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Quantifier Elimination and Decision

Example (Tarski Algebra = real numbers with arithmetic and ordering)

R |= ∀x∃y(x2 + xy + b > 0 ∧ x + ay2 + b ≤ 0)︸ ︷︷ ︸
ϕ

←→ a < 0 ∧ b > 0︸ ︷︷ ︸
ϕ′

Formally: Given 1st-order theory Θ, find algorithm with input ϕ and output ϕ′

quantifier-free such that
Θ |= ϕ←→ ϕ′,

or prove that no such algorithm exists.

Important aspects: theoretical complexity, practical performance

Important Special Cases

I all variables in ϕ are quantified decision problem
I only existential quantifiers satisfiability problem
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Quantifier Elimination-relevant Research Topics

Applications

chemistry
engineering
geometry

life sciences
physics
planning

scientific computing
verification

...

Automated Reasoning
heuristics

learning

model-based construction
...

Algebraic Model Theory
definable sets

elementary extensions

substructure completeness
...

Symbolic Computation

algebraic complexity
computer algebra systems

exact arithmetic
Gröbner bases

polynomial factorization
real algebraic numbers

subresultants
...

QE
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Syntax and Semantics

Language (= Signature): L = (0,1,+,−, ·, <,≤, 6=, >,≥)

Semantics: Everything is interpreted over R.

Important convention in algebraic model theory
There is always“=” which is formally not in the language.

Semantics of “=” is Leibniz’s (second-order) definition of equality

x = y :⇐⇒ ∀p
(
p(x)←→ p(y)

)
in contrast to its first-order theory.

For convenience, define L= := L ∪ {=}.

Remark
There is no multiplicative inverse or division in L.

We do not want to deal with partial functions.
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Terms and Atomic Formulas

Terms
are w.l.o.g. polynomials with integer coefficients in a recursive representation

t ∈ (. . . (((Z[xn])[xn−1]) . . . )[x2])[x1]

Representation is unique and isomorphic to “distributive” Z[x1, . . . , xn].

Example

f = x1 + (x2 + x3), f 2 = x2
1 + (2x2 + 2x3)x1 + (x2

2 + 2x3x2 + x2
3 )

We can efficiently reorder such polynomials, i.e., change the main variable.

Atomic formulas (atoms) are of the form f R 0, where
I R ∈ L= = {≤, <, 6=,≥, >,=} as discussed
I f a recursive polynomial in some variables x1, . . . , xn as above
I L= is closed under negation: For R ∈ L= there is R̄ ∈ L= such that

R |= ¬(f R 0)←→ f R̄ 0.

Definitions · 7/42



Terms and Atomic Formulas

Terms
are w.l.o.g. polynomials with integer coefficients in a recursive representation

t ∈ (. . . (((Z[xn])[xn−1]) . . . )[x2])[x1]

Representation is unique and isomorphic to “distributive” Z[x1, . . . , xn].

Example

f = x1 + (x2 + x3), f 2 = x2
1 + (2x2 + 2x3)x1 + (x2

2 + 2x3x2 + x2
3 )

We can efficiently reorder such polynomials, i.e., change the main variable.

Atomic formulas (atoms) are of the form f R 0, where
I R ∈ L= = {≤, <, 6=,≥, >,=} as discussed
I f a recursive polynomial in some variables x1, . . . , xn as above
I L= is closed under negation: For R ∈ L= there is R̄ ∈ L= such that

R |= ¬(f R 0)←→ f R̄ 0.

Definitions · 7/42



Quantifier-free Formulas and First-order Formulas

First-order formulas are obtained from atomic formulas using operators

true, false, ∧, ∨, ∃x , ∀x , where x is a variable

Further Boolean Operators

I −→ and←→ can be expressed without introducing quantifiers:

α −→ β  ¬α ∨ β, α ←→ β  α −→ β ∧ β −→ α.

I Eliminate ¬ using de Morgan’s law and closure property of L w.r.t. negation, e.g.:

¬(x = 0 ∧ y > 0)  x 6= 0 ∨ y ≤ 0.

Practical reson for restricting to ∧ and ∨: Simplification

Quantifier-free formulas are first-order formulas not containing ∃x or ∀x .

Convention: the only formulas containing true, false are true, false themselves.
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Prenex Formulas

We assume w.l.o.g. that all first-order formulas are in a prenex normal form

Qnxn . . .Q1x1(ψ)

with Q1, . . . , Qn ∈ {∃, ∀} and ψ quantifier-free.

Fact

(i) For every first-order formula ϕ̃ there is an equivalent prenex formula

ϕ = Qnxn . . .Q1(ψ).

(ii) ϕ can be efficiently computed from ϕ̃ such that the number of alternations in
the sequence Qn, . . . , Q1 is minimized.
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Virtual Substitution
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Eliminate from the Inside to the Outside

Given ϕ = Qnxn . . .Q1x1(ψ)

I ψ is quantifier-free

I the variables of ψ are a subset of quantified (bound) variables X = {x1, . . . , xn}
and (free) parameters U = {u1, . . . ,um}, where

X ∩ U = ∅.

We are going to eliminate Q1x1.

The rest is iteration with some optimizations to discuss later on.

We may assume that Q1 = ∃, because ∀x1ϕ←→ ¬∃x1¬ϕ.
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Elimination of One Existential Quantifier

Given ϕ = ∃x1(ψ)

I The variables in ψ are among x1 and V1 := (X \ {x1}) ∪ U.

I All variables from V1 will play the same role now, say, V1 = {v1, . . . , vk}.

If x1 does not occur in ψ , then we are done.

Key Idea

I Intuitively, ∃x is like a big disjunction over all real numbers.

I Could there be a finite E set of terms t such that

R |= ∃x1(ψ)←→
∨
t∈E

ψ [x1/t ] ?

Modulo a couple of technical problems, there is essentially such a set.
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Thought Experiment

Given ϕ = ∃x1(ψ)

Temporarily and only in our minds (not in any algorithm) fix

(v1, . . . , vk ) := (a1, . . . ,al ) ∈ Rk

such that ψ becomes univariate in x1.

Left hand sides of atomic formulas in ψ become univariate polynomials f ∈ R[x1].

I Sets of satisfying values for x1 in f (x1) R 0 are

finite unions of intervals [b1,b2], (b1,b2), (b1,b2],

[b1,b2), where b1, b2 ∈ R ∪ {∞}.
I if bi ∈ R, then f (bi ) = 0

I Set of satisfying values for x1 in ψ has the same form.

∧ is cut and ∨ is intersection of satisfying sets.

I Idea: E = all b2 or b2 − ε and∞.
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Elimination Sets

Given ϕ = ∃x1(ψ)

Supersets of the zeros of the left hand side terms

f ∈ (. . . (((Z[v1])[v2]) . . . )[vk ])[x1]

can be computed symbolically and uniformly.

Example

f = a(v1 . . . , vk )x2
1 + b(v1, . . . , vk )x1 + c(v1, . . . , vk ) yields candidate solutions(

−b ±
√

b2 − 4ac
)
/2a︸ ︷︷ ︸

t

for a 6= 0 ∧ b2 − 4ac ≥ 0︸ ︷︷ ︸
γ

, −c/b︸ ︷︷ ︸
t

for a = 0 ∧ b 6= 0︸ ︷︷ ︸
γ

.

An elimination set E for x1 and ψ is a finite set of pairs (γ, t) such that

R |= ∃x1(ψ)←→
∨

(γ,t)∈E

γ ∧ ψ [x1//t ].
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Virtual Substitution
Given ϕ = ∃x1(ψ) and E such that R |= ∃x1(ψ)←→

∨
(γ,t)∈E

γ ∧ ψ [x1//t ].

Remaining Problem
t contain /,

√·,∞, ε, . . . , which are not in our language L.

Solution: Virtual Substitution

[x//t ] : atomic formulas→ quantifier-free formulas

And beyond degree 2?
I Method generalizes to arbitrary degrees (in principle long known).
I first implementation will be available this year (PhD thesis by M. Košta).
I For higher degrees, t will be way more abstract.

Important

In practice, good simplification of quantifier-free (intermediate) results is crucial!
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Virtual Substitution by Example

Conventions: f ∈ Z[y][x ], fi , gi , g∗i ∈ Z[y]

Quotients(
f1x + f0 ≤ 0

)[
x// g1

g2

]
≡ f1

g1
g2

+ f0 ≤ 0 ≡ f1g1g2 + f0g2
2 ≤ 0

Formal solutions of quadratic equations(
f = 0

)[
x// g1+g2

√
g3

g4

]
≡

g∗1 + g∗2
√

g3

g∗4
= 0

g∗1+g∗2
√

g3
g∗4

= 0 ≡ g∗1
2 − g∗2

2g3 = 0 ∧ g∗1g∗2 ≤ 0

g∗1+g∗2
√

g3
g∗4

≤ 0 ≡ (g∗1
2 − g∗2

2g3 ≥ 0 ∧ g∗1g∗4 ≤ 0) ∨ (g∗1
2 − g∗2

2g3 ≤ 0 ∧ g∗2g∗4 ≤ 0)

Infinity
(f2x2 + f1x + f0 < 0)[x//∞] ≡ f2 < 0 ∨ (f2 = 0 ∧ f1 < 0) ∨ (f2 = 0 ∧ f1 = 0 ∧ f0 < 0)

Positive infinitesimals
(3x2 + 6x − 3 > 0)[x//t − ε] ≡ 3t2 + 6t − 3 > 0 ∨ (3t2 + 6t − 3 = 0 ∧ 6t + 6 ≤ 0)
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Elimination of Several Existential Quantifiers by Block

Back to the bigger picture

. . . ∀∗∃∗∀∗∃∗∃x1(ψ)  . . . ∀∗∃∗∀∗∃∗
∨

(γ,t)∈E

γ ∧ ψ [x1//t ]

Disjunction
∨

is compatible with existential quantifiers ∃∗:

. . . ∀∗∃∗∀∗∃∗
∨

(γ,t)∈E

γ ∧ ψ [x1//t ]  . . . ∀∗∃∗∀∗
∨

(γ,t)∈E

∃∗(γ ∧ ψ [x1//t ])

Effect

I more local substitution of test points With the elimination of the next quantifiers

I even improves upper bound on asymptotic worst-case complexity
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Complexity of Virtual Substitution

Upper bound on asymptotic worst-case complexity
doubly exponential in the input word length (and thus optimal)

More precisely
doubly exponential in # quantifier alternations
singly exponential in # quantifiers thanks to elimination by block
polynomial in # parameters (= unquantified variables)
polynomial in # atomic formulas

particularly good for

low degrees and many parameters

For comparision: Cylindrical Algberaic Decomposition (CAD)
[Collins 1973, Hong, Brown, . . . ] doubly exponential in the number of all variables

For comparison: Asymptotically fast procedures
[Renegar, Basu–Pollack–Roy, Grigoriev, . . . ] no practical relevance (so far)
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Variants of Quantifier Elimination
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Extended Quantifier Elimination

Generalize ∃xϕ←→
∨

(γ,t)∈E
γ ∧ϕ[t//x ] to ∃xϕ 


...

...
γ ∧ϕ[t//x ] x = t

...
...


Simple example revisited

ϕ ≡ ∃x(ax2 + bx + c = 0) 


a 6= 0 ∧ b2 − 4ac ≥ 0 x =

−b −
√

b2 − 4ac
2a

a = 0 ∧ b 6= 0 x = −c
b

a = 0 ∧ b = 0 ∧ c = 0 x =∞1



Semantics (for fixed parameters)
Whenever some left hand side condition holds, then ∃xϕ holds
and the corresponding right hand side term is one sample solution.

[M. Kosta, T.S., A. Dolzmann, J. Symb. Comput. 2016]

For fixed choices of parameters, standard values can be efficiently computed
for all∞i and εi in a post-processing step.
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Generic Quantifier Elimination

Collect negated equations from the γ in a global theory Θ:

E = {. . . , (s 6= 0 ∧ γ′, t), . . . )  Θ = {. . . , s 6= 0, . . . }, E = {. . . , (γ′, t), . . . }

Semantics
ϕ′ is correct for all choices of parameters satisfying Θ:∧

Θ −→ (ϕ′ ←→ ϕ).

Important observation
exception set has a lower dimension than the parameter space

Simple example revisited

ϕ ≡ ∃x(ax2 + bx + c = 0)  Θ = {a 6= 0}, ϕ′ ≡ b2 − 4ac ≥ 0
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Redlog and Reduce

Everything discussed here is available in our computer logic system Redlog:

http://www.redlog.eu

I interactive system, QE and decision for many domains, normal forms,
simplification, construction and decomposition of large formulas, . . .

I interfaces to Qepcad B, Gurobi, Mathematica, Z3, . . .

I more than 300 citations of applications in the literature:
geometry, verification, chemistry, life sciences, physics and
engineering, scientific computation, geometry and planning, . . .

I Redlog development since 1992 as part of the CAS Reduce [Hearn, 1968]

I Reduce/Redlog open-source (free-BSD) on Sourceforge since 12/2008

http://reduce-algebra.sourceforge.net

I 48,318 downloads since 12/2008 (7,496 in 2014), 500+ SVN commits per year

Software · 23/42
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Further Theories in Redlog

Integers (AAECC 2007, CASC 2007, CASC 2009)
I Presburger Arithmetic
I weak quantifier elimination for the full linear theory
I weak quantifier elimination also for higher degrees (special cases)

Mixed Real-Integer (Weispfenning at ISSAC 1999)
I experimental

Complex Numbers (using Comprehensive Gröbner Bases)
I language of rings only

Differential Algebras (CASC 2004)
I language of rings with unary differential operator
I computation in differentially closed field (A. Robinson, Blum)
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Further Theories in Redlog

Padic Numbers (JSC 2000, ISSAC 1999, CASC 2001)
I linear formulas over p-adic fields for p prime
I optionally uniform in p
I used e.g. for solving parametric systems of congruences over the integers

Terms (CASC 2002)
I Malcev-type term algebras (with functions instead of relations)

Queues (C. Straßer at RWCA 2006)
I two-sided queues over the other theories (2-sorted)
I Implemented at present for queues of reals

Propositional Formulas (CASC 2003, ISSAC 2010)
I generalization of SAT solving
I quantified propositional calculus, i.e., parametric QSAT (aka QBF) solving
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Some Other Software

I Qepcad B (Hong and Brown)
is the reference implementation for cylindrical algebraic decomposition (CAD).

I The computer algebra system Mathematica
has real QE: essentially CAD + virtual substitution for preprocessing.

I The computer algebra system Maple
has been used in recent research on CAD (Davenport et al.)

I The computer algebra system Risa/Asir (originally by Fujitsu)
has QE by virtual substitution (TS, 1996)

I Some prototypes in Japan
based on comprehensive Gröbner bases (Sato et al.)
or Sturm–Habicht sequences (Anai et al. in Matlab)

I Specialized implementations of CAD in SMT solvers (z3)

I Specialized implementations of virtual substitutions for SMT (SMT-RAT)
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Applications in Geometry and Verification
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Variant of the Steiner–Lehmus-Theorem
[J. Autom. Reasoning 1998 – Joint work with A. Dolzmann, V. Weispfenning]

The longer bisector goes to the shorter side

h1 ≡ u2 ≥ 0 ∧ x1 ≥ 0

h2 ≡ r2 = 1 + x2
1 = u2

1 + (u2 − x1)2

h3 ≡ x2 ≤ 0 ∧ r2 = (x2 − x1)2

h4 ≡ u1x2 + u2x3 − x2x3 = 0

h5 ≡ x4 ≤ 1 ∧ (x4 − 1)2 = (u1 − 1)2 + u2
2

h7 ≡ (−1 − u1)2 + u2
2 < 22

h6 ≡ (x4 − x5)2 + x2
6 = (u1 − x5)2 + (u2 − x6)2 ∧ u1x6 − u2x5 − u2 + x6 = 0

g ≡ (u1 − x3)2 + u2
2 < (x5 − 1)2 + x2

6

B=(1,0)

M

X
Y

W A=(−1,0)

C=(u1,u2)

V

I ϕ ≡ ∀x6∀x5∀x4∀x3∀x2∀x1∀r
( 7∧

i=1
hi −→ g

)
I Generic QE (1.1 s): ϕ′ 231 atomic formulas, Θ = {u2

1 − 2u1 + u2
2 − 3 6= 0︸ ︷︷ ︸

(u1−1)2+u2
2 6=4

,u1 6= 0,u2 6= 0}.

I CAD (0.9 s): ∀u1∀u2(
∧

Θ −→ ϕ′) X
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Collision Avoidance with Adaptive Cruise Control
[ISSAC 2011 – Joint Work with A. Tiwari @SRI]

System dynamics
v̇f = af ∈ [−5,2] velocity and accelleration of leading car

v̇ = a ∈ [−5,2] velocity and accelleration of rear car
˙gap = vf − v

ȧ = −3a − 3(v − vf ) + (gap − (v + 10)) control law for rear car

Initial states and safe states
Init ≡ gap = 10 ∧ a = 0 ∧ vf = c1 ∧ v = c2

Safe ≡ gap > 0

Certificate-based approach to find a set Inv such that
1. Init ⊆ Inv

2. Inv ⊆ Safe

3. System dynamics cannot cause the system to leave Inv.
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Collision Avoidance with Adaptive Cruise Control

Linear ansatz

Inv ≡ p ≥ 0 where p := c3v + c4vf + c5a + gap + c6

Inv′ ≡ −5 ≤ a ≤ 2 ∧ −5 ≤ af ≤ 2 ∧ v ≥ 0 ∧ vf ≥ 0

Certificate as a formula

∃c3∃c4∃c5∃c6∀v∀vf∀gap∀a∀af (ϕ1 ∧ϕ2 ∧ϕ3)

where ϕ1 ≡ Init ∧ Inv′ −→ Inv

ϕ2 ≡ Inv ∧ Inv′ −→ Safe

ϕ3 ≡ p = 0 ∧ Inv′ −→ ṗ ≥ 0

After 1 minute of computation:
I 584 disjuncts, 33365 atomic formulas, depth 13, some still containing ∃c5

I first 33 disjuncts automatically simplify to c2
2 − 30c2 − 75 ≤ 0 for c1 > 0, c2 > 0.

I ⇒ no collision for c2 = v ≤ 32
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Cylindrical Algebraic Decomposition (CAD)

CAD for Satistfiability Checking · 31/42



From Sign Invariant Regions to CAD Cells

ϕ(f1, f2) is a Boolean
combination of
constraints with left hand
sides f1, f2 and right
hand sides 0.

f1(x , y) = 2y2−2x3−3x2

f1(A) = −1 < 0
f1(B) = 2 > 0
f1(C) = −5 < 0
f1(D) = 0
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f1(A) = −1 < 0
f1(B) = 2 > 0
f1(C) = −5 < 0
f1(D) = 0

f2(x , y) = y2 + x2 − 1

g(x) = −2x3 − 3x2

. . .
projection polynomials
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Projection and Base Phase (1)

ϕ(f1, f2)

I projection operator
computes projection set:

Π({f1(x , y), f2(x , y)}) =

{g1(x), . . . ,gk (x)}

I Projections of critical points
are among the zeros of g1,
. . . , gk .

I The zeros of the gi are real
algebraic numbers, e.g.

−
√

2 =
(
x2 − 2, ]−10,1[

)
I Their computation is

univariate computer algebra.
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Projection and Base Phase (2)

ϕ(f1, f2)

I Add points
(anywhere) between the zeros
as test points for the
1-dimensional cells.

I This yields a decomposition
of R1 (the x-axis).

I We want to lift this
decomposition to R2.

I By the way: How many cells
will there be in R2?
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Extension Phase (Lifting)

ϕ(f1, f2)

For each test point t from the
base phase:
I compute univariate

f1(t, y), f2(t, y).

with algebraic number
coefficients.

I compute zeros and points
between zeros u1, . . . , us.

I this yields test points

(t,u1), . . . , (t,us) ∈ R2

for the cylinder over t .
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Example: a CAD as a “data structure”

P3 = {x21 + x22 + x23 − 4}
P2 = {x22 + x21 − 4}
P1 = {x1 + 2, x1 − 2}

C. W. Brown, U.S. Naval Academy 3
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SAT-Checking

ϕ(f1, f2)

I Finitely many test points

T =
{

(t1,ut1,1
), . . . , (t1,ut1,s1

),

...

(tr ,utr ,1
), . . . , (tr ,utr ,sr

)
}
.

I R |= ∃ϕ(f1, f2) iff ex. t ∈ T s.t.

R, (x , y) = t |= ϕ(f1, f2).
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Complete Decision Procedure

I Finitely many test points

T =
{

(t1,ut1,1
), . . . , (t1,ut1,s1

),

...

(tr ,utr ,1
), . . . , (tr ,utr ,sr

)
}
.

I ∀x∃yϕ(f1, f2):

“In each cylinder there is a cell
such that . . . ”

Satisfying t in each row of T ?

I ∃x∀yϕ(f1, f2):

“There is a cylinder such that
for each cell . . . ”

A satisfying column of T?

I The innermost variable y was
projected first.

CAD as a Complete Decision Procedure · 37/42
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Some Remarks Before We Continue

I Given ϕ(f1, f2) essentially all the algorithmic work we have done is valid for
arbitrary Boolean combinations ψ(f1, f2) of arbitrary constraints with left hand
sides f1, f2 (and right hand sides 0).

I Furthermore, even for arbitrary quantification QxQ′y (in that order).

I This indicates that the CAD procedure is somewhat an overkill.

I On the other hand, the asymptotic worst complexity 22O(n)

in terms of the input
word length n is known to be optimal.

I Asymptotically better bounds with refined complexity parameters.

I In practice, for general input, CAD is the best we have.

I Until now, we have not used and did not “really know” the cells – only test points.
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

I Given ψ(x1, . . . , xk ) = Qk+1xk+1 . . .Qr xrϕ(x1, . . . , xk , xk+1, . . . , xr ).
I x1, . . . xk are parameters.
I Construct CAD with projection order xr → · · · → xk+1 → xk → · · · → x1.

That is, the base phase takes place in R[x1].

I Consider the finite set C ⊆ Pot(Rk ) of cells in parameter space,
i.e., at projection level k with polynomials from R[x1, . . . , xk ].

I For each c ∈ C with test point tc ∈ Rn−k we can decide ψ(tc) and collect

TRUECELLS = { c ∈ C | R, (x1, . . . , xk ) = tc |= ψ } ⊆ C.

I Assume that for c ∈ C we have a quantifier-free description formula
∆c(x1, . . . , xk ), i.e. x ∈ c iff R |= ∆c(x). Then

R |= ψ ←→
∨

c∈TRUECELLS ∆c.
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Solution Formula Construction Example
cell P1,1 P1,2 P2,1 T/F

1, 1 − − + F

2, 1 0 − + F

2, 2 0 − 0 T

2, 3 0 − + F

3, 1 + − + F

3, 2 + − 0 F

3, 3 + − − T

3, 4 + − 0 F

3, 5 + − + F

4, 1 + 0 + F

4, 2 + 0 0 F

4, 3 + 0 + F

5, 1 + + + F

C. W. Brown, U.S. Naval Academy 24
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3, 3 + − − T

3, 4 + − 0 F

3, 5 + − + F

4, 1 + 0 + F

4, 2 + 0 0 F

4, 3 + 0 + F

5, 1 + + + F

P2,1 < 0 ∨ P1,1 = 0 ∧ P2,1 = 0

C. W. Brown, U.S. Naval Academy 24



Solution Formula Construction Problem

∃y[x2 + y2 − 1 < 0 ∧ x− y < 0]

cell x + 1 x− 1 x2 − 2 T/F
1 − − + F
2 0 − + F
3 + − + T
4 + − 0 T
5 + − − T
6 + − 0 F
7 + − + F
8 + 0 + F
9 + + + F

C. W. Brown, U.S. Naval Academy 25



Solutions to the Solution Formula Problem (1)
Augmented Projection

I The approach of the original Collins article (1975).
I Idea: Produce sufficiently many polynomials during projection.
I Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

I Consider a single polynomial f = x3 − 12x2 + 44x − 48.

I f > 0 describes ]2,4[ ∪ ]6,∞[, f = 0 describes {2,4,6} .

I f cannot describe exclusively ]2,4[ or {4}.

I f = 0 ∧ f ′ = 3x2 − 24x + 44 < 0 describes {4}.
I f > 0 ∧ f ′′ = 6x − 24 < 0 describes ]2,4[.

I Isn’t this somehow Rolle’s Theorem? Yes it is!
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I f > 0 describes ]2,4[ ∪ ]6,∞[, f = 0 describes {2,4,6} .

I f cannot describe exclusively ]2,4[ or {4}.

I f = 0 ∧ f ′ = 3x2 − 24x + 44 < 0 describes {4}.
I f > 0 ∧ f ′′ = 6x − 24 < 0 describes ]2,4[.

I Isn’t this somehow Rolle’s Theorem? Yes it is!

Augmented projection is considered practically infeasible.
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Solutions to the Solution Formula Problem (2)
Extended Tarski Language

I PhD thesis of Brown (1999).

I Use extended language with predicates like

x % rootα(f (α),n), % ∈ {=, <,>,≤,≥, 6=}.

I Predicate is false if f has less than n roots.

Examples

I f = x3 − 12x2 + 44x − 48 revisited:
rootx (f ,1) < x < rootx (f ,2) describes ]2,4[.

I In several variables one could obtain, e.g.,
rootα(α2 − 2,1) < x < rootα(α2 − 2,2) ∧
rootβ(3β7 − β + 4x5,3) < y < rootβ(3β7 − β + 4x5,5)

Efficiently check for x , y ∈ R if this holds.

State-of-the-art in QEPCAD and Mathematica, and used in Z3/NLSAT.
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Summary

I virtual substitution for real quantifier elimination and some variants

(extended, generic)

I software: Redlog and other

I other theories

(integers, comples, differential, padic, terms, queues, PQSAT)

I applications in geometry, verification, . . .

I cylindrical algebraic decomposition (CAD)
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