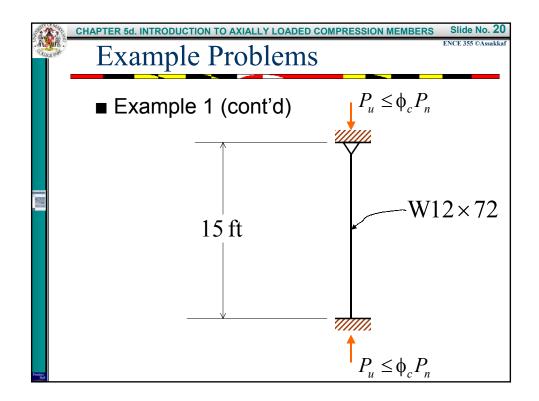
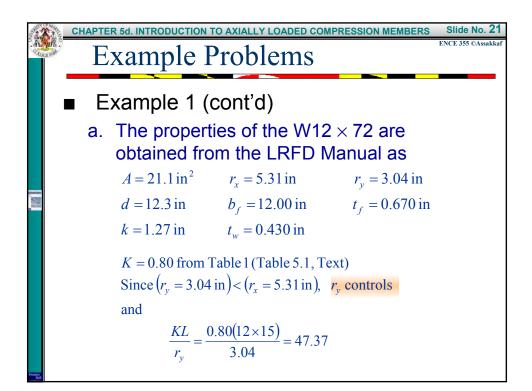
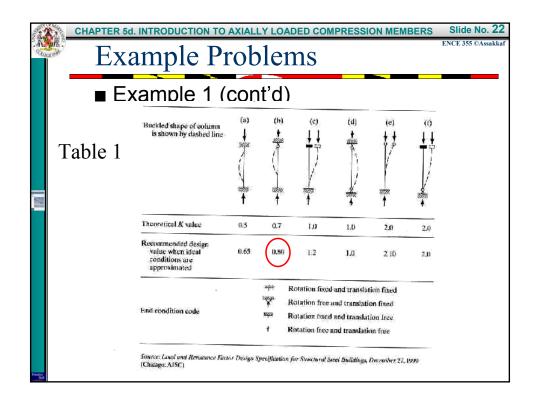
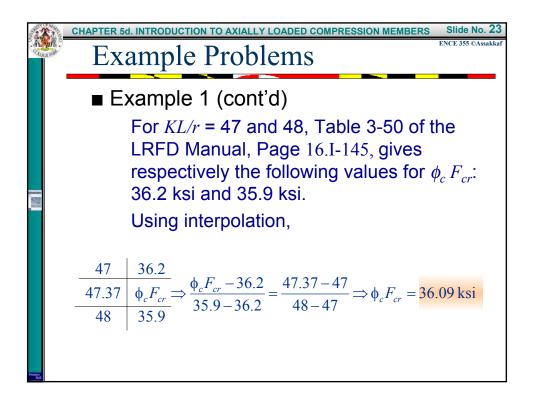
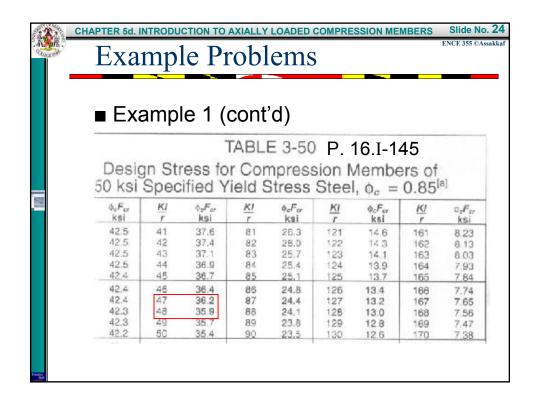

LR	FD N	lanı	ual De	esigi	n Tal	oles	(P. 1	6.I-´	143)
					E 3-36				,
			ress fo ified Y						9]
<u>ki</u> r	o _c F _c , ksi	$\frac{KI}{r}$	¢₀F₀, ksi	KI r	o _c F₀, ksi	KJ r	φ _e F _e , ksi	KI	¢₀F₀r ksi
1 2 3	30.6 30.6 30.6	41 42 43	28.0 27.9 27.8	81 82 83	21.7 21.5 21.3	121 122 123	14.2 14.0 13.8	161 162 163	8.23 8.13 8.03
3 4 5	30.6 30.6	44 45	27.6 27.5	84 85	21.1 20.9	124 125	13.6 13.4	164 165	7.93
6 7 8	30.5 30.5 30.5	46 47 48	27.4 27.2 27.1	86 87 88	20.7 20.5 20.4	126 127 128	13.3 13.1 12.9	166 167 168	7.74 7.65 7.56
9	30.5 30.4	49 50	27.0	89 89	20.2	129	12.7	169	7.47

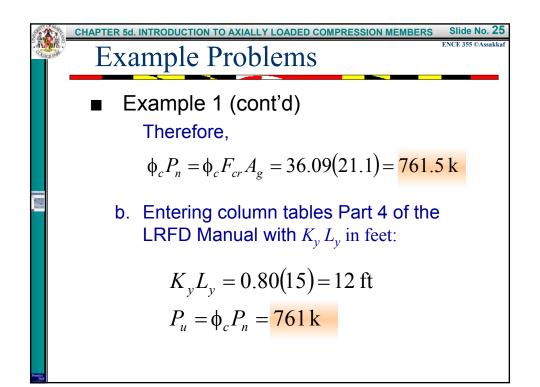

RFD	Mar	nual D)esig	gn Ta	bles	(P. 1	16.I-	145
		-	TABL	E 3-50)			
50 ksi	Spec	ress fo ified Y	ield S	Stress	Stee	$\phi_c =$	o.85 ^l	a]
φ _c F _c , ksi	KI r	¢₅F₀, ksi	KI r	¢ _c F _{cr} ksi	KI	¢cFer ksi	KI	e _c F ks
42.5 42.5 42.5 42.5 42.4	41 42 43 44 45	37.6 37.4 37.1 36.9 36.7	81 82 83 84 85	26.3 28.0 25.7 25.4 25.1	121 122 123 124 125	14.6 14.3 14.1 13.9 13.7	161 162 163 164 165	8.2 8.1 8.0 7.9 7.8
42,4 42,4 42,3 42,3 42,2	48 47 48 49 50	36.4 36.2 35.9 35.7 35.4	86 87 88 89 90	24.8 24.4 24.1 23.8 23.5	126 127 128 129 130	13.4 13.2 13.0 12.8 12.6	166 167 168 169 170	7.7 7.6 7.5 7.4 7.3

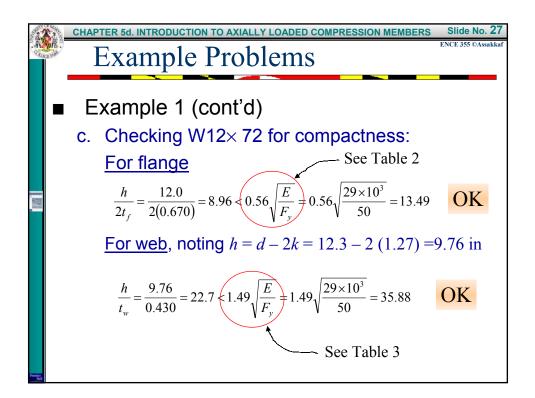

		lun		ΓΟΙ	IIIt	IIas	5					
- 1	LRFD) Ma	nua	al D	esig	jn T	able	es (P. 4	-25	5)	
	n 10 kai 4 = 0.46 F ₂ ,	- Ag		De Co	W sign S	4-2 (c -Shap trengt sion, d		cial ips			x—	Ý
							W12×					
	il. Base	106	96	87	79	72	W12× 65 ^{††}	58	53	60	45	40
	Stape 0	106	96 1,200	87 1090	79 986	72 897	10.2260	58 723	53 663	60 621	45 557	40 497
		1330	1200	1090	986	897	65 ¹¹ 812	723	663	621	657	497
	Bhape 0 1 5	1330 1280	1200 1150	1090 1050	986 947	897 851	65 ^{††} 812 779				1.46	-
		1330	1200	1090	986	897	65 ¹¹ 812	723 630	663 623	621 562	557 504	497 450
		1330 1280 1260	1200 1150 1140	1090 1050 1030	986 947 933	897 851 848	65 ^{††} 812 779 767	729 630 666	663 523 610	621 562 543	557 504 436	497 450 434

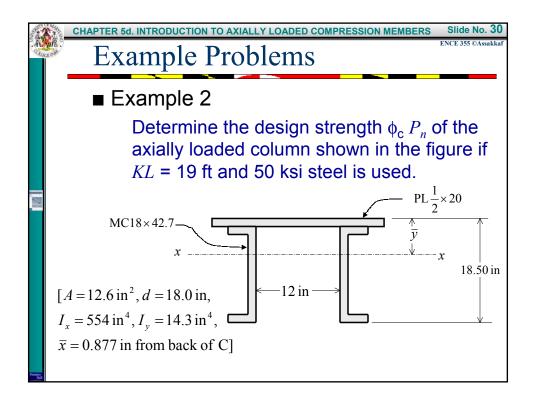




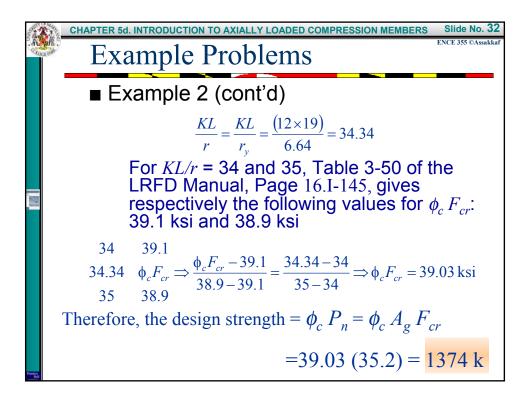


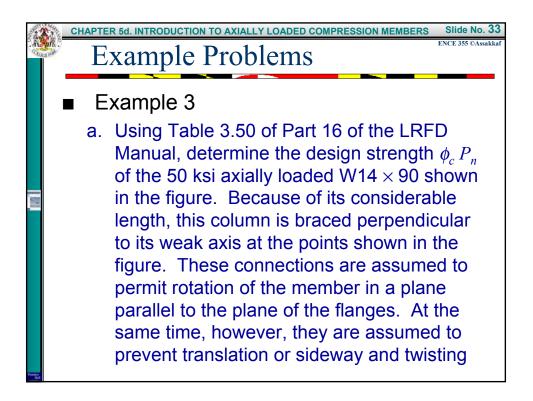


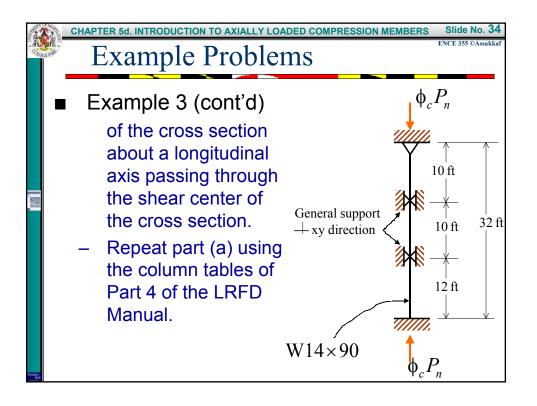


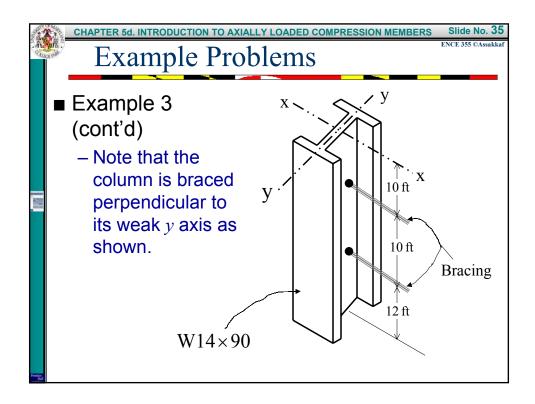


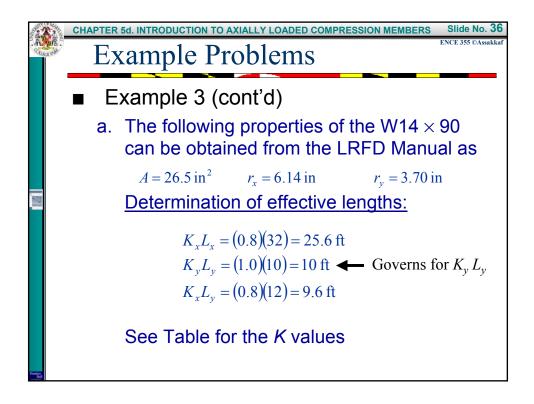
ł	Example Problems										
	Example 1 (cont'd)										
≈ \$0 kal A ¹ =0.45 F ₀	r Ag	5	De Co	W sign S	e 4-2 (c /-Shape itrengti ision, c	es h in Ax	cial	P. 4-	-25	ш х—	ř ×
										_	Ļ,
						W12×					ļ.
Dape	106	96	87	79	72	W12× 65 ^{1†}	58	53	80	45	40
Dape 1 0	106	96 1200	87 1090	79 986	72 897	10.0220	58 723	53 563	60	45	40
0	1330	1200	1090			65 ^{††} 812		663			
	100			986	B97	65††	723		621	557	497
0	1330 1280	1200	1090 1050	986 947	897 851	65 ^{††} 812 779	723 630	663 623	621 562	557 504	497 450
0	1330 1280 1260	1200 1150 1140	1090 1050 1030	986 947 933	897 851 648	65 ¹¹ 812 779 767	723 630 666	363 523 610	621 562 543	557 504 436	497 450 434
0 6 7 8	1330 1280 1260 1240	1200 1150 1140 1120	1090 1050 1030 1010	986 947 933 917	897 851 648 834	65 ¹¹ 812 779 767 254	723 630 666 645	363 523 610 594	621 562 543 521	557 504 436 456	497 450 434 416
0 6 7 8 9 10	1330 1280 1280 1240 1210 1190	1200 1150 1140 1120 1100 1029	1090 1050 1030 1010 994 973	986 947 933 917 900 680	897 851 848 834 818 800	65 ¹¹ 812 779 767 754 759 723	723 630 666 645 631 611	863 623 610 554 577	621 562 543 521 497	557 504 436 456 445	497 450 434 416 386
6 7 8 9	1330 1280 1280 1240 1240	1200 1150 1140 1120 1100	1090 1050 1030 1010 994	986 947 933 917 900	897 851 848 834 818	65 ¹¹ 812 779 767 754 739	723 630 666 645 631	863 623 610 564 677 509	621 562 543 521 497 472	557 504 436 456 445 422	497 450 434 416 396 376


Ξz	kample Pi	roblen	IS	
	ble 2. Limiting mpression El	-	Thicknes	s Ratios f
		Width Thickness	+*/	h-Thickness Ratios
	Description of Element	Ratio	λ_p (compact)	λ , (noncompact)
	Flanges of 1-shaped rolled beams and channels in flexure	hit	0.38√ <i>ElF</i> , [c]	$0.83\sqrt{ETF_i}$ [e]
	Flanges of I-shaped hybrid or welded beams in flexure	b∕t	$0.38\sqrt{E/F_{tf}}$	$0.95\sqrt{E/(F_L/k_c)}$ [e].]
sta	Flanges projecting from huilt-up compression members	ЬЛ	NA	$> 0.64 \sqrt{E/(F_j/k_i)}$ [f]
Unstiffened Elements	Flarges of 1-shaped sections in pure compression, plates projecting from compression elements; outstanding legs of pairs of angles in continuous contact; flanges of channels in pure compression	04	NA	0.56VE/Fr
	Legs of single angle struts: legs of double angle struts with separators, unstiffened elements, i.e., supported along one edge	bit	NA	0.45√ <i>E</i> /F,
	Stems of tees	dA	NA	0.75VEIF,


\$-) 	Example 1			ENCE 355 ©A
	 Table 3. (cont Ratios for Cor 	,	•	CKNESS
Stiffened Elements	Webs in combined flexural and axial compression	h/t _w	$\begin{aligned} & \text{for } P_{a}/\phi_{b}P_{y} \leq 0.125 \text{ [c], [g]} \\ & 3.76\sqrt{\frac{E}{F_{y}}} \left(1 - \frac{2.75P_{n}}{\phi_{y}P_{y}}\right) \\ & \text{for } P_{a}/\phi_{b}P_{y} > 0.125 \text{ [c], [g]} \\ & 1.12\sqrt{\frac{E}{F_{y}}} \left(2.33 - \frac{P_{a}}{\phi_{x}P_{y}}\right) \\ & \geq 1.49\sqrt{\frac{E}{F_{y}}} \end{aligned}$	$[h]$ 5.70 $\sqrt{\frac{E}{F_{c}}} \left(1 - 0.74 \frac{P_{u}}{\phi_{v}P_{y}}\right)$
Sti	All other uniformly compressed stiffened elements, i.e., supported along two edges	b/t h/t _w	NA	$1.49\sqrt{ElF_y}$
	Circular hollow sections In axial compression In flexure	D/i	[d] NA 0.07 <i>E/F</i>	0.11 <i>E/F_y</i> 0.31 <i>E/F_y</i>




EXAMPLE 5d. INTRODUCTION TO AXIALLY LOADED COMPRESSION MEMBERS
EXAMPLE Problems
Example 2 (cont'd)


$$A = 20\left(\frac{1}{2}\right) + 2(12.6) = 35.2 \text{ in}^2$$

 \overline{y} from top $= \frac{(0.5 \times 20)(0.25) + (2 \times 12.6)(9.5)}{35.2} = 6.87 \text{ in}$
 $I_x = 2(554) + 2[12.6(9.25 - 6.69)^2] + \frac{20(0.5)^3}{12} + 10(6.69 - 0.25)^2 = 1,688 \text{ in}^4$
 $I_y = 2(14.3) + 2[12.6(6 + 0.877)^2] + \frac{0.5(20)^3}{12} = 1554 \text{ in}^4$
 $r_x = \sqrt{\frac{I_x}{A}} = \sqrt{\frac{1688}{35.2}} = 6.92 \text{ in}$
 $r_y = \sqrt{\frac{I_y}{A}} = \sqrt{\frac{1554}{35.2}} = 6.64 \text{ in}$ Controls

