

(Mostly Real) Quantifier Elimination

AVACS Autumn School, Oldenburg, Germany, October 1, 2015

http://www.mpi-inf.mpg.de/~sturm/

Overview

Introduction

Definitions

Virtual Substitution

Variants of Quantifier Elimination

Software

Applications in Geometry and Verification

CAD for Satistfiability Checking

CAD as a Complete Decision Procedure

CAD for Quantifier Elimination

Summary

Quantifier Elimination and Decision

Example (Tarski Algebra = real numbers with arithmetic and ordering)

$$\mathbb{R} \models \underbrace{\forall x \exists y (x^2 + xy + b > 0 \land x + ay^2 + b \le 0)}_{\varphi} \longleftrightarrow \underbrace{a < 0 \land b > 0}_{\varphi'}$$

Quantifier Elimination and Decision

Example (Tarski Algebra = real numbers with arithmetic and ordering)

$$\mathbb{R} \models \underbrace{\forall x \exists y (x^2 + xy + b > 0 \land x + ay^2 + b \le 0)}_{\varphi} \longleftrightarrow \underbrace{a < 0 \land b > 0}_{\varphi'}$$

Formally: Given 1st-order theory Θ , find **algorithm** with input φ and output φ' quantifier-free such that

 $\Theta \models \varphi \longleftrightarrow \varphi'$,

or prove that no such algorithm exists.

Important aspects: theoretical complexity, practical performance

Quantifier Elimination and Decision

Example (Tarski Algebra = real numbers with arithmetic and ordering)

$$\mathbb{R} \models \underbrace{\forall x \exists y (x^2 + xy + b > 0 \land x + ay^2 + b \le 0)}_{\varphi} \longleftrightarrow \underbrace{a < 0 \land b > 0}_{\varphi'}$$

Formally: Given 1st-order theory Θ , find **algorithm** with input φ and output φ' quantifier-free such that

 $\Theta \models \varphi \longleftrightarrow \varphi'$,

or prove that no such algorithm exists.

Important aspects: theoretical complexity, practical performance

Important Special Cases

- all variables in φ are quantified \rightsquigarrow decision problem

Quantifier Elimination-relevant Research Topics

Symbolic Computation

algebraic complexity computer algebra systems exact arithmetic Gröbner bases polynomial factorization real algebraic numbers subresultants Automated Reasoning heuristics learning model-based construction

Algebraic Model Theory definable sets elementary extensions substructure completeness

Applications

chemistry engineering geometry life sciences physics planning scientific computing verification

Definitions

Syntax and Semantics

Language (= Signature): $L = (0, 1, +, -, \cdot, <, \le, \ne, >, \ge)$

Semantics: Everything is interpreted over IR.

Syntax and Semantics

Language (= Signature): $L = (0, 1, +, -, \cdot, <, \le, \ne, >, \ge)$

Semantics: Everything is interpreted over IR.

Important convention in algebraic model theory

There is always"=" which is formally not in the language. Semantics of "=" is Leibniz's (second-order) definition of equality

$$x = y : \iff \forall p(p(x) \longleftrightarrow p(y))$$

in contrast to its first-order theory.

For convenience, define $L_{=} := L \cup \{=\}$.

Syntax and Semantics

Language (= Signature): $L = (0, 1, +, -, \cdot, <, \le, \ne, >, \ge)$

Semantics: Everything is interpreted over IR.

Important convention in algebraic model theory

There is always"=" which is formally not in the language. Semantics of "=" is Leibniz's (second-order) definition of equality

$$x = y : \iff \forall p(p(x) \longleftrightarrow p(y))$$

in contrast to its first-order theory.

For convenience, define $L_{=} := L \cup \{=\}$.

Remark

There is no multiplicative inverse or division in *L*. We do not want to deal with partial functions.

Terms and Atomic Formulas

Terms

are w.l.o.g. polynomials with integer coefficients in a recursive representation

 $t \in (\dots (((\mathbb{Z}[x_n])[x_{n-1}])\dots)[x_2])[x_1]$

Representation is unique and isomorphic to "distributive" $\mathbb{Z}[x_1, \ldots, x_n]$.

Example $f = x_1 + (x_2 + x_3), \quad f^2 = x_1^2 + (2x_2 + 2x_3)x_1 + (x_2^2 + 2x_3x_2 + x_3^2)$

We can efficiently reorder such polynomials, i.e., change the main variable.

Terms and Atomic Formulas

Terms

are w.l.o.g. polynomials with integer coefficients in a recursive representation

 $t \in (\dots (((\mathbb{Z}[x_n])[x_{n-1}]) \dots)[x_2])[x_1]$

Representation is unique and isomorphic to "distributive" $\mathbb{Z}[x_1, \ldots, x_n]$.

Example

$$f = x_1 + (x_2 + x_3), \quad f^2 = x_1^2 + (2x_2 + 2x_3)x_1 + (x_2^2 + 2x_3x_2 + x_3^2)$$

We can efficiently reorder such polynomials, i.e., change the main variable.

Atomic formulas (atoms) are of the form f R 0, where

- $R \in L_{=} = \{ \leq, <, \neq, \geq, >, = \}$ as discussed
- *f* a recursive polynomial in some variables x_1, \ldots, x_n as above
- ▶ $L_{=}$ is closed under negation: For $R \in L_{=}$ there is $\overline{R} \in L_{=}$ such that

$$\mathbb{R} \models \neg (f R 0) \longleftrightarrow f \bar{R} 0.$$

Quantifier-free Formulas and First-order Formulas

First-order formulas are obtained from atomic formulas using operators

true, false, \land , \lor , $\exists x$, $\forall x$, where x is a variable

Further Boolean Operators

▶ \rightarrow and \leftrightarrow can be expressed without introducing quantifiers:

$$\alpha \longrightarrow \beta \quad \rightsquigarrow \quad \neg \alpha \lor \beta, \qquad \alpha \longleftrightarrow \beta \quad \rightsquigarrow \quad \alpha \longrightarrow \beta \land \beta \longrightarrow \alpha.$$

► Eliminate ¬ using de Morgan's law and closure property of *L* w.r.t. negation, e.g.:

$$\neg (x = 0 \land y > 0) \quad \rightsquigarrow \quad x \neq 0 \lor y \le 0.$$

Quantifier-free Formulas and First-order Formulas

First-order formulas are obtained from atomic formulas using operators

true, false, \land , \lor , $\exists x$, $\forall x$, where x is a variable

Further Boolean Operators

▶ \rightarrow and \leftrightarrow can be expressed without introducing quantifiers:

$$\alpha \longrightarrow \beta \quad \rightsquigarrow \quad \neg \alpha \lor \beta, \qquad \alpha \longleftrightarrow \beta \quad \rightsquigarrow \quad \alpha \longrightarrow \beta \land \beta \longrightarrow \alpha.$$

Eliminate ¬ using de Morgan's law and closure property of L w.r.t. negation, e.g.:

$$\neg (x = 0 \land y > 0) \quad \rightsquigarrow \quad x \neq 0 \lor y \le 0.$$

Practical reson for restricting to ∧ and ∨: Simplification

Quantifier-free formulas are first-order formulas not containing $\exists x$ or $\forall x$.

Convention: the only formulas containing true, false are true, false themselves.

Prenex Formulas

We assume w.l.o.g. that all first-order formulas are in a prenex normal form

 $Q_n x_n \dots Q_1 x_1(\psi)$

with $Q_1, \ldots, Q_n \in \{\exists, \forall\}$ and ψ quantifier-free.

Fact

(i) For every first-order formula $ilde{arphi}$ there is an equivalent prenex formula

$$\varphi = \mathsf{Q}_n x_n \ldots \mathsf{Q}_1(\psi).$$

 (ii) φ can be efficiently computed from φ̃ such that the number of alternations in the sequence Q_n, ..., Q₁ is minimized.

Eliminate from the Inside to the Outside

Given $\varphi = Q_n x_n \dots Q_1 x_1(\psi)$

- ψ is quantifier-free
- ► the variables of \u03c6 are a subset of quantified (bound) variables X = {x₁,..., x_n} and (free) parameters U = {u₁,..., u_m}, where

$$X \cap U = \emptyset.$$

We are going to eliminate $Q_1 x_1$.

The rest is iteration with some optimizations to discuss later on.

We may assume that $Q_1 = \exists$, because $\forall x_1 \varphi \leftrightarrow \neg \exists x_1 \neg \varphi$.

Elimination of One Existential Quantifier

Given $\varphi = \exists x_1(\psi)$

- The variables in ψ are among x_1 and $V_1 := (X \setminus \{x_1\}) \cup U$.
- All variables from V_1 will play the same role now, say, $V_1 = \{v_1, \ldots, v_k\}$.

If x_1 does not occur in ψ , then we are done.

Key Idea

- Intuitively, $\exists x$ is like a big disjunction over all real numbers.
- Could there be a finite E set of terms t such that

$$\mathbb{R} \models \exists x_1(\psi) \longleftrightarrow \bigvee_{t \in E} \psi[x_1/t] \quad ?$$

Modulo a couple of technical problems, there is essentially such a set.

Given $\varphi = \exists x_1(\psi)$

Temporarily and only in our minds (not in any algorithm) fix

$$(v_1,\ldots,v_k):=(a_1,\ldots,a_l)\in\mathbb{R}^k$$

such that ψ becomes univariate in x_1 .

Left hand sides of atomic formulas in ψ become univariate polynomials $f \in \mathbb{R}[x_1]$.

• Sets of satisfying values for x_1 in $f(x_1) R 0$ are

Given $\varphi = \exists x_1(\psi)$

Temporarily and only in our minds (not in any algorithm) fix

$$(v_1,\ldots,v_k):=(a_1,\ldots,a_l)\in\mathbb{R}^k$$

such that ψ becomes univariate in x_1 .

Left hand sides of atomic formulas in ψ become univariate polynomials $f \in \mathbb{R}[x_1]$.

► Sets of satisfying values for x_1 in $f(x_1) R 0$ are finite unions of intervals $[b_1, b_2], (b_1, b_2), (b_1, b_2], [b_1, b_2), where <math>b_1, b_2 \in \mathbb{R} \cup \{\infty\}.$

Given $\varphi = \exists x_1(\psi)$

Temporarily and only in our minds (not in any algorithm) fix

$$(v_1,\ldots,v_k):=(a_1,\ldots,a_l)\in\mathbb{R}^k$$

such that ψ becomes univariate in x_1 .

Left hand sides of atomic formulas in ψ become univariate polynomials $f \in \mathbb{R}[x_1]$.

max planck institut

- ► Sets of satisfying values for x_1 in $f(x_1) R 0$ are finite unions of intervals $[b_1, b_2]$, (b_1, b_2) , $(b_1, b_2]$, $[b_1, b_2)$, where $b_1, b_2 \in \mathbb{R} \cup \{\infty\}$.
- if $b_i \in \mathbb{R}$, then $f(b_i) = 0$
- Set of satisfying values for x_1 in ψ has the same form.

Given $\varphi = \exists x_1(\psi)$

Temporarily and only in our minds (not in any algorithm) fix

$$(v_1,\ldots,v_k):=(a_1,\ldots,a_l)\in\mathbb{R}^k$$

such that ψ becomes univariate in x_1 .

Left hand sides of atomic formulas in ψ become univariate polynomials $f \in \mathbb{R}[x_1]$.

- Sets of satisfying values for x₁ in f(x₁) R 0 are finite unions of intervals [b₁, b₂], (b₁, b₂), (b₁, b₂], [b₁, b₂), where b₁, b₂ ∈ ℝ ∪ {∞}.
- if $b_i \in \mathbb{R}$, then $f(b_i) = 0$
- Set of satisfying values for x₁ in ψ has the same form.
 ∧ is cut and ∨ is intersection of satisfying sets.

Given $\varphi = \exists x_1(\psi)$

Temporarily and only in our minds (not in any algorithm) fix

$$(v_1,\ldots,v_k):=(a_1,\ldots,a_l)\in\mathbb{R}^k$$

such that ψ becomes univariate in x_1 .

Left hand sides of atomic formulas in ψ become univariate polynomials $f \in \mathbb{R}[x_1]$.

- Sets of satisfying values for x_1 in $f(x_1) R 0$ are finite unions of intervals $[b_1, b_2]$, (b_1, b_2) , (b_1, b_2) , $[b_1, b_2)$, where $b_1, b_2 \in \mathbb{R} \cup \{\infty\}$.
- if $b_i \in \mathbb{R}$, then $f(b_i) = 0$
- Set of satisfying values for x_1 in ψ has the same form. \wedge is cut and \vee is intersection of satisfying sets.

• Idea:
$$E = all b_2$$
 or $b_2 - \varepsilon$ and ∞ .

Elimination Sets

Given $\varphi = \exists x_1(\psi)$

Supersets of the zeros of the left hand side terms

 $f \in (\dots (((\mathbb{Z}[v_1])[v_2]) \dots)[v_k])[x_1]$

can be computed symbolically and uniformly.

Example

$$f = a(v_1, \dots, v_k)x_1^2 + b(v_1, \dots, v_k)x_1 + c(v_1, \dots, v_k) \text{ yields candidate solutions}$$

$$\underbrace{(-b \pm \sqrt{b^2 - 4ac})/2a}_{t} \text{ for } \underbrace{a \neq 0 \land b^2 - 4ac \ge 0}_{\gamma}, \quad \underbrace{-c/b}_{t} \text{ for } \underbrace{a = 0 \land b \neq 0}_{\gamma}.$$

Elimination Sets

Given $\varphi = \exists x_1(\psi)$

Supersets of the zeros of the left hand side terms

 $f \in (\dots (((\mathbb{Z}[v_1])[v_2]) \dots)[v_k])[x_1]$

can be computed symbolically and uniformly.

Example

$$f = a(v_1 \dots, v_k)x_1^2 + b(v_1, \dots, v_k)x_1 + c(v_1, \dots, v_k) \text{ yields candidate solutions}$$

$$\underbrace{(-b \pm \sqrt{b^2 - 4ac})/2a}_{t} \text{ for } \underbrace{a \neq 0 \land b^2 - 4ac \ge 0}_{\gamma}, \qquad \underbrace{-c/b}_{t} \text{ for } \underbrace{a = 0 \land b \neq 0}_{\gamma}.$$

An elimination set *E* for x_1 and ψ is a finite set of pairs (γ , *t*) such that

$$\mathbb{R} \models \exists x_1(\psi) \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1 // t].$$

Given
$$\varphi = \exists x_1(\psi)$$
 and E such that $\mathbb{R} \models \exists x_1(\psi) \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1//t].$

Remaining Problem

t contain /, $\sqrt{\cdot}$, ∞ , ε , ..., which are not in our language L.

Solution: Virtual Substitution

[x//t] : atomic formulas \rightarrow quantifier-free formulas

Given
$$\varphi = \exists x_1(\psi)$$
 and E such that $\mathbb{R} \models \exists x_1(\psi) \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1//t].$

Remaining Problem

t contain /, $\sqrt{\cdot}$, ∞ , ε , ..., which are not in our language L.

Solution: Virtual Substitution

[x//t] : atomic formulas \rightarrow quantifier-free formulas

And beyond degree 2?

- Method generalizes to arbitrary degrees (in principle long known).
- first implementation will be available this year (PhD thesis by M. Košta).
- ► For higher degrees, *t* will be way more abstract.

Given
$$\varphi = \exists x_1(\psi)$$
 and E such that $\mathbb{R} \models \exists x_1(\psi) \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1//t].$

Remaining Problem

t contain /, $\sqrt{\cdot}$, ∞ , ε , ..., which are not in our language L.

Solution: Virtual Substitution

[x//t] : atomic formulas \rightarrow quantifier-free formulas

And beyond degree 2?

- Method generalizes to arbitrary degrees (in principle long known).
- first implementation will be available this year (PhD thesis by M. Košta).
- For higher degrees, t will be way more abstract.

Important

In practice, good simplification of quantifier-free (intermediate) results is crucial!

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

 $\left(f_1x + f_0 \leq 0\right) \left[x/\!/ \frac{g_1}{g_2}\right] \; \equiv \; f_1 \frac{g_1}{g_2} + f_0 \leq 0 \; \equiv \; f_1 g_1 g_2 + f_0 g_2^2 \leq 0$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], \quad f_i, \quad g_i, \quad g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

 $\left(f_1x + f_0 \leq 0\right) \left[x /\!/ \frac{g_1}{g_2}\right] \; \equiv \; f_1 \frac{g_1}{g_2} + f_0 \leq 0 \; \equiv \; f_1 g_1 g_2 + f_0 g_2^2 \leq 0$

Formal solutions of quadratic equations

$$\left(f=0\right)\left[x/\!/\frac{g_1+g_2\sqrt{g_3}}{g_4}\right] \equiv \frac{g_1^*+g_2^*\sqrt{g_3}}{g_4^*}=0$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], \quad f_i, \quad g_i, \quad g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

 $\left(f_1x + f_0 \le 0\right) \left[x /\!/ \frac{g_1}{g_2}\right] \ \equiv \ f_1 \frac{g_1}{g_2} + f_0 \le 0 \ \equiv \ f_1 g_1 g_2 + f_0 g_2^2 \le 0$

Formal solutions of quadratic equations

$$(f = 0) \left[x / / \frac{g_1 + g_2 \sqrt{g_3}}{g_4} \right] \equiv \frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0 \equiv g_1^{*2} - g_2^{*2} g_3 = 0 \land g_1^* g_2^* \le 0$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1 x + f_0 \le 0 \right) \left[x / \! / \frac{g_1}{g_2} \right] \ \equiv \ f_1 \frac{g_1}{g_2} + f_0 \le 0 \ \equiv \ f_1 g_1 g_2 + f_0 g_2^2 \le 0$$

Formal solutions of quadratic equations

$$\begin{pmatrix} f = 0 \end{pmatrix} \begin{bmatrix} x // \frac{g_1 + g_2 \sqrt{g_3}}{g_4} \end{bmatrix} = \frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0 = g_1^{*2} - g_2^{*2} g_3 = 0 \land g_1^* g_2^* \le 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} \le 0 = (g_1^{*2} - g_2^{*2} g_3 \ge 0 \land g_1^* g_4^* \le 0) \lor (g_1^{*2} - g_2^{*2} g_3 \le 0 \land g_2^* g_4^* \le 0)$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1 x + f_0 \le 0 \right) \left[x / \! / \frac{g_1}{g_2} \right] \ \equiv \ f_1 \frac{g_1}{g_2} + f_0 \le 0 \ \equiv \ f_1 g_1 g_2 + f_0 g_2^2 \le 0$$

Formal solutions of quadratic equations

$$\begin{pmatrix} f = 0 \end{pmatrix} \begin{bmatrix} x // \frac{g_1 + g_2 \sqrt{g_3}}{g_4} \end{bmatrix} = \frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0 = g_1^{*2} - g_2^{*2} g_3 = 0 \land g_1^* g_2^* \le 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} \le 0 = (g_1^{*2} - g_2^{*2} g_3 \ge 0 \land g_1^* g_4^* \le 0) \lor (g_1^{*2} - g_2^{*2} g_3 \le 0 \land g_2^* g_4^* \le 0)$$

Infinity

$$(f_2 x^2 + f_1 x + f_0 < 0)[x //\infty] \equiv f_2 < 0 \lor (f_2 = 0 \land f_1 < 0) \lor (f_2 = 0 \land f_1 = 0 \land f_0 < 0)$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], \quad f_i, \quad g_i, \quad g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1 x + f_0 \le 0 \right) \left[x / \! / \frac{g_1}{g_2} \right] \ \equiv \ f_1 \frac{g_1}{g_2} + f_0 \le 0 \ \equiv \ f_1 g_1 g_2 + f_0 g_2^2 \le 0$$

Formal solutions of quadratic equations

$$\begin{pmatrix} f = 0 \end{pmatrix} \begin{bmatrix} x // \frac{g_1 + g_2 \sqrt{g_3}}{g_4} \end{bmatrix} = \frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} = 0 = g_1^{*2} - g_2^{*2} g_3 = 0 \land g_1^* g_2^* \le 0$$

$$\frac{g_1^* + g_2^* \sqrt{g_3}}{g_4^*} \le 0 = (g_1^{*2} - g_2^{*2} g_3 \ge 0 \land g_1^* g_4^* \le 0) \lor (g_1^{*2} - g_2^{*2} g_3 \le 0 \land g_2^* g_4^* \le 0)$$

Infinity

$$(f_2 x^2 + f_1 x + f_0 < 0)[x //\infty] \equiv f_2 < 0 \lor (f_2 = 0 \land f_1 < 0) \lor (f_2 = 0 \land f_1 = 0 \land f_0 < 0)$$

Positive infinitesimals

 $(3x^2 + 6x - 3 > 0)[x / / t - \varepsilon] \equiv 3t^2 + 6t - 3 > 0 \lor (3t^2 + 6t - 3 = 0 \land 6t + 6 \le 0)$

Elimination of Several Existential Quantifiers by Block

Back to the bigger picture

$$\dots \forall^* \exists^* \forall^* \exists^* \exists x_1(\psi) \quad \rightsquigarrow \quad \dots \forall^* \exists^* \forall^* \exists^* \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1 // t]$$

Disjunction V is compatible with existential quantifiers \exists^* :

$$\dots \forall^* \exists^* \forall^* \exists^* \bigvee_{(\gamma,t)\in E} \gamma \wedge \psi[x_1//t] \quad \rightsquigarrow \quad \dots \forall^* \exists^* \forall^* \bigvee_{(\gamma,t)\in E} \exists^* (\gamma \wedge \psi[x_1//t])$$

Elimination of Several Existential Quantifiers by Block

Back to the bigger picture

$$\dots \forall^* \exists^* \forall^* \exists^* \exists x_1(\psi) \quad \rightsquigarrow \quad \dots \forall^* \exists^* \forall^* \exists^* \bigvee_{(\gamma,t) \in E} \gamma \land \psi[x_1 // t]$$

Disjunction V is compatible with existential quantifiers \exists^* :

$$\dots \forall^* \exists^* \forall^* \exists^* \bigvee_{(\gamma,t)\in E} \gamma \wedge \psi[x_1//t] \quad \rightsquigarrow \quad \dots \forall^* \exists^* \forall^* \bigvee_{(\gamma,t)\in E} \exists^* (\gamma \wedge \psi[x_1//t])$$

Effect

- more local substitution of test points With the elimination of the next quantifiers
- even improves upper bound on asymptotic worst-case complexity

Complexity of Virtual Substitution

Upper bound on asymptotic worst-case complexity

doubly exponential in the input word length (and thus optimal)

More precisely

doubly exponential in # quantifier alternationssingly exponentialin # quantifiers thanks to elimination by blockpolynomialin # parameters (= unquantified variables)polynomialin # atomic formulas

particularly good for

low degrees and many parameters

For comparision: Cylindrical Algberaic Decomposition (CAD)

[Collins 1973, Hong, Brown, ...] doubly exponential in the number of all variables

For comparison: Asymptotically fast procedures

[Renegar, Basu-Pollack-Roy, Grigoriev, ...] no practical relevance (so far)

Variants of Quantifier Elimination

Extended Quantifier Elimination

Generalize
$$\exists x \varphi \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \varphi[t/\!/x]$$
 to $\exists x \varphi \rightsquigarrow$
 \vdots \vdots

Simple example revisited

$$\varphi \equiv \exists x(ax^2 + bx + c = 0) \rightsquigarrow$$

$$a \neq 0 \land b^{2} - 4ac \ge 0 \qquad x = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$
$$a = 0 \land b \neq 0 \qquad x = -\frac{c}{b}$$
$$a = 0 \land b = 0 \land c = 0 \qquad x = \infty,$$

г

Semantics (for fixed parameters)

Whenever some left hand side condition holds, then $\exists x \phi$ holds and the corresponding right hand side term is **one** sample solution.

[M. Kosta, T.S., A. Dolzmann, J. Symb. Comput. 2016]

For fixed choices of parameters, standard values can be efficiently computed for all ∞_i and ε_i in a post-processing step.

/ . . .

Generic Quantifier Elimination

Collect negated equations from the γ in a global theory Θ :

 $E = \{\ldots, (s \neq 0 \land \gamma', t), \ldots\} \quad \rightsquigarrow \quad \Theta = \{\ldots, s \neq 0, \ldots\}, \ E = \{\ldots, (\gamma', t), \ldots\}$

Semantics

 φ' is correct for all choices of parameters satisfying Θ :

$$\bigwedge \Theta \longrightarrow (\varphi' \longleftrightarrow \varphi).$$

Important observation

exception set has a lower dimension than the parameter space

Simple example revisited

$$\varphi \equiv \exists x (ax^2 + bx + c = 0) \quad \rightsquigarrow \quad \Theta = \{a \neq 0\}, \quad \varphi' \equiv b^2 - 4ac \ge 0$$

Software

Redlog and Reduce

Everything discussed here is available in our computer logic system Redlog:

http://www.redlog.eu

- interactive system, QE and decision for many domains, normal forms, simplification, construction and decomposition of large formulas, ...
- ▶ interfaces to Qepcad B, Gurobi, Mathematica, Z3, ...
- more than 300 citations of applications in the literature: geometry, verification, chemistry, life sciences, physics and engineering, scientific computation, geometry and planning, ...
- ▶ Redlog development since 1992 as part of the CAS Reduce [Hearn, 1968]
- Reduce/Redlog open-source (free-BSD) on Sourceforge since 12/2008 http://reduce-algebra.sourceforge.net
- ▶ 48,318 downloads since 12/2008 (7,496 in 2014), 500+ SVN commits per year

Further Theories in Redlog

Integers (AAECC 2007, CASC 2007, CASC 2009)

- Presburger Arithmetic
- weak quantifier elimination for the full linear theory
- weak quantifier elimination also for higher degrees (special cases)

Mixed Real-Integer (Weispfenning at ISSAC 1999)

experimental

Complex Numbers (using Comprehensive Gröbner Bases)

language of rings only

Differential Algebras (CASC 2004)

- language of rings with unary differential operator
- computation in differentially closed field (A. Robinson, Blum)

Further Theories in Redlog

Padic Numbers (JSC 2000, ISSAC 1999, CASC 2001)

- linear formulas over *p*-adic fields for *p* prime
- optionally uniform in p
- used e.g. for solving parametric systems of congruences over the integers

Terms (CASC 2002)

Malcev-type term algebras (with functions instead of relations)

Queues (C. Straßer at RWCA 2006)

- two-sided queues over the other theories (2-sorted)
- Implemented at present for queues of reals

Propositional Formulas (CASC 2003, ISSAC 2010)

- generalization of SAT solving
- quantified propositional calculus, i.e., parametric QSAT (aka QBF) solving

Some Other Software

- Qepcad B (Hong and Brown) is the reference implementation for cylindrical algebraic decomposition (CAD).
- The computer algebra system Mathematica has real QE: essentially CAD + virtual substitution for preprocessing.
- The computer algebra system Maple has been used in recent research on CAD (Davenport et al.)
- The computer algebra system Risa/Asir (originally by Fujitsu) has QE by virtual substitution (TS, 1996)
- Some prototypes in Japan based on comprehensive Gröbner bases (Sato et al.) or Sturm–Habicht sequences (Anai et al. in Matlab)
- Specialized implementations of CAD in SMT solvers (z3)
- Specialized implementations of virtual substitutions for SMT (SMT-RAT)

Applications in Geometry and Verification

[J. Autom. Reasoning 1998 – Joint work with A. Dolzmann, V. Weispfenning]

[J. Autom. Reasoning 1998 – Joint work with A. Dolzmann, V. Weispfenning]

$$\bullet \quad \boldsymbol{\varphi} \equiv \forall x_6 \forall x_5 \forall x_4 \forall x_3 \forall x_2 \forall x_1 \forall r \left(\bigwedge_{i=1}^7 h_i \longrightarrow g \right)$$

[J. Autom. Reasoning 1998 – Joint work with A. Dolzmann, V. Weispfenning]

$$\bullet \quad \varphi \equiv \forall x_6 \forall x_5 \forall x_4 \forall x_3 \forall x_2 \forall x_1 \forall r \left(\bigwedge_{i=1}^7 h_i \longrightarrow g \right)$$

• Generic QE (1.1 s): φ' 231 atomic formulas, $\Theta = \{\underbrace{u_1^2 - 2u_1 + u_2^2 - 3 \neq 0}_{(u_1 - 1)^2 + u_2^2 \neq 4}, u_1 \neq 0, u_2 \neq 0\}.$

[J. Autom. Reasoning 1998 - Joint work with A. Dolzmann, V. Weispfenning]

$$\bullet \quad \varphi \equiv \forall x_6 \forall x_5 \forall x_4 \forall x_3 \forall x_2 \forall x_1 \forall r \left(\bigwedge_{i=1}^7 h_i \longrightarrow g \right)$$

• Generic QE (1.1 s): φ' 231 atomic formulas, $\Theta = \{ u_1^2 - 2u_1 + u_2^2 - 3 \neq 0, u_1 \neq 0, u_2 \neq 0 \}.$

• CAD (0.9 s): $\forall u_1 \forall u_2 (\bigwedge \Theta \longrightarrow \varphi') \checkmark$

 $(u_1-1)^2+u_2^2\neq 4$

Collision Avoidance with Adaptive Cruise Control [ISSAC 2011 – Joint Work with A. Tiwari @SRI]

System dynamics

 $\dot{v}_f = a_f \in [-5, 2]$ $\dot{v} = a \in [-5, 2]$

 $gap = v_f - v$

velocity and accelleration of leading car velocity and accelleration of rear car

 $\dot{a} = -3a - 3(v - v_f) + (gap - (v + 10))$ control law for rear car

Initial states and safe states

Init = gap = $10 \land a = 0 \land v_f = c_1 \land v = c_2$ Safe = gap > 0

Collision Avoidance with Adaptive Cruise Control [ISSAC 2011 – Joint Work with A. Tiwari @SRI]

System dynamics

 $gap = v_f - v$

 $\dot{v}_f = a_f \in [-5, 2]$ $\dot{v} = a \in [-5, 2]$ velocity and accelleration of leading car velocity and accelleration of rear car

 $\dot{a} = -3a - 3(v - v_f) + (gap - (v + 10))$ control law for rear car

Initial states and safe states

$$Init \equiv gap = 10 \land a = 0 \land v_f = c_1 \land v = c_2$$

Safe = gap > 0

Certificate-based approach to find a set Inv such that

- 1. Init ⊆ Inv
- Inv ⊆ Safe
- 3. System dynamics cannot cause the system to leave Inv.

Collision Avoidance with Adaptive Cruise Control

Linear ansatz

$$\begin{aligned} &\text{Inv} &\equiv p \ge 0 \quad \text{where} \quad p := c_3 v + c_4 v_f + c_5 a + \text{gap} + c_6 \\ &\text{Inv}' &\equiv -5 \le a \le 2 \ \land \ -5 \le a_f \le 2 \ \land \ v \ge 0 \ \land \ v_f \ge 0 \end{aligned}$$

Certificate as a formula

 $\exists c_3 \exists c_4 \exists c_5 \exists c_6 \forall v \forall v_f \forall gap \forall a \forall a_f (\varphi_1 \land \varphi_2 \land \varphi_3)$

where
$$\varphi_1 \equiv \text{Init} \land \text{Inv}' \longrightarrow \text{Inv}$$

 $\varphi_2 \equiv \text{Inv} \land \text{Inv}' \longrightarrow \text{Safe}$
 $\varphi_3 \equiv p = 0 \land \text{Inv}' \longrightarrow \dot{p} \ge 0$

Collision Avoidance with Adaptive Cruise Control

Linear ansatz

$$\begin{aligned} &\text{Inv} &\equiv p \ge 0 \quad \text{where} \quad p := c_3 v + c_4 v_f + c_5 a + \text{gap} + c_6 \\ &\text{Inv}' &\equiv -5 \le a \le 2 \ \land \ -5 \le a_f \le 2 \ \land \ v \ge 0 \ \land \ v_f \ge 0 \end{aligned}$$

Certificate as a formula $\exists c_3 \exists c_4 \exists c_5 \exists c_6 \forall v \forall v_f \forall gap \forall a \forall a_f (\varphi_1 \land \varphi_2 \land \varphi_3)$ where $\varphi_1 \equiv \text{Init} \land \text{Inv}' \longrightarrow \text{Inv}$ $\varphi_2 \equiv \text{Inv} \land \text{Inv}' \longrightarrow \text{Safe}$ $\varphi_3 \equiv \rho = 0 \land \text{Inv}' \longrightarrow \dot{p} \ge 0$

After 1 minute of computation:

- ▶ 584 disjuncts, 33365 atomic formulas, depth 13, some still containing $\exists c_5$
- first 33 disjuncts automatically simplify to $c_2^2 30c_2 75 \le 0$ for $c_1 > 0$, $c_2 > 0$.
- ▶ ⇒ no collision for $c_2 = v \le 32$

Cylindrical Algebraic Decomposition (CAD)

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x, y) = 2y^2 - 2x^3 - 3x^2$$

 $\begin{array}{l} f_1(A) = -1 < 0 \\ f_1(B) = 2 > 0 \\ f_1(C) = -5 < 0 \\ f_1(D) = 0 \end{array}$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x, y) = 2y^2 - 2x^3 - 3x^2$$

 $f_1(A) = -1 < 0$ $f_1(B) = 2 > 0$ $f_1(C) = -5 < 0$ $f_1(D) = 0$

 $f_2(x, y) = y^2 + x^2 - 1$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x, y) = 2y^2 - 2x^3 - 3x^2$$
$$f_1(A) = -1 < 0$$
$$f_1(B) = 2 > 0$$

$$f_1(C) = -5 < 0$$

 $f_1(D) = 0$

 $f_2(x, y) = y^2 + x^2 - 1$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x, y) = 2y^2 - 2x^3 - 3x^2$$

$$f_1(A) = -1 < 0$$

$$f_1(B) = 2 > 0$$

$$f_1(C) = -5 < 0$$

$$f_1(D) = 0$$

 $f_2(x, y) = y^2 + x^2 - 1$

 $g(x) = -2x^3 - 3x^2$

projection polynomials

 $\varphi(f_1, f_2)$

projection operator computes projection set:

 $\Pi(\{f_1(x, y), f_2(x, y)\}) = \{g_1(x), \dots, g_k(x)\}$

 $\varphi(f_1, f_2)$

projection operator computes projection set:

 $\Pi(\{f_1(x, y), f_2(x, y)\}) = \{g_1(x), \dots, g_k(x)\}\$

 Projections of critical points are **among** the zeros of g₁, ..., g_k.

 $\varphi(f_1, f_2)$

projection operator computes projection set:

 $\Pi(\{f_1(x, y), f_2(x, y)\}) = \{g_1(x), \dots, g_k(x)\}\$

- Projections of critical points are **among** the zeros of g₁, ..., g_k.
- ► The zeros of the *g_i* are real algebraic numbers, e.g.

 $-\sqrt{2} = (x^2 - 2,]-10, 1[)$

 $\varphi(f_1, f_2)$

projection operator computes projection set:

 $\Pi(\{f_1(x, y), f_2(x, y)\}) = \{g_1(x), \dots, g_k(x)\}\$

- Projections of critical points are **among** the zeros of g₁, ..., g_k.
- ► The zeros of the g_i are real algebraic numbers, e.g.

 $-\sqrt{2} = (x^2 - 2,]-10, 1[)$

 Their computation is univariate computer algebra.

 $\varphi(f_1, f_2)$

Add points

(anywhere) between the zeros as test points for the 1-dimensional cells.

 $\varphi(f_1, f_2)$

Add points

(anywhere) between the zeros as test points for the 1-dimensional cells.

► This yields a decomposition of ℝ¹ (the *x*-axis).

 $\varphi(f_1, f_2)$

Add points

(anywhere) between the zeros as test points for the 1-dimensional cells.

- ► This yields a decomposition of ℝ¹ (the *x*-axis).
- We want to lift this decomposition to IR².

 $\varphi(f_1, f_2)$

Add points

(anywhere) between the zeros as test points for the 1-dimensional cells.

- This yields a decomposition of IR¹ (the x-axis).
- We want to lift this decomposition to IR².
- ► By the way: How many cells will there be in ℝ²?

Extension Phase (Lifting)

 $\varphi(f_1, f_2)$

For each test point *t* from the base phase:

compute univariate

$$f_1(t, y), \quad f_2(t, y).$$

with algebraic number coefficients.

Extension Phase (Lifting)

 $\varphi(f_1, f_2)$

For each test point *t* from the base phase:

compute univariate

 $f_1({\color{black}t},{\color{black}y}),\quad f_2({\color{black}t},{\color{black}y}).$

with algebraic number coefficients.

 compute zeros and points between zeros u₁, ..., u_s.

Extension Phase (Lifting)

 $\varphi(f_1, f_2)$

For each test point *t* from the base phase:

compute univariate

 $f_1({\color{black}t},{\color{black}y}),\quad f_2({\color{black}t},{\color{black}y}).$

with algebraic number coefficients.

- compute zeros and points between zeros u₁,..., u_s.
- this yields test points
 - $(t,u_1),\ldots,(t,u_s)\in \mathbb{R}^2$

for the cylinder over *t*.

Example: a CAD as a "data structure"

$$P_{3} = \{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 4\}$$
$$P_{2} = \{x_{2}^{2} + x_{1}^{2} - 4\}$$
$$P_{1} = \{x_{1} + 2, x_{1} - 2\}$$

Example: a CAD as a "data structure"

$$P_{3} = \{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 4\}$$
$$P_{2} = \{x_{2}^{2} + x_{1}^{2} - 4\}$$
$$P_{1} = \{x_{1} + 2, x_{1} - 2\}$$

Example: a CAD as a "data structure"

$$P_{3} = \{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 4\}$$
$$P_{2} = \{x_{2}^{2} + x_{1}^{2} - 4\}$$
$$P_{1} = \{x_{1} + 2, x_{1} - 2\}$$

Example: a CAD as a "data structure"

$$P_{3} = \{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} - 4\}$$
$$P_{2} = \{x_{2}^{2} + x_{1}^{2} - 4\}$$
$$P_{1} = \{x_{1} + 2, x_{1} - 2\}$$

SAT-Checking

SAT-Checking

Finitely many test points

$$T = \{(t_1, u_{t_1,1}), \ldots, (t_1, u_{t_1,s_1}), \ldots, (t_n, u_{t_n,s_n}), \}$$

 $(t_r, u_{t_r,1}), \ldots, (t_r, u_{t_r,s_r})\}.$

Finitely many test points

$$T = \{(t_1, u_{t_1,1}), \ldots, (t_1, u_{t_1,s_1}), \ldots, (t_n, u_{t_n,s_n}), \}$$

 $(t_r, u_{t_r,1}), \ldots, (t_r, u_{t_r,s_r})\}.$

∀x∃yφ(f₁, f₂):
"In each cylinder there is a cell such that"

Satisfying *t* in each row of *T*?

Finitely many test points

$$T = \{(t_1, u_{t_1,1}), \ldots, (t_1, u_{t_1,s_1}), \ldots, (t_1, u_{t_1,s_1}), \}$$

 $(t_r, u_{t_r,1}), \ldots, (t_r, u_{t_r,s_r})\}.$

∀x∃yφ(f₁, f₂): "In each cylinder there is a cell such that"

Satisfying t in each row of T?

• $\exists x \forall y \varphi(f_1, f_2)$:

"There is a cylinder such that for each cell ... "

A satisfying column of *T*?

Finitely many test points

$$T = \{(t_1, u_{t_1,1}), \ldots, (t_1, u_{t_1,s_1}), \ldots, (t_1, u_{t_1,s_1}), \}$$

 $(t_r, u_{t_r,1}), \ldots, (t_r, u_{t_r,s_r})\}.$

∀x∃yφ(f₁, f₂):
"In each cylinder there is a cell such that ..."

Satisfying t in each row of T?

• $\exists x \forall y \varphi(f_1, f_2)$:

"There is a cylinder such that for each cell . . . "

A satisfying column of T?

 The innermost variable y was projected first.

• Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).
- This indicates that the CAD procedure is somewhat an overkill.

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).
- This indicates that the CAD procedure is somewhat an overkill.
- On the other hand, the asymptotic worst complexity 2^{2^{O(n)}} in terms of the input word length *n* is known to be optimal.

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).
- This indicates that the CAD procedure is somewhat an overkill.
- On the other hand, the asymptotic worst complexity 2^{2^{O(n)}} in terms of the input word length *n* is known to be optimal.
- Asymptotically better bounds with refined complexity parameters.

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).
- This indicates that the CAD procedure is somewhat an overkill.
- On the other hand, the asymptotic worst complexity 2^{2^{O(n)}} in terms of the input word length *n* is known to be optimal.
- Asymptotically better bounds with refined complexity parameters.
- ► In practice, for general input, CAD is the best we have.

- Given $\varphi(f_1, f_2)$ essentially all the algorithmic work we have done is valid for arbitrary Boolean combinations $\psi(f_1, f_2)$ of arbitrary constraints with left hand sides f_1 , f_2 (and right hand sides 0).
- Furthermore, even for arbitrary quantification QxQ'y (in that order).
- This indicates that the CAD procedure is somewhat an overkill.
- On the other hand, the asymptotic worst complexity 2^{2^{O(n)}} in terms of the input word length *n* is known to be optimal.
- Asymptotically better bounds with refined complexity parameters.
- ► In practice, for general input, CAD is the best we have.
- ▶ Until now, we have not used and did not "really know" the cells only test points.

The essential new concept with QE is **quantifier-free description of cells**. This is relevant also for recent decision procedures (Jovanovic & de Moura).

• Given $\psi(x_1, ..., x_k) = Q_{k+1}x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.

- Given $\psi(x_1, ..., x_k) = Q_{k+1}x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.

- Given $\psi(x_1, ..., x_k) = Q_{k+1} x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.
- ► Construct CAD with projection order $x_r \rightarrow \cdots \rightarrow x_{k+1} \rightarrow x_k \rightarrow \cdots \rightarrow x_1$. That is, the base phase takes place in $\mathbb{R}[x_1]$.

- Given $\psi(x_1, ..., x_k) = Q_{k+1} x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.
- ► Construct CAD with projection order $x_r \rightarrow \cdots \rightarrow x_{k+1} \rightarrow x_k \rightarrow \cdots \rightarrow x_1$. That is, the base phase takes place in $\mathbb{R}[x_1]$.
- Consider the finite set $C \subseteq Pot(\mathbb{R}^k)$ of cells in parameter space, i.e., at projection level k with polynomials from $\mathbb{R}[x_1, \dots, x_k]$.

- Given $\psi(x_1, ..., x_k) = Q_{k+1} x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.
- ► Construct CAD with projection order $x_r \to \cdots \to x_{k+1} \to x_k \to \cdots \to x_1$. That is, the base phase takes place in $\mathbb{R}[x_1]$.
- Consider the finite set $C \subseteq Pot(\mathbb{R}^k)$ of cells in parameter space, i.e., at projection level k with polynomials from $\mathbb{R}[x_1, \ldots, x_k]$.
- ► For each $c \in C$ with test point $t_c \in \mathbb{R}^{n-k}$ we can decide $\psi(t_c)$ and collect TRUECELLS = { $c \in C \mid \mathbb{R}, (x_1, \dots, x_k) = t_c \models \psi$ } $\subseteq C$.

- Given $\psi(x_1, ..., x_k) = Q_{k+1} x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.
- ► Construct CAD with projection order $x_r \to \cdots \to x_{k+1} \to x_k \to \cdots \to x_1$. That is, the base phase takes place in $\mathbb{R}[x_1]$.
- Consider the finite set $C \subseteq Pot(\mathbb{R}^k)$ of cells in parameter space, i.e., at projection level k with polynomials from $\mathbb{R}[x_1, \ldots, x_k]$.
- ► For each $c \in C$ with test point $t_c \in \mathbb{R}^{n-k}$ we can decide $\psi(t_c)$ and collect TRUECELLS = { $c \in C \mid \mathbb{R}, (x_1, \dots, x_k) = t_c \models \psi$ } $\subseteq C$.
- ► Assume that for $c \in C$ we have a quantifier-free description formula $\Delta_c(x_1, \ldots, x_k)$, i.e. $\mathbf{x} \in c$ iff $\mathbb{R} \models \Delta_c(\mathbf{x})$.

- Given $\psi(x_1, ..., x_k) = Q_{k+1} x_{k+1} ... Q_r x_r \varphi(x_1, ..., x_k, x_{k+1}, ..., x_r)$.
- $x_1, \ldots x_k$ are parameters.
- ► Construct CAD with projection order $x_r \to \cdots \to x_{k+1} \to x_k \to \cdots \to x_1$. That is, the base phase takes place in $\mathbb{R}[x_1]$.
- Consider the finite set $C \subseteq Pot(\mathbb{R}^k)$ of cells in parameter space, i.e., at projection level k with polynomials from $\mathbb{R}[x_1, \ldots, x_k]$.
- ► For each $c \in C$ with test point $t_c \in \mathbb{R}^{n-k}$ we can decide $\psi(t_c)$ and collect TRUECELLS = { $c \in C \mid \mathbb{R}, (x_1, \dots, x_k) = t_c \models \psi$ } $\subset C$.
- ► Assume that for $c \in C$ we have a quantifier-free description formula $\Delta_c(x_1, \ldots, x_k)$, i.e. $\mathbf{x} \in c$ iff $\mathbb{R} \models \Delta_c(\mathbf{x})$. Then

$$\mathbb{R} \models \psi \longleftrightarrow \mathsf{V}_{c \in \mathsf{TRUECELLS}} \Delta_c.$$

Solution Formula Construction Example

cell	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	T/F
1, 1	-	-	+	F
2, 1	0	-	+	F
2, 2	0	-	0	T
2, 3	0	-	+	F
3, 1	+	-	+	F
3, 2	+	_	0	F
3, 3	+	-	_	T
3, 4	+	_	0	F
3, 5	+	_	+	F
4, 1	+	0	+	F
4, 2	+	0	0	F
4,3	+	0	+	F
5.1	+	+	+	F

Solution Formula Construction Example

cell	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	T/F
1, 1	—	-	+	F
2, 1	0	-	+	F
2, 2	0	-	0	T
2, 3	0	-	+	F
3, 1	+	-	+	F
3, 2	+	-	0	F
3, 3	+	-	-	T
3, 4	+	-	0	F
3, 5	+	-	+	F
4, 1	+	0	+	F
4, 2	+	0	0	F
4,3	+	0	+	F
5.1	+	+	+	F

 $P_{2,1} < 0$

Solution Formula Construction Example

cell	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	T/F
1, 1	—	—	+	F
2, 1	0	—	+	F
2, 2	0	-	0	T
2, 3	0	_	+	F
3, 1	+	_	+	F
3, 2	+	_	0	F
3, 3	+	_	_	T
3, 4	+	_	0	F
3, 5	+	_	+	F
4, 1	+	0	+	F
4, 2	+	0	0	F
4,3	+	0	+	F
5.1	+	+	+	F

 $P_{2,1} < 0 \lor P_{1,1} = 0 \land P_{2,1} = 0$

Solution Formula Construction Problem

$$\exists y [x^2 + y^2 - 1 < 0 \land x - y < 0]$$

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

A very simple demonstration of the idea

• Consider a single polynomial $f = x^3 - 12x^2 + 44x - 48$.

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.
- f cannot describe exclusively]2, 4[or {4}.

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.
- f cannot describe exclusively]2, 4[or {4}.
- $f = 0 \wedge f' = 3x^2 24x + 44 < 0$ describes {4}.

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.
- f cannot describe exclusively]2, 4[or {4}.
- $f = 0 \wedge f' = 3x^2 24x + 44 < 0$ describes {4}.
- $f > 0 \land f'' = 6x 24 < 0$ describes]2, 4[.

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.
- f cannot describe exclusively]2, 4[or {4}.
- $f = 0 \wedge f' = 3x^2 24x + 44 < 0$ describes {4}.
- *f* > 0 ∧ *f*["] = 6*x* − 24 < 0 describes]2, 4[.</p>
- Isn't this somehow Rolle's Theorem? Yes it is!

- The approach of the original Collins article (1975).
- Idea: Produce sufficiently many polynomials during projection.
- Technically one adds "lots of derivatives."

A very simple demonstration of the idea

- Consider a single polynomial $f = x^3 12x^2 + 44x 48$.
- *f* > 0 describes]2, 4[∪]6, ∞[, *f* = 0 describes {2, 4, 6}.
- f cannot describe exclusively]2, 4[or {4}.
- $f = 0 \wedge f' = 3x^2 24x + 44 < 0$ describes {4}.
- $f > 0 \land f'' = 6x 24 < 0$ describes]2, 4[.
- Isn't this somehow Rolle's Theorem? Yes it is!

nlanek institut

Augmented projection is considered practically infeasible.

Solutions to the Solution Formula Problem (2) Extended Tarski Language

PhD thesis of Brown (1999).

Solutions to the Solution Formula Problem (2) Extended Tarski Language

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \neq\}.$

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \ne\}.$

Predicate is false if f has less than n roots.

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \neq\}.$

Predicate is false if f has less than n roots.

max planck institut

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \ne\}.$

Predicate is false if f has less than n roots.

max planck institut informatik

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \ne\}.$

Predicate is false if f has less than n roots.

- PhD thesis of Brown (1999).
- Use extended language with predicates like

 $x \varrho \operatorname{root}_{\alpha}(f(\alpha), n), \quad \varrho \in \{=, <, >, \le, \ge, \ne\}.$

Predicate is false if f has less than n roots.

State-of-the-art in QEPCAD and Mathematica, and used in Z3/NLSAT.

Summary

- virtual substitution for real quantifier elimination and some variants (extended, generic)
- software: Redlog and other
- other theories

(integers, comples, differential, padic, terms, queues, PQSAT)

- applications in geometry, verification, ...
- cylindrical algebraic decomposition (CAD)

