TCTGAGCGAT	GGAC-GTCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRGOR	ttg cciana	tCTGAGCTAA	GGAT-GCCTG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRGRO	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCWT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRHIS	ttg cciana	TCTGAGTAAA	GGAC-GCTAG	-GAGCGTCTC	GACATGCGGT	GGttanti-C
CRJUN	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRKIL	ttg cciana	TCTGAGCTAA	GGAt-GCCAA	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRKOK	ttg cciana	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRKOT	TTGGCCAAAA	TCYGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRKRA	TTGGCCAAAA	TCTGAGCAAT	GGAC-GCTTG	-GTGCGTCTC	GACATGCGGT	GGTGAATTTC
CRMAR	ttg cciana	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRORI	TTGGCCAAAA	tCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRPER	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRPIN	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRPON	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRSAN	tTGGCAAAAA	TCTGAGCGAT	GGAC-GTCAG	-GAGCGTCTC	GACATGCGGT	GGTGGATT-C
CRSCH	TTGGCCAAAA	TCTGAGCTAA	GGAT-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CRSVE	TTGGCCAAAA	TCTGAGCCAT	GGAC-GTCAG	-GAGCGTCTT	GACATGCGGT	GGTGAATT-C
CRTAT	ttg cciana	TCCGAGCTAA	GGAT-GCCAT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
ERSAT	TTGGCCAAAA	TCCGAGCAAA	GGAC-GCCTG	-GAGTGTCTC	GACATGCGGT	GGTGAATT-C
GUARV	TTGGCCAAAA	tCCGAGCTAA	GGAT-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
HEFRU	TTGGCCAAAA	TCCGAGCTAA	GGAACGCAAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
HIINC	ttg cciana	tCCGAGCTAA	GGAT-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
KRCOR	CTGGCCAAAA	TCCGAGCTAA	GAAC-GCCGT	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
mupos	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCAAG	-GAGCGTCTT	GACATGCGGT	GGTGAATT-C
PHCHA	ttgGcchana	TCCGAGCCAA	GGAt-GCCAT	-GAGCGTCTT	GACATGCGGT	GGtGAATT-A
RASAT	TTGGCCAAAA	TCCGAGCTAA	GGAT-GCCAG	-GAGCGTCTT	GACATGCGGT	GGTGAATT-C
RPRUG	TTGGCCAAAA	TCCGAGCCAA	GGAC-GCCAG	-GAACGTCTC	GACATGCGGT	GGTGAATT-C
SIALB	ttg cciana	TCCGAGCTAA	GGAC-GTITT	GGAGCGTCTC	GACATGCGGT	GGTGAATT-G
SNFRU	ttg tcanan	TCCGAGCTAA	GGAT-GCAAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-C
CAARE	ttg cctana	TCCGAGCCAA	GGAC-GCCTG	-GAGCGTCCC	GACATGCGGT	GGTGAACA-T
CLIRR	TTGGCCAAAA	TCCGAGCTAA	GGAC-GCCAG	-GAGCGTCTC	GACATGCGGT	GGTGAATT-A
CMMIC	ttgacctana	TCCGAGCCAA	GGAC-GCCTG	-GAGCGTTCC	GACATGCGGT	GGTGAACT-T
ERWIT	TTGGTCAAAA	TCCGAGCCAA	GGAC-AGCAG	GGAGCGTCCC	GACATACGGT	GGTGAAA?-T
SMALT	tTGGCCAAAA	TCCGAGCAAA	GGAT-GCAAG	-GAGCGTCCC	GACATGCGGT	GGtGAATT-C
	430	440	450	460	470	480
BROLE	AAT--TCTCG	T--CAAATCG	TCAGTCGTTT	CGGTCCGAAA	GCtctigat-	GACCC-AAAG
CMTER	AATCTCCTCG	T--CATACAG	TCGGTCATTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRABY	AAA--CCTCG	t--CAttttg	TCGGTCGTTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRACU	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	tGgtcctana	GCTCTTGAT-	GACCC-AAAG
CRAMA	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRASP	AAA--CCTCG	T--CATAATG	TTGGTCGTTC	tGGtcctana	GCTCTTGAT-	GACCC-AAAG
CRCOR	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	tGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CREDE	TAA--CCTCG	T--CATAATG	TTGGTTGTT?	?GATCCTAAA	GCTCTCGAT-	GACCC-AAAG
CRFIL	AAA--CCTCG	T--CATTTTG	TCGGTCGTTC	CAGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRGIB	AAA--CCTCG	T--CATAATG	TTGGTCGTTC	tGgtcctana	GCTCTTGAT-	GACCC-AAAG
CRGLA	AAA--CCTCG	t--CATATtG	TCGGTCGTTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRGOM	AAA--CCTCG	T--CATATCG	TCGGTCGTTC	CGGTCCAAAA	GCTCTCGAT-	GACCC-AAAG
CRGOR	AAA--CCTCG	T--CATAATG	TTGGTCGTTT	CGATCCTAAA	GTTCTTGAT-	GACCC-AAAG

APPENDIX 1-Continued

	430	440	450	460	470	480
CRGRO	AAA--CCTYG	T--CATAGTG	TTGGTCGTTC	TGGTYCTAAA	GCTCTTGAT-	GACCC-AAAG
CRHIS	AAA--CCTCG	T--CATtTtG	TCGGTCGTTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRJUN	AAA--CCTCG	T--CATAGTG	TTGGTYGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRKIL	AAT--CCTCG	T--CATAATG	TTGGTCGTTC	TGGTCCTAAA	GCTCTCGAT-	GACCC-AAAG
CRKOK	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	TGGTCCTAAA	GTTCTTGAT-	GACCC-AAAG
CRKOT	AAA--CCTCG	T--CATARTG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRKRA	AAA--CCTCG	T--CATATTG	TCGGTCGTTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
CRMAR	AAA--CCTCG	T--CATAATG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRORI	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRPER	AAA--CCTCG	T--CATAGTG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRPIN	AAA--CCTCG	T--CATAATG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRPON	AAA--CCTCG	t--CATAATG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
CRSAN	AAA--CCTCG	T--CATTT-G	TTGGTCATTC	CGGTCCAAAA	GCTCTCG-T-	GACCC-AAAG
CRSCH	AAA--ССТ?G	T--CATAATG	TTGGTCGTT?	?GATCCTAAA	GCTCTCGAT-	GACCC-AAAG
CRSVE	AAA--CCTCG	T--CACATCG	TCGGTCGTTC	CGGTCCAAAA	GCTCTCGAT-	GACCC-AAAG
CRTAT	AAA--CCTCG	T--CATAATG	TTGGTCGTTC	TGGTCCTAAA	GCTCTTGAT-	GACCC-AAAG
ERSAT	AAA--ACTCG	T--CATACTG	TCGATCATTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
GUARV	AATCTCCTCG	T--TATAAAG	TCGATCGTTC	CGGTCCAAAA	GCTCTCGAT-	GACCC-AAAG
HEFRU	TAA--CCTCG	t--CATATtG	TCGGTCGTTC	CGGTTCAAAA	GCTCTTGAT-	GACCC-AAAG
HIINC	AATCTCCTCG	T--GATACAG	TCGGTCGTTC	CGGTCCAAAA	GCTCTTGAT-	GACCC-AAAG
KRCOR	AAA--CCTCG	T--CATATtG	TCGGTCGTTC	CGGTITAAAA	GCTCTCGATT	GACCC-AAAG
mupos	AAA--CCTCG	T--CATATTG	TCAGACGTTC	TGATCCGAAA	ACTCTAGAT-	GACCC-AAAG
PHCHA	AAA--ACTCG	T--CATACTG	TCG-TCGCTC	TGGTCCGAAA	GCTCTTGAT-	GACCC-AAAG
RASAT	AATCTCCTCG	T--CATATCG	TCGGTCGTTC	CGGTCCAAAA	GCTCTCGAT-	GACCC-AAAG
RPRUG	AA---CCTCG	T--CATACTG	TTGTTCGTTC	CGGTCCAGAA	GCTCTCGAT-	GACCC-AAAA
SIALB	TAA--CCTCG	T--CATATTG	TCGGTCGTTC	CGGTTCAAAA	GCTCTTGAT-	GACCC-AAAG
SNFRU	AAA--CCTCG	t--CATATtG	TCGGTCGTTT	TGGTCCAAAA	GCttitigat-	GACCC-AAAG
CAARE	GAT--CCATT	T--GATATTG	TCGGTCGCTC	CTGTCCGGAA	GCTGTAGAT-	GACCC-AAAG
CLIRR	AAG--CATCT	t--CATATtG	TCGGATGCTC	CTGTCCGGAT	GCTtTCGAT-	GACCC-AAAG
CMMIC	GAT--CCACT	tTCCCTATCG	TCGGTCGCTC	TTGTCCGGAA	GCTCTAGAT-	GACCC-AAAG
ERWIT	GAT--CCACT	?T-CATATCG	TCGGCCGCTC	CTGTCCGGAG	GCTCTAGAT-	GACCCCAAAG
SMALT	AAG--CCTCG	T--CATATCG	TCGGTCGCTC	CTGTCTGGAA	GCTCTCGAT-	GACCC-AAAG

APPENDIX 1-Continued

	48	
BROLE	TCCTCAAC	$[445]$
CMTER	TCCTCAAC	$[453]$
CRABY	TCCTCAAC	$[450]$
CRACU	TCCTCAAA	$[454]$
CRAMA	TCCTCAAA	$[456]$
CRASP	TCCTCAAA	$[454]$
CRCOR	TCCTCAAA	$[453]$
CREDE	TCCTTAAC	$[452]$
CRFIL	TCCTCAAC	$[452]$
CRGIB	TCCTCAAA	$[452]$
CRGLA	TCCTCAAC	$[452]$
CRGOM	TCCTCAAC	$[451]$
CRGOR	TCCTCAAC	$[452]$
CRGRO	TCCWCAAA	$[454]$
CRHIS	TCCTCAAC	$[451]$
CRJUN	TCCTCAAA	$[454]$
CRKIL	TCCTCAAC	$[452]$
CRKOK	TCCTCAA?	$[452]$
CRKOT	TCCTCAAA	$[453]$
CRKRA	TCCTCAAAA	$[452]$
CRMAR	TCCTCAAA	$[452]$
CRORI	TCCTCAAA	$[454]$
CRPER	TCCTCAAA	$[454]$
CRPIN	TCCTCAAA	$[454]$
CRPON	TCCTCAAC	$[453]$
CRSAN	TCCTCAAC	$[448]$
CRSCH	TCCTCAAC	$[453]$
CRSVE	TCCTCAAA	$[452]$
CRTAT	TCCTCAA?	$[452]$
ERSAT	TCCTCAAC	$[454]$
GUARV	TCCTCAAC	$[453]$
HEFRU	TCCTCAAC	$[458]$
HIINC	TTCTCAAC	$[453]$
KRCOR		

APPENDIX 1—Continued

		488
MUPOS	TCCTCAAC	$[454]$
PHCHA	TCCTCAAC	$[452]$
RASAT	TCCTCAAC	$[454]$
RPRUG	TTCTCAAC	$[453]$
SIALB	TCCTCAAC	$[453]$
SNFRU	TCCTCAAC	$[452]$
CAARE	TCCTTTAA	$[456]$
CLIRR	TCCTCAAC	$[456]$
CMMIC	TCTTCAAA	$[458]$
ERWIT	TCCTCCAA	$[440]$
SMALT	TCCTCAA?	

ACKNO WLEDGMENTS

We thank D. Goldman (The University of Texas), M. Kafari (Research Institute of Forests and Rangelands, Tehran), C. Mutiso (University of Nairobi), L. Rico (Royal Botanic Gardens, Kew), and Y. Roskov (K omarov Botanical Institute, St. Petersburg) for their help in locating and collecting herbarium specimens used for DNA isolations. We are also grateful to the curators of the germplasm seed bank institutes, which provided seeds for DNA isolations from material cultivated at the greenhouses of the University of Texas. The University of Texas Plant Resources Center provided space and facilities for housing vouchers. Steve O'K ane and R. Price provided DNA sequences of some outgroup taxa. J osé Panero kindly gave us information on ITS primers specific for angiosperms. This work was supported by a contract to the senior author from the Centro de Investigación y Tecnol ogía Agraria de Canarias through the advice of M. Fernández Galván. Financial support was also provided by the Consejo Superior de Investigaciones Cientificas, Spain to J.F.A.; the Instituto Nacional de I nvestigaciones Agrarias y Alimentarias, Spain
(project number 0134 to A.S.G.); and the National Science Foundation (Grant DEB-970614 to R.K.J. and J.F.-O.). J an Barber, U.-R. Böhle, T. Barkman, J. Caujapé, D. Crawford, J. Clement, B. Crozier, L. Goertzen, M. Helfgott, S.-C. Kim, G. Nieto, J. Panero, A. Prina, and B. Simpson provided critical comments on an early draft of the manuscript. This work is dedicated to Professor Ted Delevoryas. Sharing early morning discussions with Ted about the current status of research in systematics and the impact of molecular data and cladistics on understanding biodiversity and evolution was one of the most important scientific rewards of the senior author during his postdoctoral leave in the USA.

REFERENCES

Aguinagalde, I., and Gómez-Campo, C. (1984). The phylogenetic significance of flavonoids in Crambe L. (Cruciferae). Bot. J . Linn. Soc. 89: 277-288.
Al-Shehbaz, I. A. (1984). The tribes of Cruciferae (Brassicaceae) in southern United States. J. Arnold Arbor. 65: 343-373.
Al-Shehbaz, I. A. (1988). The genera of Anchonieae (Hesperidae) (Cruciferae; Brassicaceae) in the southeastern United States. J. Arnold Arbor. 69: 192-212.
Anderson, V. L., Slanger, W. D., Boyles, S. L., and Berg, P. T. (1993). Crambemeal is equivalent to soybean meal for backgrounding and finishing beef steers. J. Anim. Sci. 71: 2608-2613.
Axelrod, D. I. (1973). History of the Mediterranean ecosystem in California. In "Mediterranean Type E cosystems: Origin and Structure" (F. Di Castri and H. A. Mooney, Eds.), pp. 225-277. SpringerVerlag, Berlin.
Axelrod, D. I. (1975). Evolution and biogeography of MadreanTethyan sclerophyll vegetation. Ann. Missouri Bot. Gard. 62: 280-334.
Axel rod, D. I., and Raven, P. H. (1978). Late Cretaceous and Tertiary vegetation history of Africa. In "Biogeography and Ecology of Southern Africa" (M. J. A. Werger, Ed.), pp. 77-130. J unk, The Hague.
Ball, P. W. (1964). CrambeL. In "Flora Europaea, Vol. 1" (T. G. Tutin, V. H. Heywood, N. A. Burges, D. H. Valentine, S. M. Walters, and D. A. Webb, Eds.), pp. 344-345. Cambridge Univ. Press, Cambridge, UK.
Boufford, D. E., and Spongberg, S. A. (1983). Eastern Asian-eastern North American phytogeographic relationships-A history from the time of Linnaeus to the twentieth century. Ann. Missouri Bot. Gard. 70: 423-439.
Bramwell, D. (1969). The genus Crambe (Cruciferae) in the Canary Islands flora. Cuad. Bot. Canaria 6: 5-12.
Bramwell, D. (1985). Contribución a la biogeografía de Ias Islas Canarias. Bot. Macaroné 14: 3-34.
Bramwell, D. (1995). A new name for Crambegigantea (Ceb. \& Ort.) Bramwell. Bot. Macaroné 22: 111.
Bremer, K. (1993). Intercontinental relationships of Africa and South American Asteraceae: A cladistic biogeographic analysis. In "Biological Relationships between Africa and South America" (P. Goldblatt, Ed.), pp. 105-135. YaleUniv. Press, New Haven, CT.
Burtt, B. L. (1971). From the south: An African view of the floras of western Asia. In "Plant Life of South-West Asia" (P. H. Davis, P. C. Harper, and I. C. Hedge, Eds.), pp. 135-149. Bot. Soc. Edinburgh, Edinburgh.
Candolle, A. P. de (1821). "Regni Vegetabilis Systema Naturale," Vol. 2, Treuttel and Wurtz, Paris.
Candolle, A. P. de (1824). "Prodromus Systematis Naturalis Regni Vegetabilis," Vol. 1, Treuttel and Wurtz, Strasbourg and London.
Carlquist, S. (1965). "I sland Life: A Natural History of the Islands of the World," Natural History Press, New York.
Chernyakovskaya, E. G. (1970). Crambe (Tourn.) L. In "Flora of the
U.S.S.R."(V. L. K omarov and N. A. Bush, Eds.), Vol. 8, pp. 354-366. Israel Program for Scientific Translations, J erusalem. [Translated from Russian by R. Lavoott].
Clemente, M., and Hernández-Bermejo, E. (1978a). El aparato nectarígeno de la tribu Brassiceae (Cruciferae). Anales Inst. Bot. Cavanilles 35: 279-296.
Clemente, M., and Hernández-Bermejo, E. (1978b). La corola de la tribu Brassiceae. Anales Inst. Bot. Cavanilles 35: 297-334.
Clemente, M., and Hernández-Bermejo, E. (1980a). El cáliz de la tribu Brassiceae (Cruciferae). AnalesJ ard. Bot. Madrid 36: 77-96.
Clemente, M., and Hernández-Bermejo, E. (1980b). Clasificación jerárquica delas Brasiceas según caracteres de las piezas estériles de su flor. AnalesJ ard. Bot. Madrid 36: 97-113.
Coetzee, J. A. (1993). African flora since the terminal J urassic. In "Biological Relationships between Africa and South America" (P. Goldblatt, Ed.), pp. 37-61. Yale Univ Press, New Haven, CT.

Constance, L., Heckard, R., Chambers, K. L., Ornduff, R., and Raven, P. H. (1963). Amphitropical relationships in the herbaceous flora of the Pacific coast of North and South America: A symposium. Q. Rev. Biol. 38: 109-177.
Czerepanov, S. K. (1995). "Vascular Plants of Russia and Adjacent States (the Former USSR)," Cambridge Univ. Press, Cambridge, UK.
Demissew, S. (1993). The genus Thymus (Labiatae) in Ethiopia. Opera Bot. 121: 57-60.
Downie, S. R., and Katz-Downie, D. S. (1996). A molecular phylogeny of Apiaceae subfamily A pioideae: Evidence from nuclear ribosomal DNA internal transcribed sequences. Am. J. Bot. 83: 234-251.
Doyle, J. J ., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull. 19: 11-15.
Elenga, H., Schwartz, and Vincens, A. (1994). Pollen evidence of Iate Quaternary vegetation and inferred climate changes in Congo. Pal aeogeogr. Pal aeoclimatol. Pal aeoecol. 109: 345-356.
Farris, J. S. (1989). The retention index and homoplasy excess. Syst. Zool. 38: 406-407.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using bootstrap. Evolution 39: 783-791.
Felsenstein, J. (1993). "PHYLIP (Phylogeny Inference Package), Version 3.5," distributed by the author, Department of Genetics, Univ. of Washington, Seattle.
Gómez-Campo, C. (1980). Morphology and morpho-taxonomy of the tribe Brassiceae. In "Brassica Crops and Wild Allies. Biology and Breeding" (S. Tsunoda, K. Hinata, and C. Gómez-Campo, Eds.), pp. 3-30. J apan Sci. Press, Tokyo.
Gómez-Campo, C. (1993). Evolutionary trends in the tribe Brassiceae. In "Proceedings of the $5^{\text {th }}$ OPTIMA M eeting" (H. Demiriz and N. Ozhatay, Eds.), pp. 573-578. OPTIMA, Istanbul.

Gómez-Campo, C., and Hinata, K. (1980). A check list of chromosome numbers in the tribe Brassiceae. In "Brassica Crops and Wild Allies. Biology and Breeding" (S. Tsunoda, K. Hinata, and C. Gómez-Campo, Eds.), pp. 51-63. J apan Sci. Press, Tokyo.
Gómez-Campo, C., and Tortosa, M. E. (1974). The taxonomic and evolutionary significance of some juvenile characters in the Brassiceae. Bot. J. Linn. Soc. 69: 105-124.
Hamilton, A. (1974). The history of the vegetation. In "East African Vegetation" (E. M. Lind and M. E. S. Morrison, Eds.), pp. 188-209. Longman, London.
Hedberg, O. (1965). Afroal pineflora elements. Webbia 19: 519-529.
Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1991). CLUSTAL V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189-191.

Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. J. Hered. 83: 189195.

Holmgren, P. K., Holmgren, N. H., and Barnett, L. C. (1990). Index herbariorum. Part 1: Theherbaria of the world, $8^{\text {th }}$ ed. Regnum Veg. 120: 1-693.
J alas, J ., Suominen, J ., and Lampinen, R. (Eds). (1996). "Atlas Florae Europaeae, Vol. 11. Cruciferae (Ricotia to Raphanus)," Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.
J onsell, B. (1982). Cruciferae. In "Flora of Tropical East Africa" (R. M. Polhill, Ed.), pp. 1-75. Balkema, Rotterdam.
Khalilov, I. I. (1991a). The system of the genus Crambe (Brassicaceae). Bot. Zhurn. (St. Petersburg) 76: 1612-1613. [In Russian].
Khalilov, I. I. (1991b). Generis Crambe L. (Cruciferae) sectiones tres novae. Novosti Sist. Vyssh. Rast. 28: 78-79. [In Russian].
Khalilov, I. I., and Archangelsky, D. B. (1991). Palynological studies in the species of the genus Crambe (Brassicaceae) in connection with its systematics. Bot. Zhurn. (St. Petersburg) 76: 1582-1586. [In Russian].
Kim, K.-J ., and J ansen, R. K. (1994). Comparisons of phylogenetic hypothesis among different data sets in dwarf dandelions (Krigia): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Syst. Evol. 190: 157-185.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
Kitamura, S. (1960). "Flora of Afghanistan," K yoto Univ. K yoto.
Kluge, A. G., and Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.
K oeniger, J . C. (1992). Gisements fossiliferes continentaux, Paleographie et apysages forestiers en Europe Occidentale et dans le Nord del'Afriqueau Cenozoique Superieur. Biogeographica 69: 135-155.
Kohne, D. E. (1970). Evolution of higher organism DNA. Q. Rev. Biophys. 33: 327-375.
Kumar, S., Koichiro, T., and Nei, M. (1993). "MEGA: Molecular Evolutionary Genetics Analysis, version 1.01," distributed by the Pennsylvania State University, University Park, PA.
Lazzeri, L., Leoni, O., Conte, L. S., and Palmieri, S. (1994). Some technological characteristics and potential uses of Crambe abyssinica products. Industr. Crops Products 3: 103-112.
Lessman, K. J., and Meier, V. D. (1972). Agronomic evaluation of Crambeas a source of oil. Crop Sci. 12: 224-227.
Li, W.-H. (1997). "M olecular Evolution," Sinauer, Sunderland, MA.
Li, W.-H., and Graur, D. (1991). "Fundamentals of Molecular Evolution," Sinauer, Sunderland, MA.
Li, W.-H., and Tanimura, M. (1987). The molecular clock runs more slowly in man than in apes and monkeys. Nature 326: 93-96.
Loockerman, D. J., and J ansen, R. K. (1996). The use of herbarium material for DNA studies. In "Sampling the Green World" (T. F. Stuessy and S. H. Sohmer, Eds.), pp. 205-220. Columbia Univ. Press, New York.
Lovett, J . C. (1993). Temperate and tropical floras in the mountains of eastern Tanzania. Opera Bot. 121: 217-227.
Maddison, D. R. (1991). The discovery and importance of multiple islands of most parsimonious trees. Syst. Zool. 40: 315-328.
Maddison, W. P., and Maddison, D. R. (1992). "MacClade, version 3," Sinauer, Sunderland.
Magulaev, A. J. (1986). Chromosome numbers in some species of flowering plants of the Crimea and Caucasus floras. Bot. Zhurn. (St. Petersburg) 71: 1575-1578. [In Russian].
Meikle, R. D. (1977). "Flora of Cyprus," Royal Botanic Gardens, Kew. Mouterde, P. (1986). "Nouvelle Flore du Liban et de la Syrie," Vol. 2, Dar El-Machreq, Beirut.

Mulder, J. H., and Mastebroek, H. D. (1996). Variation for agronomic characteristics in Crambe hispanica, a wild relative of Crambe abyssinica. Euphytica 89: 267-278.
Nieschlag, H. J ., and Wolff, I. A. (1971). Industrial uses of high erucic oils. J. Am. Oil Chem. Soc. 48: 723-727.
Olmstead, R. G., and Palmer, J. D. (1997). Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst. Bot. 22: 19-29.
Parks, C. R., and Wendel, J. F. (1990). M olecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretations of fossil floras. Am. J . Bot. 77: 1243-1256.
Post, G. E. (1932). "Flora of Syria, Palestine, and Sinai," Vol. 1, American Press, Beirut.
Potts, R., and Behrensmeyer, A. K. (1992). Late Cenozoic terrestrial ecosystems. In "Terrestrial Ecosystems through Time: Evolutionary Paleoecol ogy of Terrestrial Plants and Animals" (A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, and S. L. Wing, Eds.), pp. 419-541. Univ. of Chicago Press, Chicago.

Quézel, P. (1978). Analysis of the flora of Mediterranean and Saharan Africa. Ann. Missouri Bot. Gard. 65: 280-334.
Quézel, P. (1985). Definition of the Mediterranean region and the origin of its flora. In "Plant Conservation in the Mediterranean Area" (C. Gómez-Campo, Ed.), pp. 9-24. J unk, Dordrecht.
Rathgeberg, J., and Capesius, I. (1989). Nucleotide sequence of the 18S-25S spacer region from mustard DNA. Nucleic Acids Res. 17: 7522.

Rieseberg, L. H., and Soltis, D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends PI. 5: 65-84.
Rieseberg, L. H., Whitton, J ., and Linder, C. R. (1996). Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot. Nerl. 45: 243-262.
Robyns, W., and Boutique, R. (1951). Cruciferae. In "Flore du Congo Belge et du Ruanda-Urundi," (Comité exécutif de la flore du Congo Belge et J ardin Botanique de l'état, Eds.), Vol. 2, pp. 522-543, Publications de L'Institut National pour L'Etude Agronomique du Congo Belge, Brussels.
Rögl, F., and Steininger, F. F. (1984). Neogene Paratethys, Mediterranean and Indo-Pacific seaways. In "F ossils and Climate" (P. Brenchley, Ed.), pp. 171-200. Wiley, Chichester, UK.
Sang, T., Crawford, D. J., Kim, S.-C., and Stuessy, T. F. (1994). Radiation of the endemic genus Dendroseris (Asteraceae) on the J uan Fernández Islands: Evidence from sequences of the ITS regions of nuclear ribosomal DNA. Am. J . Bot. 81: 1494-1501.
Sang, T., Crawford, D. J ., and Stuessy, T. F. (1995). ITS sequences and the phylogeny of the genus Robinsonia (Asteraceae). Syst. Bot. 20: 55-64.
Sang, T., Crawford, D. J ., and Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulateevolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 81: 1494-1501.
Santos-Guerra, A. (1983). "Vegetación y Flora de La Palma," Interinsular Canaria, Santa Cruz de Tenerife.
Santos-Guerra, A. (1996). Crambe feuillei (Brassicaceae) Santos sp. nova for the flora of Hierro Island (Canary Islands). In "2nd Symposium Fauna and Flora of the Atlantic Islands" (Anonymous, Ed.), p. 162. Departamento de Biol ogía, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria. [Abstract].
Sarich, V. M., and Wilson, A. C. (1973). Generation time and genomic evolution in primates. Science 179: 1144-1147.
Savard, L., Michaud, M., and Bousquet, J. (1993). Genetic diversity and phylogenetic relationships between birches and alders using ITS, 18 S rRNA, and rbcl gene sequences. Mol. Phylogenet. Evol. 2: 112-118.

Schulz, O. E. (1919). Cruciferae-Brassiceae. Pars prima. Subtribus I. Brassicinae et II. Raphaniae. In "Das Pflanzenreich Regni Vegetabilis Conspectus," (A. Engler, Ed.), Vol. 4, pp. 1-290. Verlag von Wilhelm Engelmann, Leipzig.
Street, F. A. (1981). Tropical palaeoenvironments. Progr. Phys. Geogr. 5: 157-185.
Suh, Y., Thien, L. B., Reeve, H. E., and Zimmer, E. (1993). Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am. J . Bot. 80: 1042-1055.
Sunding, P. (1979). Origins of the Macaronesian flora. In "Plants and Islands" (D. Bramwell, Ed.), pp. 13-40. Academic Press, London.
Swofford, D. L. (1993). "PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.1," distributed by the Illinois Natural History Survey, Champaign, IL.
Thorne, R. F. (1972). Major disjunctions in the geographic ranges of seed plants. Q. Rev. Biol. 47: 365-411.
Van Dyne, D. L., and Blase, M. G. (1989). Commercializing high erucic acid oil crops. Trans. Missouri Acad. Sci. 23: 13-22.
Vargas, P., Baldwin, B. G., and Constance, L. (1997). Nuclear ribosomal DNA evidence for a western North America origin of Hawaiian and South American species of Sanicula (Apiaceae). Proc. Natl. Acad. Sci. USA 95: 235-240.
Warwick, S. I., Black, L. D., and Aguinagalde, I. (1992). Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)-chloroplast DNA variation in the genus Diplotaxis. Theor. Appl. Genet. 83: 839-850.
Warwick, S. I., and Black, L. D. (1993). Molecular relationships in tribe Brassicinae (Cruciferae, tribe Brassiceae). Can. J. Bot. 71: 906-918.
Warwick, S. I., and Black, L. D. (1997a). Molecular phylogenies from theory to application in Brassica and allies (tribe Brassiceae, Brassi caceae). Opera Bot. 132: 159-168.

Warwick, S. I., and Black, L. D. (1997b). Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Can. J. Bot. 75: 960-973.
Warwick, S. I., and Black, L. D. (1997c). M olecular phylogeny of tribe Brassiceae (Brassicaceae); tribal status of Calepina, Conringia and Orychophragmus. Am. J . Bot. 84(Suppl): 243-244 [abstract, 48th annual meeting of theAIBS].
Wen, J., and Zimmer, E. A. (1996). Phylogeny and biogeography of Panax L. (the gingseng genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phylogenet. Evol. 6: 167-177.
Wendel, J. F., Schnable, A., and Seelanan, T. (1995). An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phylogenet. Evol. 4: 298-313.
White, G. A. (1975). Distinguishing characteristics of Crambe abyssinica and C. hispanica. Crop Sci. 15: 91-93.
White, G. A., and Solt, M. (1978). Chromosome numbers in Crambe, Crambella, and Hemicrambe Crop Sci. 18: 160-161.
White, T. J., Bruns, T., Lee, S., and Taylor, J . (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In "PCR Protocols. A Guide to Methods and Applications" (M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J . White, Eds.), pp. 315-322. Academic Press, San Diego.
Winship, P. R. (1989). An improved method for direct sequencing of PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res. 17: 1266.
Wu, C.-I, and Li, W.-H. (1985). Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82: 1741-1745.
Zohary, M. (1966). "Flora Palestina," Vol. 1, The Israel Academy of Sciences and Humanities, J erusalem.

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: (305) 3483094. E-mail: ortega@fiu.edu.

[^1]: a Institute codes follow Holmgren et al. (1990) except the following germplasm seed banks: ETSIA = Escuela Tecnica Superior de Ingenieros Agronomos, Madrid, Spain; FOM = Hortus Botanicus Fominianus, Ukraine; KRI = Botanical Garden of Krivoy, Ukraine; PI = North West Plant Introduction Station of the USDA, Ames, I owa.
 ${ }^{\text {b }}$ Sequence provided by Robert Price (University of Georgia).
 c Sequence published by Rathgeber and Capesius (1989).
 ${ }^{\text {d }}$ Sequence provided by Steve O'K ane (University of Northern Iowa).
 e DNA accession number deposited at the GenBank/EMBL.
 ${ }^{\mathrm{f}}$ Multiple accessions were sequenced but only one was submitted to GenBank and included in the phyl ogenetic analyses because sequences of all accessions were identical.

[^2]: a Nucleotide divergence based on Kimura's two-parameter model.
 ${ }^{\mathrm{b}}$ Calculations made after excluding the six uncertain sites.
 ${ }^{\text {c }}$ Calculations made after considering gaps as missing data.
 ${ }^{\text {d }}$ g1 value cal culated for 100,000 random trees.

[^3]: N ote Relative ratetest values and variances (parentheses) are shown above diagonal. Significance levels of evolutionary rate differences are shown below the diagonal; not significant differences (ND), significant at 5\%level (**). Taxon abbreviations are in Table 1.
 a Perennial herbs.
 ${ }^{\mathrm{b}}$ Annual herbs.
 c Perennial shrubs.

