
RGII SO'id
State

MICROSYSTEMS

User Manual for the
RCA MicroDisk Development System
MS2000

MPM-241 Suggested Price $5.00

User Manual for the
RCA MicroDisk Development System
MS2000

no I" Solid I Somerville, NJ • Brussels • Paris • London
•• State Hamburg. Sao Paulo • Hong Kong

CLASS A
RADIO INTERFERENCE WARNING

This equipment complies with the requirements in Part 15 of
FCC Rules for a Class A computing device. Operation of this
equipment in a residential area may cause unacceptable
interference to radio and TV reception requiring the operator
to take whatever steps are necessary to correct the
interference.

2488834-1

The software described In this manual Is copyrighted by RCA Corporation.

Information furnished by RCA is believed to be accu­
rate and reliable. However, no responsibility is
assumed by RCA for its use; nor for any infringement
of patents or other rights of third parties which may
result from its use. No license is granted by implica­
tion or otherwise under any patent or patent rights of
RCA.

Copyright 1984 by RCA Corporation

Tradmark(s)® Registered
Marca(s) Registrada(s)

(All rights reserved under Pan-American Convention) Printed in USA 5-84

Foreword

The RCA MicroDisk Development System MS2000 is a micropro­
cessor computer system designed to facilitate the development of
hardware and software for applications based on the RCA 1800 series
of CMOS microprocessors. It utilizes 3-~ inch, high-density micro­
floppy disk drives. The disks provide 645 kilobytes of on-line mass
memory storage. Featuring higher speeds than its predecessors, the
MS2000, with its new DMA controller, has reduced system load time
to 0.6 second.

The MicroDisk Development System is contained in a 20-s10t Micro­
board Industrial Chassis containing not only the four Microboards
provided, but also the power supply and the complete Dual Micro­
floppy Disk Drives. The chassis provides four additional spare slots for
expansion and enhancements with any of the extensive line of RCA
Microboards.

The memory includes 632 kilobytes of RAM, 2 kilobytes of ROM,
and 645 kilobytes of on-line mass memory storage on microfloppy
disks. Software provided includes an augmented resident monitor
program UT71 and the MicroDOS operating system. MicroDOS
includes an Editor and a MacroAssembler ASM8 that operates not
only with all the RCA CMOS Microprocessors CDPI802A,
CDPI805AC, CDPI806C, and CDPI806AC, but with RCA Micro­
processors to be added to the expanding line.

Conversion programs are included that provide transportability of
source code from all other RCA Development Systems to the MS2000.

Optional add-ons include a PROM Programmer package, BASICI,
BASIC2, the CDPI8S040 CRT Terminal providing full-screen edit­
ing, and the MS3001 MicroEmulator.

This Manual describes in detail the hardware structure and the
software features and commands of the MicroDisk Development Sys­
tem MS2000. The user should also refer to the User Manualfor the
CD P 1802 Microprocessor, MPM-20 I, for a detailed description ofthe
instruction set and the architecture of the CDPI802 CMOS Micro­
processor.

3

5

CONTENTS

Page Page

System Structure and Set-up 8 MERGE 27
Chassis 8 PERTEC 28
Microboard Computer 9 PRINT 29
Microboard Memories 9 PROM25 29
MicroboardDisk Controller 10 RENAME 29
Dual Disk Drives 10 SUBMIT 30
Power Supply 10 SySGEN 34
System Set-up 11 TAPED 37
Monitor Program Check 11 U .. 37
Disk Operation Check 11 VERIFy 37

Understanding MicroDOS 13 User Program Generation 39
Introduction 13 Case 1 39

MicroDOS System Ingredients 13 Case 2 39
Files and File Names 13 Case 3 40
Diskettes and Diskette Handling 14
Memory Requirements 14
Utility Program UTI 1 15
Peripheral Devices 15
Program Creation and Translation 15

How MicroDOS Operates 15
Resource Management 15

Device Name Format 15
File Name Format 15
"Wild-Card" Construct 16
Referencing Files 16
Development Station Console 16

Command Intepreter 16
Command Format 16
Error Messages 17
Diskette File Management 17
File Types 17
File Attributes 17

Diskette Structure 18
MicroDOS Commands 18

Disk Editor 41
Introduction 41
Operating Instructions 42

Memory Space Requirements42
Input and Output Files42
Record Formats 42
Buffer Pointer 43

EDIT Command Operation 44
Command Strings 44
Command Formats 44
Correcting Command Typing Errors 44
Interrupting EDIT Execution 45
Filled Workspace Warning 45
File Assignments 45

EDIT Commands - Single 45
Pointer Control Commands 45

BEGINNING 45
END OF BUFFER 45
CHARACTER STEP 46
LINE STEP 46

MicroDOS Command Descriptions 19 TYPE LINE NUMBER 46
CDSBIN 19 File ManipUlation Commands 46
CONASM 20 INPUT FILE SELECTION 46
COpy 20 OUTPUT FILE SELECTION 46
DEL 21 APPEND 46
DIAG 22 NEXT 46
DIR 22 MERGE FILE 46
EXAM 24 Deletion Commands 47
FRMT 26 DELETE 47
FREE 26 KILL 47
HELP 26 Text Insertion and Data Manipulation 47
MEM 27 INSERT 47
MEMTST 27 SAVE 47

6 User Manual for the RCA MicroDisk Development System MS2000

Page Page

GET 47 Major Statements 61
FIND 47 Status Statements 61
SUBSTITUTE 47 Conditional Assembly Statements 62

Output Commands 47 Sample Program - Major Statements 64
TyPE 47 Level II Assembly Language 64
PRINT 47 Executable Statements: Level II 64
TYPE EDITOR STATUS 47 Substitution Instructions 64
WRITE and DELETE47 D-Sequence Instructions 65
END 48 Sample Program Illustrating D-Sequences. 67
FILE CLOSE 48 Macros and Their Use 67
QUIT EDIT SESSION 48 The Mechanics of Macro Usage 67
RETURN TO UTILITY PROGRAM48 Sample Program Using Macro 68

Summary of Commands and Control Assembler (ASM8) Operating Procedures 68
Characters 48 Cross-Reference Listing 70

EDIT Commands - Composite 49 Error Messages 70
Horizontal Tabs 51 Non-Fatal Errors 70

Additional Note 51 Fatal Errors 71
File Development and Manipulation 51 Warnings 71

Creating a File 51 MicroDOS User Functions 72
Adding to a File 52
Deleting a Section in a File 52

110 Control Block and Buffers 72
IOCB Initialization 72

Moving a Section in a File 52
Modifying a Section in a File 53
Some Command Examples 53

File Manipulation Summary 53
Creating a New File 53
Changing an Existing File 53

Byte 0 - Open Parameter 72
Byte I - Status Byte 72
Bytes 2 to 4 - Non-User Area 73
Bytes 5, 6 - Start of Sector Buffer 73
Bytes 7, 8 - End of Sector Buffer 73
Byte 9 - Write Parameter 73

Disk Assembler (AS8) 55 Byte II - Unit Number 73
Assembler Operation 55 Bytes 12 to 20 - Name and Extension 73
Backus-Naur Format (BNF) 56 Byte 24 - File Definition 73
Basic Definitions 57 Byte 31, 32 - Device Mnemonic 73

Character Set 57 IOCB Changes After a File Is Opened 73
Character Strings, Identifiers, and Labels 57 Bytes 5 to 8 - Sector Buffer 73
Constants 57 Byte 0 - Open Parameter 73
Keywords 58 Byte 9 - Write Parameter 73

Level I Assembly Language 58 Bytes II to 20 - Unit Number, Name, 73
Line and Statements 58 and Extension 73
Expression Evaluation 58 Bytes 31. 32 - Device Mnemonic 73
Arithmetic Expressions 58 IOCB Example 73
Relational Expressions 59 Introduction to User Functions 74
Logical Expressions 59 Console 110 Routines 74
Bitslice Expressions 59 CREAD 74
Limitations 60 TyPE 75
Executable Statements: Level I 60 Disk 110 Routines 75
First Class Instructions 60 GETCHR 75
Second Class Instructions 60 PUTCHR 75
Third Class Instructions 60 GETSEC 76
Fourth Class Instructions 60 PUTSEC 76
Macro Call Statement 60 CLOSE 76
Directives 61 OPEN 76
Minor Statement. 61 REWIND 77
Sample Program Level I 61 CDERR 77

Contenm __ ___
7

Page Page

10CB Setup Aid Routine 77 Type Routine 85
SRNAM 77 Example I (TYPES) 85

Return to MicroDOS Operating System Example 2 (TYPE6) 85
Routine 79 Example 3 (TYPE and TYPE2) 85
CDENT 79 Example 4 (OSTRNG) 85

Operating Sequence Summary 79 Additional Monitor Routines 86

Monitor Programs UI71 80
Register Save 80
Self Test 80
UT7l Commands 80

T: Test RAM/PROM 80
0: Display Memory 80

ASCII to Hex Conversion (CKHEX) 86
Initialization Routines (INIT! and INIT2) 86

Example I (IN IT!) 86
Example 2 (INIT2) 86

Restarting UT71 (GOUT7I) 86
Line Printer Interfacing (LINEPR) 86
Disk Routines 86

I: Insert into Memory 81 Calls to Driver Routines 88
M: Move Memory 81
F: Fill Memory 81
S: Substitute Memory 81
P: Run Program 82
L: Load System, Drive 0 82
B: Load System, any Drive 82

Appendices
A. Diskette Organization and Structure 89
B. BNF Syntax of Assembler ASM8 93
C. MS2000 Memory Test. 96
D. Error Messages 97

l. MicroDOS 98
R: Read a Sector 82
W: Write a Sector 82
?: Input from Port 82
!: Output to Port 82

2. Utility Program UT71 98
3. Editor 98

E. Sample Program Illustrating User
Functions 100

Terminal Interfacing , 83 F. I/O Group Assignments 105
U ART Action 83 G. Utility Program (UT71) Listing 106
ASCII Coding 83 H. ASCII Hex Table 132

UT71 Routines READ, TYPE, and OSTRNG 83 I. Terminal Interface Cable CDPI8S516 133
Register Use 83 J. Adding Generic Devices 134
READ 84 K. MicroDisk Development System MS2000
TyPE 84 Specifications 136
OSTRNG 84 L. Contents Directory of System Diskette

Examples of READ and TYPE Usage 85 (Typical) 138
READ Routine 85 M. Format of SUBMIT Command 139

8

1. System Structure and Set-up

Two Memory
Disk Drives

30-kB RAM
2-kB ROM

FourExpan~on Pow.rSup~yand
Positions Control Panel

Fig. 1 - MS2000 chassis with two front covers removed to show typical module locations.

One of the features of the MicroDisk Development
System MS2000 is its modular construction. Fig. I
shows an arrangement of the modules that provides
good mechanical and electrical balance. The modules
that make up the MS2000 include:

I. 20-Slot Microboard Industrial Chassis with
Backplane

2. CMOS Microboard Computer (CPU)
3. Microboard Memory Module with 32 Kilobytes

of RAM
4. Microboard Memory Module with 30 Kilobytes

of RAM and 2 Kilobytes of ROM
5. Microfloppy Disk Controller
6. Dual Disk Drive Module
7. Power Supply Module

Chassis
The chassis supplied with the MS2000 is a 20-slot

customized MSI8820 Industrial Chassis. It includes an
integral card rack, backplane, and case. The top and
bottom covers are perforated and removable. The front
and back covers are removable as are the side panels and
end bezels.

The backplane is a standard Microboard universal
backplane in which any module may occupy any posi­
tion. To prevent magnetic interference between the
MSIM40 power supply and the MSIM50 Disk Drives,
always mount the modules with at least four card slots
between them. Table I shows the backplane signals and
their pin assignments.

The signal naming convention is to give each signal an

1. System Structure and Set-Up 9

Table I-Pin Terminals and Signals for the RCA Microboard Universal Backplane.

Wire Side

Signal
Pin Mnemonic Flow Description

A TPA-P Out System Timing Pulse 1
B TPB-P Out System Timing Pulse 2
C DBO-P In/Out Data Bus
D DB1-P In/Out Data Bus
E DB2-P In/Out Data Bus
F DB3-P In/Out Data Bus
H DB4-P In/Out Data Bus
J DB5-P In/Out Data Bus
K DB6-P In/Out Data Bus
L DB7-P In/Out Data Bus
M AO-P Out Multiplexed Address Bus
N A1-P Out Multiplexed Address Bus
p A2-P Out Multiplexed Address Bus
R A3-P Out Multiplexed Address Bus
S A4-P Out Multiplexed Address Bus
T A5-P Out Multiplexed Address Bus
U A6-P Out Multiplexed Address Bus
V A7-P Out Multiplexed Address Bus
W MWR-N Out Memory Write Pulse
X EF4-N In External Flag
y +5V +5V dc
Z GND Digital Ground

alphanumeric name descriptive of its major logic func­
tion, followed by either -N or -Po The -N means that the
named function is true or asserted when the voltage on
that particular wire is at ground. The -P means that the
named function is true when the voltage is at +5 volts.
Thus, a signal NAME-N, after passing through a logic
inverter, becomes NAME-P, and vice versa.

The user may wish to rearrange the position of the
existing modules when adding expansion modules. For
example, if a U ART card or a Modem card is added, the
two memory cards can be moved to slots 13 through 16
to place the serial-interface card near the left side for
ease of cable entry. Alternatively, the cable may be
passed under the disk-drive assembly at the front, top,
or bottom and the serial card placed in slots 13 through
16. There is sufficient space to pass a 34-wire flat cable
(wider cables may be folded). The size of the connector
needed with the wider cables will require that the disk
module be pulled part way out while placing the cable.

When using the PROM Programmer CDP18S680,
the left side panel may be removed and the Programmer
placed in slot 1 for access through the left-hand end
bezel.

Always allow clearance for air circulation at the top
and bottom of the chassis. Overheating and drive or
supply failure could result otherwise.

Pin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Component Side

Signal
Mnemonic Flow Description

DMAI-N In . DMA Input Request
DMAO-N In DMA Output
RNU-P - Run Utility Request
INT-N In Interrupt Request
MRD-N Out Memory Read

Q-P Out Programmed Output Latch
SCO-P Out State Code
SC1-P Out State Code

CLEAR-N In Clear-Mode Request
WAIT-N In Wait-Mode Request
-5/-15V - Auxiliary Power
SPARE - Not Assigned

CLOCK OUT Out Clock from CPU Osc.
NO-P Out I/O Primary Address
N1-P Out I/O Primary Address
N2-P Out I/O Primary Address
EF1-N In External Flag
EF2-N In External Flag
EF3-N In External Flag

+12V/+15V - Auxiliary Power
+5V +5Vdc
GND Digital Ground

Microboard Computer
The Microboard Computer supplied as the CPU of

the system is a variant of the CDPl8S605 Microboard
Computer. The on-board memory has been left out
because the system memory is wholly contained in the
two memory Microboards. As a result, the CDPI802A
Microprocessor and the CDPI854A UART are the
main functional units. The U ART provides the serial
data path to an external data terminal through an
RS232C interface. The baud rate is selectable by the
setting of a DIP switch on the CPU Microboard. Baud
rates from 50 to 19,200 are available. Table II is a baud
rate selection chart showing the position of each of the
four rockers of switch S 1 for each output baud rate
available.

Microboard Memories
Both memory Microboards supplied with the MS2000

are made from the CDP18S628. One is populated with
32 kilobytes of RAM and occupies memory space from
OOOOH through 7FFFH (H indicates hexadecimal nota­
tion). The other is populated with 30 kilobytes of RAM
and 2 kilobytes of ROM. The ROM contains the moni­
tor program UT71. The ROM occupies memory space

10 User Manual for the RCA MlcroDlsk Development System MS2000

Table II-Selection Chart Showing Rocker Positions for
Each Baud Rate Available on the CPU Board.

Switch S1 Output Rate
4 3 2 1 Baud"

C C C C 19200
C C 0 C 50
C C 0 0 75
C 0 C C 134.5
C 0 C 0 200
C 0 0 C 600
C 0 0 0 2400
0 C C C 9600
0 C C 0 4800
0 C 0 C 1800
0 C 0 0 1200
0 0 C C 2400
0 0 C 0 300
0 0 0 C 150
0 0 0 0 110

·Actual Input to UART IS 16 times the indicated output rate,
assuming a clock frequency of 2.4578 MHz. 0 = open; C =
clothes.

SOOOH through S7FFH, and the RAM SSOOH through
FFFFH.

Microboard Disk Controller
The Microboard Disk Controller CDPlSS6S1 pro­

vides the I/O interface between the system software and
logic and the two disk drives. Instruction and status data
are transferred by output and input commmands; bit
data are transferred by Direct Memory Access (DMA).
The logic to control the DMA process is built into the
disk controller Microboard to interface with the on-chip
DMA controller of the CDPlS02A on the CPU Micro­
board. At the end of a DMA transfer, external flag EF3
is used to signal the completion to the software.

The monitor program UT71 contains the I/O driver
routines for performing all the commands for the disk
operating system (MicroDOS). The disk controller can
perform the following functions:

1. Seek a track
2. Format a track
3. Write a sector
4. Read a sector
S. Read mUltiple sectors
6. Write multiple sectors
7. CRC READ (Read without data transfer but

with error checking).
S. Recalibrate (Return heads to home position on

track 00).

The disk controller is capable of a variety offormats.
Appendix A - Diskette Organization and Structure
shows the format and disk organization used by the
MS2000 MicroDisk Development System.

Dual Disk Drives
The two MicroDisk drives are contained in the

MSIMSO module. The module occupies eight slots in
the 20-slot chassis. An edge connector picks up power
from the backplane, and power-conditioning circuits
then provide +S and + 12 volts to the two disk drives. The
signal cable is a "daisy chain" configuration using a
26-wire flat cable. The controller end of this cable is a
SO-pin connector mating with the CDPlSS6S1 Micro­
board Controller. The controller is located immediately
to the left of the disk drive module in the chassis. Be
careful that the cable doesn't "push" on the cover of
Drive 0: disk errors will result.

The drives are labeled 0 and 1, corresponding to the
drive number used in MicroDOS commands. Drive 0 is
the left drive.

The mating 3 Yl-inch diskette has a hard cover with a
sliding cover over the head access window. As supplied,
the diskettes are not write protected. Activate this fea­
ture by breaking out the protect tab, rotating it 90°
counterclockwise, and reinserting it. Slide the tab out­
ward for write protect and inward for write enable.

Always mount the MSIMSO at least four card slots
away from the MSIM40.

Power Supply
The MSIM40 Power Supply Module plugs into the

system chassis and occupies four slots. The edge connec­
tor supplies +S, + IS, and -IS volts to the system back­
plane and interfaces the control logic to the system.

An AC input cord, fuseholder, power on-off switch,
and power-on indicator (+S volt LED) are on the front
panel. In addition to the power functions, the front
panel provides two system control switches and a run­
ning indicator.

The two control switches are momentary-action,
double-throw types having a center-off position. The
R UN UTILITY (RNU) switch, when pressed down,
causes a system reset followed by a start at address
SOOOH, the beginning of the monitor program UT71.
The RUN PROGRAM (RNP) switch, when pressed
down, causes a system reset followed by a start at
address OOOOH, where a user program may have been
stored in RAM. If either switch is pressed upward, a
system reset is generated and latched until either switch
is pressed down. The indicator LED labeled RUN is
lighted during program execution and extinguished
when an IDLE instruction, aWAIT condition, a

1. System Structure and Set-Up

RESET condition,or any malfunction preventing nor­
mal fetching of instructions is encountered.

System Setup
As the first step in system setup, remove the chassis

from the carton and place it on a table on its four rubber
feet. Using a No. I Phillips screw-driver, remove the two
screws from the left-most front cover (the one with the
"RCA" on it). Remove the cardboard spacer that held
the boards in place during shipment. Remove the left­
most board (the CPU board) by lifting up on the black
card extractor on the top of the board. Push the card
extractor down and carefully remove the CPU board.
NOTE: Handle the board on the edges only since the
CMOS parts on it are sensitive to static electricity.
Locate the red four-position baud-rate switch and set
the baud rate corresponding to your terminal, as given
in Table II. In this table, C means on, 0 means off. Now
reseat the other three boards by lifting up on their
extractor. Then push it down and firmly press the
boards back into place. Any of the boards may be
removed for your inspection but remember to be careful
in handling them; and make sure that they are firmly
reseated. Finally, replace the CPU board in the left card
slot. NOTE: Make sure the component side of the board
faces left.

The lO-pin connector on the top edge of the board is
the RS-232 terminal connector. Remove the black cable
from the parts box, push the lO-pin end ofthe cable into
the back of the chassis between the left rear handle and
the chassis body. Then feed it into the slot in the forward
part of the plate on the left side next to the CPU board.
Finally, place the lO-pin connector over its mating pins
on the CPU board, being careful to align the plugged
hole with the position of the missing pin. Now connect
the other end with the 25-pin D connector, to your
terminal. If the sex of the connector is incorrect for your
terminal, use the "gender bender" included in the parts
box.

Next plug in the computer system and terminal; turn
on the terminal, then the computer system. The red
"5V" light on the right panel indicates the presence of
the +5 volts DC.

Monitor Program Check
With the +5 volts available, the red "RUN" light will

come on and an asterisk and UT71 version number will
be displayed on the terminal. The asterisk is the prompt
for the UT71 Monitor program. (If no asterisk appears,
try restarting the monitor program by depressing and
releasing the RUN U toggle switch.)

11

Now type T (CR)
where (CR) means carriage return. The system should
respond with

MEMORY OK

•
The "T" command does a checksum of the Monitor

ROM, and does a read-write test on all RAM (RAM is
left filled with "AAsj.

Now type

D8000 20 (CR)

The system will respond with

8000 7100 F880 BOF8 8CBI F81F

AIFI 21F8 D073

8010 81F6 CFF9 IOFC 8151 F33A

26D I 7381 FF03

•
The monitor command "D" displays the contents of
memory at the terminal. The command displays the 20
hex (32 decimal) bytes of data starting at location 8000
on the terminal, then returns the prompt. Since terminal
communication has been established, the front cover,
removed earlier, can be replaced.

Disk Operation Check
The system disks can now be used. Take the blue­

plastic-enclosed 3Y2-inch diskette with the white stick­
on label from the parts box. This diskette contains the
MicroDOS Operating System, some utility programs,
and the Editor and Assembler.

Check to see if this disk has been "write-protected" to
prevent data being inadvertently written to it, possibly
destroying existing programs. To do this, find the small
rectangular cutout in the corner of the back of the
diskette, the side with the round metal hub in the center.
If the removable tab is either missing or has slid against
the outside edge of the cutout, the disk is write pro­
tected. If the disk has not been write-protected, you
must complete the procedure described in the next
paragraph.

Carefully pry up the tab and break it loose. Turn the
tab 90° from its original position. On one of the short
ends, there is a small protrusion. This will line up with
the depression in the side of the slot from which the tab
was removed. Carefully insert the tab in the slot, align­
ing the protrusion on the tab with the depression on the
side of the slot, and snap the tab in place. When properly
inserted, the tab will slide back and forth in the slot
without coming out. Slide the tab towards the closest
edge of the diskette. This will write-protect it. You can

12 User Manual for the RCA MlcroDlsk Development System MS2000

un-write-protect a disk with a missing tab by covering
the slot with tape.

Turn the diskette over and slide the metal protector so
that the oval cutout is in the center of the diskette in line
with the load access hole in the blue plastic. The record­
ing media can be seen through this hole. Now insert the
diskette into the left disk drive, the one marked
"DRIVE 0." Orient the diskette so that the metal hub is
towards the right (away from the CPU board) and the
edge with the head access hole fits into the disk drive slot
first. Push the diskette all the way into the drive until it
clicks into place and the red light on the drive blinks on
then off. The diskette will not latch if improperly
oriented. This completes the loading of the diskette.

Auto-shutter diskettes, mounted in drives so-equip­
ped, will open and close the cover automatically.

Now load the disk operating system. Type "L", and
the system will load the 12 kilobytes of operating system
into memory. About 0.6 second after typing L, the
MicroDOS prompt is issued:

(C) Copyright 1982 RCA Corporation
MicroDOS X.X

The ">" sign is the MicroDOS prompt. The X.X will be

two digits, the revision number ofthe diskette (e.g., 0.0).
Now type DIR;S (CR) . This entry will run the disk

directory program, which will display the name of the
diskette and an alphabetical listing of all the files on the
disk.

Next type HELP (CR) and follow the instructions
given you on the first screen. The HELP utility gives a
brief description and format of each of the MicroDOS
utilities.

As a first use for the system prepare a second diskette
in the parts box for use. This diskette must be formatted
and initialized for MicroDOS;this is done by using
FRMT and SYSGEN. Place this diskette in drive I in
the same manner as described above for the system
diskette, but don't write-protect it. Type FRMT (CR)
and follow the instructions. When this task is complete,
type SYSGEN;E (CR) and follow those instructions.
You will then have created- a duplicate of the system
diskette. The original can be removed and set aside for
safe keeping.

This description demonstrates only a very small part
of the system capability. Refer to the remainder of this
manual for descriptions of the other utilities and the
Editor and Assembler.

13

2. Understanding MicroDOS

Introduction
The Microboard Disk Operating System (Micro­

DOS) associated with the MicroDisk Development
System MS2000 is a powerful and easy-to-use tool for
software development. It is an interactive mass-memory
storage system capable of dynamic file operation and
management. Its commands, obtained via the system
console, reference files stored on the diskette. By means
of its dynamic operating system, MicroDOS keeps
track of changes in file size during software develop­
ment and allocates disk space as needed. Disk space not
needed by a file is freed and made available for use by a
different file. The file operating system can have multi­
ple input and output files open at the same time and can
thereby provide the user with considerable design flexi­
bility. The operating system also provides a set of func­
tions that can be called by a user program to perform
utility operations such as open files, close files, and the
like.

MicroDOS System Ingredients
Use of the MicroBoard Disk Operating System

(MicroDOS) requires a MicroDisk Development Sys­
tem MS2000. The software needed for MicroDOS
operation includes the UT71 Utility Program, provided
on ROM, and the programs provided on the Micro­
DOS System Diskette. These programs include:

On Disk:
1. MicroDOS Operating System (OP. SYS)
2. MicroDOS System Commands (CDSBIN,

COPY, DEL, DIR, FREE, MERGE, PRINT,
RENAME, SUBMIT, SYSGEN, U, VERIFY)

3. MicroDOS Macro Disk Assembler (ASM8)
4. MicroDOS Disk Editor (EDIT)
5. Memory Save Program (MEM)
6. Diskette File Examination and Modify Program

(EXAM)
7. Diskette Diagnostic Program (DIAG)
8. ASM4 to ASM8 Source Conversion Utility

(CONASM)
9. Pertec to or from MicroDisk Transfer Utility

(PERTEC)
10. Cassette to or from MicroDisk Transfer Utility

(TAPED)

11. Memory Test Utility (MEMTST)
12. Diskette Format Utility (FRMT)
13. Instructions for MicroDOS (HELP)
14. Twelve User Functions

On ROM (UT7l)
1. Disk Loader
2. 110 Transfer Routines (READ, WRITE)
3. UT71 Self-Test Routine

Files and File Names
All user-generated programs stored on diskette are

identified by file names of up to nine alphanumeric
characters. The names for these files are devised and
assigned by the user. Each diskette maintains a dynamic
directory of all user files kept up to date automatically
by the MicroDOS Operating System. Access to a user
file is by its name only; the user has no need to know
where a program resides and need not maintain track
number information for any of the programs.

The major advantage of the MicroDOS Operating
System and its use of file names is that only the Operat­
ing System is loaded into memory. All other function
files stay on diskette and go into memory only when
they are used. This dynamic file management system
gives the user maximum service from the MS2000
memory capabilities for programming needs.

A file is composed of a set of sectors grouped into a set
of clusters. Each cluster contains one sector. Files are
located by MicroDOS only on one disk and are identi­
fied by name, extension, and device unit number.

The file name consists of from one to six alpha­
numeric characters and an extension consisting of from
one to three alphanumeric characters. The first charac­
ter of the file name and the extension must be alpha­
betic. The standard format for a file name is given by the
following example:

FILENl.SXX:#
where FILENI is a 1 to 6 character name
SXX is a 1 to 3 character extension, and
is the number of the drive unit (either 0 or 1)

All the MicroDOS system commands are files on the
system diskette. These commands are brought into
execution when the command name is typed on the
console input. Because the main Operating System

14 User Manual for the RCA MlcroDlsk Development System MS2000

resides in memory in locations 9000-BFFF, its area
cannot be used by any program. Care must be taken,
therefore, not to write a program that uses that area.
The majority of memory, however, is left available for
execution of the system commands or the user pro­
grams. Once a system command or user program has
finished operation, the memory area used is returned to
the system so that other programs can use that same
area.

All file names are stored on a special area of a
diskette. This special area is called the Directory and is
not the same as the DIR.CM utility which is discussed
later in this manual. The Directory resides on track 0 of
all diskettes and cannot be deleted. Any diskette that is
to be used by MicroDOS must have this file. It can be
generated only by the SYSGEN command. Thus, each
new diskette must be initialized using the SYSGEN
command before it can be used.

MicroDOS supports two types of files: ASCII and
binary. ASCII files contain only ASCII characters.
Examples are assembly source and object files. Binary
files contain only binary information and are used for
system programs such as the Assembler and Editor.
Binary files require only half the space for storage and
can be loaded twice as fast as their ASCII equivalents.
Files generated by the system, however, are ASCII
unless they have been created by use of the program
CDS BIN, which converts an ASCII object file to
binary.

A file called the Operating System appears in the
Directory as OP.SYS and is designated as file type 3.
this file is the actual MicroDOS Operating System and
cannot be copied or merged. It can be deleted if the
delete protection is removed with the RENAME com­
mand. It resides on tracks I through 3 and is also
transferred only by the SYSGEN command. The
information in this file is in binary. The Operating
System does not have to be on a MicroDOS diskette. It
only has to be on the diskette that is used to load
MicroDOS. Not having the Operating System on the
diskette frees three tracks for user information, approx­
imately 4% of the diskette area. By means of the DIR
command with S option, the presence of the Operating
System on a diskette can be ascertained.

Diskettes and Diskette Handling

The diskettes used by MicroDOS are of the double­
density type and can store over 322,000 bytes. The drive
mechanism has two drive units (the left hand one is
designated 0; the right hand one is designated I). The
system has a capacity of over 644,000 bytes of on-line
storage.

To assure trouble-free reading and writing files, the

diskettes, although fairly rugged, must be handled and
stored with care. To avoid damage to the recording
surface and to prevent diskette deformation, the follow­
ing specific precautions should be carefully observed.

* Close the disk guard cover when not in use.
* Do not touch its recording surface.
* Do not smoke when handling the diskette.
* Do not clean the recording surface.
* Do not bend the diskette or deform it with paper

clips or other similiar mechanical devices.

The operating and storage environment must be
compatible with the materials of the diskette. The envir­
onment of the diskette should meet the following
criteria:

* No noticeable dirt, dust, or chemical fumes in
the immediate area.

* Temperature between 500 F (100 C) and 1150 F
(450 C).

* Relative humidity between 8 and 80 percent.
* Maximum wet-bulb temperature of 850 F (300

C).
* No direct sunlight on diskette surface for pro­

longed periods.
* No nearby magnetic fields.

Loading a diskette into a drive mechanism and re­
moving it requires a few precautions to avoid damage
and to assure proper operation. These precautions
include:

* Do not insert or remove a diskette unless power
is applied to the System.

* Insert diskette with read/write access slot first.
* Insert diskette until it automatically becomes

locked in.
* Do not remove a diskette from a drive if the

select light for that drive shows any sign of
activity.

* Format each new diskette with the FRMT
utility and then initialize it with the SYSGEN
utility

* Do not leave diskette idling in system for pro­
longed periods.

. Memory Requirements

MicroDOS requires memory in the following areas:

User Areas

Utility Program
Operating System Area

Hexa-
Decimal
Address

0000-7FFF
COOO-FFFF
8000-8FFF
9000-BFFF

Decimal
Address

0-32767
49152-65535
32768-36863
36864-49151

2. Understanding MlcroDOS

The user area (OOOO-7FFF and COOO-FFFF) is used
by either the user programs or by MicroDOS com­
mands. The memory area from 9000 to BFFF is
reserved for MicroDOS.

Utility Program UT71
The Utility Program UTII contains the bootstrap

program that initially loads the Operating System into
memory. It may be loaded from drive 0 with the "L"
command or from any drive with the "B" command. If
the specified drive does not contain a diskette, an error
message is printed and control remains with UT71. To
load the Operating System, place the system diskette in
drive unit 0 and type L.

After the Operating System has been loaded, control
is transferred to it. If the user wishes to use the debug
feature in UT71, the user must press the RESET / RUN
U key or return to the UT71 by typing U,8000. If the
user is operating under UTI I and wishes to return to the
Operating System, which was previously loaded, he
must type P9000(CR).

Peripheral Devices
All communications between the peripheral devices is

handled by either UT71 or the Operating System. When­
ever the command interpreter requires I/O, it goes to
the appropriate routine in UT71 or MicroDOS where
the function takes place. When the function has been
completed, control returns to the command interpreter.
Usually the user will not have to be concerned with the
peripheral devices because communication with them is
handled by MicroDOS automatically.

Program Creation and Translation

With the Editor, the user can create or modify an
existing program. The program may be stored on the
diskette under a file name with or without an extension.
Once the source file has been created on the diskette, it
can be input to the Assembler or Editor by referring to
its file name.

To speed the loading of object file modules and save
space on the diskette, MicroDOS has a command that
converts ASCII-HEX object files into binary object files
(CDSBIN).

How MicroDOS Operates
Resource Management

A major function of MicroDOS is to manage the
resources of the development system so that the user
does not have to. MicroDOS provides these functions

15

by having a fixed way of identifying each file on the
diskette and the peripheral devices such as the console
or line printer.

Device Name Format. With MicroDOS, a specific
name is assigned to each peripheral generic device. The
device name always begins with the symbol "#" and
includes two additional characters. The generic device
names pre-assigned by MicroDOS include:

#TY Teletypewriter console printer
#KB Console keyboard
#LP Line printer
#SC CRT screen

Additional names for other peripheral devices can be
assigned by the user. A device name for the disk drive
mechanism is not needed because its designation is
implicit in the file name format.

File Name Format. Each file to be stored on the diskette
is identified by a three-part designation consisting of a
NAME, an EXTENSION, and a DRIVE NUMBER.
Fig. 2 shows the format for assigning identifying desig­
nations to files. In this format, NAME is a user-assigned
name consisting of an alphabetic character followed by
up to five alphabetic or numeric characters.

TINAMEI .1~1:~ numbor

LIto 3 Ilphonumoric "'"roct"n
, to 8 IIph8nurneric ch.rectan

92CS-31642

Fig. 2 - Format for naming files.

The EXTENSION, separated from the NAME by a
period, may be used to differentiate versions or revisions
ofthe same program. The EXTENSION is one to three
alphanumeric characters the first of which, like the
NAME, must be alphabetic. Although an EXTEN­
SION is not required when a file designation is assigned,
if an EXTENSION is added it must be used every time
the file is referenced. When the command CDS BIN is
used, if an EXTENSION is not specified by the user,
MicroDOS will assign one (CM).

The DRIVE portion of the file designation is a
number, either 0 or I, preceded by a colon(:) and is the
logical number ofthe drive unit. Ifthe DRIVE number
is not specified, MicroDOS assumes it is 0 except for the
Editor and Assembler. If the file does not reside in the
unit specified, an error message is printed.

Whenever FILENAME is used throughout this
manual, it means:

::=<NAME>[. <EXTENSION>] [: < DRIVE>]

16 User Manual for the RCA MlcroDlsk Development System MS2000

Examples of FILENAMES are:

AB
AB.XY
AB.XY:O

"Wild-Card" Construct. When a directory is being
searched for a file name, the user can take advantage of
the "wild-card" construct with certain commands to
broaden the search. The "wild-card" construct refers to
the use of an asterisk * in the place of some or all the
characters in a name or extension. The asterisk means
match anything when the directory is being searched.
For example:

NAME.* - means match any file name with
NAME and extension or without an
extension.

*.EXT -

. -

means match any file name with EXT
and any name.
means match any file name.

The asterisk can also specify a wild-card match for the
remainder of the name or extension. For example:

AB*.HEX - means match any file name with AB as
first two characters of the name and HEX as the exten­
sion. These file names would match:

ABC.HEX, ABXYZ.HEX, AB.HEX.

Referencing Files. The MicroDOS method of referring
to files by means of a user-selected name that can be
both brief and mnemonic can save the user a great deal
of time as compared to a physical retrieval and defining
of the unit number and track number for a file. Micro­
DOS keeps track of where the file was established and
where it is located on the disk. The file name is con­
verted by MicroDOS to physical addresses for the sys­
tem to use when the file is opened.

The opening of a file reserves a table for referencing
the file and for holding pointers to the file's beginning.
As the user accesses the file, the pointers change. The
system or the user program may continue to reference
this file until it is closed. When one of the system com­
mands (such as VERIFY) makes access to files, the
opening and closing of files are done within the com­
mand. If the user writes a program that opens or closes
files, the program must contain the open and close
function. Refer to the chapter entitled MicroDOS User
Functions, for more details.

Development Station Console. The console is used to
echo the user input, display messages that direct the user
to perform specific functions, or display data. It may be
either a hard-copy terminal or a CRT terminal and is
used to communicate with MicroDOS. The designation
for the console input device is #KB and is actually the

console keyboard. The designation for the console out­
put device may be either #TY for a hard-copy terminal
or #SC for a CRT terminal.

When #SC is selected as the output device and when a
large data file is sent to the CRT screen, only 22 lines of
data will be displayed at a time. The prompt "****"will
also appear at the bottom of the screen indicating that
more data is to follow. The user may view the next 22
lines by pressing the space bar. This procedure is
repeated until the entire file or message has been viewed.

A program that can be halted with the BREAK key
(EXAM, COPY, etc.) can usually be either aborted with
the Q key or continued with any other key after it has
been halted by the BREAK key.

Command Interpreter
The command interpreter is the main interface

between the user and the Disk Operating System. The
user enters commands through the main console device.
Prior to command entry, however, the Operating Sys­
tem has to be loaded into memory from disk. The
Operating System is designated MicroDOS VV.RR,
where VV is the version number and RR is the revision
number. MicroDOS tells the user that it is ready for
more input, after it is loaded, by the single prompt
">". At this point, interrupts are disabled. If the user's
program sets interrupts and returns to MicroDOS
through the system function CDENT, interrupts remain
as set by the user's program. If the user reenters
MicroDOS through P9000, interrupts will be disabled.
Once MicroDOS is executed either by loading with the
L command or by executing a P9000 from UT71, inter­
rupts are disabled. Entering MicroDOS any other way
will leave the interrupt state as the user program
assigned them.

The command to the Operating System includes the
name of the system file to be executed plus any parame­
ters or options that the file may need. Because all com­
mands are names of files stored on the disk, the user may
add to the existing set of commands very easily.

Command Format. The format for the command line is
given by:

where

<FILENAME>[<DELIM>
<IDENTIFIER>]
[;<OPTIONS>]

<FILENAME> is of the form defined in
Fig. 2
<DELIM> is a non-numeric character
such as comma, space, or slash
<IDENTIFIER> is either another file name
or a generic device name

2. Understanding MlcroDOS

<OPTIONS> are either one or more
<IDENTIFIER> or a <NUMBER> de­
pending on the command

All system commands are given the extension "CM".
If the user does not type an extension with the filename
when specifying a command, MicroDOS will assume
that it is "CM". A command cannot have a blank exten­
sion. When the user wishes to load an object file with a
blank extension, he must add an extension after the file
name with the RENAME command. The unit number
default value is 0, unless otherwise specified.

When a file is loaded, one ofthree actions is taken. (I)
Ifthe file is a binary file created by CDS BIN, the file is
loaded and executed at the starting address given by the
COS BIN program. (2) If the file is an ASCII-HEX file,
with no SU information at the end of the file, the file is
loaded and control is passed to the command interpre­
ter. To execute the loaded file, the user must press
RESET / RUN U followed by a P and execution address
command on the console device. (3) If the file is an
ASCII-HEX file with the SU information at the end of
the file, such as a listing or hex file created by the
Assembler, the file will be loaded and executed at the
address following the SU.

<OELIM> between file names in the command
must be non-alphanumeric characters (such as .::l or = or
/ or ,) that are not used by the file name.¢ The following
commands, therefore, would all perform the same
function.

DIRMEM.SOH
DIR=MEM.SOH
DIR/ MEM.SOH
DIR,MEM.SOH

In addition to the above delimiters, MicroDOS
ignores leading spaces of a command and treats multi­
ple spaces between commands as one delimiter.

If the file name is not found on the system, the

"FILENAME NOT FOUND"

message will be printed. If an erroneous file name such
as 1.# is typed, the message

WHAT?

is typed and control is returned to the command inter­
preter. The CTRL-C character (03) will cause deletion
of the entire command line. The LF character (OA) will
type the current contents of the command line.

The rubout key (7F) will print a left bracket "["
followed by the deleted character. When the key for
non-delete character is pressed, a right bracket "]" is
printed followed by the pressed character. The rubout

¢ Symbol .::l is used here to indicate a blank space.

17

deletes the last character entered into the buffer. NOTE:
Unless otherwise specified, all console inputs are termi­
nated by a carriage return (CR). Note also that correc­
tions cannot be made by backing the cursor and typing
over the erroneous characters.

To pass control from MicroDOS to the Utility Pro­
gram UT71:

Type U,8000 (CR) or press the RESET/RUN U
key.

To pass control from UT71 to MicroDOS:
Type P9000 (CR)

Error Messages. All error messages are displayed in a
text manner. If a file name cannot be found, MicroDOS
prints a message giving the file name requested and
stating that it was not found. Recovery from error
message depends on the MicroDOS program being
executed. Subsequent chapters of this Manual explain
the recovery from certain error messages and provide a
listing of the error messages along with a description.
The description aids in leading the user to a recovery
procedure. A list of the MicroDOS error messages is
given in Appendix D.

Diskette File Management

File Types. All data on the disk are in a combination of
ones and zeroes. In different files, however, the combi­
nation of one and zero bits is interpreted in different
ways. The Assembler and Editor, for example, create
ASCII files and accept only ASCII files. The use of
other types of files, such as binary, would yield unpre­
dictable results. ASCII files may be printed. Other files
on disk may have some printing result but they will
probably be unreadable. For loading purposes, ASCII­
HEX files must have an address associated with the
object code.

Transferring a file from ASCII-HEX to binary is
performed by the CDS BIN program. The resultant
binary files consist of only a machine language represen­
tation ofthe program. There are no addresses in the file
because all address information is in the file's descriptor
area. An ASCII-HEX file, therefore, cannot be loaded
as a binary file.

Some of the programs in MicroDOS such as CDSBIN
add specific extensions to the file. Its default extension is
CM. The other programs, however, such as the Editor,
do not have any default extensions. Their default exten­
sion is three blank characters.

File Attributes. The attributes that may at the user's
option be associated with a disk file include:

1. System (invisible)
2. Write protection

18 User Manual for the RCA MlcroDlsk Development System MS2000

3. Delete protection
4. Contiguous

When a file is created, all attributes are usually false or
not set. By means of the RENAME command, all the
attributes except contiguous may be set or reset. Con­
tiguous must be set when the file is created.

A system file is one that is constantly used, such as the
Assembler or Editor. These files do not appear in Direc­
tory lists and are not members of deleted sets unless a
special option is selected when the DIR or DEL com­
mand is used.

Write protection is set so that a file cannot be written
to. This protection prevents the user from inadvertently
destroying a file.

Delete protection is set so that a file cannot be deleted
with the delete command. To delete a delete-protected
file, the user must first unprotect the file with the
RENAME command and then delete the file.

A contiguous file is one that is stored without inter­
ruption in a set of contiguous sectors. The only file in the
system that must be contiguous is the binary file because
of the manner in which binary files are loaded by the
operating system.

Diskette Structure

Refer to Appendix A for details on diskette organiza­
tion and structure.

MlcroDOS Commands

Files on a disk can be manipulated by the user with
either the system functions or the system commands.
This section deals only with file manipulation by means
of the system commands. The system functions are
discussed later.

MicroDOS commands perform the following opera­
tions:

l. Format new diskette
2. Initialize new diskette
3. Load and execute programs
4. Create, delete, and list diskette files and direc­

tories
5. Change file formats

All diskettes that have never been used are completely
blank and must first be formatted with the FRMT
utility. Once formatted, the diskettes must be initialized
with the SYSGEN utility. Complete system diskettes
may be generated.

Program loading and execution are performed by
entering the file name. If the ASCII-HEX program is

not terminated by SUXXXX, control returns to the
command interpreter. Control can then be passed to the
program by means of UT71 or the MicroDOS U com­
mand. If the file is binary, execution starts at the address
established by CDS BIN when the file was generated.

Program creation, deletion, and the control opera­
tions such as the listing of diskette files and directories
are performed by the following commands.

COPY
DEL
DIR

EXAM

FREE
MERGE

PRINT

Transfers data
Deletes unprotected files
Displays directory and associated
information
Displays or modifies actual infor­
mation on a diskette
Lists unused areas of the diskette
Merges two or more files into one
file
Transfers data to line printer with
more flexibility than COPY com-
mand

RENAME Changes file names and attributes
U Starts programs from MicroDOS
VERIFY Verifies one file against another

The use of the Assembler (ASM8) and Editor (EDIT) in
the creation of files and the use of additional programs
for diskette control and problem diagnosis are covered
in later sections.

The changing of file formats and the editing and
assembly of files are performed by the following
commands.

CDSBIN

EDIT
ASM8

CONASM

PERTEC

TAPED

Converts MicroDOS ASCII-HEX
files to MicroDOS binary files
Creates and changes ASCII files
Converts source programs in assem­
bly language into executable (hexa­
decimal) machine code.
Converts ASM4 source files into
ASM8 source files.
Transfers files from Pertec drives
to MicroDisk drives and from
MicroDisk drives to Pertec drives.
Transfers files from cassettes to
MicroDisk drives and from Micro­
Disk drives to cassettes.

NOTE: Diskette Recovery

If the directory on a system diskette becomes unusa­
ble, there is no way of recovering the data on that
diskette. The user, therefore, should always keep backup
copies of key files.

19

3. MicroDOS Command Descriptions

This chapter describes in detail each system com­
mand available on MicroDOS. The commands included
are:CDSBIN, CONASM, COPY, DEL, DIAG, DIR,
EXAM, FRMT, FREE, HELP, MEM, MEMTST,
MERGE, PERTEC, PRINT, RENAME, SUBMIT
SYSGEN, TAPED, U, and VERIFY. ASM8 and
EDIT, which are the Assembler and Editor, respec­
tively, are discussed in greater detail in subsequent
chapters.

For ease of use, the system command descriptions are
given in a standard format which includes the command
name, its purpose, its format, its action, error messages,
and examples. In the description for each command, the
angular braces < and> indicate required inputs. The
square brackets [and] indicate optional inputs. The
symbol ::= means "is defined to be." In the examples, the
underlined material represents printout generated by
the system such as prompts ~ or queries to the user.
(CR) means carriage return.

Note: The system diskette is assumed to be in drive 0 in
most of the following examples, so that the command
name does not have to be followed by a specific drive
number. If the system diskette was in drive 1, the com­
mand would have a ": I " appended to it.

A listing of all the MicroDOS error messages is given
in Appendix D.

1. Command: CDSBIN

2. Purpose:
CDSBIN converts an assembler object file, an assem­

bler listing file, or the ASCII-HEX file generated by the
memory save program (MEM) file into a binary object
file.

3. Format:
CDSBIN<DELIM><CDSFILE>[,<BFILE
>][;<OPTION>] (CR)
Both <BFILE> and <CDS FILE> have the form

<NAME>[.< EXTENSION>][:<DRIVE>]

where <CDSFILE> is an ASCII-HEX load able file
and <BFILE> will become a binary object loadable
file. If <EXTENSION> for <CDS FILE> is omitted,
then a blank is assumed. If <BFILE> is omitted, then
the name portion of BFILE will be the name portion of

CDS FILE and the extension will be CM.
<DRIVE> is assumed to be O. <OPTION> is used

to specify starting address in hexadecimal. <OPTION>
default is address O. Any CDS BIN-generated file will
automatically start after it has been loaded. To prevent
automatic starting, the user should make the starting
address 9005 to return to MicroDOS or 8029 to return
to UT71.

4. Action:
The file <CDS FILE> is read to see how much con­

tiguous disk space must be made available. Once the
amount is determined, <BFILE> is allocated the
required disk space.

The CDSBIN program is located in memory from
F9 A3-FFFF. If the user wishes to create a binary file
that resides in this area, he must change the origin
statement (starting point) ORG in the CDSBIN source
file (CDSBIN.SR), reassemble the program, and create
a new binary file using CDSBIN with the correct start­
ing address specified in the CDSBIN command. With
this new version of the CDS BIN program, the user may
create the desired binary file.

If the starting address is specified, the specified
address will override the address in the $U record. The
address must be a valid hexadecimal number in the
range OOOO-FFFF, and it must be contained in the
memory region spanned by BFILE. If not, an error
message is printed.

S. Error Messages:
<FILENAME> F.N
NOT FOUND <CDSFILE> not found
<BFILE> DUP F.N.
COMMAND SYNTAX ERR
DISK FULL No room is available for

<BFILE>
FORMAT ERROR

LOGEOF

<CDS FILE> did not have
the correct format
A DC3 was not part of the
<CDSFILE>

INVALID FILE TYPE <CDS FILE> was not of
file type ASCII

6. Examples:
From an ASCII-HEX file AHFILE located on unit

20 User Manual for the RCA MlcroDlsk Development System MS2000

0, generate a binary file on unit 0 called AHFILE.CM.
The execution address is to be O.

> CDSBIN,AHFILE(CR)
>
From the same ASCII-HEX file, generate a binary

file on unit 1 with the name AH.XY and the execution
address of 1000 (hex).

> CDSBIN,AHFILE,AH.xY:I;l000(CR)
>

1. Command: CONASM

2. Purpose:
CONASM allows a program written in ASM4 source

code to be used with the ASM8 assembler. The ASM4
source code must be error free.

3. Format:
CONASM<DELIM><FILENAMEI>,<

FILENAME2>[;<OPTIONS>]
<FILENAME 1> is the ASM4 input source code file
<FILENAME2> is the ASM8 output source code

file
<OPTIONS>;N Warnings and errors will not be

inserted into output as comments

4. Action:
In a single pass, the syntax of the ASM4 source file is

modified to conform to that of ASM8. Where context
determines appropriate action, a warning is generated
and the most likely use is considered. Where SETC, L .. '
(the length operator) are encountered, an error message
is generated. Invalid characters also generate warnings
and are replaced with the a character. System limita­
tions generate fatal errors. Warnings and errors are sent
to the console screen (#SC) and, unless suppressed, are
inserted into the output as comments.

S. Error Messages:
The following message is generated if the input file

name is incorrect.

INVALID INPUT FILE NAME
RETYPE>

The following message is generated if the output file
name is incorrect.

INVALID OUTPUT FILE NAME
RETYPE>

The following messages are generated during warning
conditions.

** WARNING ** THE NUMBER OF WARN­
INGS HAS EXCEEDED 65,535

** WARNING ** THE NUMBER OF ERRORS
HAS EXCEEDED 255

** WARNING ** AN ORG STATEMENT HAS
BEEN CHANGED TO A OS STATEMENT

** WARNING ** AN INVALID CHARACTER
HAS BEEN REPLACED WITH a

** WARNING ** A LABEL - <LABEL> HAS
BEEN TRUNCATED TO 9 CHARACTERS

** WARNING ** THIS MAY NEED TO PRE­
CEDE THE FIRST USE OF EXPRESSION

** WARNING ** A LABEL - <LABEL> HAS
BEEN DUPLICATED BY TRUNCATION

** WARNING ** <LABEL> IS A SYSTEM,
SOURCE LABEL DUPLICATE

The following messages are generated during error
conditions.

*** ERROR *** INPUT LINE EXCEEDS 80
CHARACTERS

*** ERROR *** THE ERROR LIST HAS
OVERFLOWED

*** ERROR *** THE OUTPUT LINE BUFFER
HAS OVERFLOWED

*** ERROR *** AN UNBREAKABLE LINE
TOO LONG HAS BEEN ENCOUNTERED

*** ERROR *** UNBALANCED PAREN­
THESES

*** ERROR *** NO LABEL FOUND WHERE
EXPECTED

*** ERROR *** THE NEW ASSEMBLER CAN­
NOT PROCESS SETC OR L STATEMENTS

*** ERROR *** MISSING QUOTE IN A
NUMBER

*** ERROR *** SYMBOL_ TABLE OVER­
FLOW

The following messages are included at the end of the
conversion to show the total number of warnings and
errors.

* THERE WERE XXXXX WARNINGS IN THIS
CONVERSION

* THERE WERE XXX ERRORS IN THIS CON­
VERSION

1. Command: COpy

2. Purpose:
COPY is a generalized copy routine that can take a

data file from one peripheral device to another. It can
copy from disk to disk, disk to teletypewriter printer,
disk to screen, keyboard to disk, and disk to line printer.
It can copy either ASCII or binary.

3. Format:
COPY<DELIM><NAMEl><DELIM>

<NAMED (CR)
<DELIM> is a command line delimiter
<NAMEl> is the name of the source file or source

3. MlcroDOS Command Descriptions _________________ _ 21

device, and <NAMED is the na,me of the destina­
tion file or destination device.

If <NAMEl> is a disk file name, it is of the format
<NAMEl>[.<EXTENSIONl>][:<DRIVEl>]
and <NAMED must be specified.

If <DRIVEl> is not specified, "0" will be used.
If <EXTENSION I> or <EXTENSIOND is not

specified, blank will be used.
If <N AME2> is a disk file name, it is of the format

<NAME2>[,<EXTENSIOND][:<DRIVED]

The following are mnemonics for the non-disk de-
vices used with the command COPY:

#LP Line printer
#TY Teletypewriter printer
#SC Console screen
#KB Console keyboard

4. Action:
Three types of file copying can be requested:
Disk to disk
Disk to device
Device to disk

Disk-to-disk copy takes the information associated
with one file name and copies it to the other file name.
Both file names must be specified. Disk- to-device copy
is a transfer from a disk file to a line printer or console
printer. This transfer permits the printing of a disk file.
Device-to-disk copy is a transfer from a keyboard to a
disk file. Transfer from keyboard to disk file is termi­
nated by entering CTRL-S (EOF).

To pause the transfer of the COPY program, press
the BREAK key on the keyboard. To abort COPY after
a pause, press the Q (QUIl) key. Any other key will
continue the copying. Note: When #TY or #SC are used,
both will output the file to the CRT screen. #TY will
copy the file onto the screen until the BREAK key is
pressed; #SC will only output 22 lines and then stop. To
continue, the space bar must be pressed.

S. Error Messages:
<FILENAME> F.N. NOT FOUND

DIR FULL

DISK FULL

INVALID
FILE TYPE

<NAMEI> does not exist.
No more room exists for another
file name in the directory.
No more room exists for file on
disk. Some of the data may have
been transferred.
Disk file being copied to a non­
disk device has a file type other
than ASCII or ASCII-HEX for­
mat. COpy cannot dump non­
ASCII files to an ASCII device.
The Operating System or any oper-

INVALIDDV
NOSUCHDV

INVALID DATA
TRANSFER
TYPE

COMMAND
SYNTAX ERR

6. Examples:

ating system file cannot be copied.
Disk was entered (e.g., #DK).
Peripheral device specified does
not exist in system.
Device requested does not
transfer data in the direction
requested (e.g., copy to an input­
only device or copy from an output­
only device).
A name contained a wild
card construct, or no file name was
found as the first or second param­
meter.

Copy the ASCII file ASCII to the screen.
> COPY,ASCII,#SC (CR)

Copy the ASCII file ASCII on unit 0 to the ASCII file
ASCII on unit 1.
> COPY,ASCII,ASCII:I (CR)

1. Command: DEL

2. Purpose:
DEL deletes MicroDOS file names from a directory

and de-allocates all disk space belonging to the deleted
file. A single file, a list offiles, or a family of files may be
deleted.

3. Format:
DEL<DELIM><NAME>[.<EXTENSION>][:

<DRIVE>][;<OPTION>](CR)
<DELIM> is a command line delimiter;
<NAME> specifies a file name, a list offile names, or

a family of file names,
<EXTENSION> specifies an extension or a family

of extensions, and
<DRIVE> is the logical drive number.
<OPTION>;S includes files with the system attrib­

ute when deleting.

If the S option is not chosen, system files will not be
deleted and
<FILENAME> F.N. NOT FOUND

error message will be displayed.

4. Action:
The list of file names specified on the command line

are searched for in the specified directories. If a specified
file is not found in a directory, the message

<FILENAME> F.N. NOT FOUND
will be displayed. Otherwise, the message

<FILENAME> DELETED
will be displayed.

If a file to be deleted has the delete-protection attrib­
ute set, the message.

<FILENAME> IS DELETE PROTECTED

22 User Manual for the RCA MlcroDlsk Development System MS2000

will be displayed. Protected files cannot be deleted until
their protection has been removed (see RENAME
command). Control will be passed back to the operating
system when the last file name has been deleted.

S.Error Messages:
See 4. Action, above.

6. Examples:
Delete file XYZ on unit 1 and QST on unit O.

> DEL,XYZ:l,QST:O(CR)

Delete all files having the extension Al on unit 0, fIle
Al on unit 1, and all files with the first two letters XY on
unit O.

> DEL,*.Al,:l,XY*.*(CR)
Delete system file ABC.

> DEL,ABC;S(CR)

For an explanation ofthe * symbol, see "Wild-Card"
Construct in the chapter entitled Understanding
MicroDOS.

1. Command: DIAG

1. Purpose:
DIAG is a diskette diagnostic program that provides

the facility of detecting media errors. These errors are
called CRC (Cyclic Redundancy Check) errors. They
indicate that the Read and Read CRC operations result
in the detection of a possible data error. Some CRC
errors can render a diskette unreadable by the Editor
and Assembler. DIAG provides the user the option of
attempting to fix such errors.

3. Format:
DIAG(CR)

4. Action:
Each sector on the diskette contains CRC bytes.

These CRC bytes are generated from a cyclic permuta­
tion of data bits starting with bit 0 ofthe first byte and
ending with bit 7 of the last byte. When data is read from
a diskette, status bits are checked by the diagnostic
program. The Floppy Disk System hardware automati­
cally computes the CRC during a read operation, and if
an error is found, the CRC status bit is set at the end of
the read.

The diskette diagnostic program DIAG seeks each
sector (starting from sector #01 of track #00 of the
selected drive), and the Read CRC command is issued.
If a CRC error is detected, the CRC Read operation is
repeated. There are two types ofCRC errors that can be
detected:

1. A "SOFT" ERROR is an error that can be recovered
by data rereading. A marginal diskette is indicated if
many soft errors are present.

2. A "HARD" ERROR is an error that can not be fixed
even by rereading.
If a CRC error is detected, 16 attempts to reread the

data are made. If a successful read is made, the error will
be labeled as being "soft". If the 16th attempt also fails,
the error is considered "hard". After any detected error,
the program prints a message giving the track number,
sector number, and the type of the CRC error detected.
A fix-up option is also provided to attempt fixing hard
errors by rewriting the data back into the sector. If a
hard error is not fixed by data rewriting, the user
receives an "error-not-fixed" message and the specified
sector should not be used for data storage. If the CRe
error is corrected by data rewriting, the "error-fixed"
message is printed and the specified sector can be used
for data storage.

It should be noted, however, that a sector so "fixed"
may now contain data not exactly the same as that
which was originally intended. Because a CRC error
was detected, some data was recorded incorrectly. Data
rewritten by the fix-up routine attempts to remove the
CRC discrepancy, but cannot correct a garbled byte.
Thus, a file so fixed should be visually inspected for
corrections and fixed by means of the EXAM program.

In the case of either a hard or soft error, the program
continues processing the rest of the sector on the
diskette.

Any diskette exhibiting errors has become marginal
and should be copied immediately and the marginal
disk discarded. The user can abort the program while it
is testing the diskette by pressing and holding the
BREAK key.

S. Error Messages:
In addition to the errors described under 4 above, if

the drive fail bit is set, the "CK DRIVE" message is
issued. In this case, the program has to be restarted.

6. Example:
> DIAG(CR)
DISKETTE DIAGNOSTIC PROGRAM
FIX UP ? Y(CR)
ENTER UNIT NUMBER: l(CR)
UNIT: 1
TRACK: 00 SECTOR: 01 SOFT ERROR
TRACK: 3S SECTOR: 08 ERROR FIXED
TRACK: 69 SECTOR: 09 ERROR NOT FIXED
TEST DONE
>

1. Command: DIR
1. Purpose:

DIR displays MicroDOS file names from a directory.
An entire directory or selective parts of it may be dis­
played on the console screen. The minimum directory
information displayed is a fIle name and extension. At

3. MlcroDOS Command Descriptions

the user's option, an entire directory entry, in addition
to its allocation information, can be displayed.

3. Format:
DIR<DELIM>[<NAME>[.<EXTENSION>][:

<DRIVE>]][;<OPTIONS>](CR)
<DELIM> is a command line delimiter,
<NAME> specifies a file name or a family of file

names,
<EXTENSION> specifies the extension or a portion

of the extension,
<DRIVE> specifies the logical disk drive number

and
<OPTIONS> specifies one of the following defined

actions:
E - Displays entire directory entry information

(attributes, starting sector number, file size,
and directory entry number).

A - Displays complete allocation description
for each file name (segment descriptors).

L - Displays directory information on the line
printer.

S - System files (files with'S' attribute) may be
included when a family of files is displayed.

4. Action:
The disk directory specified by <DRIVE> is searched

for the specified <NAME> and <EXTENSION>. If
the drive number is omitted, drive 0 will be selected. If
only the drive number is specified (explicitly or implic­
itly), all directory entries other than system files on that
drive will be searched for. Directory entries found by the
above search procedure will be displayed on the system
console unless option 'L' is specified. The following
format will be used to display the directory entries:

DRIVE: DIS KID:
NAME.EXTENSION[<A TTR><SSN>
<SIZEXDEN>]
<A ITR> is a list of attributes,
<SSN> is the number of data sectors actually

used, and
<DEN> is the entry's directory entry number

(index to physical location in direc­
tory). <DEN> consists of two hex­
adecimal digits (an 8-bit binary num­
ber). The upper four bits are the
physical sector number within the
directory. The lower four bits are the
entry's physical position within a direc­
tory sector (0-7). These quantities are
displayed only if the 'E' or 'A' option
has been specified.

<DIS KID> is taken from the special ID sector.
See SYSGEN command for informa­
tion on DISKID. Refer to Appendix

<ATTR>

WDSC.#

23

A for details of diskette organization.

is always displayed as a six-character
field of the form:
Each position contains either a letter
or a period '.' indicating the presence
or absence of that attribute, respec­
tively. The following meanings are
associated with the specific attribute
positions:
W = write protection
D = delete protection
S = system file
C = contiguous allocation
= file format - a digit from 1 to 3

1 = > binary
2 = > ASCII
3 = > Operating System

After all directory entries from the search have been
displayed, the message

TOTAL NUMBER OF SECTORS: YYYYY
TOTAL DIRECTORY ENTRIES SHOWN:
XXXXX

will be displayed. XXXXX is a decimal count of the
displayed directory entries. YYYYY is the sum of the
size of all displayed files (decimal sectors). YYYYY is
displayed only if the E or A option is used. If no direc­
tory entries are found in the search, the message

NO DIRECTORY ENTRIES FOUND

will be displayed. After all entries returned by the search
are displayed, control will be returned to the command
interpreter.

If the A option is specified, the information contained
in a file's first sector (sector pointer block) will be dis­
played in addition to the full directory entry. Following
each displayed directory entry will be one line of alloca­
tion information for each segment of the file. The for­
mat follows:

SEG I SECT J SIZE K

where I is the segment number, J is the sector number
that starts the segment, and K is the number of allocated
sectors in the segment.

S. Error Messages:
See 4 above.

6. Examples:
Get a listing of the directory on unit O.
> DIR(CR)

See if file QRS is on unit 1.
> DIR,QRS:I(CR)

List the directory information of all files on unit 0

24 User Manual for the RCA MlcroDlsk Development System MS2000

with the extension CM.
> DIR,·.CM;E,S(CR)

List on the line printer all the allocation information
for all files on unit O.

> DIR,·.·;A,L(CR)

For an explanation ofthe· symbol, see "Wild-Card"
Construct in the Chapter on Understanding MicroDOS.

1. Command: EXAM

2. Purpose:
EXAM is a utility program that allows examination

or modification of information on a diskette.

3. Format:
EXAM<DELIM>[;<OPTION>](CR)
<DELI M> is a command line delimiter, and
<OPTION> is L if the header and data are to be

printed on the line printer.

4. Action:
After printing a header, the program asks for various

parameters such as drive, track, sector, filename, physi­
cal sector, or logical sector depending on which mode is
selected.

EXAM can operate in one of three modes. In the
UNIT/TRACK mode, the user enters the drive, track,
and sector that he wishes to examine or modify. In the
PHYSICAL mode, the user enters the drive and the
physical sector number. In the LOGICAL mode, the
user enters the drive, the filename, and the logical sector
number.

Each 512-byte sector is displayed as two 256-byte
screens. The top of each screen displays a header con­
taining decimal values that show such information as
drive, track, sector, physical sector, filename, or logical
sector depending on which mode is selected. The left
side of each screen shows the position of each byte

within the sector. The right side of each screen shows the
ASCII equivalent of the data bytes. All non-printing
data bytes are presented as a '.' in this area. The bottom
of each screen displays a menu of possible operations
that can be performed after viewing a screen.

The user can halt the program while it is displaying
data by pressing and holding the break key. After the
program halts, it can be resumed by pressing the space
bar. If the Q key is pressed, the program will revert to
the menu.

If the modify function is selected, the program will
ask how to modify the sector that is being displayed.
The user can enter new information in either ASCII or
hexadecimal. After the program prompts for the new
data, the user should enter either MH for modify hex or
MA for modify ASCII, a space, a hex number specify­
ing the byte position in the displayed sector to start
modifying, a space, and finally the new data. In the MA
mode, the ASCII characters will be converted to their
hexadecimal equivalents before being changed on the
diskette.

5. Error Messages

• ••••• BEGINNING OF DISK ••••••

Message obtained when the user attempts to access a
physical sector with a value less than O.

•••••• END OF DISK ••••••

Message obtained when the user attempts to access a
physical sector with a value greater than 629.

6. Example:
Examine physical sector lion the diskette in drive I

and change byte FEH in this sector from a 35H to a
37H.

> EXAM(CR)

3. MlcroDOS Command Descriptions 25

DISKETTE EXAMINATION PROGRAM

ENTER (L) LOGICAL (P) PHYSICAL (U) UNIT/TRACK :P(CR)
ENTER DRIVE NUMBER: I(CR)
ENTER PHYSICAL NUMBER: II(CR)

DRIVE: 1 PSN: 0011
BYTE: 0000 OC21 4DOD OA30 3030 3020 3B20 2020 2020 .!MOOOO ;
BYTE: 0010 2020 2020 2020 2020 2030 3030 3120 OD30 0001 .0
BYTE: 0020 3030 3020 3B20 2020 2020 2020 2020 2020 000 . ,
BYTE: 0030 2020 2030 3030 3220 2E2E 5553 4552 2046 0002 USER
BYTE: 0040 554E 4354 494F 4E20 4558 414D 504C 4520 FUNCTION EXAMPLE
BYTE: 0050 2D20 434F 5059 2041 2046 494C 4520 544F - COPY A FILE TO
BYTE: 0060 2041 4E4F 544B 450D OA2E 5220 4649 4C45 ANOTHER FILE
BYTE: 0070 2EOD 3030 3030 203B 2020 2020 2020 2020 0000 ;
BYTE: 0080 2020 2020 2020 3030 3033 202E 2E54 4845 0003 THE
BYTE: 0090 2046 4F4C 4C4F 5749 4E47 2049 4E46 4F52 FOLLOWING INFOR-
BYTE: OOAO 4041 5449 4F4E 2049 5320 4120 4445 4649 MA TION IS A DEFI-
BYTE: OOBO 4E49 5449 4F4E 2046 4F52 ODOA 2E20 5448 NITION FOR THE
BYTE: OOCO 4520 5052 4F47 5241 4D3A OD30 3030 3020 PROGRAM 0000
BYTE: OODO 3B20 2020 2020 2020 2020 2020 2020 2030 ; 0
BYTE: OOEO 3030 3420 2E2E OD30 3030 / 3020 3B20 2020 004 0000;
BYTE: OOFO 2020 2020 2020 2020 2020 2030 3030 3520 0005

(I) AHEAD ONE SCREEN(2) AHEAD ONE SECTOR(3) AHEAD CONTINUOUS
(4) BACK ONE SCREEN (5) BACK ONE SECTOR (6) BACK CONTINUOUS
(7) MODIFY (8) NEW PSN (9) RESTART (A) EXIT

ENTER NUMBER OF DESIRED FUNCTION :7(CR)
ENTER NEW DATA :MH FE 37(CR)

DRIVE: 1 PSN: 0011
BYTE: 0000 OC21 4DOD OA30 3030 3020 3B20 2020 2020 !MOOOO ;
BYTE: 0010 2020 2020 2020 2020 2030 3030 3120 OD30 0001 .0
BYTE: 0020 3030 3020 3B20 2020 2020 2020 2020 2020 000 ;
BYTE: 0030 2020 2030 3030 3220 2E2E 5553 4552 2046 0002 USER
BYTE: 0040 554E 4354 494F 4E20 455B 414D 504C 4520 FUNCTION EXAMPLE
BYTE: 0050 2D20 434F 5059 2041 2046 494C 4520 544F - COPY A FILE TO
BYTE: 0060 2041 4E4F 5448 450D OA2E 5220 4649 4C45 ANOTHER FILE
BYTE: 0070 2EOD 3030 3030 203B 2020 2020 2020 2020 0000 . ,
BYTE: 0080 2020 2020 2020 3030 3033 202E 2E54 4845 0003 THE
BYTE: 0090 2046 4F4C 4C4F 5749 4E47 2049 4E46 4F52 FOLLOWING INFOR-
BYTE: ooAO 4D41 5449 4F4E 2049 5320 4120 4445 4649 MA TION IS A DEFI-
BYTE: ooBO 4E49 5449 4F4E 2046 4F52 ODOA 2E20 5448 NITION FOR THE
BYTE: OOCO 4520 5052 4F47 5241 4D3A OD30 3030 3020 E PROGRAM: 0000
BYTE: 0000 3B20 2020 2020 2020 2020 2020 2020 2030 ;0
BYTE: ooEO 3030 3420 2E2E OD30 3030 3020 3B20 2020 004 0000;
BYTE: ooFO 2020 2020 2020 2020 2020 2030 3030 3720 0007

(I) AHEAD ONE SCREEN (2) AHEAD ONE SECTOR (3) AHEAD CONTINUOUS
(4) BACK ONE SCREEN (5) BACK ONE SECTOR (6) BACK CONTINUOUS
(7) MODIFY (8) NEW PSN (9) RESTART(A) EXIT

ENTER NUMBER OF DESIRED FUNCTION :A(CR)

~

26 User Manual for the RCA MlcroDlsk Development System MS2000

1. Command: FRMT

2. Purpose: FRMT is used to format a new diskette or
one that that has been damaged by a magnetic field. It
will completely erase all previous headers and data,
write a new header for each sector, and fill each sector
with its corresponding track value in hexadecimal. It
verifies each track and reports errors.

All diskettes will be formatted with double-density,
512 bytes per sector and nine sectors per track (num­
bered 1 to 9). The user may specify drive number, (0-3,
defaults to 1), number of tracks (70 or 80, defaults to 70),
and single or double-sided (defaults to single).

3. Format:
FRMT(CR)

4. Action:
FRMT prints th, following message:

RCA MICRODISK FORMAT PROGRAM
DEFAULT VALUES:
DRIVE # = 1, # OF TRACKS = 70, # OF SIDES = 1
FORMAT, CHANGE/PRINT DEFAULTS, OR
QUIT (F, C, P, OR Q)?

If the user presses the C key, the program will prompt
for new drive number, number of tracks, and single­
or double-sided. Keys outside the specified ranges
will be ignored except for (CR) which will return to
the menu.

If the user presses the P Key, the present set of default
values for drive, number of tracks, and single- or
double-sided will be printed.

If the user presses the Q key, the program will return
to MicroDOS.

If the user presses the F key, the program will prompt
with:

OK TO FORMAT DRIVE X (Y/N)?

(X is the selected drive number). If the user responds
with any key but Y, the program will return to the
menu. If Y is pushed, the diskette in the selected drive
will be formatted and verified. If a drive not ready or
write-protected condition is found, the program
returns to the menu. If a track does not successfully
format and verify on the first try, but does within 5
tries, a soft error message and the track number will
be printed. If the track cannot be verified in 5 tries, a
hard error message is printed. Pushing the break key
at any time will abort the operation.

S. Error Messages:
DRIVE NOT READY DURING (ACTION),
TRACK XX
A Drive-not-ready signal was encountered. The
(ACTION) could be a SEEK, FRMT, or VERIFY

attempt. The track number is in decimal.

DRIVE OR CONTROLLER FAILED DURING
(ACTION), TRACK XX.
A drive fail signal was encountered during (ACTION).

DISKETTE WRITE PROTECTED DURING FOR­
MAT, TRACK XX.
A write protect signal was encountered when attempt­
ing to format.

SOFT ERROR DURING VERIFY, TRACK Xx.
A CRC or other disk read error was encountered
during the CRC READ. It was recovered within 5
tries.

HARD ERROR DURING VERIFY, TRACK XX.
An error as above was not correctible within 5 tries.

TERMINATION ERROR DURING (ACTION),
TRACK XX.
An otherwise unidentified error was encountered.

1. Command: FREE

2. Purpose:
FREE informs the user how many non-allocated sec­

tors remain on the disk and how many unused directory
entries are available.

3. Format:
FREE[<DELIM>:<DRIVE>] (CR)
<DELIM>is a command line delimiter, and
<DRIVE>is the logical drive number. If <DRIVE>
is not specified, 0 will be assumed.

4. Action:
FREE will cause the following message to be printed

on the display:
DRIVE 0 DISKID:(DA TE AND ID FROM

ID SECTOR)
XXXXX SECTORS YYYYY FILES

XXXXX and YYYYY are decimal numbers. The
maximum number of free sectors on the disk is 620; the
maximum number of entries allowed in the directory is
128 if the capacity of the disk will allow this number of
files.

S. Error Messages:
None applicable

6. Example:
List on the console the free area of drive 1.
> FREE :l(CR)

1. Command:

2. Purpose:

HELP

HELP is a file that contains instructions for using
each of the other MicroDOS commands.

3. Format:
HELP(CR)

3. MlcroDOS Command Descriptions

4. Action:
After HELP is loaded, a numbered listing of the

MicroDOS commands is displayed on the screen. The
operator enters the number of the command he plans to
use followed by (CR). HELP then displays the instruc­
tions for using the selected command.

s. Error Messages:
None applicable

1. Command: MEM

2. Purpose:
MEM is used to save on a diskette user object code

located anywhere in memory. A memory file thus saved
may later be rapidly reloaded into memory. Data is
saved in ASCII-HEX format.

3. Format:
MEM(CR)

4. Action:
MEM normally resides in memory FB8C through

FFFF. Memory from 0000 to FFFF may be selectively
saved by this command. The program is written so that
only the first ORG statement need be changed to
relocate it. Relocation is accomplished by use of the
Editor program to change the ORG statement and the
Assembler program to generate object code.

Once assembled, the hex code file should be con­
verted to a binary file by use of CDS BIN . The MEM
program is loaded by the command interpreter.

Mter
MEM(CR)

is keyed in, the program starts by typing the following
header message.

DISK SAVE PROGRAM
FIRST ADDR?XXXX(CR)

The user should enter the first address of memory to be
saved. The program then asks

LAST ADDR?XXXX(CR)

The user replies to this query with an address XXXX.
Memory from the first address up to and including this
address is selected for saving.

Next, MEM requests the selection of a disk file name.

WRITE?FILENAME (CR)

S. Error Messages:
See Appendix B, MicroDOS Error Messages.

6. Examples:
Copy a program onto disk that is loaded in memory

at location 0000 through 0340. Give it the file name
WFIL2. MicroDOS is currently in control.

> MEM(CR)
DISK SAVE PROGRAM
FIRST ADDR?OOOO(CR)
LAST ADDR?034O(CR)
WRITE?WFIL2(CR)

27

> CDS BIN WFIL2(CR) .. To convert to binary
.. file WFIL2.CM which
.. starts execution at
.. 0000.

The saved program can be called from disk at any time
by typing its file name WFIL2.CM.

See Appendix C - MS2000 Memory Test. MEMTST

1. Command: MERGE

2. Purpose:
MERGE copies and merges one or more ASCII files.

Its main use is for continued files or multi-diskette files
generated by the assembler or the editor. The ASCII
files do not have to be terminated by a DC3.

3. Format:
MERGE<DELIM>NAMEI>[

<DELIM><NAMEn>]n(CR)
<DE LIM> is a command line delimiter,
<NAMEI> is the name of the destination file,
<NAMEn> is the names of the files to be merged

The default values for any extension is three blank
characters. The default value for any unit number is O.

4. Action:
MERGE copies the first file from the source list into

the destination file name. Whenever a null file name is
encountered, the MERGE command adds a DC3 to the
output file and closes all opened files. If any of the
source file names cannot be found, an error message is
printed. MERGE then allows the user to retype the
erroneous file name or to exchange disks (i.e., put into
the drive being used for the source files the diskette
containing the desired files) and retype the file name.
MERGE cannot be aborted by pressing the BREAK
key. It can be aborted only by typing a (CR) in response
to a request to retype file name. The DC3 end-of-file
marker will be removed from files before they are
merged.

If the destination file name was incorrectly typed or if
the file name already exists on the diskette, MERGE
will inform the user and allow him to correct the file
name or replace the diskette with another diskette. The
resulting file name will have the attributes of the first file
in the input file list. MERGE should be used only on
ASCII or ASCII-HEX files.

28 User Manual for the RCA MlcroDlsk Development System MS2000

5. Error Messages:
SYNTAX ERROR

<FILENAME> F.N.
NOT FOUND

DIR. FULL

DISK FULL

BAD FILE TYPE

6. Example:

Either an illegal file name or
a wild-card type file name.
The user should retype the
correct name when prompt­
ed. A (CR) will abort
MERGE and return control
to MicroDOS.
File name not found on
diskette. User should either
place diskette contaiding the
file into the drive unit or
retype the name specifying
that file is in other unit. Only
a (CR) is needed to abort
MERGE.
No more room exists for
another file name in the direc­
tory.
No more room exists for file
on disk. Some of the data
may have been transferred.
Delete the incompleted file.
A file other than ASCII was
called for. The user should
type a (CR) to abort merge
and return control to
MicroDOS.

Merge files SOURCE.XI and SOURCE.X2 into file
DESTFN.

> MERGE DESTFN,SOURCE.XI,
SOURCE.X2(CR)

1. Command:

2. Purpose:

PERTEC

PERTEC is used to copy an ASCII file from a Pertec
drive to a MicroDisk drive or from a MicroDisk drive to
a Pertec drive. It can also generate a binary file from a
hexadecimal or list file in a Pertec drive to a MicroDisk
drive.

3. Format:
PERTEC(CR)

4. Action:
When the transfer is from the Pertec drive to the

MicroDisk drive, the user should first prepare a source,
hexadecimal, or list diskette of the desired input file on
an 8-inch diskette. It must be in unit/ track format and
start on track O. This requirement can be met by use of
the FCOPY command. This diskette must then be
placed in Pertec drive O.

After the program is loaded, it will print the follow­
ing:

8" TO MICRODISK ASCII OUTPUT (A)
8" TO MICRODISK BINARY OUTPUT (B)
OR MICRODISK TO 8" ASCII OUTPUT?(C)

If the user types an A, the copy-ASCII mode is
selected. The program then prompts for the name of the
output file that will be generated on the MicroDisk
drive. After this name is entered, the entire file is copied
from the Pertec drive to the MicroDisk drive.

If the response to the initial prompt had been a B, the
generate-binary mode would be selected. The program
prompts for the name of the output flle and execution
address. After these names are entered, the entire hex­
adecimalor list file is loaded from the Pertec drive into
memory. The hexadecimal or list flle must have been
assembled from a source file that had an END state­
ment. A binary file is then generated on the Microdisk
drive. This binary file will automatically start execution
at the specified address if it is later loaded from the
MicroDisk drive. If no address is specified, execution
starts at address OOOOH.

If the response had been a C, the program will ask for
the input fllename on the MicroDisk drive. After the
name is entered, it will ask if it is OK to write to unit 0,
track 0 on the Pertec drive. If a Y is entered, the ASCII
copy will take place.

In any mode, the program can be aborted by pressing
the BREAK key. The following will be printed

ABORTED

Control will then be returned to the operating system.

5. Error Messages:
<OUTFILE> DUP F.N.

The specified output file name already exists.

6. Examples:
Copy the ASCII file in Pertec drive 0 to MicroDisk

drive I and give it the name ABC.XYZ.
> PERTEgCR)
8" TO MICRO DISK ASCII OUTPUT (A)
8" TO MICRODISK BINARY OUTPUT (B)
OR MICRODISK TO 8" ASCII OUTPUT

(C)?A(CR)
ENTER OUTPUT FILENAME: ABC.XYZ:I
>
Convert the list file in Pertec drive 0 to a binary file in

MicroDisk drive 0 and give it the name TEST.CM.
Specify an execution address of 024CH.

> PERTEgCR)
8" TO MICRODISK ASCII OUTPUT (A)
8" TO MICRODISK BINARY OUTPUT (B)
OR MICRODISK TO 8" ASCII OUTPUT

!9?B(CR)

3. MlcroDOS Command Description.

ENTER OUTPUT FILENAME AND EXECU­
TION ADDRESS :TEST.CM;24CH

>
1. Command: PRINT

1. Purpose:
PRINT gives the user a variety of options in output­

ting one or more fIles to a line printer.

3. Format:
PRINT<DELIM><FILENAME>[

;<OPTIONS>](CR)
<FILENAME>is the name of the fIle to print. Both

drives will be searched if no unit number is specified. If
no fIle name is given, a blank page will be ejected. A fIle
name may actually consist of a list of fIles to be printed.

<OPTIONS>
H - Suppress the header that comprises the

name of the fIle and the name of the disk­
ette.

P - Suppress the page numbers.
Lnn - Use nn lines per page (O<nn<IOO)
Snn - Skip nn-11ines between each printed line.

(1<nn<99)
D - If a line contains one or more CONTROL­

H characters, count it as a double­
sized line and adjust the line counter
accordingly.

Ttttttt ... d - Print the text, tttttt ... , at the top of each
page. The delimiter, d, is either an
ESCAPE character or the end of the
command line.

Cnn- Print nn copies of each fIle specified.
(O<nn<l00)

E - Exit the print program.
Wnnn - Width of pap~r. nnn columns per page.

(O<nnn<200). Starts with 117 columns.
Remembers last W command.

Xnnn - Width of paper for this command line, nnn
columns per page. (O<nnn<200) Remem­
bers old width and restores it after finish­
ing present command.

N- Suppress resetting page numbers between
fIles. Action is that page number will con­
tinue from 1st page of previous fIle. N
command is inoperative if C command is
specified.

4. Action:
If both the fIle name and the options are omitted

when the PRINT program is loaded, the program
responds with a prompt ":" after which commands can
be entered.

5. Error Messages:
INVALID
FILENAME
<FILENAME> F.N.
NOT FOUND

Wild-card format .. *"
cannot be used
Specified fIle not found

29

01 DR FAIL Drive number was not speci­
fied and drive a 1 did not con­
tain a diskette

*** PRINTER NOT
READY. CONTINUE
OR EXIT (C/E)? Line printer not ready

6. Examples:
Print a single fIle and return to MicroDOS
> PRINT MEM.SR(CR)
Print a fIle ABC and suppress the header and page

numbers.
> PRINT ABC;HP(CR)

With print already loaded, print S copies of fIle
report.
~REPORT;CS(CR)

With print already loaded, return to MicroDOS.
~;E(CR)

1. Command: PROM15

Operating instructions for this command are given in
the technical literature for the PROM Programmer
CDP18S680.

1. Command: RENAME

1. Purpose:
RENAME allows the names, extensions, and attrib­

utes to be changed in a directory. The information in the
fIle remains the same.

3. Format:
RENAME<DELIM><FILENAM1>

[,<FILENAM2>][;<A TIR>](CR)
<DELIM> is a command line delimiter;
<FILENAM1> equals <NAM1>
[.<EXTENSION1>][:<DRIVE> which is the name

of the fIle for which the name or attributes are to be
changed.

<FILENAM2> equals <NAM2>
<EXTENSION2> which is the new fIle name.
The contents of <A TIR> is the new set of attributes.
If<NAM2> is omitted, then <NAMl> will be used.

If the <EXTENSION 1> is omitted, a blank will be
used. If <DRIVEl> is omitted, 0 will be used.

<A TIR> will be one or more of the following letters
having the meanings indicated.

30 User Manual for the RCA MlcroDlsk Development System MS2000

D Set delete protection
W Set write protection
S Set system file program
N Set non-system file program
X Remove delete and write protection

4. Action:
The name or attributes of a file name or a family of

file names will be changed. <FILENAMI> must be
specified. Either <FILEN AM2> or <A TTR> or both
must be specified. If <FILENAM2> or <ATTR> is
not specified, the message "INPUT FILENAME
AND/OR ATTRIBUTES" will be printed requesting
the information. If <FILENAM2> is a duplicate file
name, a duplicate file name message will be printed and
the RENAME command will be aborted. If
<FILENAMI> does not exist, a "FILENAME NOT
FOUND" message will be printed and the RENAME
command will be aborted.

The command line interpreter allows a file name to
be specified with the "wild-card" construct "*.*". With
the RENAME command, however, only a partial wild­
card construct can be used. An asterisk may appear to
the left ofthe period or to the right ofthe period but it
cannot be placed in both positions. If two asterisks are
used in this manner, an illegal file name message will be
printed and the RENAME command will be aborted.
With RENAME, however the complete wild-card con­
struct "*.*" may be used for changing attributes.

If a unit number is associated with <FILENAM2>,
it will be ignored and only the unit associated with
<FILENAMI> will be used.

S. Error Messages:
See 4. Action, above.

6. Examples:
Change the extension on all file names having the

extension DEF to the extension XY.
> RENAME*.DEF,.XY(CR)
Change the name of file ABC.XY to XYZ.AB.
> RENAME ABC.XY,XYZ.AB(CR)

Make file XYZ on unit I delete protected.
> RENAME XYZ:I;D(CR)

Remove all protection from files on unit I having the
extension CM.

> RENAME *.CM:I;X(CR)

Change the name of file XYZ to ABC and make it a
system file
> RENAME XYZ,ABC;S(CR)

Change all file names that have ABC as the name
portion of the file name to XYZ, as the new name
portion of the file name.

> RENAME ABC.* ,XYZ.*(CR)

1. Command: SUBMIT

2. Purpose:
SUBMIT is a program that permits sequences of

commands to MicroDOS or application programs to be
stored in a command definition file and executed. It is
especially useful for repetitive operations, and frees the
user from keystroke errors and keyboard attendance
during serial program execution.

A special command defmition file named AUTO. SUB
is automatically sought when MicroDOS is initially
loaded. This permits the user to define execution of an
initial sequence of commands immediately following
load of MicroDOS. if AUTO. SUB does not exist, no
attempt is made to execute from such a file. Since a
search for this file is made on drive 0, the user will notice
disk activity on drive O. Subsequent warm start of
MicroDOS from the UT level may bypass execution of
AUTO.SUB by starting execution of MicroDOS at
address #9005.

A command file language permits additional fea­
tures during command file execution:

• passes up to 10 parameters at command file invo­
cation time

• types messages to the terminal display (-TYPE)
• directs that input be tken from the terminal key­

board rather than the command file, with resump­
tion of execution from the command file
(-LREAD, -KREAD)

• annotates the command me (-COMMENT)
• exits from the command file to MicroDOS

(-EXIT)
• automatically translates dollar sign character ($)

to esc character for EDIT
• recognizes the break key to abort command file

execution
• detects error calls to CDERR of MicroDOS and

recovers by suspending command me execution to
give user a choice to either continue or abort

• supports an index (-J) which may take on a range
of values from 0 to 99. It may be set, incremented
by one, or decremented by one (-SETJ, -INCJ,
-DECJ)

• controls sequencing through the command me
with jumps (-GOTO) and conditional tests (-IF)

3. Format
SUB M IT<delim><filename> [<param>

<delim> ...](CR)
The <delim> may be a space or comma character.
<fuename> is the command definition me.
Parameters, up to a maximum of 10, may be passed

to the command file when SUBMIT is invoked. These
parameters may be referenced in the command me as
-0, -I, -2, ... -9. During command me processing,
these parameters are replaced by their actual values,

3. MlcroDOS Command Descriptions

taken from the invocation line.
The command definition file is prepared by the user

with the editor. The default file extension may be .SUB
and the default drive may be 0 for the command defini­
tion file. It may contain all printable ASCII characters
plus space character and carriage return and linefeed.
Five characters are given special treatment.

• linefeeds are ignored, carriage returns must sepa­
rate each command line

• All dollar signs ($) are converted to an esc charac­
ter for EDIT.CM.

• The tilde (-) is the command file character. It
precedes command file keywords and the com­
mand file index.

• The percent (%) indicates a command file label. It
is part of label references and definitions.

• The end of file (DC3) character must terminate the
command file. The editor normally inserts this
character into a command file.

A command definition file is assumed to have default
extension SUB and exist on drive O. Its contents may
consist of

• MicroDOS commands or application program
names

• responses to MicroDOS commands
• responses to application programs if they perform

keyboard reads via READ of UT (for ex, EDIT,
ASMS, MEM, PROM25)

• command file commands

4. Action
SUBMIT works in two phases. In phase 1, it reads

and processes the command definition file creating an
intermediate file named Z.TMP on drive O. If the
diskette in drive 0 is write protected or the drive is not
active, Z.TMP is assigned to drive 1. Phase 1 occupies
memory starting at #COOO and loads phase 2 code into
memory #SA50-#SFFF. Phase 2 code also resides in
#B2EB-#844O.

Phase 1:
• resolves parameters
• tokenizes command file commands
• converts $ character to esc character
• deletes -COMMENT lines
• resolves labels and their references
• detects, reports and then aborts on errors

The final action of phase 1 is to set the high bit of the
high byte of register E as the command file flag and to
rewind Z.TMP for phase 2. Phase 2 is the runtime
phase. Execution of intermediate file Z.TMP is per­
formed. Phase 2:

Phase 2:
• substitutes READ of keyboard via UT with a read

fromZ.TMP
• executes all command file keyword commands
• detects, reports and aborts on errors

31

• detects error calls to CDERR to give the user a
choice to either continue or abort

• sounds the bell character and exits to MicroDOS
upon detection of end of command file (DC3)

Caution-do not use SUBMIT with the PLM com­
piler because both programs use the same memory
space between #SA50-#SFFF. Some programs which
do not use READ of UT will not work with SUBMIT
(for ex. BASIC2).

SUBMIT files may be chained, but not nested. That
is, SUBMIT may be the last command in a command
definition file, but it may not appear in the middle of a
command definition file.

A BNF (Backus-Naur Form) of the command file
language is located in Appendix It Below is a descrip­
tion and examples of command language. A carriage
return (CR) delimits the end of a command line. A space
delimits between parts of the command file line.

Expressions
All expresions consist of an operator between two

operands. a single space delimiter must be present
between operands and operator. The operands may be
numeric constants, string constants, - J index, or
parameters. If a parameter is referenced as a string
constant it must be enclosed in quotes. If the parameter
is referenced as a numeric constant, no quotes are used.
A numeric constant may be a maximum of 2 digits. A
string constant may be a maximum of 12 characters in
length, otherwise truncation to 12 characters occurs.

Only relational operators are permitted (=, <>, <,
>, <=, >=). Only the -IF command contains an
expression.

Examples
53 <=-J
, ANYSTRING' = '-0'
0=0
-1 >0

All command file commands are recognized by their
first unique characters. The possible command files
commands are -COMMENT, -IF, -GOTO, -TYPE,
-LREAD, -KREAD, -SETJ, -DECJ, -INCJ,
-EXIT. They may be abbreviated respectively to -C,
-IF, -G, -T, -L, -K. -S, -D, -IN, -E.

COMMENT
The -COMMENT permits user annotation of the

command file. These are especially useful for mainte­
nance and readability reasons. The -COMMENT lines
are deleted by phase 1, so they do not appear in the
intermediate file.

Examples
-COMMENT This file interfaces the
EDIT program to
-COMMENT automatically make
backups of files

32 User Manual for the RCA MlcroDlsk Development System MS2000

-IF
The -IF command permits conditional sequencing

based on the evaluation of an expression. If the expres­
sion is found to be true the command file command
following the expression is executed. Otherwise the next
line is executed.

Examples
-IF -J = 0 -GOTO %LABELl
-IF '-0' <> "-EXIT
-IF-o= I-IF-l = I-GOTO%Ll

-GOTO
The -GOTO command provides a means of altering

the flow of command sequences. It permits ajump to a
labeled line, either forward or backward. Labels must
begin with a percent sign character (%). Labels are
composed of a maximum of 9 alphanumeric characters
following the percent sign. They are entered into a
symbol table during phase 1 and used to resolve label
references. At the end of phase 1, if any labels are not
defined, an error message is issued and command file
processing aborts.

Examples
-GOTO %BEGIN
-GOTO %ENDALL

-SETJ, -DECJ, -INCJ
The - J index may be changed in value by operations

to set it, decrement it by one, and increment it by one.
- J has a default value of 0, and may take on the range of
values between 0 and 99. If - J takes on a value less than
0, a phase 2 error message:

-UNFL
occurs. If - J takes on a value greater than 99, a phase 2
error message:

-OVFL
occurs.

Example:
-SETJ 98
-INCJ
-DECJ

This sequence sets - J to 98, increments it by one, and
then decrements it by one. The final value of - J is 98.

-LREAD, -KREAD
The read commands permit pause for keyboard input

during phase 2 of command file execution. -LREAD
permits a line of input terminated by a cariage return,
while - KREAD permits input until a termination key­
stroke (control d) is input. These features are useful for
entering additional options at the end of a command
line or to pause in mid execution to check for errors
before proceeding.

Caution: -LREAD and -KREAD must be termi­
nated by a (CR) in command definition file because

phase 1 recognition ignores all characters beyone K or L
until a (CR) is detected.

If the user wishes to use -KREAD for a mid com­
mand line pause, he continuation of that command line
must be on a new line.

Example
COPY-KREAD

DEST.FN
During phase 2, -KREAD suspends execution so

the user may enter via the keyboard the name of the
source file which will then be copied toDEST.FN. Note
the space needed before DEST.FN.

As another example, -LREAD is used to permit
completing options for the DIR command.

Example
DIR X. X;-LREAD

This example pauses for keyboard input to complete
the options for the DIR command.

-TYPE
The -TYPE command permits message display dur­

ing execution of a command file. These messages may
prompt the user for specific action during command file
processing or simply report progress.

Example
-TYPE Please change disks in drive 1

and type (CR) then ready
-LREAD

This sequence types a message to user to perform the
action of a disk change and then pauses with the
-LREAD command, continuing after the (CR) charac­
ter is keystroked.

-EXIT
The -EXIT command directs that the command file

is to be exited and control given to MicroDOS. No
further commands are taken from the command file.
This command can ensure that certain lines of the com­
mand file are not executed. For example if an error in
handling routine is located at the end of a command file,
an EXIT command would be placed preceding the
routine:

Example

-EXIT
%ERROR

The -EXIT command used in conjunction with the
-IF command is useful for providing more than one
execution path in a command file:

3. MlcroDOS Command Descriptions

Example
-IF '--0' = " -EXIT
-IF '-0' = 'TAPE' -GOTO

%TAPEIT
-IF '-0' = 'DISK' -GOTO

%DISKIT
-TYPE no valid device found
-EXIT
%TAPEIT -COMMENT process

tape rue

.-EXIT
%DISKIT -COMMENT process

disk rue

-EXIT
This command rue tests a parameter for equality to

the string value of null, TAPE, or DISK. If TAPE or
DISK if found -GOTO branches to the appropriate
path for handling that type of rue. The -EXIT com­
mand before the label % T APEIT ensures that com­
mands after the label are not executed unless an explicit
branch to that label is made. The -EXIT command
before the label % DISKIT serves the same function.

Limits
The limits of values allowed in command files are

summarized below:
• - J value range is 0 to 99
• Numeric constants may be only I or 2 digits, they

are treated as decimal values
• String constants must be enclosed in quotes; max­

imum length is 12 characters
• Labels are preceded by the percent (%) character,

followed by a maximum of 9 alphanumeric char­
acters. The maximum number of labels is 10,
otherwise the symbol table overflows

• Maximum number of parameters is 10. Parame­
ters may be a maximum of 12 characters.

S. Error Messages
During phase I, in most cases, when errors are

detected an error message with a line number is dis­
played and command rue processing is aborted. In two
cases, however, warning messages are issued and pro­
cessing continues. These cases are:

• when a null parameter value is found
• when string constants are truncated to 12 charac-

ters in length
During phase 2, two conditions may cause an abort:
• when the break key is depressed
• if a runtime error such as - J value overflow or

underflow, or bad expression

33

The format of a phase I error is a line number
message followed by an error message. For example:

ERROR IN LINE NUMBER 00004
COMMAND FILE OPERATOR

ERROR
Phase I error messages and some possible causes are

detailed below:
CAN'T OPEN COMMAND FILE-command defini­
tion rue not on default drive 0, does not have default
extension SUB, or not given in invocation line
CAN'T OPEN COMMAND WORK FILE-insuffi­
cient space on diskette in drive 0, diskette not present in
drive 0
CAN'T READ COMMAND FILE-attempt to read
from command definition rue fails
CAN'T REWIND COMMAND WORK FILE-at­
tempt to rewind Z. TMP rue at end of phase I processing
fails
COMMAND FILE DUPLICATE LABEL-a second
definition is found for a label already defined
COMMAND FILE KEYWORD PROBLEM-at­
tempt to find end of -KREAD or -LREAD command
fails
COMMAND FILE LABEL REFERENCE NEVER
DEFINED-at end of phase I, a label is found to be
undefined
COMMAND FILE OPERAND ERROR-attempt to
recognize an operand as a string constant, - J index, or
numeric constant fails
COMMAND FILE OPERATOR ERROR-operator
not recognized, only <>, >, <, <=, >=, = are
permitted
COMMAND FILE SYMBOL TABLE OVERFLOW­
attempt is made to enter more than 10 symbols in
symbol table
COMMAND LINE FILENAME ERROR-attempt
to recognize command definition ruename from invoca­
tion line fails
COMMAND LINE PARAMETER ERROR-para­
meter exceeds 12 characters in length, in the invocation
line
EXPR SPACE DELIM NOT FND-a space delimiter
is expected in expression but is not found
IMPROPER USE OF TILDE (-)-- was not recog­
nized to be part of command rue command, or - J, or
parameter
INVALID STRING OPERATOR-operator found
that is not <> or =
NUMBER EXCEEDS 2 DIGITS-numeric constants
must be 2 digits or less
SETJ FOLLOWED BY A STRING EXPR-numeric
constant must follow SETJ, but a string constant is
found
TARGET OF GOTO NOT PRECEDED BY PER­
CENT (%)---expected label reference following a GOTO

~ ---------------- User Manual for the RCA MlcroDlsk Development System MS2000

not found
UNEXPECTED END OF FILE FOUND-a DC3
character found before logical end of command file
found
Phase 2 error messages are as follows:
-CMD FILE ABORT-break key was detected
-EXPR ERR-operand other than -J, numeric con-
stant, or string constant found
-OVFL--J exceeds 99 in value
-UNFL--J below 0 in value
-SETJERR-value for -SETJ does not evaluate to
a numeric value
-ERR, TYPE Y TO CONTINUE>-call to CDERR
detected, command file execution is suspended, user is
given choice to continue or abort.

6. Examples:
Four examples follow illustrating how the command

file facility may be used.
Example 1 contains simply the commands to

MicroDOS that perform an assembly, creation of a
binary file, and execution of the binary file.

The file EXl.SUB contains the following:
ASMB USEMAC.ASM,MAC.ASM,USEMAC.

LST:I;M
CDSBIN USEMAC.LST:I,USEMAC.CM:O
USEMAC.CM
At invocation time the command line appears as:
SUBMIT EX.lSUB

Example 2 shows how parameters may be passed
into a command file to allow varying source assembly
and macro files to be assembled, made into binary files,
and then executed. This command file performs the
same sequence of steps as the one in Example 1 but it has
the additional versatility that it may be used to assemble
files other than nust USEMAC.ASM and MAC.ASM

In a file named EX2.SUB is the following:
ASMB-o.ASM,-I.ASM,-o.LST:I;

M
CDSBIN -o.LST, -o.CM:O
-o.CM

The invocation line appears as:
SUBMIT EX2.SUB USEMAC,MAC

Example 3 shows a command file to automate use of
EDIT.CM. It invokes the editor, specifies the input and
output files, performs the appends to bring the file into
workspace, and lists the first 22 lines. After the user
completes his edit session by a control D deystroke, the
command file performs an exit from the editor, creates a
backup file, and renames the most recent output file as
the most current version of the edited file. The user may
think of his file as having a constant name.

In a file names EX3.SUB is the following:

EDIT
RO$$-o.-l:l
-o.TMP
AAB22T$$-KREAD
E$$U$$DEL -o.BAK: 1
RENAME -0. -1:1,.BAK
RENAME -o.TMP:I,.-1

This file is invoked as:
SUBMIT EX3.SUB TEDIT,DAT

Example 4 illustrates use of the control structures
and index. The parameter specifies the number of times
the command file is repeated.

In a file named EX4.SUB is the following:
-SETJ 1
%START -COMMENT this is a

backup routine for disks
-TYPE Put a new diskette into drive

1, type (CR) when ready to proceed
COpy FI.EXT:O Fl.EXT:I-LREAD
COPY F2.EXT:O F2.EXT:I
COPY F3.EXT:O F3.EXT: 1
-INCJ
-IF -J <= -0 -GOTO %START

Notice the placement of the -LREAD command to
insert a pause before the COPY command is completed
with a (CR).

When this file is invoked as:
SUBMIT EX4.SUB3

Three backup copies of the specified files may be made.

1. Command: SYSGEN

2. Purpose:
SYSGEN is used to initialize new disks before they

can be used by MicroDOS or to duplicate MicroDOS
files from one diskette to another. It can be used to
duplicate selective programs or entire diskettes to pro­
vide a backup copy. SYSGEN can be used to produce
identical copies of diskettes or to produce the same
information reorganized to eliminate file gaps that may
have been generated during editing and program devel­
opment. The reorganization will physically remove all
previously deleted files and leave all unused sectors in
one block rather than scattered throughout the diskette.
This capability helps to compact data on the disk and
frees up additional storage area. The system diskette
should be in unit 0 and the new diskette in unit I.

3. Format:
SYSGEN <DELIM> [;<OPTIONS>](CR)
<DELIM> is a command line delimiter, and
<OPTIONS> is one or more of the letters listed

below with their meanings.
L List the file names being copied on the line printer

3. MlcroDOS Command Descriptions

N Do not print the copied file names on the console
or printer

o Copy the operating system
D Omit copying the operating system; retain exist­

ing DISK ID and directory on unit 1
E Make an exact copy ofthe diskette in drive O. No

file reorganization will take place. Every sector
will be written exactly as it is on the disk in drive O.

4. Action:
After the SYSGEN program has been loaded into

memory and the directory has been loaded from the
diskette in unit 0, the following message is printed.

INPUT USERID>

Up to 44 characters may be assigned to the USERID.
This information will be placed in the ID sector.
Whenever a DIR or FREE command is executed, the
USERID will be printed.

After the user presses (CR), the following message is
printed.

INPUT DATE (MM/DD/YY»

Up to eight characters may be assigned to the date. No
specific format is required for the date; the format
shown is only a suggestion. This information will be
placed in the ID sector. Whenever a DIR or FREE
command is executed, the DATE will be printed.

After the date has been typed, the following message
appears:

SELECT COMMAND-TYPE H FOR HELP

The user may type any of the following commands
which will perform the prescribed function. Any com­
mand may be repeated any number of times.
HELP
Format:
Action:

H(CR)
The HELP command lists the format of
the following commands and gives a short
description of each command.

PRINT SELECTED FILES
Format: P(CR)

The P command will list on the console or
line printer all the files from the directory
of the diskette in unit 0 that are selected to
be copied when the copy function begins.

PRINT NON-SELECTED FILES
Format: N(CR)
Action: The N command will list on the console or

line printer all the files from the directory
of the diskette in unit 0 that are not
selected to be copied when the copy func­
tion begins.

QUIT
Format:
Action:

35

Q(CR)
When all commands finish executing, con­
trol is returned to SYSGEN
The QUIT command is used to return con­
trol to the operating system.

SELECT FILES TO BE COPIES
Format: S[<DELIM><FILENAME

Action:

SEQUENCE>](CR)
<DELIM> is a command line delimiter,
<FILENAME SEQUENCE>::=<FILE
DESCRIPTORS>[,<FILE DESCRIP­
TOR>]n <FILE DESCRIPTOR>::
=<FILENAME>/<FAMILY NAME>/
<FILE NO.>/
«FILE NO.>-<FILE NO.»
<FILE NO.> is the number associated
with the file name from the listing pro­
duced by the PRINT or PRINT NON­
SELECTED FILES command.
«FILE NO.>-<FILE NO'» includes
all the files between these numbers for
selecting files to be copied.

After SYSGEN has begun, the first S or D
command given will automatically per­
form the complement function for all file
names not specified in the command. Each
following S or D command, then, will
perform only the explicit function. The
select command will select all the files in
the <FILENAME SEQUENCE> for
copying.

DESELECT FILES TO BE COPIED
Format: D[<DELIM><FILEN AME SE­

QUENCE >](CR) <DELIM> is a com­
mand line delimiter, and <FILENAME
SEQUENCE> is a list of files to be de­
selected as described in the command
"SELECT FILES TO BE COPIED".

Action: After SYSGEN has begun, the first S or D
command given will automatically per­
form the complement function for all file
names not specified in the command. Each
following S or D command, will perform
only the explicit function. The deselect
command will deselect all the files in the
<FILENAME SEQUENCE> from being
copied.

REINPUT ID AND DATE
Format: I
Action: The following message is printed

36 User Manual for the RCA MlcroDllk Development SYltem MS2000

INPUT USERID>

Up to 44 characters may be assigned to the
USERID. This information will be placed
in the ID sector. Whenever a DIR or
FREE command is executed, the USERID
will be printed.

After the user presses (CR), the following
message is printed:

INPUT DATE
(MM/DD/YY» >

Up to eight characters may be assigned to
the date. No specific format is required for
the date; the format shown is only a sug­
gestion. This information will be placed in
the ID sector.
Whenever a DIR or FREE command is
executed, the USERID will be printed.

COPY COMMAND
Format: C(CR)
Action: The transfer of data will begin from unit 0

to unit I under the following conditions:

1. If no D or S command is executed,
then SYSGEN will select all the files dis­
played in the P command for transfer.
The disk will be reorganized with all free
space in one block at the end of the disk.
2. If S*. * is typed, the result will be the
same as in the previous paragraph.
3. If D*. * is typed, the output disk will
have a blank directory with a copy of the
operating system also on the diskette, if 0
(copy the operating system) had been
typed as an option. Other wise, only a
blank directory would be copied.

For all copies other than exact copies, file names will
be printed on the console or line printer. If the operating
system is to be copied, the user must be sure that the
operating system is on the diskette in unit O.

The BREAK key aborts the printing of file names or
the copying of diskettes.

S. Error Messages:
If the diskette in drive I is write protected, the follow­

ing will be printed.

THE DISKETTE IN DRIVE I IS WRITE
PROTECTED

If after five attempts to read a track from drive 0 fail,
the following will be printed:

TERMINATION ERROR WHILE READING
FROM DRIVE 0

If after five attempts to write a track to drive I fail, the
following will be printed:

TERMINATION ERROR WHILE WRITING
TO DRIVE I

In each case, control is returned to the operating
system.

6. Examples:
Make an exact copy.

~SYSGEN;E(CR)

IS IT OK TO COPY TO DRIVE I?Y
EXACT COPY BEING MADE

,!Q(CR)
Reorganize files on a diskette containing an operating

system. The system diskette in unit 0 must contain an
operating system.

> SYSGEN ;O(CR)
TYPE USERID>XXXX(CR)
TYPE DATE>XXXX(CR)
,!S*.*(CR) .. Select all flies to be copied
,!C(CR) .. Make a system diskette
IS IT OK TO COPY TO DRIVE I?Y
!Q(CR) .. Return to command interpreter

Reorganize flies on a diskette not containing an oper-
ating system.

> SYSGEN(CR)
TYPE USERID>XXXX(CR)
TYPEDATE>XXXX(CR)
#S*.*(CR)
iC(CR)
is IT OK TO COPY TO DRIVE I?Y
!Q(CR)

Copy only the flies having the extension CM from a
diskette.

> SYSGEN(CR)
TYPE USERID>XXXX(CR)
TYPE DATE>XXXX(CR)
,!D*. *(CR) .. Deselect all flies
ltS*.*CM(CR) .. Select all .CM flies
!C(CR)
IS IT OK TO COPY TO DRIVE I?Y
!Q(CR)

Initialize a new diskette to have a blank directory.

> SYSGEN(CR)
TYPE USERID>XXXX(CR)
TYPE DATE>XXXX(CR)
HD*. *(CR) .. Deselect all flies
!C(CR)
IS IT OK TO COPY TO DRIVE I?Y
1!Q(CR)

Add six flies from 0 to existing MicroDOS diskette in
unit 1.

3. MlcroDOS Command Descriptions

> SYSGEN;D(CR)
11s 1-6(CR) .. Select first six files to be copied
11C(CR)
IS IT OK TO COpy TO DRIVE I?Y
HQ(CR)

1. Command: TAPED

2. Purpose:
TAPED is a copy routine that can take a data file from

disk to cassette tape or from cassette tape to disk. It can
copy ASCII only.

3. Format:
TAPED<DELIM><NAMEl>

<DELIM><NAME2>(CR)
<DELIM> is a command line delimiter
<NAMEl> is the name of the source file or source

device, and
<N AMED is the name of the destination file or
destination device.
If <NAMEl> is a disk file name, it is of the format

<NAMEl>[.<EXTENSIONl>][:< DRIVEl>]
and <NAMED must be specified.

If <DRIVEl> is not specified, "0" will be used.
If <EXTENSION I> or <EXTENSIOND is not

specified, blank will be used.
If <NAMED is a disk file name, it is of the format

<NAME2>[,<EXTENSIOND][:<DRIVE2 >]

The following are mnemonics for the non-disk
devices used with the command TAPED:

#TR Read from tape
#TW Write to tape

4. Action:
Two types of file copying can be reqested:

Disk to device
Device to disk

Disk-to-device copy is a transfer from a disk file to a
cassette tape. Device-to-disk copy is a transfer from a
cassette tape to a disk file.

To pause the transfer of the TAPED program, press
the BREAK key on the keyboard. To abort TAPED
after a pause, press the Q (QUIT) key. Any other key will
continue the copying.

S. Error Messages:
<FILENAME> F.N. NOT FOUND

<NAME I> does not exist.
DIR FULL No more room exists for another file

name in the directory.
DISK FULL No more room exists for file on disk.

INVALID
FILE TYPE

Some of the data may have been trans
ferred.
Disk file being copied to a non-disk
device has a file type other than ASCII

37

or ASCII-HEX format. TAPED can­
not dump non-ASCII files to an ASCII
device. The Operating System or any
operating system file cannot be copied.

INVALID DV Disk was entered (e.g., #DK).
NO SUCH DV Peripheral device specified does not

exist in system.
INV ALID Device requested does not transfer
DATA data in the direction requested (e.g.,
TRANSFER copy to an input-only device or copy
TYPE from an output-only device).
COMMAND A name contained a wild-card con-
SYNTAX ERR struct, or no file name was found as the

first or second parameter.

6. Examples:
Copy the ASCII file ASCII to the cassette tape.

2::T APED,ASCII,#TW(CR)

Command: U

2. Purpose:
U is a utility program that allows restarting CPU

execution at any specified address while MicroDOS is
still in control.

3. Format:
U<DELIM>< ADDRESS>[<DELIM>
<PARAMETERS>](CR)

4. Action:
The program in memory located at the starting

address specified will be executed. In addition, any speci­
fied parameters will be passed to the program being
executed.

S. Error Messages:
None applicable.

6. Examples:
Restart UTII at 8000H
2::U 8000(CR)

Provided that the Directory program has been loaded
into memory, restart is giving the file name ABC: I;E as a
parameter.

2::U,OOOO,ABC:l;E(CR)

1. Command: VERIFY

2. Purpose:
VERIFY compares two disk files. If any of the sectors

do not compare, a message will be printed. If all sectors
compare but one file is longer than the other, a message
will be printed.

3. Format:
VERIFY<DELIM><FILENAMl>
<DELIM><FILENAM2>(CR)
<DELIM> is a command line delimiter.

38 User Manual for the RCA MlcroDlsk Development System MS2000

If the extension for <FILENAM1> or
<FILENAM2> is omitted, a blank will be assumed.
If <DRIVE> is omitted for <FILENAM1>
or <FILENAM2>, zero will be assumed.

4. Action:
When a successful verification has been completed,

the following message is printed:

FILE #1 IDENTICAL TO FILE #2

The VERIFY command compares sectors between
file 1 and file 2. If two sectors are not equal, the following
message will be printed:

FILE #1 LSN XXXXX IS UNEQUAL TO FILE #2
LSNYYYYY

Verification will continue until the end of file is
reached.

If the files are unequal in length, the following message
will be printed:

FILE #X IS LONGER THAN FILE #Y

x, Yare either file 1 or file 2. Upon completion, control
returns to the command interpreter.

If the files are of different types, they will not be
compared and the following message will be printed:

MIXED FILE TYPES

and control is returned to the command interpreter.
Any time during the comparison, control can be

returned to the command interpreter by pressing the
BREAK key. The following message is printed:

ABORTED

39

4. User Program Generation

The user of the MicroDisk Development System
MS2000 will generally be creating one of three types of
programs:

1. A program designed to run on the MicroDisk
Development System itself.

2. A program designed to run on a different
CDPl802-based system, such as a Microboard system,
but for which hardware is not yet available.

3. Same as 2, except that hardware is available and
the program is to be downloaded into the hardware and
tested.

In all cases, the original source file is created using the
Editor. The file is then translated into machine code by
use of ASM8 assembler or one of the optional compilers
available. Finally, the program is loaded and tested.
From this point on the operational procedure varies.
Note also that the programs have to be molded to the
hardware on which they are to be run.

The following paragraphs give a brief summary of the
programming considerations for each of these three
cases. Details on use of the programming and debug­
ging tools of the MS2000 are given in subsequent chap­
ters. For general CDPl802 programming information,
refer to the User Manual for the CDP1801 Micropro­
cessor, MPM-20l.

Case 1
Programs designed to run on the MS2000 must

adhere to the programming conventions of RCA soft­
ware. Register assignments are:

RO - Do not use; reserved for DMA operations.
Rl - Do not use; reserved for interrupt.
R2 - Points to a free byte on a stack; stack grows

toward lower addresses.
R3 - Program counter.
R4 - Contains address of the CALL routine in

UTIl.
R5 - Contains address of the RETURN routine in

UTIl.
R6 - Points to a return point (or immediate byte) after

a subroutine call.

The user should refer to the routine INITl and INIT2
described in the chapter on Monitor Program UT71, for

aid in setting up the registers. He should also study the
chapter on MicroDOS User Functions, to find out how
to interface the MicroDOS operating system so as to be
able to read and write disk files, input from the key­
board, and the like. At a more elementary level, the
chapter on Monitor Programs UT71 tells how to
directly interface the Monitor Program UTIl. Note
that these functions require additional specific register
assignments.

Programs planning to use MicroDOS functions must
avoid the area where MicroDOS resides. Refer to the
memory map given in Fig. 3. For similar reasons, a
program cannot be loaded into the Utility Program's
memory area.

ADDRESS
(HEX)
FFFF
FOOO
EOOO
DODO
COOO
BODO
AODO
9000
8000
7000
6000
50D0
4000
3000
2000
1000
0000

USER
AREA

USER
AREA

MICRODOS AREA
9000-BFFF
UT71 RAM BBDO-BFFF
UT71 80D0-87FF

'-...

MOST SYSTEM SOFTWARE
LOADING STARTS AT 0000

92CS-34179RI

Fig. 3 - System Memory Map.

Once a program has been written and assembled, it
can be loaded simply by typing its filename. Either a
complete listing file, a hexadecimal-only file, or a binary
file can be loaded this way. Unlike binary files, listing
files may not begin to execute immediately. This delay is
usually preferable during the debugging phase. The U
command is used to start a loaded listing file.

Case 2
Programs intended to be run on a different CDP 1802-

based system and for which the specific hardware is not
yet available can be loaded into the MS2000, and the
terminal can be "borrowed" through interfacing with

40 User Manual for the RCA MlcroDlsk Development System MS2000

MicroDOS user functions. Or, sections of code requir­
ing no I/O can be tested in the System's RAM. The
same considerations apply as for Case 1.

ease 3
A program designed for another system can be trans­

ported and debugged in one of two ways: (I) the pro-

gram can be burned into PROM's, using a PROM
programmer, or, (2) the program can be down-loaded
into a RAM-based system using the MicroEmulator
MSE300 I or the Micromonitor CDP 18S030 and MOPS
software. In either case, the MicroEmulator or the
Micromonitor as a stand-alone device or, the Micro­
monitor in conjunction with MOPS, can be used for
debugging.

41

5. Disk Editor

Introduction
The MS2000 Disk Editor (EDIT) is a program that

facilitates the creation and modification of local files for
storage on a floppy disk. Typically, the files are source
programs. However, they may also be any other kind of
conventional document.

After the user has written his assembly language pro­
gram and wants to assemble and run it, he immediately
faces the problem of converting the hand-written source
file into a machine-readable form. This conversion
involves a keyboard-to-disk operation in which lines on
the coding sheet are transcribed to become lines on a
source file. The Disk Editor will be used at this point to
create the source file. The Editor provides assurance
that the created files are in proper format for later
reading by the assembler and for later modification, if
necessary, by the Editor. Details on formats are given in
the description of the Editor which follows.

Once a source file has been created and a first Assem­
bly run made, it is very likely that error diagnostics will
be returned by the Assembler asking for corrections to
the source file to conform to its rules.

Typically, the changes required at this point are "triv­
ial" but necessary. For example, spaces may have to be
removed in one or more expressions. The same symbol
may have been erroneously used for two purposes. An
operation mnemonic may have been misspelled or a
punctuation character such as a comma, colon, or single
quote omitted. The number of possible trivial errors is
clearly large.

To correct the errors and to alter the source file to
conform the program to the Assembler's rules, the Edi­
tor is used. Typically, modifications at this point merely
involve insertion and deletion of single characters or
replacement of a small string of characters by a substi­
tute string. The erroneous source file is used as an input
to the Editor and the user generates a corrected source
file as an output. The new file is then assembled or
reassembled. At this point other trivial errors may
appear that were not apparent on the first run. For
example, an erroneous instruction operand may not
have been flagged on the first assembly because its
associated statement label or operation mnemonic may
have also been in error. Thus, a new Edit-Reassemble
pass may be necessary. Finally, a programs developed

to which the Assembler does not object. At this point, a
first run can take place.

The probability of a logical error in the program
depends on its length and the previous experience of the
programmer. Assuming one or more logical errors are
found (via some "debugging" procedure), the source file
must again be modified. Often such modifications are
no longer trivial. For example, it may be necessary to
find all instructions that branch to a given location and
precede some of them with one or more instructions
currently not in the program. Often, it may be necessary
to delete some code or insert some code or move some
code to a different point in the program. Several dupli­
cated sets of in-line instructions may have to be removed
and replaced with calls to one common subroutine
which is to be added. The user may decide to "clean up"
the program logically, in anyone of several ways, or to
improve its "readability" by modifying its comments or
statement formats (by inserting TAB's or SPACE's, for
example).

Such modifications to the source file also involve use
of the Editor. After they are completed, a reassembly
may again turn up new errors of the "trivial" variety.
And so on. Thus the generation of a bug-free program
typically involves the chart shown in Fig. 4. It is thus
quite likely that the amount of time spent "conversing"
with the Editor will be much larger than that spent with
the Assembler.

I
~ "TRIVIAL" ERRORS

CREATE SOURCE FILE
---usiNG EDITOR

~ t ~
(RE) ASSEMBLE F IX LOGICAL ERRORS

USING CYES~~JRRORIAGNOSTICS? USING EDITOR

~
RUN

~'I~ru
~

PROGRAM WORKS

92CS -28198

Fig. 4 - Flowchart/or "bug-free"program.

42 User Manual for the RCA MlcroDlsk Development System MS2000

A source program may be viewed as a long sequence
of characters. When the Disk Editor Reads the source
file, it places this character sequence in memory, with
the code in each memory byte representing one source
program character. The user is then free to type com­
mands to the Editor to manipulate the memory repre­
sentation of the program. For example, the user may
identify a specific location and specify a character
sequence to be inserted there. He may also identify
certain characters to be deleted or altered. He may ask
the Editor to search for the occurrence of specific char­
acter sequences, after which further memory modifica­
tions (corrections) may be made.(Details of available
commands are given later).

After he is satisfied that the new memory representa­
tion of the file contains all of the desired changes (fre­
quently the user begins an editing session with a
hand-written list ofthe changes to be made), he asks the
Editor to write (create) a new file containing the new
version of the program. This new file is then used as the
input file for a reassembly.

Operating Instructions

Memory Space Requirements
The EDIT program occupies approximately 6 kilo­

bytes of memory space. It is supplied on the MicroDOS
System Diskette for loading into the RAM of the
MS2000.

EDIT requires about 100 bytes of the RAM work
space for its own internal purposes. The remainder of
the available RAM space is used as an editing area
called a buffer. Virtually all EDIT operations involve
the buffer. EDIT is designed to take advantage of all of
the available RAM space below 8000H for its buffer
area.

Input and Output Flies
Normally, a user creates a file using EDIT by filling

the buffer from the 110 terminal keyboard and then
causing EDIT to write this information onto a diskette
(which will contain the created file).

An existing (input) file may be modified (edited) by
reading portions of it into the buffer, then using EDIT
commands to alter the contents of the buffer, and finally
writing the results onto the output file. Typically, the
output file is a new version of the input file. After an
editing session, the new version is retained and the old
version is discarded (although it may be temporarily
saved for future reference or backup).

Thus, EDIT has means to read an input file into the

buffer, means to examine and modify the contents of the
buffer in many ways, and means to write the buffer
contents onto an output file. Alternatively, when an
input file does not exist, the user creates an output file by
loading the buffer from the keyboard.

Record Formats
In order to understand the various commands EDIT

is designed to execute, it is fundamentally important
that the user understand how information is normally
recorded on the disk and in the buffer.

A file is a sequence of records or lines. Each line
consists of a sequence of characters. The length of a line
is restricted to 78 or fewer characters of data. Thus, a
line in a file is normally printable as a line on the 1/0
terminal printer. Each character is represented by an
8-bit ASCII code or byte, either on the file or in
memory. Typically, every character in a line is a print­
able character (including space or blank). Every non­
printing character code represents a control character.
A control code may be generated on the keyboard either
by hitting an appropriately marked key (e.g., RETURN,
ESC, etc.) or by depression of the CTRL button while
hitting another key. The terminal reacts to the receipt of
a control character in one of several possible ways.
Some control characters (such as carriage return, line
feed, bell, etc.) cause the terminal to execute a specific
control function. Other control codes either are ignored
by the terminal or may generate a special symbol on the
display.

A line in a file may contain control characters (with
certain restrictions to be discussed later). EDIT treats
most of the control characters it encounters within a line
in the same manner as it treats printing characters.
However, certain control characters have special mean­
ing in EDIT.

The proper format for disk files is shown in Fig. S.
Each line is terminated with a CARRIAGE RETURN
(CR), and an optional LINE FEED (LF). Note that the
last line of the disk should be followed by a "dummy"
line containing only the single character DC3. DC3 is a
special control character generated on the keyboard by
hitting CTRL and S. It acts as an END OF FILE
indicator.

.... 1 u_~H_lo_RI_~T_~_~~_A I_cR-,I L_F..LI ___I1...J11 I I DC3 I

I .1 1--1, --r-----I.II t--• -.-+-.I·~f .1
FIRST LINE SECOND LINE LAST LINE END OF FILE

(FOLLOWED BY LFI (FOLLOWED BY·' DUMMY" LINE
LFI

92CS-28478

Fig. 5 - Disk file format.

5. Disk Editor ________________________ _
43

~I DATA_CHARAC_TERSI....--CR .l...--I ---1......1111 I lEG
1--1. -~----l-.I ----.---.11 1---' ,...........-1.1 L.......J

LINE I LINE 2 LINE m· L PRE~ENT ONLY IF LINE m IS THE
LAST LINE IN THE INPUT FILE

92CM- 28214

Fig. 6 - Memory buffer format.

File records read by EDIT are deposited into the
buffer as they appear on the diskette, but with all LF's
ignored. While EDIT operates on the data in its buffer,
it specifically uses the CR character as an indicator of
the end of a line. (Recall that a line has a variable
length.)A new line is assumed to start with the next
character in the buffer. Thus, the buffer format is of the
form shown in Fig. 6.

When EDIT is depositing keyboard data into its
buffer, the ASCII code equivalent of each struck key
(any printing character and almost any control charac­
ter, with exceptions as noted below) goes into memory
and is also "echoed" back to the printer. EDIT, how­
ever, especially ignores the LF key. Further, when the
RETURN key is hit, the CR character goes into
memory and a CR, LF pair of characters is echoed back
to the printer to start a new line. Thus, the user termi­
nates a line of keyboard input with a single carriage
RETURN. Normally, then, the LF character should
not appear at any point in the buffer.

Whenever EDIT transmits a CR character to the
terminal, it automatically appends to it LF and NULL
characters to provide sufficient time delay for the car­
riage to settle.

It is conceivable that because of a user error, one or
more lines on the input file or in the buffer may exceed
the 78 data character length restriction. For example,
data alterations in the buffer may have resulted in
deleted CR's. (Note that each CR deleted in the buffer
causes the concatenation ofits adjacent lines.) EDIT has
the following provisions for handling lines that exceed
the length restriction:

(1)

(2)

(3)

Whenever EDIT is outputting a line to the termi­
nal as the result of a user TYPE command, if the
line exceeds 78 characters, a "LINE TOO LONG"
message will also be printed.
If EDIT encounters too long a line while writing
from the buffer to the disk, the line will be broken
up, using as many 78-data character records as are
necessary each terminated by a CR.
A line which is too long on the input me is trun­
cated to 78 characters, with a CR appended, in the
buffer.

Buffer Pointer
The total RAM space available for the buffer is

generally partially filled. When EDIT is first initialized,
the buffer is empty. When data is added to the buffer
(from the keyboard or from the disk input file) the
buffer expands. When data is deleted, the buffer con­
tracts. EDIT continually keeps track of the present
extent of the buffer within the work space.

EDIT maintains a virtual pointer which identifies
some point between two characters in the buffer. This
pointer has the same function as what is commonly
called a "cursor". Most EDIT operations are executed
relative to this pointer. Further, several EDIT opera­
tions exist specifically to alter the location of the poin­
ter. Because the pointer is not visible, it is the user's
responsibility to keep track of where the pointer is.
Often, its location is verified by asking EDIT to type
information in the buffer at the current pointer position.
Alternatively, the user may first initialize the pointer to
a known reference point (e.g., the beginning or end of a
line, or the beginning or end of the buffer) and then
move it relative to this known origin.

In illustrative examples, the location of the pointer is
indicated with an arrow below and between the two
buffer characters. For example, in

AB CDE
t

the character before the pointer is B and that after the
pointer is C.

Unless otherwise noted, whenever text is deleted from
the buffer, the character sequence to be deleted exists
either immediately to the right or immediately to the left
of the pointer. After the deletion, the buffer· has con­
tracted by the number of characters deleted. If the field
deleted is to the right of the pointer, the character
immediately to the left of the pointer remains the same.
The character to the right of the pointer then becomes
the character that was immediately to the right of the
deleted field. A corresponding statement can be made
for deletion to the left of the pointer.

When text is inserted, the buffer expands. Unless
otherwise noted, text is inserted between the two charac­
ters at the position of the pointer. After the insertion, the

44 User Manual for the RCA MlcroDlsk Development System MS2000

pointer is positioned immediately after the inserted test.
Thus, the character to the right of the pointer remains
the same.

The execution of many EDIT operations starts at the
present pointer position and proceeds either towards the
end or towards the beginning of the buffer. EDIT
insures that the pointer cannot be moved past the pres­
ent limits of the buffer. If the pointer reaches the begin­
ning or the end of the buffer, the operation stops
-leaving the pointer at that point. For example, if the
pointer is positioned n characters from the end of the
buffer and the user asks to move the pointer m charac­
ters to the right, with m greater than n, then the opera­
tion will stop after the buffer pointer has been incre­
mented by only n.

EDIT Command Operation

Command Strings

When control is transferred to EDIT, it will print the
initial message

COSMAC DISK EDITOR VER.X.XX

and then follow this message with its "->" user prompt.
The -> prompt always indicates that EDIT is ready to
receive a new user command from the keyboard (having
executed the previous one).

After receiving the - >, the user types a sequence of
one or more commands which EDIT will execute in
'order. The first command should tell EDIT where to
read the input file and where to write the output file.
(See later discussion of EDIT File Assignments.) Most
commands may be optionally delimited (ended) by an
ESCAPE character. Commands which include text
arguments of variable length must include this character
to define the end of a text field. The command string is
always terminated by two successive ESCAPES.
Because the (CR) character (often used as a line termi­
nator) is treated by EDIT as data, it cannot be used as
the command terminator. EDIT uses instead the ESCape
character.

The system operates in the full duplex mode. Nor­
mally, a program merely "echoes" back to the display
which it has just received from the keyboard. However,
whenever EDIT receives an ESC character, it is echoed
back to the display followed by a $ to give a visual
indication of the ESC key depression. Thus, a typical
command string normally appears on the screen as

COMMANDI$COMMAND2$...
COMMANDn$$

where in most cases the separating ECS's are optional

but the final pair is mandatory. A command string must
be terminated by two depressions of the ESC key.

Command Formats
The heart of the command is a single letter mnemonic

(such as "T" for TYPE, "I" for INSERT, etc.). In many
cases, this letter may be optionally preceded by a
decimal number (later denoted by n) indicating the
number of characters or lines involved. Further, in some
cases this number may be preceded by a minus sign (-)
indicating a direction (from the present pointer posi­
tion) toward the beginning of the buffer rather than
toward the end (as is normally assumed). If no number
is present, EDIT assumes the value 1.

Given an arbitrary pointer location, the possible
EDIT interpretations for n are normally as follows:

(I) Character Operations: Positive n identifies the n
characters to the right of the pointer (including
control characters and spaces).
Negative n identifies the n characters to its left.
Unless otherwise noted n=O results in no oper­
ation.

(2) Line Operations: Positive n identifies all charac­
ters to the right of the pointer up to and including
the nth CR encountered. If the pointer is in the
middle of a line, the first line will constitute only
the remainder ofthat line. Negative n identifies all
characters to the left of the pointer up to but not
including the -n + lst CR. If the pointer is in the
middle of a line, the last line (in this set of lines)
will consist of only those characters in the present
line to the left ofthe pointer. Thus, n=O specifically
indicates the portion of the present line to the left
of the pointer.

In certain cases a command mnemonic letter is fol­
lowed by one or two variable-length text arguments
(whenever the user needs to specify some sequence of
characters to insert or to search for). All such arguments
must be terminated by the ESC character (echoed as $).
In subsequent discussion, an arbitrary text argument
will be denoted by a symbolic statement such as "text".

Correcting Command Typing Errors
A typing error in a command string may be corrected

by use of the RUBOUT (DEL) character to 'erase"
previous characters already typed. Each time EDIT
receives a R UBOUT within a command string, it erases
the last character from its stored version of the com­
mand string. I\.urther, it echoes back to the terminal the
character just erased. For example, suppose the user
types the command string ABS$DE (each ofthe letters

5. Disk Editor ________________________ _ 45

is a valid command mnemonic) followed by four
rubouts. On the terminal, he would see

ABf'mY'5
where the last four characters were those erased. The
characters AB would then remain in EDIT's stored
command string register. Clearly, any such erasures
must occur before the double ESC character, which
terminates the command string, is struck.

If EDIT finds an invalid command while in execution
of a command string (i.e., after the user has typed the
double ESq, it returns to the user the error message

BAD COMMAND??"xxxx .. xxS"

where xxxx .. xx reproduces that part of the command
string that has not been executed.

Interrupting EDIT Execution
The user may usually stop EDIT execution by

depressing and holding the BREAK key on the key­
board. This key is used, for example, to stop a long
typeout. On receipt of the BREAK, EDIT stops execu­
tion at whatever point was reached and returns to the
command input mode by issuing another prompt. To
assure the clean entry of succeeding commands, the
DEL key should be depressed to erase any erroneous
noise characters that may have been entered as a result
of the break.

Mter a BREAK, the user should normally verify or
reinitialize the buffer pointer position before resuming
further editing.

Filled Work Space Warning
If EDIT determines that a command string threatens

to use up the remaining work space, it will stop echoing
keyboard input characters to the printer and will echo
instead the BELL control character causing the 1/0
data terminal to ring its bell as a warning. The user
should immediately respond by erasing part of it with
the RUBOUT key until the bell stops echoing. It is
particularly important during an INSERT that when
the bell sounds, additional characters are not entered.
The last few characters of the buffer should be deleted
and the INSERT mode ended. Mter some of the buffer
is written out, the user should go back and repair the last
line as necessary. An attempt to insert more characters
after the bell can result in the loss of the entire buffer
contents. The WRITE AND DELETE command W is
used to empty the buffer onto the diskette.

If the EDIT runs out of space during command
execution, it will return the error message

MEMORY FULL"xxx .. xxS"

where again, xxx ... xx is a reproduction of the unpro­
cessed part of the command string.

File ASSignments
The Editor program is loaded by means of the com­

mand interpreter. Output generated by the program is
underlined. The S symbol indicates the ESC key.

> EDIT
COSMAC DISK EDITOR VER X.X

~
At this point EDIT is asking the operator to assign an
input file and output file. A new file name can be
established during the course of an EDIT session with­
out having to restart the EDIT program. The new file
can be established any time after a - > is received. Each
time EDIT is restarted, via the E, Y, or Q commands
(explained in the next section EDIT Commands),the
output and input files are closed. The format for input
and output file name assignments is shown below.

:;:2:RSS
READ = <FILENAME>(CR) .. Default unit No.
is 0

~OSS
WRITE = <FILENAME>(CR) .. Default unit No. is 1

~
Note:The R and 0 commands may be issued at the same
time as shown below.

~ROSS
READ = <FILENAME>(CR)

WRITE = <FILENAME>(CR)

~

EDIT Commands - Single
This section contains a summary of the individual

commands that EDIT is designed to recognize. Each
command is described with a specification of its accep­
table format and an explanation of its execution.
Examples are also given.

Pointer Control Commands
BEGINNING

Format: B
Execution:Pointer repositioned to the beginning of the
buffer.

END OF BUFFER

Format: Z
Execution: Pointer repositioned to the end of the buffer.

46 User Manual for the RCA MlcroDlsk Development System MS2000

Note:This command must be used with caution. If the
current buffer contains a DC3, the Z command will
reposition the pointer beyond the DC3. Any insertion
made after the Z is typed, consequently, will not be
added to the file because it is beyond the DC3 or end-of­
file. The user, therefore, should always type Z-L to
position the pointer in front of the DC3.

CHARACTER STEP

Format: nC
Execution: Step pointer right (or left¢) by n characters.

LINE STEP

Format: nL
Execution:Step pointer down (or up) by n lines.

TYPE LINE NUMBER

Format: *
Execution: Type line number of pointer position within
buffer.

File Manipulation Commands
INPUT FILE SELECTION

Format: R
Execution: Causes EDIT to type

READ = <FILENAME>

The operator should respond with the file name of the
source file. This command may be issued at any time
during the edit session. This command opens a file for
reading. If the R command is entered by mistake, the
operator should respond to the "READ=" prompt with
an (ESC) or (CR). The read assignment will be un­
changed.

OUTPUT FILE SELECTION

Format: 0
Execution: Cause EDIT to type

WRITE = <FILENAME>

The operator should respond with the file name of the
source file. This command may be issued at any time
during the edit session. If the 0 command is entered by
mistake, the operator should respond to the "WRITE="
prompt with an (ESC) or (CR). The write assignment
will be unchanged. This command opens a file for
writing.

¢ A positive (unsigned) n indicates the direction of right
or down; a negative n indicates left or up for all
commands.

APPEND

Format: A
Execution: Lines are read from the input file (continu­
ing from the last line) and appended to the end of the
buffer. The operation continues until one of the follow­
ing occurs:

(1) End of file character detected (i.e., last line has been
read).
(2) 3/4 of the remaining available space has been filled.
(3) 100 lines have been transferred.

The pointer is repositioned to the beginning of the first
appended line. In large memory systems, mUltiple
appends may be used to bring additional lines into the
buffer. Multiple APPEND commands must be typed as
a string of A's. The form nA is not acceptable.

Note: The keyboard BREAK key should not be used
during execution of an APPEND.

NEXT

Format: nN
Execution: Lines are read from the input file (continu­
ing from the last line) and appended to the end of the
buffer. The operation continues until one of the follow­
ing occurs:

(1) End of file character detected (i.e., last line has been
read).
(2) 3/4 of the remaining available space has been filled.
(3) n lines have been transferred.

MERGE FILE

Format: M
Execution: Allows further appends to the buffer. The
difference between this command and an A(ppend)
command is that once an end-of-file marker (DC3) is
read, EDIT will not allow further Appends until this
M(erge) command has been issued. After the M com­
mand is issued, the Append is used to bring subsequent
sections of a second file into memory. When this com­
mand is used, it is assumed that the end of the current
file is already in the buffer. To merge this file with
another one, the user must first delete the end-of-file
marker from the buffer, select the input file to be
merged, and then issue the M command. An example is
given below. Output generated by EDIT is underlined.

->A$$

EOF

:2
~ BF(DC3)$-D$$

.. Bring the end of the current file
into memory.
..Editor responds that the end­
of-file has been reached.

.. Find and delete the ASCII
(DC3) control
..character end-of-file marker

5. Disk Editor ________________________ _ 47

~R$$
READ=XY2(CR)
,=2M$$

.. Select file to be merged

.. Enter the first portion of the
new file at the end of the memory
buffer

Repeated A 1 ()()W$$ commands are then issued until the
next EOF is found. The second file is now following the
first.

Deletion Commands
DELETE

Format: nO
Execution: n characters right (or left) adjacent to the
pointer are deleted.

KILL

Format: nK
Execution: n lines right (or left) adjacent to the pointer
are deleted.

Text Insertion and Data Manipulation
INSERT

Format: Itext$
Execution: Typed text is inserted to the left of the
present pointer position. The text may contain multiple
lines.

SAVE

Format: nX
Execution: Copy n lines adjacent to the pointer into a
special SAVE area external to the buffer. The pointer
position is not changed. Previous contents of the SA VE
area are overwritten. EDIT types CAN'T SA VE if there
is insufficient room in the SA VE area and it does not
save any lines. EDIT clears the SAVE area ifn=O (zero).

GET

Format: G
Execution: Equivalent to a INSERT, but uses the pres­
ent contents of the SAVE area as an implicit text argu­
ment. Note: SAVE and GET are especially useful in
sequence as a copying mechanism to MOVE text.

EDIT dynamically allocates the available RAM
~ork space to its SA VE area, stack area, and the buffer
or editing area. Once lines have been SAVE'd, they
remain in the SA VE area indefinitely until the next
SA VE command overwrites them. If many characters
have been SA VE'd, the area available for the buffer will
be proportionally reduced. The SAVE area is not auto­
matically cleared by a GET command. Several GET
commands may be issued against the same SA VE area.

It is good practice, therefore, to clear the SAVE area
when it is no longer needed in order to make that area
available to the buffer. This step is accomplished by
typing OX (zero-X).

If an attempt is made to save more lines than there is
room for, EDIT will type

CAN'T SAVE "XXXX .. .xX$"

and will not transfer any lines to the SA VE area.
XXXX ... XX is the portion of the command not
executed.

FIND

Format: Ftext$
Execution: A search for the specified character sequence
"text" occurs from the current pointer position toward
the end ofthe buffer. It stops either when a match is first
encountered or when the end of the buffer is reached. In
the first case, the pointer ends positioned immediately
after the matching string. In the latter case, a "CAN'T
FIND" message is printed, and the pointer position is
unchanged.

SUBSTITUTE

Format: S search text $substitute text$
Execution: Operates as FIND does above (using search
text as the search argument). However, on a match, the
substitute text replaces the matching sequence with the
pointer positioned after the inserted text. The substitute
text must not be omitted from the command.

Output Commands
TYPE

Format: nT
Execution: Type the n lines adjacent to the current
pointer. The pointer position remains unchanged.

PRINT

Format: nP
Execution: The n lines adjacent to the pointer are sent to
a printer or punch if one is provided. The pointer posi­
tion remains unchanged. The lines are not deleted from
the buffer.

TYPE EDITOR STATUS

Format:#
Execution: Type out size ofthe buffer, number of bytes
available, size of the save area, and the end of memory.

WRITE and DELETE

Format: nW
Execution: n is treated as positive. The n lines at the
beginning of the buffer are written to the output file and

48 User Manual for the RCA MlcroDlsk Development System MS2000

START
EDITOR

USE R COMMAND
TO SELECT

INPUT LOCATION

END WITH
Q

COMMAND

Fig. 7 - Flowchart showing methods/or terminating an EDIT session.

deleted from the buffer. The pointer ends up positioned
at the beginning of the remaining buffer.

END

Format: E
Execution: The buffer is written to the output file and
any lines remaining on the input file are then copied to
the output file and the file is closed. EDIT then reinitial­
izes for a new editing session with buffer cleared and
with the pointer positioned at the beginning ofthe work
space.

FILE CLOSE

Format:Y
Execution: Places an end-of-file character (DC3) at the
end of the working buffer, outputs the buffer to disk,
and restarts EDIT. ALL FILE CREA nON SES­
SIONS MUST END WITH THIS COMMAND. Fig.
7 shows the methods of terminating an edit session. The
Y command may also be used to truncate a copied file.

QUIT EDIT SESSION

Format: Q
Execution: Restarts EDIT. Execution ofthis command
destroys the contents of the working buffer. Fig. 7
shows alternate methods of terminating an edit session.
The output file is not closed.

RETURN TO UTILITY PROGRAM

Format: U
Execution: Restarts COOS, which will type a > to the
terminal indicating that it is ready to accept commands.
No closing of file will take place.

Summary of Commands and
Control Characters

A summary listing of the foregoing commands
together with the meaning of each one is given in Table
III. A summary of the special EDIT control characters

5. Disk Editor ________________________ _ 49

Format
R
o
B
Z
nC
nL
•
A

nN
nD
nK
Itext$
nX

G
Ftext$

Ssearch text $substitute
textS
nT
nP

nW

E

y

Q
M
U

Table III - EDIT Command Summary

Meaning
Define input (Read file name). Response READ-FILENAME
Define output file name. Response WRITE=FILENAME.
Move pointer to BEGINNING of buffer.
Move pointer to END of buffer.
Step pointer right (or left) by n CHARACTERS.
Step pointer down (or up) by n LINES.
TYPE out the line number of the pointer within the buffer.
APPEND lines to end of buffer from input file. Reposition pointer to beginning of
APPENDed area.
APPEND the next n lines into the buffer, if there is room. Default for n is I.
DELETE n characters after (or before) pointer.
KILL n lines after (or before) pointer.
INSERT text at present pointer position. (Position pointer after it).
Save n lines after (or before) pointer. (Pointer position unchanged.)Clears the SAVE
area if n= O.
GET the last SAVEd lines and INSERT them.
FIND the first occurrence of text, searching from present pointer position toward end of
buffer. If found, position pointer after the match. If not, type CAN'T FIND.
FIND search text and SUBSTITUTE substitute text for it.

TYPE n lines after (or before) pointer. (No change in pointer location.)
PRINT/PUNCH n lines after (or before) pointer. (Buffer and pointer remain un­
changed.)
WRITE (and delete from buffer) the first n buffer lines on the output file. n is positive.
(Pointer ends up at beginning of remaining buffer.)
TYPE Editor status.
END the editing session. Equivalent to an n W, with n equal to or greater than the
number of buffer lines, followed by a copy of remaining input file to output file.
Used to end a file-creation session. Places an end-of-file marker on the bottom of the
buffer and outputs the buffer.
Restart Editor program and clear buffer.
Merge buffer contents with selected input file.
Exit to MicroDOS.

is given in Table IV. The EDIT error messages are
summarized in Table V.

used any number of times. Before anything is done with
the output files, however, they must be merged by
means of the CDOS MERGE command. MERGE is
the only program that can accept multi-file inputs. The EDIT error message

DISK FULL
SET UP CONTINUATION FILE
WRITE?

• is of interest because it tells the user how to proceed. The
user should replace the full disk with one that has free
space and then enter the continuation <FILENAME>
after WRITE? The remaining output will be stored
under this file name. Caution must be exercised, how­
ever, when disks are being changed that the source input
is not removed. This file continuation procedure can be

EDIT Commands - Composite

EDIT also permits the user to specify composite
commands. A composite command is a command
string (one or more commands) enclosed within angle
brackets « ... ». A command string may be preceded
by a decimal number indicating the number of times
that the string within the brackets should be executed.

50 User Manual for the RCA MlcroDlsk Development System MS2000

Table IV - Summary of EDIT Control Characters

Message Meaning

(l)ESCAPE Echoed as $. Optional command separator.
Required after a TEXT field.
Two required at the end of a command string.

(2) LINE FEED Ignored on input.
Inserted after CR on output.

(3) CARRIAGE RETURN Line terminator character. Stored in buffer.
(4) NULL Ignored on input.

Set of six inserted after LF to terminal
(5) RUBOUT or DELETE Erases previous character in a command string.
(6) DC3 End-of-file character.

Inserted by user at end of a created file or read in from an existing input file.
(7) HORIZ TAB Echoed as I to 8 spaces when typed.

Converted to I to 8 spaces on file output.
Can begin a command implying a previous INSERT.

(8) BREAK Pressing BREAK will terminate a long command.

Note: Within a command string but not within a text field, EDIT ignores any inserted spaces or CR's. Spaces or CR's
may be used to improve the readibility of the command string if desired.

Table V - EDIT Error Messages

Message Meaning
LINE TOO LONG A line that EDIT is attempting to TYPE has more than 78 characters.
BAD COMMAND'n "XXX .. X$" EDIT has found an invalid command in a command string. XXX ... X is

that part of the string not executed.
<BELL> Filled work space warning. Delete part of the command before ending the

command.
MEMORY FULL "XXX .. X$" EDIT ran out of work space during an execution. XXX .. X is the unpro-

cessed part of the command string.
CANT SAVE There is not enough room in the SA VE area.
CANT FIND "text" The specified character sequence was not found between the pointer's

previous position and the end of the buffer.
<XX> IS WRITE PROTECTED The disk unit selected (XX) for output is write protected. The command

string is aborted. No lines are written or lost.
<XX> DR FAIL The disk unit selected for output is not ready. The command string is

aborted. No lines are written or lost.
ITERATION STACK FAULT EDIT ran out of stack space during execution of a command string. May

indicate improperly paired brackets in the string.
···EOF"· A line containing an end-of-file mark (DC3) has been read. The DC3 is

stored in the buffer and further appends from the current file are ignored.
DISK FULL Output disk full. Replace disk and enter continuation file name
SET UP CONTINUATION FILE after the query WRITE?
WRITE?

One composite command may include another. Thus,
EDIT permits the "nesting" of commands. For example.

in the first 5 lines in the buffer by spaces. The pointer
ends positioned at the beginning of the sixth line.

B5<3C4<D I$>L>$$

causes replacement of the 4th through the 7th characters

With nested commands, the user must be aware of the
order in which commands will be executed and the
number of times individual operations will occur. The

5. Disk Editor ________________________ _ 51

following example should indicate the general algo­
rithm. Other examples will be given later. Consider the
command string

a<b<CSI>C<d<e<C S2>CS3>CS4> >

where the lower case letters represent numbers and
where each CSi represents an elementary command
string. Fig. 8 indicates EDIT's flow chart for the execu­
tion of this command string. It is derived by properly
pairing the angle brackets in the string.

ENTER

EXIT

92CS -28199

Fig. 8 - Execution of nested composite commands.

Notice, for example, that CS2 is executed a number
of times equal to the product of a, c, d, and e.

To execute a nested command, EDIT maintains a
stack in part ofthe available work space. The amount of
stack space required depends on the depth of nesting in
the command, i.e., on the number ofloops within loops,

• as in Fig. 8, which in turn depends on the depth of
bracket-pairs-within-bracket-pairs in the command
string. If EDIT runs out of stack space during execu­
tion, it will issue the error message:

ITERATION STACK FAULT.

This error message is most likely to occur if the

brackets in the command string are not paired properly.
In particular, it occurs if a bracket is missing.

Note that if the user fails to terminate a text string
with the required ESC character, all subsequent charac­
ters until an ESC does occur will be treated as part of the
presumed text string. Thus, it is quite possible that a
missing ESC in a nested command string could also
result in the "improperly paired-brackets" error message

ITERATION STACK FAULT.

Horizontal Tabs
EDIT assumes an implicit horizontal tab stop after

every eight character positions in a line. If the user types
a HORIZ TAB character (CTRL and I) as part of a text
field, EDIT will insert this character into its buffer, but
it will echo back to the printer a sufficient number of
spaces to reach the next implied tab stop. HORIZ TAB
characters read from the input file are loaded into the
buffer as is. On output, each HORIZ TAB buffer char­
acter is converted into the required number of spaces,
extending the line length in the process. Thus, HORIZ
TAB characters cannot appear on the output file. The
TAB character can be used to produce straight columns
in a source file.

NOTE: As a special case, EDIT interprets a text
beginning with a HORIZ TAB character as if an
INSERT command had preceded it.

Additional Note

Normally, the INSERT of a non-existent text field
(i.e., the command 1$) results in no operation. Further,
it is normally illegal to precede an INSERT command
with a numeric argument. However, the specific com­
mand nI$ (combining the two), is legal. It causes the
insertion of a single character whose ASCII decimal
value is n(modulo 128). For example, 971$ will cause
insertion of an "a" (hex 61).

File Development and Manipulation
In this section, information is given on the develop­

ment and manipulation of a file through the use of the
EDIT. In addition, some useful common sequences are
given to illustrate EDIT's data manipUlation facilities.

Creating a File

A file is created by a repeated sequence of the follow­
ing steps:

(I) Fill buffer from keyboard with sequence of
INSERT's

(2) WRITE buffer to output file.

52 User Manual for the RCA MlcroDlsk Development System MS2000

A single I command may take as an argument a text
string of arbitrary length. Thus, many lines may be
inserted with a single I command. Each line is termi­
nated by pressing the RETURN key. A typical INSERT
will thus appear on the printer as

I line I
line 2

line n$$

because each CR is echoed as CR, LF. Such commands
may be sequenced until the buffer is nearly filled. These
sequences are then normally followed by an nW
(WRITE) command with n equal to or greater than the
number of lines in the buffer. By use of the W command,
the buffer is cleared after the WRITE to the output file
and is ready for a new set of INSERT's.

The last line of a created file should be followed by the
insertion of a terminating dummy line consisting of the
single character DC3 (CTRL and S) indicating the end
of the file. The DC3 character is automatically added
when the Y command is used to end a file-creating
session. The file-terminating commands Y and E also
generate a string of null characters after the DC3 to
assure that data is written on the diskette.

Adding to a File
A section is added to an existing file by first copying

the portion before the insert and finally copying the
portion after the insert. The first copy involves one or
more APPEND's followed by WRITE's up to the
APPEND which reads in the section of the input file
containing the insertion point. Note that appending to
the end of a file may also be considered as an insertion
just before the last DC3 terminating line.

Assuming the insert point is arbitrarily located within
the buffer, several variations exist for adding text mate­
rial. For any of these variations, the pointer must first be
moved to the insert point. Then a sequence of INSERT's
is made at that point, particularly if the amount of the
inserted material is small. Alternatively, one could
SA VE all lines following the pointer (with an nX, n
sufficiently large), delete them with an nK command,
and then WRITE the data remaining in the buffer with
an nW (n sufficiently large). The buffer then becomes
empty with all records preceding the addition written to
the output file. Additional INSERT's and WRITE's
may now be made. Finally, a GET followed by a
WRITE will attach the material after the insert point.
Now, if there is more unread material on the input file,
the GET may be followed directly by an END com-

mand. This command will automatically copy the
remaining input file.

In summary, one inserts material into an existing
file by beginning with a copy sequence (a series of
APPEND's followed by WRITE's). Then, with the
pointer positioned properly, one may execute nX nK
nW (n sufficiently large). Now, one operates in the
CREATE mode with INSERT's followed by WRITE's.
Finally a GET or GnW will complete the sequence.

When appending to the end of a file, one has the
alternative of removing, after the last APPEND, the
dummy termination line via a Z-IK command string.
Operation then is as in the CREATE mode. For this
case, the Y command should be used to terminate the
file.

Deleting a Section In a File
To delete a section in a file, the user should first copy

up to the deletion point, as previously discussed. Lines
to be omitted may then be explicitly deleted from the
buffer (by nK, with pointer properly positioned). If
further lines to be deleted exist on the input file, further
APPEND's are required.

Moving a Section In a File
Assume that the file section to be moved is sufficiently

small. If the movement is toward the end of the file, the
following sequence may be used:

(1) Copy input file up to the section to be moved.
(2) SAVE the section to be moved. Then DELETE it
in the buffer.
(3) Continue copying the input file up to the insertion
point.
(4) GET and WRITE the SA VE'd section.
(5) Copy the remaining part of the input file.

If the movement is toward the beginning of the file, one
must first find the section to be saved, SA VE it,
DELETE it, and then reinitiaUze the input file. After
this, the sequence of steps 3, 4, and 5 above will effect the
insertion.

Several complications of this simple procedure can
occur. First, the material to be moved may overlap two
APPEND's. In this case, one does not SA VE until the
second APPEND has been executed. Second, the mate­
rial to be moved may consist of a substantial portion of
the input file so large that it must first be copied on to a
third temporary file which might be called an "insertion
file". If this condition exists, the user should be suffi­
ciently familiar with EDIT so that he will be able to
create and use this special temporary file.

5. Disk Editor ________________________ _ 53

Modifying a Section In a File

By now the reader should be reasonably familiar with
the commands APPEND, WRITE, END, INSERT,
SAVE AND GET.

The most common use of EDIT is to modify the
contents of a file at a given point (typically, to correct an
error). To make such a modification, the user must first
read that section ofthe file into the buffer. Normally, a
copy of the initial portion of the file is necessary, up to
the APPEND which brings into the buffer the section to
be modified. Now, the remaining EDIT commands are
available to effect the modification. After the change is
made, the process is terminated with an END command
if modifying an existing file, or the Y command if the file
is being created.

Some Command Examples

Below are several examples of useful command
sequences to further acquaint the reader with EDIT's
data manipUlation facilities. In each example a com­
mand string is given and followed by a short explana­
tion of what it will do.

(I) Assume the pointer is arbitrarily positioned within a
line in the buffer:

2LJ Types the entire line leaving the pointer at its
beginning.

ill Also types the entire line, but leaves the
pointer unchanged.

Q! Erases the portion of the line to the left of
the pointer.

K Erases the portion of the line to the right of
the pointer.

QLK Erases the entire line.

For each of the following command sequences, it is
assumed that n is sufficiently large.

BIlK Erases the entire buffer.
Q2i Erases the entire SAVE area.
RnJ Prints the entire buffer.

(2) Assuming the pointer is positioned at the beginning
of a line in the buffer,

nXnKZ-mLG

will move the next n lines to m lines from the end of the
buffer and erase them from their original position.

(3) The command

Bn<mCI SL>,

for n sufficiently large, inserts a field of spaces in all lines
at a point m characters from the beginning of each line.

(4) One can also scan the entire buffer with a FIND or
SUBSTITUTE command by similarly using a suffi­
ciently large numeric argument (called n below). The
command will terminate when the end of the buffer is
found with a CAN'T FIND message. For example:

Bn<SfieldISfield2S> will replace aU occurrences of
field I by field2.

Bn<FtextS-mD> will delete aU occurrences of text, if
m=the length of the text field.

Bn<FtextSOL Tl L> will print all lines containing
text.

Bn<FtextSOLIC> will delete all lines containing text.

Bn<FjSI(CR)S> will break all lines containing semi­
colons into as many lines as there are semicolons - each
terminating in a semicolon. (Note: In this case, any line
originally ending in a semicolon will be followed by a
"line" containing zero characters).

Bn<SS(CONTROL I)SL> will replace the first space
in every line in the buffer by a horizontal tab control
character.

Bn<ASOTSOIC> will perform the following n times;
append in the next (first) section, type it, and delete it
from the buffer. This command string can be used to
type a long file that can't be held all at once in the buffer.
It is particularly useful in typing the listing output file of
the assembler.

File Manipulation Summary
This section summarizes the steps needed to create a

new file or to change an existing file.

Creating a New File

1. Use .Q. (Output) to define the file that will be
created. (Will default to drive I if drive is not
specified).

2. Use.l(lnsert) to input text to buffer. End insert
mode with ESCape ESCape (SS).

3. Use !!.~,£,h,Q,~,~,Q,f,~,!z~·, or.!!. as needed
to edit.

4. Use Y (Close file) to output buffer contents to disk
and to end the edit session.

Changing an Existing File

1. Use R (Read) to define the file that will be edited.
(Will default to drive 0 if drive is not specified).

2. Use Q (Output) to define the file that will be
created. (Will default to drive I if drive is not
specified).

54 User Manual for the RCA MlcroDlsk Development System MS2000

3. Use A or ~ (Append) to bring lines from the input
file into the editor buffer.

4. Use ~,~,£,1,Q,!,X,Q,f,~,I,.r,*, or!!. as needed
to edit.

5. If the entire file to be edited is too large to fit in the

editor buffer, use W (Write) to write out edited
text to the disk. Then repeat steps 3, 4, and 5 as
needed.

6. Use E (End) to output buffer contents and/ or the
rest of the file to disk and end the edit session.

55

6. Disk Assembler (ASM8)

The computer understands only programs written in
machine code, a sequence of hexadecimal characters.
Most people, however, find that writing programs in
machine code is usually tedious and often frustrating
because ofthe need to keep track of where each instruc­
tion is located in memory and where all the variables are
stored. An assembler is a program which automatically
performs these housekeeping functions, allowing the
user to write programs using convenient symbols,
names, and expressions. The user can also add com­
ments to his program to aid in debugging, and to make
understanding and documenting easier.

The MS2000 disk assembler (ASM8) is such an
assembler. It allows the user to program in assembly
language. The ASM8 produces the machines code
(hexadecimal) which can then be executed on the
CDPI800-series microprocessors. A simple comparison
of the same program in machine and assembly lan­
guage, shown in Fig. 9, illustrates the ease of using
assembly language. The ASM8 is designed to run under
MicroDOS without the need of another computer. It
includes level I, level II, macro, and cross-reference
capability. Each of these capabilities is discussed in this
chapter.

MACHINE
CODE

FSOO B8F8

24AB FSOA
73F8 14F4

5872 0000

ASSEMBLY LANGUAGE
(ASM8)

ANSWER...AD EQU R8 .. OUTPUT AD­
DRESS WILL BE STORED HERE
FIRSLNUM EQU IO
SECOND....NU EQU 20 .. THE TWO NUM­
BERS TO BE ADDED
A.l(ANSWER)->ANSWER...AD.l;A.O(AN­
SWER)->ANSWER AD.O .. THESE COM­
MENTS ARE ALLOWED IN THE PRO-
GRAM
(FIRSTNUM+SECOND..NU) >@AN­
SWER...AD .. ADD THE TWO NUMBERS
ANSWER DS 1 .. AND STORE AT AN­
SWER

Fig. 9 - Machine code and ASM8 assembly language
compared.

The assembly language program consists of a sequence
of lines called the source code. Most of these lines are
directly translated by ASM8 into machine code and

placed in an output fill called the listing along with an
echo (reprinting) of the source code. The hexadecimal
portion of the listing is called the object code and is the
machine-executable program. Some lines do not directly
produce code, but rather tell the assembler to do some­
thing. These lines are called directives.

In this manual, the assembly language is described
using illustrative examples and BNF notation. A full
description of the language in BNF is given in Appendix
B. BNF is a concise and easy-to-understand format for
learning and reviewing assembly language.

Note: The MicroDisk Development System MS2000
can assemble and edit Microprocessor CDP1804,
CDP1805, and CDP1806 instructions, and a hexade­
cimal or listing file that contains these instructions can
be downloaded into the system under test through the
Micromonitor CDPI8S030 or through the MicroEmu­
lator MSE300 I. The CDP 1804, CDPI805 and CDP 1806
instructions can be run and debugged by the Micro­
Emulator but not by the Micromonitor. An alternative
method of transporting assembled CDPI804, CDP1805,
or CDPI806 code is to program it on a PROM and
install the PROM into the system under test.

Assembler Operation
ASM8 is a two-pass assembler. In the first pass the

symbol table consisting of user-defined labels and con­
stants is created. In the second pass the object code and
the listing are generated.

As AM8 runs, it simulates filling a memory with the
machine-code equivalent of the user's source program.
A two-byte location counter is used to point to the area
in this simulated memory where the next piece of code is
to be inserted. As each statement is coded, the hexade­
cimal equivalent is inserted in the actual object file on
disk, and the location counter is advanced by the
number of byes whose insertion into memory it has
simulated. The programmer can also control and refer­
ence the location counter if he wishes. This simulation
allows ASM8 to predict the results and effects of actual
loading.

The most useful function of an assembler is keeping
track of where branch points are and where variables
are stored. To perform this function, an assembler
builds a symbol table. Each identifier (defined later) is

56 User Manual for the RCA MlcroDlsk Development System MS2000

entered in the table along with the address in memory
that it stands for or whatever information is appropriate
to it. The user references the symbol table whenever he
uses an identifier. The user can add to the symbol table
by defining an identifier. Both of these uses of the
symbol table are described in greater detail later.

The user may often wish to use a numeric or literal
constant in his program. He may wish to address two
consecutive bytes in memory, for example. If he were
programming in machine code, he would have to
address each one of these bytes separately. The assembler
evaluates simple expressions and allows the programmer
to name one byte "WEIGHT," for example, and the
next byte would then be "WEIGHT + I."The use of this
feature is explained in detail later.

Backus-Naur Format (BNF)
BNF notation is a concise and convenient way to

express the syntax of a language. There are two major
elements in notation: terminal and non-terminal ele­
ments. A terminal element is written exactly as it would
appear when used; a non-terminal element is a descrip­
tion of something and always appears between angle
brackets. For example:

<FIRST THREE LETTERS OF THE
ALPHABET> ::= ABC

ABC is not a description of the item, it is the item itself.
There are no commas between the letters, because a
comma is not part of the alphabet. Likewise, there are
no spaces between the letters as spaces are not part of
the alphabet. "FIRST THREE LETTERS OF THE
ALPHABET" is a description and appears between
angle brackets. The symbol ::= can be read as "is
defined as" and will be used in every definition. Where
there is a choice between alternatives, the symbol! will
be used to separate the choice.

Examples:
<one> ::= I
<plus sign> ::= +
<minus sign> ::= -
<tree> ::= <woody plant>
<binary digit> ::= on
A binary digit could be either a 0 or ai, but not both.

A binary digit can be only a 0 or a 1. A decimal digit can
be defined in two ways.

<decimal digit> ::= O! 1 !2!3!4!5!6!7!8!9!
<decimal digit> ::= <binary digit>!2!3!4!5!6!7!8!9!

Notice that the decimal digit could be defined by
explicity li~ting every possibility or by defining it in

terms of already defined objects. The use ofthe descrip­
tion of a binary digit eliminates the need to explicity list
o and 1.

Example:
<primary color> ::= <red>!<green>!<blue>
<American coin names> ::= PENNY!NICKEL!

DIME!HALF-DOLLAR

Note that PENNY is the name itself and so is a
terminal element. Red as a non-terminal element de­
scribes the color, not the name of the color.

<certain breed of dog> ::= <collie>!<German
shepherd>!<beagle>

<certain name of dog> ::= REX!SPOT!SHAD!
ROVER

If it were necessary to list every possible combination
explicity, BNF would be an extremely voluminous de­
scription of anything. Fortunately, it is possible to de­
scribe an item recursively, using its own description as
part of the description. An unsigned binary number can
be defined recursively as follows:

<unsigned binary number> ::= <binary digit>
!<binary digit> <unsigned binary number>

Under this definition 01 is an unsigned binary
number because it is 0 (a binary digit) followed by 1 (an
unsigned binary number) and 1 is an unsigned binary
number because it is 1 (a binary digit). Both the first and
second part of the definition were used. 03 is not an
unsigned binary number because 03 is not a binary digit
(0 or 1 only), and though 0 is a binary digit, it is not
followed by an unsigned binary number. Because 03
does not satisfy either of the alternatives of the defini­
tion, it is not an unsinged binary number. Notice that
under the definition of an unsigned binary number,
any string of 1 's and O's of any length is an unsigned
binary number. In practice, the computer has finite
capacity and there are usually additional restrictions.
These restrictions will be given as notes in the text.

Examples:
<forest> ::= <tree>!<tree><forest>
<crowd> ::=<person>!<person><crowd>

In reading BNF notation, blanks are ignored. Where
a blank is required by syntax of the language, the special
character .::1 is used. In order to improve the readability
of the BNF in the text, many of the spaces have been
removed. If there is a question concerning syntax, the
syntax description in Appendix B is complete and
should be referred to.

It is important to remember that the assembler will
be interpreting the program instructions using the syn­
tax described in this manual.

6. Disk Assembler _______________________ _
57

Basic Definitions

Character Set
ASM8's character set includes all twenty-six upper­

case letters, all ten decimal digits, and all other printing
ASCII characters.

Character Strings, Identifiers, and Labels
A character is any of the characters in ASM8's char­

acter set. A character string is any sequence of charac­
ters. Any valid line of assembly language is a character
string, but not any character string is a valid line of
assembly code. An identifier is any character string of
up to nine alphanumeric characters, beginning with a
letter. An identifier may contain as many break charac­
ters as desired, but may not contain any special charac­
ters including spaces. If break characters are in any
identifier they are counted as part of the nine alphanu­
meric characters that make up the maximum length
identifier. A label is an identifier that is used to mark a
location in the program. A label always begins in
column 1, and ASM8 assumes that any identifier begin­
ning in column 1 is a label.

<character string> ::= <character>!<character
string><character>

<break character> ::=
<alphanumeric character> ::=<letter>!

<decimal digit>!<break character>
<identifier> ::= <letter>!<identifier><alpha­

numberic character>
<label> ::= <identifier>
<space> ::= .:1! <space>.:1

Examples:

DFJSHRJQGQH

FIRST~UM

F

Character string (too many charac­
ters for an identifier)
Character string and identifier
Character, character string, and iden-
tifier
Character and character string

Note that while an identifier is always a character
string, a character string may not always be an identifier.

Constants
ASM8 recognizes two types of constants: numeric

and literal. A literal constant is simply any character
string between quotes. A common error is to forget the
closing quote on a literal constant. The assembler then
considers the rest of the line to be part of the literal
constant.

<literal constant> ::= '<character string>'

When no other constants are defined on the same
line, a literal constant can be 72 characters long.

There are four types of numeric constants: binary,
octal, decimal, and hexadecimal. A binary constant is a
string of 1 's and O's followed immediately by a B. An
octal constant is a string of octal digits (0-7) followed
immediately by a Q. A decimal constant is a string of
decimal digits (0-9) followed immediately by a D. A
hexadecimal constant is a string of hexadecimal digits
(0-9, A, B, C, 0, E, and F) followed immediately by an
H. The D at the end of a decimal digit is optional. When
ASM8 encounters a string of digits without either a B,
Q, 0, or H following it, it assumes that the string is a
decimal constant. ASM8 immediately converts numeric
constants to their hexadecimal equivalents and literal
constants to their ASCII equivalents. All numeric con­
stants are truncated to two bytes.

<binary digit> ::= O!l
<octal digit> ::= <binary digit> !2!3!4!5!6!7
<decimal digit> ::= <octal digit> !8!9
<hexadecimal digit> ::= <decimal digit>

!A!B!C!D!E!F
<binary constant> ::= <binary digit>B!<binary

digit><binardy constant>
<octal constant> ::= <octal constant>Q!<octal

digit><octal constant>
<decimal constant> ::= <decimal digit>!<decimal

digit>D!<decimal digit><decimal constant>
<hexadecimal string> ::= <decimal digit>!<hexa­

decimal string><hexadecimal digit>
<hexadecimal constant> ::= <hexadecimal string>H

Note that not spaces are allowed within numeric
constants and that spaces within literal constants are
considered valid parts of the constants.

Examples:
1
IB
IQ
IH
10

Decimal constant
Binary constant
Octal constant
Hexadecimal constant
Decimal constant

I FH Hexadecimal constant (equivalent
to 31 decimal)

OFIH Hexadecimal constant; note that
because the first digit of any numeric
must be a decimal digit, a leading
zero is necessary here.

OOOOOOOOOOFI H Hexadecimal constant; note that
because of its length this constant is
truncated to ooFIH.

938988380 Decimal constant (equivalent to
E3OO3H); note that because of its
length, this constant is truncated to
3OO3H.

'9389838' Literal constant; note that the
quotes turn a decimal constant into

58 User Manual for the RCA MlcroDlsk Development System MS2000

Errors:
FIH

Keywords

a ASCII-encoded literal constant.
Quotes within literal constants are
coded as' • (two quotes).

Interpreted as an identifier because
it begins with a leter.

ASMS reserves several words for special use. These
reserved words should not be used as identifiers because
they may cause confusion if used in Level II statements.
The mnemonics for the instruction sets of the CD P ISOO­
series microprocessors are reserved keywords, as are the
register names RO, RI, R2, etc. Other keywords will be
mentioned throughout this manual. If a keyword is used
as an identifier, ASMS attempts to code it properly; but
if unable to, ASMS returns a duplicate-label error
message.

Level I Assembly Language
Line and Statements

Obviously, not all combinations of characters result
in valid lines of assembly language just as not all combi­
nations of characters result in valid English sentences.
An English sentence is made up of words and, in the
same manner, a line of assembly is made up of state­
ments.

There are four kinds of lines: executable, major,
macro call, and minor. Each of these types of lines has a
unique syntax. In machine code, there may be no
spaces; but in ASMS, spaces may be added anywhere to
improve readability. Normally, a space is a string of any
number of blanks or spaces. A statement set is a string of
up to ten executable statements (which will be defined
later) separated by semicolons (;). Spaces may be arbi­
trarily inserted between executable statements in a
statement set. A comment is any character string pre­
ceded by two periods (..) and may be added to any line to
facilitate reading. ASMS prints out the comment on the
listing, but otherwise ignores it. Executable lines are
lines that contain a major statement, and minor lines
contain a minor statement. Executable lines may begin
with a label in column I. Anything other than an identi­
fier must not begin in column I. One can always add a
label to any line that does not already have one, but except
for use with executable lines, the labels are useless.
Executable, macro call, major, and minor statements
are discussed in the following pages. Each line ends with
a carriage return and cannot be more than SO characters
long, exclusive of the carriage return.

<space> ::= ~!<space>~
<Statement set> ::= <executable statement>!<State­

ment set> ; <statement set>

A statement set may not contain more than ten
executable statements.

<comments> ::= .. <character string>

All lines must end with a carriage return and mayor
may not be commented.

<line ending> ::= <carriage return>!<comment>
<carriage return>

<executable line> ::= <label> <Statement set>
<line ending>!<Space><statement set><line
ending>

<macro call line> ::= <label> <macro call state­
ment><Iine ending>!<space><macro call state­
ment><line ending>

<major line> ::= <label> <major statement><line
ending>!<Space><major statement><line
ending>

Labels with major lines are virtually useless, but are
acceptable.

<minor lineS> ::= <minor statement><Iine ending>

Expression Evaluation
A convenient feature of ASMS is its ability to evalu­

ate expressions in the source code. These expressions
can then be used as the operands in various statements.

Arithmetic Expressions: As explained earlier, ASMS
keeps a location counter that points to the address in the
simulated memory where the next piece of machine
code is to be placed. The value of this location counter
can be used in an expression by using the symbol, $.
Likewise, the value of an identifier, once defined, may
be used in an expression by merely using its name. A
term (explained below) may be used by putting it in
parentheses according to normal algebra practice. A
constant can be used in an expression, but whenever a
constant is used, only the last two bytes of its hexade­
cimal equivalent are used. When evaluating an expres­
sion, ASMS normally carried two bytes, but often the
programmer will wish to address only the upper or
lower byte of a number. The programmer can do so by
using the operators A.O(*) to extract the low-order byte
of * , or by using A.I (*) to extract the high-order byte of
. (is used here to represent a term, which will be
explained later.) No spaces may appear between the
period and either the A or binary digit. An expression
may also contain special elements called dummies.
Dummies are identifiers within brackets,[], and always
stand for another identifier or constant. Their use is
explained later. The location counter, a constant, a
literal constant, an identifier, the least or most significant
byte, and a dummy are all known as arithmetic elements.
If a literal constant is used, it is truncated to its last two
bytes.

6. Disk Assembler _______________________ _ 59

<location counter> ::= $
<dummary> ::= [<identifier>]
<least significant byte> ::= A.O{<term»
<most significant byte> ::= A.I«term»
<element> ::= <identifier>!<constant>!<location

counter>!<dummy>!<least significant bytes>!
<most significant byte>!<term»

Examples:
$
[FIVE]
A.O{ADDRESS)
015H
A.I(ADDRESS)
TIME
($ * 2 + 4)
'A'

Errors
4+3

Location counter
Dummy
Least significant byte of address
Constant
Most significant byte of address
Identifier
(Term)
Literal constant (equivalent to
0041 H)

This term is not in parentheses

Expressions can be built up according to the normal
rules of algebra. Factors may be multiplied together or
divided to produce other factors. Terms can be added
together or subtracted. Except where parentheses over­
ride the hierarchy, negation is performed first followed
by mUltiplication or division from left to right, and then
by addition or subtraction from left to right.

<factor> ::= <element>!+<element>!-<element>
!<factor>*<factor>!<factor> / <factor>

<term> ::= <factor>!<term>+<term>!
<term>-<term>

Examples:
A+B
A*B
A.O(ADD) + 5
(A+B)
(5+3)*2-6

Term
Factor, term
Term
Element, factor, term
Term (evaluates to 10)

Relational Expressions: The term is the highest form
of arithmetic result. But, because for certain statements
logical results are needed, ASM8 is capable of compar­
ing two terms to obtain a logical result. There are six
relational operators, .EQ., .GT., .LT., .LE., .GE., and
.NE .. The result of a comparison can be "NOTTED" by
use of the operator .NOT .. Spaces may be inserted
arbitrarily before or after any relational operator.

<relational operator> ::= .EQ.!.LT.!.GT.!.LE.
!'GE.!.NE.

<relation> ::= <term> <relational operator>
<term>!.NOT. <relation>

Examples:
5.EQ.5
.NOT.5.EQ.5

The result is true
The result is false

3.GT.5
3 .GE. 5
3.LT.5
5.NE.5
Errors:
3. LT. 5

False
False
True
False

The . must immediately follow and
precede the letters in the relational
operator. This example is read as a
constant followed immediately by
a space and character string.

Logical Expressions: Just as arithmetic expressions
can be built by the rules of ordinary algebra, logical
expressions can be built by the rules of Boolean algebra.
The three operators are .AND., .XOR., and .OR .. The
result of an .AND. operation is true if and only if both
operands are true. The result of an .XOR. operation is
false if the two operands are equal and true if the ope­
rands are unequal. The result of an .OR. operation is
true if either or both of the operands is true .. AND.
operations are performed first, followed by .XOR. and
.OR. operations, except where parentheses are used to
override the hierarchy. Spaces may be inserted arbitrarily
before or after the operators.

<logical element> ::= <relation>!(<logical term»!
<logical element> .AND. <logical element>

<logical factor> ::= <logical element>!<logical
factor> .xOR. <logical factor>

<logical term> ::= <logical factor>!<logical term>
.OR. <logical term>

Examples:
ADR .GT. lOOOH .AND. A.O(ADR)

.EQ. 0 Logical element
.NOT. (ADD .LT. FIVE+BEGIN) .OR.

THIS .GT. THAT Logical term
5*TEN - -6 .EQ. 0 .AND. B.EQ.EIGHT

.OR. A .EQ.B Logical term
'THIS' .EQ. 'THAT' .OR. 'I' .EQ. 'I' Logical term

Errors:
NOT FIVE
AND ONE

Without the periods, this example
is interpreted as four identifiers.

Bitslice Expressions: When ASM8 encounters a rela­
tion, it evaluates one in the same way that it evaluates an
arithmetic operation, except that it returns only one of
two values: OFFFFH (-I H) for true, and OOOOH (0) for
false. The logical operators actually work on a bit-by-bit
basis so that a term may be used as a logical element
instead of a relation. Because this facility can lead to
programming complications, it is not recommended
that the beginning programmer ~se it.

Examples:
010IB .AND. OOIIB Equivalent to OOOIB

60 User Manual for the RCA MicroDisk Development System MS2000

OIOIB .XOR. OOIIB
OIOIB .OR. OOIIB
.NOT.OIOIB

Equivalent to OIIOB
Equivalent to OIIIB
Equivalent to IOIOB

Limitation: Because the assembler must store partial
results to expressions, there are limits to the size and
complexity of expressions that can be evaluated. The
general guideline is never to use an expression that has
more than twenty elements or twenty operators. An
operator is any of the normal logical, relational, or
arithmetic operators.

<arithmetic operator> ::= +!-!*!/
<byte extraction operator> ::= AO(!A.I)
<relational operator> ::=

.EQ. !.NE. !.LT. LGE. !.LE. LGT.
<logical operator> ::= .NOT.!.AND.!,OR.LXOR.

Executable Statements: Level I
Level I executable statements consist of CDPI800-

series mnemonics and the appropriate operands. The
CD P 1800-series instruction set can be divided into four
classes. The first class contains those instructions that
have no operands. The second class of instructions
includes those that require a single operand which must
be a register. The third class includes those that require
an immediate operand. The fourth class contains those
instructions that require both a register and an imme­
diate operand.

A register is any hexadecimal constant, an R fol­
lowed immediately by a hexadecimal digit, or a term.
Only the last four bits of the hexadecimal digit or term
result are used. Some of the third class instructions
require operands that are only one byte. If the operand
given or evaluated is longer than one byte, the low-order
byte is used. If the instruction requires two bytes and ~he
operand given or evaluated is only one byte, the high­
order byte is O. an operand string is a set of immediate
operands and registers, separated by commas. There
can be no more than 49 characteres in the· operand
string.

In summary, the operand must be appropriate to the
instruction. An executable statement is any first class
instruction, a second class instruction and a register, a
third class instruction and an immediate operand, or a
fourth class instruction, a register, and an immediate
operand.

<register> ::= <term"">!R<hexadecimal digit>
<immediate operand> ::= <term>
<operand string> ::= <immediate operand>

!<register>
!<operand string>, <operand string>

First Class Instructions:
For all types: IDL, NOP, SEQ, REQ, SA V, MARK,

RET. DIS. LDX. LDXA. STXD. IRX. OR. XOR.
AND, SHR, SHRC, SHL, SHLC, ADD, ADC. SD,
SDB, SM, 5MB, SKP, LSKP, LSZ, LSNZ, LS~F,
LSQ, LSNQ, LSIE

For types CDPI80SC, CDPI806C, CDPI804AC,
CDPl80SAC and CDPI806AC only: LDC, GEC,
STPC, DTC, STM, SCMI, SCM2, SPMI, SPM2,
ETQ, XIE, XID, CIE, CID, BCI, BXI

For types CDPI804AC, CDPI80SAC, and CDP
1806AC only: DADD, DADC, DSM, DSMB, DSA V.

Second Class Instructions:
for all types: SEP, SEX, LDN, LDA, STR, INC,

DEC, GLO, PLO, GHI, PHI

For types CDPI80SC, CDPI806C, CDPI804AC,
CDPI80SAC, and CDPl806AC only: RLXA, RSXD,
RNX,SRET.

Third Class Instructions:
For all types: LDI, ORI, XRI, ANI, ADI, ADCI,

SDI, SDBI, SMI, 5MBI, BR, NBR, BZ, NBZ, BDF,
BPZ,BGE,GNF,LBR,LBZ,LBNZ,LBDF,LBQ,
LBNQ, NLBR, BM, BL, BQ, BNQ, OUT, INP

For types CDPI804AC, CDPI80SAC, and CDP
1806AC only: DADI, DACI, DSMI, DSBI.

Fourth Class Instructions:
For types CDPI80SC, CDPI806C, CDPI804AC,

CDPI80SAC, and CDPI806AC only: RLDI, SCAL

For types CDPI804AC, CDPI80SAC, and CDP
1806AC only: DBNZ

<executable statement> ::= <first class instruction>
!<second class instruction><register>
!<third class instruction> <immediate operand>
!<fourth class instruction><register>,

<immediate operand>

Examples:
LDI FIVE + FOUR
LDX
CALL UCALL, TYPE,

BUFFER
STRRF

Errors:

Third class
First class
Fourth class (CALL is
explained later
Second class

LDI
LDI

LDI requires an operand; it is thrid class
No spaces are allowed in instruction
mnemonics

Macro Can Statement. A macro is explained in detail
later, but it can be thought of as a user-defined mne­
monic. Once defined, it can be used in the same manner
as any other mnemonic except that it may not be part
of a statement set. A macro call statement consists of the

6. Disk Assembler _________________________ _ 61

macro name followed by a space and an operand string
if appropriate. The operands that make up the operand
string must be in the order and type that is correct for
that macro. Because the assembler cannot know what the
programmer's macro does, it cannot tell if it has been
provided with an incorrect operand string. The macro
name can be any identifier.

<macro name> ::= <identifier>
<macro call statement> ::= <macro name>

<operand string>

Directives. As stated earlier, certain lines of the source
code do not directly result in a piece of machine mode.
These directives use keywords similar to mneomonics
called pseudo-ops. There are two types of directives, the
major and minor statements. The minor statements are
used to change the location counter or the symbol table.
The minor statements must begin in column I. Two of
them must begin with a label, and three must begin with
either a label or a space in column I. None of the maj or
statements may begin in column I, but like the executa­
ble statements, all may have an operational label preced­
ing them.

Minor Statement. There are five types of minor state­
ments. The first of these statements, the simplest, is used
to change the symbol table. It is called the EQUATE
statement. The EQUATE statement consists of a label
(beginning in column I) followed by a space, the word
EQU, another space, and an immediate operand, a label,
or a register. When ASM8 encounters an EQUATE
statement, it puts the label in the symbol table along
with the value that it is equated to.

The second type of minor statement is the constant
declaration. It consists of an optional label followed by
a space, the word DC, another space, and an operand
string. When the assembler encounters a constant decla­
ration it simply places the immediate operands directly
into the object code, with the exception that literal
constants are not truncated to two bytes.

The third type of minor statement, is the storage
declaration. It is an optional label followed by a space,
the word DS, another space, and a term. When the
assembler encounters a storage declaration it defines the
label as tJte starting address of a buffer area whose
length is equal to the term. In handling both the constant
and storage declarations, ASM8 advances the location
counter by the number of bytes inserted. Two statements,
the ORG and PAGE statements change the location
counter directly. The ORG statement consists of an
optional label followed by a space, the word ORG,
another space, and a term. The location counter is set
equal to the value of the term. The PAGE statement
consists of an optional label followed by the word
P AGE, and it sets the location counter to the start of the

next page. (A page is equal to 256 bytes.)

<equate statement> ::= <label> EQU <term>
!<label> EQU <register>

<constant declaration> ::= <label> DC
<operand string>
!<space> DC <operand string>

<storage declaration> ::= <label> DS <term>
<org statement> ::= <label> ORG <term>

!<space> ORG <term>
<page statement> ::= <label> PAGE

!<space> PAGE

Examples:
FIVE EQU 5

Equate statement
OUTPUTDS 10

Storage declaration (10 bytes)
OUTPUT ORG $+ 10

Advance the location counter by 10 bytes and
label the flI'st byte. Note that this statement
is equivalent to the statement above

DC 'THE QUESTION'
Constant declaration (ASCII encoded)

INPUT DS INPJ..ENGTH
Storage declaration

DC 568393H, 5798192H
Constant declaration (truncated to 83938192H)

NEWPAGE PAGE
Page statement

Sample Program - Level I. Fig. 10 is a sample program
that illustrates some of the elements of level I assembly
language that have already been covered.

Major Statements. There are two types of major state­
ments: status and conditional assembly.

Status Statements. The status statements are the simpler
of the two sets. There are six types of status statements.
The simplest is the END statement which tells ASM8
that there are no more assembly lines to process and to
ignore anything that follows. This statement should be
the last line of any program. The next statement, the
EJECT statement, tells ASM8 to insert a top-of-form
character in the output. It does not affect the processing.
A NOLIST statement directs the assembler to cease
echoing the source code to the listing. The machine code
is still inserted in the listing, but the source code is no
longer printed. A LIST statement tells the assembler to
resume echoing the source code and thus cancels the
effect of the NOLIST statement. Each of these state­
ments consists of a keyword that may be arbitrarily
preceded or succeeded by spaces. The keywords are
END, EJECT, NOLIST, and LIST. The remaining two
major statements are used with macros. They are used
to indicate the beginning and end of a macro. These

62 User Manual for the RCA MicroDisk Development System MS2000

.. THIS PROGRAM IS A SAMPLE PROGRAM .

.. IT WILL ADD TWO NUMBERS TOGETHER.

.. THIS PROGRAM IS NOT EFFICIENT, BUT IS INTENDED TO

.. ILLUSTRATE THE USE OF ASSEMBLY LANGUAGE.
FIRSLNUM EQU 25 .. THE NUMBERS ARE DEFINED SO THAT THEY
SCND~UM EQU 31 .. CAN BE CHANGED EASILY
UTILITY EQU R8 .. REGISTER 8 WILL BE USED AS A TEMPORARY

LDI FIRST~UM .. PUT THE FIRST NUMBER IN THE D REGISTER
PLO UTILITY .. PUT IT IN THE LO ORDER BYTE OF THE

ANIO
PHI UTILITY
LBRADD~UMS

DC OF8CCH, 134DH
ADD~UMS GLO UTILITY

ADISCND~UM

PLO UTILITY
LDI A.l(ANSWER);PHI R7

LDI A.O(ANSWER);PLO R7
GLOUTILITY
STRR7
IDL

ANSWER DS

.. TEMPORARY

.. CLEAR THE D REGISTER

.. CLEAR HI ORDER BYTE OF THE TEMPORARY

.. BRANCH AROUND THE NEXT AREA

.. ADD A CONSTANT FOR NO REASON

.. PUT THE LO ORDER BYTE OF THE TEMPORARY

. .INTO THE D REGISTER

.. ADD THE SECOND NUMBER

.. PUT THE SUM BACK IN THE TEMPORARY

.. PUT THE HI ORDER BYTE OF THE ANSWER's

.. ADDRESS IN R7 FOR LATER USE

.. PUT THE REST OF THE ADDRESS IN R7

.. GETTHESUM

.. AND PUT IT IN THE ANSWER BUFFER

.. STOP

.. SET ASIDE ONE BYTE FOR THE ANSWER

Fig. 10 - Sample Levell assembly language program.

statements are explained later in detail, but they are
presented here because they have the same form and
function as the other major statements.

<end statement> ::= END <label>!END
<eject statement> := EJECT
<nolist statement> ::= NOLIST
<list statement> ::= LIST
<macro statement> ::= MACRO
<endm statement> ::= ENDM

Remember that because major lines do not have la­
bels, all of these statements must begin in a column
other than I.

Examples:
END
EJECT
NOLIST
LIST
MACRO
ENDM

END statement
EJECT statement
NOLIST statement
LIST statement
MACRO statement
ENDM statement

Conditional Assembly Statements. Conditional assem­
bly statements tell the assembler to assemble portions of
the source code only if certain conditions are met. A
LINE block is a sequence of lines. An IF block begins
with an IF line and ends with an ENDIF line. There is
an ELSE line between the IF and the ENDIF lines.
When ASM8 encounters an IF line, it evaluates the

logical term. If the result is true, then the statements
between the IF line and the ELSE line are processed. If
the result is false, then the statements between the ELSE
line and the ENDIF line are processed. The IF line
consists of the keyword IF followed by a logical term
separated by a space. The ELSE and ENDIF statements
have the same format as the status statements, using the
keywords ELSE and END IF.

The IF blocks can be nested (an IF block can contain
an IF block) but it must be remembered that the
assembler associates an ELSE or ENDIF line with the
IF line that most recently preceded it. It is good practice
to always include the ELSE statement explicity in the
source code.

<if statement> ::= IF <logical term>
<else statement> ::= ELSE
<endif statement> ::= ENDIF
<line block> ::= <line>!<line block><line>
<if block> ::= <if statement><line block>
<else line><line block><endif line>

Remember that each line is separated from the next
by a carriage return, and that the line blocks could be
empty (contain no lines).

The next type of conditional assembly block is the
DO block. The DO block consists of a DO line, fol­
lowed by a LINE block and then by an ENDD line. The
DO statement consists of the keyword DO, a space, a

6. Disk Assembler ______________________ _ 63

dummy, and then either an = and an increment list, or a
: and a list of replacement values. The increment list
consists of three expressions separated by commas.
Each of these expressions is truncated to I byte, so that
its range is from 0 to 255. The replacement list consists
of a series of terms separated by commas. The values of
the terms in a DO line may not be changed within the
DO block. An attempt to do so will result in incorrect
code.

If the = and increment list are used, then the lines
within the DO block are assembled several times. The
first time they are assembled, the dummy has the value

of the first constant in the increment list, called the
beginning value. The third constant is called the step
value, and the dummy is incremented by the step value
each time the DO block is assembled. The second con­
stant is called the ending value. The assembler continu­
ally increments the dummy until its value exceeds the
ending value. It then resumes normal processing after
the ENDD statement. If the: and replacement list are
used, then the dummy takes on a different value from
the replacement list each time the block is assembled
until there are no more values left in the list.

A DO block may be nested within another DO

.. THIS IS A SAMPLE OF WHAT CAN BE DONE WITH MAJOR STATEMENTS
ONE EQU I
TWO EQU 2

IF ONE .EQ. TWO . .IS THIS TRUE?
LDI ONE . .IS SO THEN LOAD ONE IMMEDIATE
ELSE
IF TWO .EQ. ONE . .IF NOT TRY AGAIN
ELSE .. THERE IS NO TRUE PART

DO [I] = 1,2,1 LDI [I] .. 00 THIS TWICE
ENDD

ENDIF
ENDIF
GO FORWARD
THIS IS JUNK WHICH WILL BE IGNORED

FORWARD PAGE .. ADVANCE TO THE NEXT PAGE
ORG 1111 H .. CHANGE THE LOCA nON COUNTER

DO[I]:ONE,TWO,ONE,TWO
LDI [I]

ENDD
NOLIST .. STOP ECHOING THE SOURCE

LIST
END

!M
0000;

0000 ;
0000 ;
0000 F801 ;
0002 F802;
0004;
0100 ;

1111 F801;
1113 F802;
1115 F801;
1117 F802;
1119 ;
1119 ;
0000

0000

0002
0003
0009
0009
0016
0017

0018
0018
0018
0018

. .IT WILL NOT PRINT THIS COMMENT

Fig. II(a) - Sample program illustrating major statements source code.

.. THIS IS A SAMPLE OF WHAT CAN BE DONE

. .wITH MAJOR STATEMENTS
ONE EOU 1
TWO EOU2

FORWARD

LDI1
LDI2
PAGE
ORG

LDI
LDI
LDI
LDI

.. DO THIS TWICE

.. DO THIS TWICE

.. ADVANCE TO THE NEXT PAGE
1111H .. CHANGE THE LOCATION

.. COUNTER
ONE
TWO
ONE
TWO

Fig. 11(b) - Sample program illustrating major statements listing.

64 User Manual for the RCA MlcroDlak Development Syatem MS2000

block, but the assembler associates an ENDD statement
with the DO line that most recently precedes it.

<beginning value> ::= <constant>
<ending value> ::= <constant>
<step value> ::= <constant>
<do statement> ::= DO <dummy> :

<operand string>
!DO <dummy> = <beginning value> ,
<ending value> , <step value>

<endd statement> ::= ENDD
<do block> ::= <do line><Iine block>

<endd line>

Remember that each line is separated by a carriage
return.

There is one remaining conditional assembly state­
ment - the GO statement. The format for the GO state­
ment is GO followed by a space and a label. When the
assembler encounters a GO statement, it stops process­
ing the source code until it finds the label. Because the
assembler cannot find the label if it precedes the GO
statement, it must not precede.

<go statement> ::= GO <label>

When the conditional assembly statements are used,
it should be remembered that a GO statement cannot
point to a label that is outside the DO or IF block the go
line is in, or to a label that precedes it.

Sample Program - Major Statements. The sample pro­
gram in Fig. II illustrates the use of major statements.
Immediately following the source code, Fig. II(a), is the
listing, Fig. ll(b). A comparison of the two illustrates
how the major statement directs the assembler.

Level II Assembly Language
In order to make programming easier, in Level II

operations several of the op-code mnemonics can be
replaced with codes that correpond to their most fre­
quent use. Likewise, operations involving the D register
can be done using D-sequence instructions. In D­
sequence instructions, special characters are used instead
of op-code mnemonics making D-sequence instructions
similar in appearance to APL statements. (APL is a
high-level programming language).

Executable Statements: Level II

Substitution Instructions. The substitutions for the op­
code mnemonics fall into two forms. The mnemonics
and their substitutions are listed in Table VI. The first
form involves simply the use of an immediate keyword
in the same way that the mnemonic was used. These
keywords are IDLE, GOTO, NOGOTO, SKIP, RE­
TURN, DISABLE, POP, PUSH, SAVE, GOSTATE,
CALL, and EXIT. EXIT is treated like a first class

instruction and CALL is treated like a macro call in that
it is followed by an operand string. They are used to
execute the standard call and return procedures. In
order to use them, the registers 2 through 6 must already
be set aside for the standard call and return procedure.
They can be initialized by using the Utility Program
UT71 built-in subroutines, INITl and INIT2 (Refer to
Chapter 8). The operands of CALL consist of the
address of the subroutine, followed by any inline
parameters that the programmer wishes to pass. EXIT
has no operands.

The second form consists of the word IF followed by
a space, a BRANCH keyword, another space, and the
keyword GOTO. The BRANCH keywords indicate the
condition on which a branch is to take place. They are
=0, Q, &=0, DF, PZ, GE, EFt, EF2, EF3, EF4, NQ,
&>0, >0, NDF, MINUS, LESS, NEFt, NEF2, NEF3,
and EF4.

Levell
B1
B2
B3
B4
BDF
BGE
BL
BM
BN1
BN2
BN3
BN4
BNF
BNO
BNZ

BPZ
BR
BO
BZ

DIS
IDL
LDXA
NBR
RET
SAV
SEP
SKP
STXD
SEPR4
SEPR5

Table VI - Level II Substitutions for
Levell Mnemonics

Level II
IF EF1 GOTO
IF EF2GOTO
IFEF3GOTO
IF EF4GOTO
IF OF GOTO
IFGEGOTO
IF LESS GOTO
IF MINUS GOTO
IF NEF1 GOTO
IF NEF2GOTO
IF NEF3GOTO
IFNEF4GOTO
IFNDFGOTO
IF NO GOTO
IF &>0 GOTO

IF>OGOTO
IF PZGOTO
GOTO
IFOGOTO
IF &=0 GOTO

IF=OGOTO
DISABLE
IDLE

.. POP

NOGOTO
RETURN
SAVE
GOSTATE
SKIP
PUSH
CALL
EXIT

6. Disk Assembler _______________________ _ 65

<immediate keyword> ::= IDLE!GOTO
!NOGOTO!SKIP!RETURN!DISABLE!POP
!PUSH!SA VE!GOST ATE!CALLlEXIT

<branch keyword> ::= O!Q!&=O!DF!PZ!GE!
!EFI !EF2!EF3!EF4!NQ!&>O!>O!NDF!
!MINUS!LESS!NEFI !NEF2!NEF3 !NEF4

<substitution> ::= IF <branch keyword>
GOTO!<immediate keyword>

Examples:
IDLE
GOTO ADD....NUMS
IF=OGOTO

BEGINNING
IF NEF4 GOTO END
GOSTATER5
CALL TYPE,

'MESSAGE'

PUSH X
POPY

IDL
BR ADD....NUMS

BZ BEGINNING
BN4 END
SEP R5
SEP R4;
DC TYPE
DC 'MESSAGE'
STXD X
LDA Y

D-Sequence Instructions. The D-Sequence instructions
consists of three parts; the load part, the manipulation
part, and the storage part. What each of these parts
corresponds to is listed in Table VII. Not all parts are
needed in a statement. Any single part can be present or
all can be present. Two parts can also be present, but if
more than one part is present, the order load, manipula­
tion, and storage part must be maintained.

The load part tells the assembler what should be
loaded into the D-register. A register name followed by
a.O or .1 indicates that either the low- or high-order byte
of that register should be loaded into D. A constant,
identifier, or term in parentheses indicates that the value
of that constant, identifies or term should be loaded
immediately into the D-register. An @ indicates that the
D-register should be loaded from memory. If a register
name follows the @, then the byte pointed to by that
register is used. If no register name is specified, the
register named by the X register is used. If a "precedes
the register name it indicates that the X-register should
be set to point to that register. If memory is accessed and
a ! ends the load part, the contents of the register used is
incremented. If the @ ends the load part, a comment in
parentheses may be inserted immediately (without
spaces) after the @.

The manipulation part tells the assembler what is to
be done with the D-register. There are 9 binary opera­
tions which can be performed and 4 unary operations.
The binary operations are + (add), - (subtract), -+ (sub­
tract and negate), +"(add with carry), -"(subtract with
borrow), -+"(subtract and negate with borrow), .AND.
(and), .OR. (or), and .XOR. (exclusive or). The manipu­
lation part for the binary operations consists of the

operator symbol followed without spaces by the source
of the second operand. The source can be a memory
location, a constant, an identifier, or a term in paren­
theses. If a constant, identifier, or term is used, its value
is immediately used. To use the memory, an @ imme­
diately follows the operation symbol. Immediately fol­
lowing the @ there is a .. followed by a register name.
The X-register is set to register name and the register
points to the memory byte that is used. The unary
operators are /2 (shift right), *2 (shift left), /2" (shift
right circular) or *2" (shift left circular).

The storage part tells the assembler what to do with
the contents of the D-register. All storage parts begin
with > (a minus followed by a greater than). If a
register name followed by .0 or .1 follows the arrow
(.... », the contents are stored in the low- or high-order
byte of that register. If an a follows the arrow, the
contents are stored in memory. If a register name fol­
lows the 0, it points to the byte in memory where the
D-register contents are to be stored. If no register name
follows the 0, the register specified by the X-register is
used. The a may be followed by a - indicating that the
contents of the register used should be decremented. If
the - is used, then the register name (if there is one) must
be separated from the - by a ". The X-register is set to
the register name given. Ifthe 0- is the end of the storage
part, then a comment within parentheses may imme­
diately follow the 0-.

<load part> ::= @!@!!@<register>!
!@<register>!
!@"<register>!@(<character string»
!<register>.O!<register>.I!<term>

<object> ::= @!@"<register>!<term>
<operator> ::= +!-!-+!+"!-"!-+"!'AND.

!,OR.!.XOR.
<manipulation part> ::= <operator><object>

!/2!*2!/2"!*2"
<storage part> ::= ><register>.O

! ><register>.1
! >@<register>! >@-! >@-"<register>
! >@-{<character string»

<D-sequence statement> ::= <load part>
!<manipulation part>!<storage part>
!<load partXmanipulation part>
!<load part><storage part>
!<manipulation partXstorage part>
!<load partXmanipulation part>

<storage part>

Note that no spaces are allowed between the special
characters involved or between the special characters
and any identifiers or registers that are used. There is
also a limit on the length of a Level II statement. It may
contain no more than thirty-nine characters.

66 ________ User Manual for the RCA MlcroDlsk Development System MS2000

Table VII - D-Sequence Statements

Symbol Levell Action

Load Part
@ LDX M(R(X))->D
@"N SEX N;LDX N->X;M(R(X))->D
@(COMMENT) LDX .. COMMENT M(R(X))->D
@N LDN N M(R(N))->D FOR N<>O
N.O GLON R(N).O->D
N.1 GHI N R(N).1->D
@N! LDAN M(R(N))->D;R(N)+1->R(N)
CONSTANT LDICONSTANT A.O(CONST ANT)->D
@! LDXA M(R(X))->D;R(X)+1->R(X)

Manipulation Part
+@ ADD D+M(R(X))->DF,D
+@"N SEX N;ADD N->X;D+M(R(X))->DF,D
+CONSTANT ADICONSTANT D+CONSTANT->DF,D
-@ SM D-M(R(X))->DF,D
-@"N SEX N;SM N->X;D-M(R(X))->DF,D
-CONSTANT SMICONSTANT D-CONSTANT ->DF,D
-+@ SD M(R(X))-D->DF,D
-+@"N SEX N;SD N->X;M(R(X))-D->DF,D
-+CONSTANT SDICONSTANT CONSTANT-D->DF,D
+"@ ADC D+M(R(X))+DF->DF,D
+"@"N" SEX N;ADC N->X;D+M(R(X))+DF->DF,D
+"CONSTANT ADCICONSTANT D+CONSTANT+DF->DF,D
_"@ 5MB D-M(R(X))-NDF->DF,D
-"@"N SEX N;SMB N->X;D-M(R(X))-NDF->DF,D
-"CONSTANT 5MBI CONSTANT D-CONSTANT -NDF->DF,D
_+II@ SDB M (R(X))-D-N DF->DF, D
-+"@"N SEX N;SDB N->X;M(R(X))-NDF->DF,D
-+"CONSTANT SDBI CONSTANT CONSTANT -D-NDF->DF,D
.AND.@ AND D.AND.M(R(X))->D
.AND.@"N SEX N;AND N->X;D.AND.M(R(X))->D
.AND.CONSTANT ANI CONSTANT D.AND.CONSTANT - >D
.OR.@ OR D.OR.M(R(X))->D
.OR.@"N SEX N;OR N->X;D.OR.M(R(X))->D
.OR.CONSTANT ORI CONSTANT D.OR.CONSTANT ->D
.XOR.@ XOR D.XOR.M(R(X))->D
.XOR.@"N SEX N;XOR N->X;D.XOR.M(R(X))->D
.XOR.CONST ANT XRI CONSTANT D.XOR.CONSTANT - >D
12 SHR SHIFT D RIGHT NONCIRCULAR
*2 SHL SHIFT D LEFT NONCIRCULAR
12" SHRC SHIFT D RIGHT CIRCULAR
*2" SHLC SHIFT D LEFT CIRCULAR

Storage Part
->N.O PLON D->R(N).O
->N.1 PHIN D->R(N).1
->@N STRN D->M(R(N))
->@- STXD D->M(R(X));R(X)-1->R(X)
->@-"N SEX N;STXD N->X;D->M(R(X));R(X)-1->R(X)
->@-(COMMENT) STXD .. COMMENT D->M(R(X));R(X)-1->R(X)

Note 1: Whereever an N appears, a register may be placed. (R followed by ahexadecimal digit or a hexadecimal
constant less than 10H).

Note 2: Wherever the word constant appears, a constant or valid identifier may be placed.
Note 3: Wherever an @appearsattheend of a part (not followed by "N, N, or I), it may be replaced with@ (comment).
Note 4: Note that ->@ will result in STXD instruction.

6. Disk Assembler _______________________ _
67

Examples:
5->R5.0
5
A
FIVE+2->R7.0
@N!->@-"N
.xOR.CAR...RET
(FIVE+SIX)->

@UTILITY

LDI 5;PLO R5
LDI 5
LDI A
LDI FIVE;ADI 2;PLO R7
LDA N;SEX N;STXD
XRI CAILRET

LDI ll;STR UTILITY

Sample Program lUustrating D-Sequences. Fig. 12 is a
repeat of Fig. II, the first sample program written in
Level II assembly. It illustrates the use of the D-sequence
statements and substitutions.

Macros and Their Use
A macro is a programmer-defined collection of state­

ments that, in its entirety, has been assigned a special
mnemonic or name by the programmer. Once a macro
has been defined, the programmer may call in the macro
by the use of its name in the same way that a normal
mnemonic would be used. When the assembler encoun­
ters a mnemonic that is not a normal oIH=ode, mnemonic,
or identifier, it checks to see if it is a macro name. If it is,
the assembler substitutes the lines of the macro into the
listing. This process is called text insertion or macro
expansion.

When the assembler inserts the text of a macro into the
listing it can make changes to the text in two basic ways.
The calling line may have parameters in the form of
operands which are to be substituted for certain dummies
in the macro. Using the major directives for conditional
assembly, the programmer may direct the assembler to
assemble only portions of the macro text.

It is important that a programmer understand the
difference between a macro and a subroutine. A subrou-

.. THIS IS A REPEAT OF THE PROGRAM

.. TO ADD TWO NUMBERS TOGETHER.

tine is a subprogram which occupies a single memory area
but can be called several times from various locations
through a process called subroutine linkage. A macro is a
set of lines of assembly language that are inserted at
assembly time. The macro approach eliminates all linkage
problems and is faster in execution, but probably results
in more code than the subroutine approach.

A collection of macros in a single me is called a macro
library. Effectively, a macro library extends the set of
op-code mnemonics. The capabilities of the machine as
seen by the assembly programmer can be greatly expanded
by the use of a good macro library.

ASM8 recognizes macros in two locations. They may
be in the same me as the main program (thOUgh not
interspersed with it) or they may be in a special me
containing a macro library.

The Mechanics of Macro Usage
In order to allow the programmer to use macros, three

major statements have already been introduced. They are
the MACRO, ENDM and EXITM statements. The
MACRO statement instructs the assembler that the
statements that follow are part of a macro and should be
the first line of any macro. The ENDM statement tells the
assembler that the end of the macro has been reached and
should be the last line of any macro. The EXITM state­
ment tells the assembler to cease processing statements
until it encounters an ENDM statement.

The second line, immediately following the MACRO
statement must be the macro definition. The macro defi­
nition consists of the name of the macro followed by a
space and dummy list. The dummy list is a sequence of
dummies separated by commas and may have an arbitrary
number of spaces around the commas. At assembly time,
these dummies are replaced throughout the macro by the
corresponding operands of the calling statement.

FIRST ..NUM EQU 25 .. THE NUMBERS ARE DEFINED SO THEY CAN
SCND..NUM EQU 31 .. BE EASILY CHANGED
UTILITY EQU R8 .. REGISTER 8 WILL BE USED AS A TEMPORARY

FIRST..NUM->UTILlTY.O .. PUT THE FIRST NUMBER INTO THE
.. LOW ORDER BYTE OF R8

.AND.O->UTILlTY.1 .. CLEAR THE HIGH ORDER BYTE OF R8
GOTO ADD..NUMS .. USE A SUBSTITUTE

DC OF8CCH,134DH .. MAJOR STATEMENTS ARE UNCHANGED
ADD..NUMS UTILITY.O+ SCND..NUM->

UTILlTY.O .. ADD THE SECOND NUMBER
A.O(ANSWER)->R7.0 .. PUT THE ANSWER'S ADDRESS IN R7
A.1 (ANSWER)->R7.1
UTILlTY.o->@R7 .. STORE THE ANSWER
IDLE

ANSWER DS 1

Fig. 12 - Sample program illustrating use of D-sequence.

68 User Manual for the RCA MlcroDlsk Development System MS2000

<macro statement> ::= MACRO
<endm statement> ::= ENDM
<exitm statement>::= EXITM
<dummy list> ::= <dummy>

!<dummy list>,<dummy list>
<macro defInition> ::= <macro name>

<dummy list>
<macro> ::= <macro line>

<macro defInition line>
<line blocleXendm line>

Examples:
TYPE [MESS-LENG],[MESSAGE]
LOOK [REGISTER]
FIND [CHARACTER],[SUBSTITUTE], [END]
NEXT
TIME

In order to operate with dummies, the assembler must
keep a substitution list. For a particular line, the substitu­
tion list consists of dummies associated with all the macros
that the line is in, as well as the dummies associated with
the DO blocks that the line is in. The dummies are
separated by commas, and there are no spaces in the list.
The length of this substitution list should never exceed
forty-two characters.

The assembler reads each of the macros into memory
before it processes them. There is an upper limit of twelve
kilobyes on the total cumulative size of the macro source
code.

A convenience of the assembler is its index variable
symbol, [XX]. This symbol has an implicit numeric value
of 00 to 99. Whenever an [XX] is encountered, the
assembler substitutes for it the number of times that the
current macro has been called. Each time the macro is
called, it is incremented by 1. When the macro is called for
the fIrst time, [XX] has a value of 00. This index symbol
can be used to tell a macro how many times it has been
called, or it may be appended to a generic identiller (ofless
than 8 characters) to form continually changing labels.
This capability is useful when a macro must call itself
recursively. Often, when a macro calls itself, the duplica­
tion of labels creates confusion and generates error mes­
sages. If the index symbol is used and appended to a
general name then the labels are unique.

Examples:
[XX]
LOOK[XX]

THE INDEX ITSELF
LOOK01, LOOK02,
LOOK03, ETC.

Sample Program Using Macro
Fig. 13 is a listing of a program that uses a macro to

examine a register.

Assembler (ASM8) Operating
Procedures

ASM8 can have up to two inputs and three outputs. The
user must specify the input flles. These input ftles are the
source flle and an optional macro library ftle. The outputs
are the listing flle, the error flle, and the cross-reference
flle. The user can direct the fIrst two of these output ftles to
either the disk, teletypewriter (#TY or #SC), or line prin­
ter (#LP). The cross-reference flle, however, must be a
disk flle because ASM8 uses it as an intermediate ftle for
creating the cross-reference table.

The command line consists of the command ASM8
followed by a space, the source fllename, and a string of
up to four fllenames or devices, separated by spaces and
followed by a semicolon and string of options. The order
of names or devices is macro ftlename, listing destination,
cross-reference listing destination, and error listing destin­
ation.

ASM8 <Source fllename>[,<macro ftlename>]
[,<listing fllename or device>]
[, <xref ftlename or device>]
[,<error fllename or device>]
[;<options>]

The options and defaults specify which of these ftles or
destination devices are necessary. If no options and no
fllenames are given (except for the source flle name) there
is no macro flle or cross-reference listing, and the listing is
sent to the disk with a fllename of <Source name>.LST:
<opposite of source>. The error listing goes by default to
the teletypewriter (#TY).

ASM NAME.SCR
LISTING - NAME.LST: I
ERRORS -#TY

Note: If the cross-reference listing flle or the error ftle is
named by the user, the listing flle must also be named.

The options specify which of the outputs are to be
created, but those that are created must appear in the
command line in the order of macro, listing, cross­
reference listing, and error listing.

M - Specilles that a macro flle will be used.
X - Specilles that a cross-reference listing will be

created. It will have a default value of <Source
name>.xRF:<opposite drive from source>

N - Specilles that a listing will not be created. If this
option is not used, the default value will be
<source name>.LST:<opposite drive from
source>

H - Specilles that the listing shall contain the hex
code only.

P - Specilles that the assembler should pause after
loading to allow the changing of disks.

8. Disk Assembler _______________________ _

!M
0000 ;
0000 ;
0000 ;
0000 ;
0000;
0000;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000;
0000;
0000 ;
0000 7100C083F3;
0005 ;

~I MACRO
~2 LOOK [LOOK1] .. EXAMINE A REGISTER
~3 .. THIS MACRO ALLOWS EXAMINATION OF A REGISTER
0004 .. REGISTER RF IS DESTROYED IN THE PROCESS
~5 .. THE CALLING STATEMENT IS LOOK <REGISTER>
0006 TYPE EQU 81AEH .. THE UTILITY TYPING ROUTINE
~7 TYPE2 EQU 81A4H
~8 TEMPORARY EQU RF
0009 [LOOKI].l->TEMPORARY.1
0010 CALL TYPE .. TYPE THE HI BYTE
0011 [LOOK1].o->TEMPORARY.1
0012 CALL TYPE .. TYPE THE LO BYTE
0013 20H->TEMPORARY.1
0014 CALL TYPE2 .. TYPE A SPACE
0015 ENDM
0016 .. THIS PROGRAM CALLS THE LOOK MACRO TWICE
0017 ONE Eau 1
0018 TWO Eau 2
0019 REGISTER Eau R7
0020 INIT1 Eau 83F3H
0021 DISABLE;IDLE;LBR INIT1 . .lNITIALIZE FOR
0022 .. STANDARD ALL AND RETURN

89

0005 F803A7F800B7; 0023 (ONE+TWO)->REGISTER.0;o->REGISTER.1 .. PUT 3

OOOB;
OOOB 97BF;
000DD481AF;
0010 87BF;
0012D481AE;
0015 F820BF;
0018D481A4;
001 B F801 A8FBOOB8;
0021 ;
002198BF;
0023D481AE;
002688BF;
0028 0481 AE;
002B F820BF:
002E D481A4;
003100;
0032 ;
0000

in R7
0024 LOOK REGISTER
0024 REGISTER.1->TEMPORARY.1
0024 CALL TYPE
0024 REGISTER.0->TEMPORARY.1
0024 CALL TYPE
0024 20H->TEMPORARY.1
0024 CALL TYPE2
0025 ONE->R8.0;0->R8.1
0026 LOOK R8
0026 R8.1->TEMPORARY.1
0026 CALL TYPE
0026 R8.0->TEMPORARY.1
0026 CALL TYPE
0026 20H->TEMPORARY.1
0026 CALL TYPE2
0027 IDLE

... EXAMINE R7

.. TYPE THE HI BYTE

.. TYPE THE LO BYTE

.. TYPE A SPACE

.. PUT 11N R8

.. EXAMINE R8

.. TYPE THE HI BYTE

.. TYPE THE LO BYTE

.. TYPE A SPACE

Fig. 13 - Sample program illustrating use of macros.

B - Specifies that the symbol table will not be initial­
ized and that the symbol table existing in
memory will be used.

T - Specifies that the cross-reference listing should
be formatted in 80 character lines instead ofthe
default 132 character lines.

Examples:

ASM8 MYPROG;P
SOURCE = MYPROG:O MACRO = NONE
LISTING = MYPROG.LST:O
XREF LISTING = NONE
ERRORS=#TY

The assembler will pause after loading itself to allow for
changing of disks.

ASM8 MYPROG.S, MAC. M;MH
SOURCE = MYPROG.S:O MACRO = MAC.M:O
LISTING = MYPROG.HEX:l
XREF LISTING = NONE
ERRORS=#TY

The listing contains only the hex code.

ASM8 MYPROG.S, #LP, #LP, #LP;XB
SOURCE = MYPROG.S:O MACRO = NONE
LISTING = #LP

70 User Manual for the RCA MlcroDlsk Development System MS2000

XREF LISTING = #LP
ERRORS=#LP

The assembler will not initialize the symbol table.

ASM8 S,M,L,X,E;MXNT
SOURCE = S:O MACRO = M:O

LISTING = L: I
XREF LISTING = X: 1
ERRORS=E:l

All the listings will be in 8<k:haracter format.
Fig. 14 summarizes graphically the assembler operating

procedures, source, and destination.

G=d ,¢Z.I 7 G=d
'\ on / /fffl[J

FULjLISTING ~HEX LI~STING~(]gl

_________ .TY

ASM8 ~"'=::::;r=~.

~
SOURCE
PROGRAM

~~---
DISK ~~

G~ dl--MA-CR-O
LIBRARY

ASSEMBLER

92CM·34173

Fig. 14 - ASMB data flow diagram.

Cross-Reference Listing
The assembler will upon request output the cross­

reference table. The fIrst column in the cross-reference
listing is the symbol or identifier. Next is its address or
value. Third is the line number of the source code where
that identifier was.defIned. The remainder of each line is a
list of the lines in the source code where that identifier was
retereneed.

The cross-reference me can often be useful in locating
spelling errors in a program. Fig. 15 is the cross-reference

SYMBOL ADDR
ADD~UMS OOOA
ANSWER 0017
FIRST~UM 0019
SCND~UM OOIF
UTILITY 0008

DEF
0012
0019
0003
0004
U

listing from the example program, Figs. 10 and 12. The U
in the cross-reference listing indicates that UTILITY was
defIned as a register and has no address or value.

Error Messages
Non-Fatal Errors

ASM8 will flag simple errors and will report the cause
of each while it continues to process. Table VIII is a list of
these errors and contains suggestions to the user to aid in
determining the cause of the errors.

REFERENCES
0010
00150016
0006
0012
0006 0008 0012 0012 0017

Fig. 15 - Cross-reference listing.

6. Disk Assembler ______________________ _
71

Table VIII - ASM8 Error Messages

1. *** ILLEGAL LABEL - 17?1717??? ***
The ?'s are replaced with the label found.
Check to see if accidentially a number began
in column 1, defining it as a label. Check to see
if the label name is a valid-op-code mneomonic.

2. *** DUPLICATE LABEL - 17??17???? ***
The ?'s are replaced with the label found.
Check to see if a macro with the same label in it
has been called twice. Are two similar labels
misspelled?

3. *** ILLEGAL OPERATION - ??17?17?17 ***
The ?'s are replaced with the op-code found. Is
there a misspelled op-code?

4. *** UNDEFINED SYMBOL - ?????????? ***
The ?'s are replaced with the symbol found.
Check for misspelling both at the line flagged
and at the definition pOint.

5. *** ILLEGAL EXPR - ???17????? ***
The ?'s are replaced with the last ten charac­
ters before the error detection point. Check to
see if the expression is missing anything such
as parentheses.

6. *** BR OUT OF RANGE - ??17 ***
The ?'s are replaced with the paged address. A

Fatal Errors
Under certain conditions ASM8 will no longer be able

to continue processing the source me. For such "fatal
errors," the message

ASMABORTED

will appear on the teletypewriter followed by the condi­
tions causing the abort. These conditions represent system
size limitations, and the remedy is a reduction in complex­
ity or size of the source me. They are

SYMBOL TABLE OVFLO
- Too many symbols were defined

WORK AREA OVFLO
- Too complex a DO LOOP was created

MACRO STORE OVFLO
- Too many macros were defmed

MACRO DEF ERROR
- There was an incomplete or erroneous macro

defmition
DO LOOP ERROR

short branch goes to a point on a different
page and must be changed to a long branch.

7. *** ILLEGAL CONST -1717 ***
The ?'s are replaced with the constant found.
Did an identifier begin with a number or is an H
or Q on the end of a hexadecimal or octal
constant left out?

8. *** OPERAND MISSING ***
Check the op-code to see how many and what
type of operands are required for it. If it is a
macro call, check the macro definition for the
number of operands required.

9. *** IF STATEMENT ERROR ***
The expression in the IF statement did not
produce a logical true or false. A true result is
assumed.

10. *** INVALID REG - ?? ***
The ?'s are replaced with the number in ques­
tion. Check the spelling of the identifier and
that its value is an addressable register.

11. *** ILLEGAL OPERAND - ??17?17?17 ***
The ?'s are replaced with the operand in ques­
tion.

- A DO LOOP was set up incorrectly

In addition to the above, if more than 99 erors are
encountered on the first pass, 'ASM ABORTED' will
appear with no further explanation. In this case the user
need only to attend to the errors already reported and
then rerun his assembly.

Warnings
There may also be situations in which the output may

appear to be completely correct but probably is not. In
these cases ASM8 will issue warning messages to the
teletypewriter. These warning messages are

X-REF TABLE OVFLO
- The cross-reference listing is incomplete (more than

6144 references)
DUPLICATE MACRO NAME

- Macro expansions may be incorrect
LOC CTR ERROR

- The fmal values of the location counter after each
pass were different

72 __ ___

7. MicroDOS User Functions

The set of MicroDOS User Functions that can be
called directly from an application program is a signifi­
cant feature of the MicroDOS Operating System. In
this chapter, the uses of the specific functions are de­
scribed. It is important, however, to have an under­
standing of two basic concepts, the 110 Control Block
and the Buffers, before the user functions can be
utilized.

1/0 Control Block and Buffers
The 10CB (1/0 Control Block) is a depository of

information for the II 0 channel through which the user
is communicating. An 10CB is a software analog of the
hardware interface boards found in any computer sys­
tem. One 10CB must be set up for each channel of
communication. Thus, a standard data terminal would
have two 10CB's associated with it; one for characters
received from the keyboard, and another for informa­
tion sent to the terminal for display. Reading a disk file
requires a single 10CB; reading from and writing to a
disk file requires a total of two.

For some user function routines such as TYPE
(which outputs characters to the terminal) the 10CB is
already set up and the user need not be concerned with
it. The appropriate 10CB for TYPE was set up pre­
viously because the MicroDOS operating system is
already in communication with the terminal. A separate
10CB, however, will have to be set up for any disk
reading or writing that is wanted.

The second important concept is the buffer. A buffer
is simply a reserved block of RAM through which data
is passed on its way to and from the 110 devices. The
CREAD routine, for example, is structured to imput
data to the buffer as it is received from the keyboard.
Later the input characters can be examined and acted
upon by the user's program. Similarly, the TYPE rou­
tine picks up data bytes from a specified buffer area and
outputs them to the terminal. Disk 110 is handled a
sector at a time (512 bytes) and is similarly passed
through a buffer. A part ofthe information in the 10CB
is the two addresses specifying the start and the termina­
tion ofthe sector buffer. Buffer areas must be reserved
for all 110 operations through MicroDOS. For disk
10CB's, the reserved area must be 512 bytes in length.

When an error occurs, the state of the 10CB is
indeterminate.

lOeB Initialization
Fig. 16 shows the structure of how an 10CB is initial­

ized. A description of each area follows.

Byte

o

2

3
4

5
I

7

8

8
10

11

12

13
14
1&

18

17
18

IOCB

OPEN PARAMETER

LOGICAL UNIT NUMBER

NAME

19 EXTENSION

20

21

22

23

24

2&

21
27

21
21
30

31

32

33
34

3&

92CS-31641

Incr ... ing
-., --

Slm •••

Ou tfrom

SRNAM Routine

Fig. 16 - Diagram of Input/output Control Block (IOCB)
Structure.

Byte 0 - Open Parameter. Any file or I 10 device can be
opened for reading or writing. The value of byte 0
specifices which operation is to be performed. For
READ the appropriate value is BIH. For WRITE the
appropriate value is 7 AH. If the value 7BH is used, a
new file will be opened if one does not already exist.
Otherwise, it will open the existing file for writing.
Byte 1 - Status Byte. When a user function is called, it
places a value in byte 1 to indicate whether or not the

7. MlcroDOS User Functions --------------------- 73

operation requested was successful. A zero indicates
success. Non-zero numbers are coded erro-message
representations. Appendix D provides a listing of the
error-message numbers and their meanings. In addi­
tion, the value C9H will be placed in byte I when an
end-of-file marker has been read. The appropriate mes­
sage can be automatically written to the terminal by
calling the user function CDERR, which will be dis­
cussed later.

Bytes 2 to 4 - Non-User Area. This area, as well as bytes
10,21 to 23, 25 to 30, and 33 to 35, is not available to the
user.
Bytes 5,6 - Start of Sedor Buffer. In bytes 5 and 6, the
user enters the starting (lowest value) address of the
associated buffer. The high byte is entered in 5 and the
low byte in 6.
Bytes 7,8 - End of Sedor Buffer. In bytes 7 and 8, the
user enters the last (highest) address of the buffer. The
high byte is entered in 7 and the low byte in 8. For disk
IOCB's the buffer length must be 512 bytes. For other
input devices the buffer length should be the maximum
number of data bytes to be received plus one. For other
output devices the buffer length is equal to the length of
the maximum number of bytes to be transmitted.
Byte 9 - Write Parameter. When a disk file is opened for
writing, byte 9 defines the number of clusters to be
allocated for the file (a custer = I sector). The standard
allocation of 27 clusters is denoted by zeros in this byte.
Any non-zero values denote the number of clusters:
1,2,3, ... etc. Because additional space will be automati­
cally allocated as needed, it does not matter if the file
size is not known. An attempt to over-allocate to
accommodate the largest possible file may result in a
"DISK FULL" indication when, in actuality, the file
might fit.
Byte 11 - Unit Number. Byte 11 is set to '0' for the left
disk drive or to '1' for the right one. It normally should
be set to zero as the default value. If a drive is specified as
part of the file name (as in N AME.EXT:D RIVE #), the
user function SRNAM will put the drive # in this byte.
Bytes 12 to 20 - Name and Extension. The six-byte
name and the three-byte extension (stored in ASCII) is
the name associated with a disk file. Again, the
SRNAM routine can be used to fill in these bytes. For
non-disk IOCB's bytes 11 to 20 have no meaning. Note:
This area must be initialized with the ASCII 'space'
character (20H) each time before SRNAM is called.
Byte 24 - File Definition. Byte 24 defines the disk file
type (binary or ASCII) and attributes. MicroDOS sys­
tem files are all of the binary type; in general, user­
generated files are ASCII. Attributes occupy various bit
positions as given in Fig. 17. The attribute is enabled
when the bit is set to 'I '.

BITS FILE
2 I 0 TYPE

000 INTERLEAVED BINARY
o 0 I BINARY
0 I 0 ASCII/ASCII-HEX
0 I I OPERATING SYSTEM
I o 0 INTERLEAVED ASCII/

ASCII-HEX

92CS-34178

Fig. 17 - Attitude bit positions.

Bytes 31, 32 - Device Mnemonic. Five different device
mnemonics are presently supported by MicroDOS. The
user should enter one of the pairs of characters given
below in ASCII code into these two bytes. The SRN AM
routine can be used to fill in these bytes. The default
value of DK, however, should be entered by a user
program.

DK identifies the disk for both input or output
IOCB's

LP identifies the line printer for output
TY identifies a teletypewriter for output
KB identifies the console keyboard for input
SC identifies the console video screen for output

IOCB Changes After a File Is Opened

A file must be opened before any disk read or write
operation can take place. The routine OPEN is used for
this purpose. OPEN is described in detail in the next
section. OPEN, however, changes many values of the
initialized IOCB in order to set up various pointers.
Specifically, the following alterations are made:
Bytes 5 to 8 - Sedor Buffer. OPEN will use the buffer
area indicated by these bytes and over-write any data
already there.
Byte 0 - Open Parameter. Bit 4 of this value is reset to 0
when a file is openend. Thus, for read operations the
value becomes AIH and for write it becomes 6AH. Bit 4
is set to 1 when a file is closed.
Byte 9 - Write Parameter. This value is replaced by a
pointer to the present position in the Sector Buffer.
Bytes 11 to 20 - Unit Number, Name, and Extension.
These values are replaced by pointers to the disk file.
Bytes 31, 32 - Device Mnemonic. This area becomes a
pointer to the appropriate code in the MicroDOS oper­
ating system for the device 110 operation.

IOCB Example

As an example of a complete initialized IOCB, Fib.
18 shows one set up for reading the ASCII disk file
called TOM,CHK on drive zero. Any number of flles

74 User Manual for the RCA MlcroDlak Development Syatem MS2000

can be open simultaneously, limited only by available
RAM.

o
1

2

3
4

5
6
7

I
9

10

11

1 2

3
14

5

6
7

I

9 1

20

2 1

1

2

22

23

24

25

26

27

26

26

30
3

3
33
34

35

Bl

00

xx
xx
XX
10

00
10

IF

00
xx
00

54
4F

4D

20

20

20

43

48

4B

XX
XX
XX
02

XX
XX
xx
xx
xx
XX
44

48
XX
XX
xx

l
\

1

Rood Opo,"tion

Stotu. OK

Buff., •
l000-I08F

Driv.- 0
T

o
M

SpKOI

C
H

K

ASCII Fill Type

D
K- D11k

92CS-31637

Fig. 18 - TypicallOCB for reading a disk file named
TOM.CHK.

Introduction to User Function
In this section the MicroDOS functions that the user

can call directly from an application program are des­
cribed. These functions, among other things, allow the
user to read or write to and from disk files. Some of
these functions are conveniences to facilitate setting up
the IOCB. Others are called to do the actual I/O opera­
tions in a way analogous to the UTI 1 READ and TYPE
routines (See next chapter, Utility Program UTIl). The
MicroDOS console read and type routines themselves
use UTII READ and TYPE to do byte I/O transfers.
MicroDOS console routines, however, are designed to
operate on buffers of data rather than a byte at a time.

The general form for calling a user function is:

where:

CALL UCALL,<FN>,[<PARMn>]

CALL EQU OD4H (The assembler will do
the translation)

UCALL EQU 0B453H
<FN> is the value assigned to the function
<PARMn> are parameters passed to the
called routine

The Standard Call and Return Technique (SCRT)
must be adhered to when these conventions are used.

The conventions are as follows:

R2=stack pointer
R3=program counter
R4=address of CALL routine ¢

R5=address of RETURN routine ¢

R6=pointer to return point

Most CPU registers are preserved during a call to a user
function (saved and then restored). Up to 52 bytes ofthe
stack are required for a call.

Console 1/0 Routines
1. Function: CREAD
2. Value:12H
3. Description:

CREAD is used to read a line from the console device
into a buffer.
4. Format:

CALL UCALL,CREAD,BUFFER,BYTECT
where: BUFFER is the starting address of the RAM
buffer into which the data is to be put. Its length must be
BYTECT + 1, where BYTECT is the number of charac­
ters to be input. BUFFER will contain the entered
characters plus the terminating carriage return from
low-to-high address. With the exceptionof (CR), the
following characters (RUBOUT, CANCEL, and LINE
FEED) are handled as special control functions and are
not put into the buffer.

R UBOUT (7FH): When a R UBOUT is pressed, a left
bracket ''['' is printed followed by the deleted character.
When a NON-RUBOUT is pressed, aright bracket '1"is
printed followed by the pressed character. The
RUBOUT deletes the last character in the buffer thus
providing a built-in line-editing function.

CANCEL (CTRL-C): Deletes all characters in the
buffer and awaits the next character.

LINE FEED: Displays the contents of the buffer on
the next line and awaits the next character.

CARRIAGE RETURN: Terminates input. (This
character is put into the buffer and causes a carriage
return and line feed.)

Before typing:
Increasing addresses ~

Buffer I I
After typing "ABCD(CR)":
Buffer I ABCD(CR) I

t

7. MlcroDOS User Functions ____________________ _ 75

S. Example:
Input a line of up to 20 characters in a buffer starting

at location IOOOH.

UCALL EQU 0B453H
CREAD EQU 12H
BUFFER EQU lOOOH

CALL UCALL,CREAD,BUFFER,21

I. Function:
2. Value: 14H
3. Description:

TYPE

TYPE outputs the defined text to the terminal.
4. Format:

CALL UCALL,TYPE,BUFFER
where: BUFFER contains the data to be typed.
Typing will be terminated by a null (OOH) character in

the buffer. Data will be output from low to high
addresses.
S. Example:

UCALL EQU 0B453H
TYPEEQU 14H

CALL UCALL,TYPE,MSGI

MSG I DC ODOAH,'MICRODOS TEST PRO­
GRAM',OOH

Disk 1/0 Routines
1. Function: GETCHR
2. Value: 08H
3. Description:

This routine reads a character from an opened file
and returns the character in RF.I.
4. Format:

CALL UCALL,GETCHR,IOCB
where: IOCB has previously been opened. See the

OPEN function. The status byte of the IOCB will be
updated by this routine and should be checked for an
error. If the status byte is non-zero, CDERR should be
called to print the error message.

S. Example:
Read a character from an opened file and check for

an end-of-file marker.
UCALL EQU 0B453H
CDERR EQU 28H

t As described in the User Manual for the CDPI802
Microprocessor, MPM-20I.

GETCHR EQU 08H
STATUS EQU 9 .. R9 contains IOCB + I

CALL UCALL,GETCHR,IOCB
.. Read byte.
.. Check status byte LON STATUS

LBNZERROR
GHIRF

.. Branch to error routine, else

.. Get the character
XOR 13H
LBZEND

. .it is a 'DC3'?

. .If so, go to END

. .If not, this is the next

. .instruction

IOCB DC OBIH .. This is the first byte of the
.. IOCB for the file being
.. read

ERROR CALL UCALL,CDERR,IOCB
..Display error message

1. Function: PUTCHR
2. Value: OEH
3. Description:

This routine outputs a character to an opened me.
The character must be placed in RF.I before the routine
is called.
4. Format

CALL UCALL,PUTCHR,IOCB
where: IOCB has been previously opened. The status

byte of the IOCB will be updated. After calling this
routine, the user should call CDERR to print any error
messages.

The last character output for most ASCII files should
be DC3 (13H), the end-of-file marker. Then, the PUT­
SEC user function must be called before the file is closed.
This call assures that the last 512 bytes will be written on
the diskette.
S. Example:

Close the disk file being writeri to.
UCALL EQU 0B453H
PUTCHR EQU OEH
CDERR EQU 28H
CLOSE EQU 02H
STATUS EQU 9 .. R9 contains IOCB + I

LDI 13H; PHI RF .. Output end-of-file marker
CALL UCALL,PUTCHR,IOCB

LON STATUS .. Check status byte
LBNZERROR

76 User Manual for the RCA MlcroDllk Development SYltem MS2000

CALL UCALL,PUTSEC,IOCB
.. Write out last sector

LDNSTATUS
LBNZERROR

.. Check status byte

CALL UCALL,CLOSE,IOCB
.. Close me

LDNSTATUS
LBNZERROR

.. Check status byte

ERROR CALL UCALL,CDERR,IOCB
.. Display error message

IOCBDC7AH .. This is the first byte of the
. .I0CB for the me.

1. Function: GETSEC
2. Value: 06H
3. Description:

The GETSEC routine causes one sector (512 bytes) to
be read from the opened me into the sector buffer
described by the 10CB.
4. Format:

CALL UCALL,GETSEC,IOCB
where: 10CB is associated with the opened me.
After each call to this routine, MicroDOS sets up the

10CB so that the user can read from the next consecu­
tive sector. The status byte of the 10CB will be updated.
After calling this routine, the user should call CDERR
to print any error messages. This utility is not required
under normal conditions because consecutive calls to
GETCHR will automatically advance to the next sector
every 512 bytes. It is included as a convenience for those
wishing to write their own special programs and keep
their own byte count. If the user wants to randomly
access a logical sector in a me, he can change bytes 19
and 20 in the IOCB so that they equal the desired logical
section before the call to the routine is made.
S. Example:

Search an opened me for the first sector containing a
NULL as the first character.

UCALL EQU 0B453H
GETSEC EQU 06H
GETCHR EQU 08H
STATUS EQU 9 .. R9 contains 10CB + 1

LOOP CALL UCALL,GETSEC,IOCB
.. Point to next sector

LON ST ATUS;LBNZ ERROR
.. Check status

CALL UCALL,GETCHR,IOCB
.. Get first character

LDN STATUS;LBNZ ERROR

.. Check status
GHI RF;BNZ LOOP

.. Loop back if not = 00

10CB DC OBIH .. This is the first byte of the
. .I0CB for the me being read

ERROR CALL UCALL,COERR,IOCB
.. Display error message

1. Function: PUTSEC
2. Value: 10H
3. Description:

The PUTSEC routine causes one sector (512 bytes) to
be written to the opened me from the sector buffer
described by the 10CB.
4. Format:

CALL UCALL,PUTSEC,IOCB
where: 10CB is associated with the opened me.

After each call to this routine, MicroDOS sets up the
10CB so that the user can write the next consecutive
sector. The status byte of the 10CB will be updated.
After calling this routine, the user should call COERR
to print any error messages.

If disk transfers are being done on a character basis,
this routine should be called after the last byte (the
end-of-me marker DC3) is output to a me to make sure
that the last 512 bytes actually get written on the
diskette. See the example under PUTCHR. If the user
wants to randomly access a logical sector in a me, he can
change bytes 19 and 20 in the 10CB so that they equal
the desired logical section before the call to the routine is
made.

1. Function: CLOSE
2. Value: 02H
3. Description:

The CLOSE routine performs all the necessary func­
tions after a me has been used.
4. Format:

CALL UCALL,CLOSE,IOCB
where: 10CB relates to the me that is to be closed. The

status byte of the 10CB must be checked after each
CLOSE operation by calling CD ERR. The CLOSE
function does not write out any partially filled sectors
nor does it add DC3 as the last character in the me. Its
main function is to deallocate disk space no longer
required. See the example under PUTCHR .

1. Function: OPEN
2. Value: OOH
3. Description:

The OPEN function prepares a me for subsequent
use.

7. MlcroDOS Us.r Functions ____________________ _ n

4. Format:
CALL UCALL,OPEN,IOCB
The IOCB must be initialized before a file is opened.

Attempting to read or write to an unopened file will
cause errors. A call to OPEN will change almost all
areas of the IOCB from their initialized values. The
status byte of the IOCB will also be updated by this
routine. After calling this routine, the user should call
CDERR to display any error messages.
Note: OPEN uses the buffer area pointed to by the
IOCB. OPEN, therefore, should be called before valid
data is accumulated in an output buffer.
S. Example:

Open a file for which the IOCB has been set up and
read the flrst character.

UCALL EQU 0B453H
OPENEQUOOH
GETCHR EQU OSH

STATUS EQU 9 .. R9 contains IOCB + 1

CALL UCALL,OPEN,IOCB
.. Open file

LDN STATUS;LBNZ ERROR
.. Check status

CALL UCALL,GETCHR,IOCB
.. Get flrst character

IOCB DC OBIH .. This is the flrst byte of the
IOCB

ERROR CALL UCALL,CDERR,IOCB
.. Display error message

I. Function: REWIND
2. Value: 04B
3. Description:

The REWIND function positions the IOCB pointer
to the beginning for the file.
4. Format:

CALL UCALL,REWIND,IOCB
where: IOCB relates to the me that is to be "rewound".

After this routine is called, the next character read will
be the flrst character of the file.

I. Function: CDERR
2. Value: 18B
3. Description:

The CDERR routine displays a pertinent error mes­
sage from the library of error messages.
4. Format:

CALL UCALL,CDERR,IOCB
where: IOCB is the Input Output Control Block con­

taining the error number in its status byte.
After a user function requiring an IOCB as a parame­

ter is called, that function returns in the status byte a
zero for no error or a non-zero value which identifles an
error. See Appendix D for a complete listing of Micro­
DOS error messages with their identifying humbers and
meanings. The CDERR function displays the correct
error message for the error condition.
S. Example:

Read a byte from an opened file and check for an
error condition. Register R9 will be used as a pointer to
the status byte.

UCALL EQU 0B453H
GETCHR EQU OSH
CDERR EQU 2SH

STATUS EQU 9 .. R9 contains IOCB +

CALL UCALL,GETCHR,IOCB
.. Get character

LDI A.O(IOCB + 1);PLO STATUS
.. Point R9 to status byte

LDI A.l(IOCB + 1);PHI STATUS
LDN STATUS; LBNZ ERROR

.. Get status and check

ERROR CALL UCALL,CDERR,IOCB

IOCBDCOBIH

.. Display error message

.. This is the flrst byte of

.. the IOCB

IOCB Setup Aid Routine
1. Function SRNAM
1. Value: 14B
3. Description:

The SRNAM (Search-for-File-Name) routine
searches a specifled input buffer for a file name, and
then reformats and moves the information to the
appropriate area of an IOCB. It is designed to help in
setting up an IOCB by taking file name information
from a line buffer (put there by CREAD) and relocating
it into an IOCB.
4. Format:

CALL UCALL,SRNAM,PACKET
where: PACKET is a special4-byte pointer in which

the flrst two bytes point to the input buffer and the
second two bytes point to the unit number byte in an
IOCB. Fig. 19 depicts the operation of SRNAM.

78 User Manual for the RCA MlcroDlsk Development System MS2000

PRO G • 0 B J : 1 (CR I Input Lin. Buff ..

PACKET
Inc inl Memory Addresses

•

PROG(sp) (sp)

,
! I I "" c

°i I. 0

J
oj!

:::l .:
z M
0

92CS- 31640

Fig. 19 - Pictorial representation of SRNAM operation.

SRN AM maintains a status word (located at B452H)
to indicate the results of its operation. A valid file name
found is indicated byOOH in this byte. The setting of the
various bits have the following meanings.

Bit 0= I; an asterisk * (wild-card) was found in the file
name.

Bit I = I; an * was found in the extension.
Bit 2=1; adev!ce name (LP,TY,SC,KB, or DK) was

found instead of a file name. The device mnemonic will
be placed in the proper area of the IOCB.

Bit 7=1; no file name was found.
SRNAM may be called repeatedly to pick up a series

of file names from an input buffer and place them in
various IOCB's. The IOCB-pointer part of PACKET
must be changed each time to perform this operation,
but the input-buffer-pointer section of PACKET is
automatically positioned past each file name as it is
encountered. SRNAM makes no changes to the input
buffer. SRNAM returns to the caller after each file
name is encountered. However, it will not search past a
semicolon or carriage return.

SRNAM will not place delimiters in the file name
area, and spaces encountered before the file name will
not be used. Any characters found after the maximum
allowed for a field will be discarded. For example, if
eight characters are used for the file name, only the first
six will be placed in the output buffer. The output data is
changed only if that area was encountered in the search.
Before calling SRNAM, therefore, the IOCB should be
initialized to the desired default values by setting the
Unit Number = 00, filling the NAME and EXT areas
with 20H (ASCII space), and setting the Device Mne­
monic area to DK (ASCII).
S. Example:

By means of CREAD, two file names have been

entered into a line buffer (BUFI). Using SRNAM, put
the names into IOCBI and IOCB2.

BUFI contains
ABI2.M, XYX.N:I (CR)

PACKET is set up as follows:

ADDRESS OF BUFI
ADDRESS OF IOCBI + II

IOCBI + II and IOCB2 + II were initialized as
follows:

\ O\(sp)(sp)(sp)(sp)(sp)(sp)\(sp)(sp)(sp) \

After the first call to SRNAM, PACKET will look
like:

ADDRESS OF BUFI + 7
ADDRESS OF IOCBI + II

and OICBIlooks like:

I OIABI2(sp)(sp)IM(sp)(sp)

Next, PACKET is reinitialized to point to IOCB2
and looks like:

ADDRESS BUFI + 7
ADDRESS OF IOCB2 + II

A second call to SRN AM makes PACKET look like:

ADDRESS OF BUFI + 17
ADDRESS OF IOCB2 + II

and IOCB2100ks like:

IIIXYZ(sp)(sp)(Sp)IN(Sp)(Sp) I

Note how SRNAM updates the input address so that
the user can keep calling SRNAM to find a series of file
names.

7. MlcroDOS User Functions ____________________ _ 79

Return to MicroDOS Operating
System Routine

I. Function:
2. Value: IEH
3. Description:

CDENT

The CDENT routine returns program control to the
MicroDOS operating system. The ~ prompt will be
output to the terminal.
4. Format:

CALL UCALL,CDENT
This function, rather than an LBR 9000H, should be

used to return control to the operating system. Note that
this function does not close files, update the director, or
save the CPU status.

Operating Sequence Summary
The following is a summary of the steps necessary to

do disk I/O with MicroDOS user functions.

I. Reserve buffer areas:
512 Bytes for a disk channel
SO bytes or less for keyboard input.
4 bytes for SRNAM packet.

2. Set up as many IOCB's as required. Set the OPEN
parameter for read or write. Fill in the sector buffer
pointers.
Set Unit #=0 (for default) or as required.

Fill file name and extension areas with 20H or
name, if fixed.
Set file definition.
Fill in device mnemonic = DK (for default) or as
required.

3. Set up PACKET pointing to input buffer and
IOCB.

4. Call CREAD to input file name, if a variable.
5. Call SRNAM to move file name to IOCB. Check

status byte at B452H.
6. Call OPEN. Check status byte of IOCB. If non­

zero, call CDERR to output the error message and
reinitialize the IOCB.

7. Call GETCHR or PUTCHR to do disk read or
write. Check status byte of IOCB. If non-zero, call
CDERR to output the error message.

S. When writing is finished, output 13H (end-of-file
marker) and call PUTSEC. Check status byte of
IOCB. If non-zero, call CDERR to output the error
message.

9. Call CLOSE. Check status byte of IOCB. If non­
zero, call CDERR to output the error message.

10. To return to the MicroDOS operating system, call
CDENT.

A sample program illustrating the use of user func­
tions is given in Appendix E.

80

8. Monitor Programs UT71

The Monitor Program UTI I enables the user to exam­
ine or alter memory, begin program execution at a given
location, do I/O from the keyboard, or transfer data
between disk and memory. In addition, it can set up
half- or full-duplex operation, load the operating sys­
tem, or perform a test on itself. These functions are
accomplished through a series of monitor commands
that are initiated by typing D, F, I, M, S, P, T, L, B, ?, !,
R, or W. The functions include memory display (D),
memory fill (F), memory insert (I), memory move (M),
memory sutstitute (S), run program (P), self test (T),
load operating system (L or B), do I/O from keyboard (?
or I), and disk read (R) or write (W). Also included are
the standard read and type routines that provide com­
munication with the user's terminal. Finally, the moni­
tor contains routines that communicate with the RCA
MSIM 50 3 ~-inch micro floppy disk drives through the
CDPl8S651 disk controller.

After the system is powered up, the monitor issues an
asterisk prompt ... " indicating that it is ready to accept
monitor commands. Pressing RESET / RUN U will also
result in the same prompt.

Register Save
When the system is started from RESET / RUN U, the

contents of the CPU registers are saved in RAM at
8COOH. The contents of RO and RI however, are de­
stroyed by the process. The contents of the saved regis­
ters can be examined by displaying memory at 8COOH
for 20 bytes. This register-save feature can be used to
debug machine-language programs. First, insert an
IDLE instruction (00) in the program code at the
appropriate place. Next, execute the program and wait
until the IDLE is reached. Then press RESET/RUN U
and examine memory at 8COOH to determine the con­
tents of the registers at the registers at the time the ID LE
was encountered.

Self Test
The user can start the self-test function from the moni­

tor by typing aT.

The test will perform an 8-bit checksum of the UTII
PROM. The results should be zero. If not, the system
will print:

PROM BAD

Next, it will perform a read/write test on all RAM. It
starts at 8800H and wraps around, ending at 7FFFH. If
a bad location is found, the test ends and prints:

RAM BAD, P(PAGENO)

If all the tests pass, the following will be printed:

MEMORY OK

When the self test is finished, control is returned to the
monitor.

UT71 Commands
Following is a description of the UTII commands.

Note that all address, data, and byte counts are entered
as hexadecimal numbers. In the examples given, the
characters generated by the system are underlined. The
monitor prompt is an asterisk •.

TCommand

Name:
Purpose:
Format:

Test
Memory self test
T

Action: Tests all ROM and RAM
Example T

MEMORY OK
•

DCommand

Name: Memory Display
Purpose: To allow a specified area of memory to be

displayed on the user therminal.
Format: D(START ADDRESS)(OPTION)(CR)
Action: The contents of memory, beginning at the

specified (START ADDRESS) will be trans­
mitted to the user terminal. (OPTION)
allows the transmission of either a specific
number of bytes preceded by a space or an
inclusive address range preceded by a
hyphen. If the option is not specified, a
default value of I byte results.

Examples: D42F8 8(CR)
D42F8-42FF(CR)
Both of these examples produce the same
output.

8. Monitor Programs UT71

I Command

Name: Memory Insert
Purpose: To alter the contents of memory beginning

at the specified address.
Format: I(START ADDR)(SPACE)

(DAT A)[(CONT)](CR)
Action: A memory location is accessed at the speci­

fied (START ADDR). The (DATA)
required is one byte specified by two hex
digits. The (CONT) option allows data to be
continued onto the next line on the terminal
with or without changing the current
memory address. A (COMMA) will not
change the address and after the user inserts
(CR)(LF), additional data may be entered.
If a (SEMICOLON) is entered and after a
user-inserted (CR)(LF), a new address is
anticipated. The semicolon allows non­
contiguous memory to be loaded with a sin­
gle insert command. The command may be
terminated at any point by the entry of a
(CR) not preceded by a (COMMA) or
(SEMICOLON).

Examples: I42F8 7100F840BOF88CBI (CR)

142F8 7100F840,(CR)(LF)
BOF8,(CR)(LF)
8CBI(CR)

142F87100F840BO;(CR)(LF)
43B6 94FB903AOF(CR)

The first and second examples give identical
results. The second provides improved read­
ibility at the data terminal output. The third
example enters data into two memory areas,
starting at 42F8 and 43B6.

MCommand

Name: Memory Move
Purpose: To move a block of data from one area of

memory to another area.
Format: M(SOURCE ADDR)(OPTION)(SPACE)

(DEST ADDR)(CR)
Action: Data is copied from memory source loca­

tion beginning at the (SOURCE ADDR)
into locations specified by the (DEST
ADDR). (OPTION) allows the transfer of
either a specific number of bytes preceded
by a space or an inclusive address range
preceded by a hyphen. There is no restric­
tion on the direction of the move and the
areas may overlap.

Examples: M42F8 8 43F8(CR)
M42F8-42FF 43F8(CR)

M43B0-43BF 42BO(CR)
M43B0-43BF 43B2(CR)

FCommand

Name: Memory Fill

81

Purpose: To load a defined area of memory with a
specific constant.

Format: F(START ADDR)(OPTION)(SPACE)
(DATA)(CR)

Action: The specified (DATA) is loaded into
memory beginning at the (START ADDR).
(OPTION) allows the loading of either a
specified number of bytes preceded by a
space or an inclusive address range preceded
by a hyphen.

Examples: F42F8 8 OO(CR)
F42F8-42FF OO(CR)
These examples fill with zeros the eight
bytes beginning at location 42F8.

SCommand

Name: Memory Substitute
Purpose: To display and, if desired, alter the contents

of sequential memory locations beginning
at the specified address.

Format: S(START) ADDR)(OPTION)(CR)
Action: A memory location is accessed at the speci­

fied (START ADDR). Its contents will not
be displayed, however, until (OPTIONS) is
entered. (OPTIONS) allows two methods of
display. If (SPACE) is entered, the current
data will be displayed on the same line fol­
lowed by a hyphen. New data may be
entered at this point. Only the last byte
entered will be written. If no data is entered,
the current data will remain unchanged. If a
(LF) is entered, a (CR)(LF) will result and
the current memory address will be echoed
to the terminal prior to the printing of
current data. New data may be entered as
described above. The command can be ter­
minated by a (CR) or continued by the entry
of any of the OPTIONS).

Examples: S42F8 63-71 00- OF-CO(CR)
The current data of 63 is changed to 71. The
00 data is retained, and the OF is changed to
CO
S42F8 71- 00- CO- 11-82(LF)
42FC 52-AE(LF)
42FD OO-F8 11-40 23-A3(CR)
In this example, the 71, 00, and CO are
retained and the II is changed to 82. Each
(LF) causes the next address to be followed
by its data.

82 User Manual for the RCA MlcroDlsk Development System MS2000

PCommand

Name:
Purpose:

Format:
Action:

Program Run
To allow a user program to be run beginning
at the specified address.
P[(START ADDR)](CR)
The user program will begin execution at
the specified (START ADDR) with P = 0
and X = O. If the (START ADDR) is not
specified, the default value is 0000.

LCommand

Name: Load
Purpose: Loads the operating system from drive

O.
Format: L
Action: MicroDOS gets loaded into memory from

drive O.
Example: L

MICRO DOS 0.0
~

B Command

Name: Boot
Purpose: Loads the operating system from any drive

(0-3).
Format: L(drive No.)
Action: MicroDOS gets loaded into memory from

specified drive.
Example: B 1

MICRO DOS 0.0
:s

R Command

Name: Read Sector
Purpose: Transfers one sector of data from disk to

memory

Format: R A =(address)(space)D= (drive)(space)T
:::.(track)(space)S =(sector)(CR)

Action: One sector (S 12 bytes) of data is transferred
from the specified disk, track, and sector to
memory starting at the specified address.
Drive number must be from 0 to 3, track
from 0 to 4S hex, and sector from 1 to 9. All
defaults are to O.

WCommand

Name: Write Sector
Purpose: Transfers one sector of data from memory

to disk.
Format: W A=(address)(space)D =(drive)(space)I

::(tract)(space)S=(sector)(CR).
Action: This command performs the complement of

the R command.

?Command

Name: Read I/O Port.
Purpose: Transfer on byte of data from input port to

screen.
Format: ? G =(group no.)(space)P =(port no.)(CR).
Action: One byte of data from group address and

port number specified is printed on the
screen.

I Command

Name: Write to I/O Port:
Purpose: Transfer one byte of data from keyboard to

output port.
Format: ! G =(group no.)(space)P =(port no.)

(space)B =(data)(CR).
Action: One byte of data is output to the group

address and port specified.

83

9. Terminal Interfacing

UART Action
Terminal interfacing is handled by UTI 1 by means of a

U ART. TYPE routines in UTI 1 test to see that the
holding register of the UART transmitter is empty and
if so, pass the byte to be typed to the U ART and then
return program control to the caller. READ routines
test the Data Available signal from the U ART, and
when that signal is true, a byte is picked up and returned
to the caller. The UART's control register is initialized
by UTII for the serial format consiting of one start bit,
eight data bits, and two stop bits, as illustrated in Fig.
20. User programs may change the control word, if
desired.

LOGIC I

B ~I 01 0 I 0 1 01 0 1 o~o F 1 F

INTELLIGENCE BITS
I DATA BITS

---I B I

* -ONE BIT TIME
B-START BIT
F- STOP BIT

COMPLETE CHARACTER
"M" (4016)

0- DATA BIT

--- -ASYNCHRONOUS TIME
BETWEEN CHARACTERS

92CS-28100

Fig. 20 - Data terminal bit serial output for the charac­
ter"M".

Refer to Appendix F for the I/O Group I assignments
for the UART.

ASCII Coding

The system is designed to interface to a data terminal
via a serial ASCII code using an EIA RS232C standard
electrical interface. When a key is struck on a terminal,
the information denoting that character is converted to
its ASCII code and appears on the output terminals as a
serial data-bit stream. The serial data from the central
processor for the letter 'M' is shown in Fig. 20. The
character is framed by a start bit B and two stop bits FF.
By convention two stop bits are used for data transmis-

sion at 10 characters per second although I, I-I / 2, or 2
are also acceptable outputs from various data terminals.

UT71 Routines READ, TYPE, and
OSTRNG

The UT71 READ and TYPE routines provide the
basic software mechanism for communication between
the system and the data terminal. Several different rou­
tines are available to facilitate different types of I/O
data transfers.

Register Use

All READ and TYPE routines use R3 as their pro­
gram counter and return to the caller with SEP R5.
They can be called directly from a program that can use
R5 as its program counter, or they may be called
through the Standard Call and Return Technique
(SCR T) described in the User ManuaI for the CDP1801
Microprocessor, MPM-201 in the Section "Program­
ming Techniques" under the heading "Subroutine
Techniques." This programming technique is the most
general and is recommended.

The upper half of register RE (RE.I) holds a control
constant. The least significant bit specifies whether or
not characters read in should be "echoed" (full-duplex)
or not echoed (half-duplex). A zero in the LSB specifies
echo, a I specified no echo. UT71 initializes RE.I to
zero for full-duplex operation. If the first character read
by UTII after its initialization is a Line Feed character,
the value in RE.I will be changed to a 'I '. Otherwise,
operations will proceed with RE.I = O.

The most significant bit of RE.I specifies whether the
Command File Interpreter is in control. If set, UTI I will
branch to the Interpreter to spot the character. It is very
important to always restore RE.I before doing any read
routine.

Two bytes of RAM are needed by the READ and
TYPE routines. These routines assume that R2 points
to free RAM and M(R(2» is altered by them. In general,
the user can set R2 to any free RAM location. UTI I
uses a byte in its dedicated RAM for this purpose.

RF.I is used in certain cases to pass the byte being read
or typed between the calling routine and these subrou­
tines. When READ is exited, it leaves the input byte in
RF.I. When TYPE is entered at location 81 A4, the byte
to be typed is taken from RF.I.

84 User Manual for the RCA MlcroDlsk Development System MS2000

All routines alter RE.O and RF.O. They also alter D,
DF, and X. The READ routine leaves the input byte in
D as well as in RF.I if CALL and RETURN subrou­
tines of UT71 are used. But the byte in D will be des­
troyed if the Standard Call and Return Technique,
described in MPM-201, is used.

READ

When READ exits, R3 is ready for entry at
READAH (see Table IX). When TYPE exits, R3 is
ready for entry at TYPES (see same table).

The READ routine has two entry points - READ and
READAH. The former acts as described above and has
no other side effects. The latter operates just as READ
does, but with the following side effect. If the character
read in is a hex character (0-9. A-F) then the 16-bit

Table IX - UT71 Utility Routine.

Entry Absolute
Name Address Function

READ 813E Input ASCII - - > RF.I (if non-
standard linkage)

READAH 813B Same as READ. If hex chara-
cter, DIGIT --> RD (see text)

TYPES 81AO Output ASCII Character at
M(RS). Then increment RS

TYPE6 81A2 Output ASCII character at
M(R6). Then increment R6

, TYPE 81A4 Output ASCII character in
RF.I

TYPE2 81AE Output hex digit pair in RF.I
OSTRNG 83FO Output ASCII string at M(R6).

Data byte 00 ends typeout
CKHEX 83FC RF.I(ASCII) --> RE.O (hex)

and RD.O (hex); DF =1 if
hex, DF =0 if not hex.

INITl 83F3 Initialize R2, R3, R4, RS, X, P
INIT2 83F6 Initialize R2, R4, RS, X, P
GOUTII 83F9 Return to UTI I
LINEPR 8S0E Output RF.I to line printer port
CALLR 8364 SCRT call routine
RETR 8374 SCRT return routine

Note.
(I) All routines use R3 as program counter, exit with

SEPS, and alter registers, X, D, DF, RE, RF, and
location M(R2).

(2) READ and READAH exit with R3 pointing back
at READAH.

(3) All five TYPE routines exit with R3 pointing at
TYPES.

(4) RO, RI, and R4.1 are altered while storing registers.

contents of RD are shifted four bits to the left, and the
4-bit hex equivalent of the input character is entered at
the right. DF is then set to I on exiting. If the input
character is not a hex character, RD is not affected, but
DF is set to 0 on exiting.

TYPE

The TYPE routine has four different entry points.
Three of them simply specify different places to fetch the
character from: TYPE types from RF.I, TYPES types
from M(RS) and increments RS, and TYPE6 types from
M(R6) and increments R6. TYPE 2 is an entry which
results in RF.I being typed out in hex form as two hex
digits. Each 4-bit half is converted to a ASCII hex digit
(0-9, A-F) and separately typed out.

Notice that the READ routines are designed to facili­
tate repeated calls to READAH, while the TYPE rou­
tines are designed for repeated calls to TYPES.

OSTRNG

Another routine, OSTRNG, can be used to output a
string of characters. OSTRNG picks up the character
string pointed to by R6 and tests each character for zero.
The characters should be already encoded in ASCII. If a
zero is found (ASCII 'null,), the program terminates
and returns to the caller via a SEP RS. If the character is
not zero, it is typed out to the terminal.

Tables IX and X include summaries of the functions
and calling sequences just described.

Table X - UT71 Regl.ter U.age

Register Register
Name Number Function and Comments

SP R2 Stack pointer. UTII uses R2 =
8CFF

PC R3 Program counter for UTII
CALL R4 Call routine pointer
RETN RS Return routine pointer
LINK R6 Subroutine data link
ASL RD Assembled into by READAH

(input hex digits)
AUX RE RE.1 holds echo bit.

RE.O is used by all READ and
TYPE routines and by OST-
RNG and CKHEX.

CHAR RF RF.I holds input/ output ASCII
character.
RF.O is used by all READ and
TYPE routines and by OSTRNG
andCKHEX.

9. Terminal Interfacing

Examples of READ and TYPE Usage
The following examples should help clarify how to use

the UTI 1 READ and TYPE subroutines. Most exam­
ples use the standard subroutine linkage which requires
that R2 point at a free RAM location.

READ Routine

This sample program will read four ASCII-hex charac­
ters into register RD translating them from ASCII to
hex in the process. Reading will terminate when a car­
riage return is entered. Entry of a non-hex digit other
than a carriage return will cause a branch to an error
routine written previously by the user. This sample
program uses the standard Subroutine Call and Return
Technique (SCRT).
READAH EQU 813BH

LOOP SEP R4; .. Call the hex
DC (READAH) .. read program

BDFLOOP

GHIRF

XRIODH

BNZERROR

.. As long as ASCII hex

.. digits are entered,

.. read and shift in.

.. Fall through is not hex

.. character.

.. See what character was

. .last entered.

.. Was it carriage return?

.. If not, BR to error.

.. Characters entered are

.. now in RD.

The READ routine (at 8l3EH) could be used similarly
to enter characters; however, READ only enters them
one at a time into RF.l writing over the previous entry.
An alternative technique is to use RS as the main pro­
gram counter (since all READ and TYPE routines
terminate with a SEP RS) and call the program with a
SEP R3 (since all READ and TYPE routines use R3 as
their program counter). The following example illus­
trates this technique.

TYPE Routines

Example 1 (TYPES). This program outputs a single
character using the TYPES routine. It uses RS as the
program counter.

LDI 81H .. Set R3 to TYPES routine
PHIR3
LDIOAOH
PLOR3
LDI OFFH .. Set R2 to free RAM location

.. 3FFFH

PLOR2
LDI3FH
PHIR2
SEP R3;
DC'R'
YY

.. Call type

.. An "R" will be typed

.. Next instruction

85

Example 2 (TYPE6). This program outputs a charac­
ter using the TYPE6 routine. When called using the
Standard Call and Return Technique, this routine is
particularly useful for typing an immediate byte. After
typing the byte at M(R6) (which is pointing to the byte
immediately following the call) a return is made to the
caller past the typed byte.

SEP R4;
DC 81A2H
DC~'

YY

.. Branch to the call routine

.. Address to TYPE6

.. Byte to be typed out

.. Next instruction

Example 3 (TYPE and TYPE2). The TYPE and
TYPE2 routines pick up the byte in RF.l for typing .
TYPE simply outputs the character, whereas TYPE2
considers RF.l a hex digit pair which it encodes in
ASCII before typing. This example types out the hex
digits 'DS' and uses Standard Call and Return
Technique .

UDODSH
PHIRF
SEPR4
DC 81AEH
YY

.. Load hex digits DS

. .Into RF.l

.. Call TYPE2

.. Next instruction

Note that all type routines, except TYPE2, expect the
character they pick up to be already encoded in ASCII.

Example 4 (OSTRNG). An entire message can be
typed by using the OSTRNG routine. The ASCII bytes
pointed to by R6 will be typed. When a '00' byte is
detected, OSTRNG returns to the caller. This example
will output the string.

RCA COS MAC
MICROPROCESSOR

The Standard Call and Return Technique should be
used.

OSTRNG EQU 83FOH

SEP R4;
DC (OSTRNG) .. Call OSTRNG
DC 'RCA COSMAC' .. lst Line
DC ODOAH .. (CR)(LF)
DC 'MICROPROCESSOR' .. 2nd Line
DC OOH .. End of Text

86

10. Additional Monitor Routines

ASCII to Hex Conversion (CKHEX)

The ASCII to hex conversion routine, CKHEX,
examines the ASCII character in REI. If this character
is not a hex digit, CKHEX returns to the user (via SEP
R5) with DF=O. If the character is hex, CKHEX
returns with RE.O = hex digit, D F= I and with the digit
shifted into the least significant 4 bits of register RD.
CKHEX uses the registers described above and, as with
the other routines, is most readily handled via the
Standard Call and Return Techniques. CKHEX is
located at 83FCH.

Initialization Routines (INIT1 and INIT2)

Two routines are provided, INITl and INIT2, to
initialize CPU registers for the Standard Call and
Return Technique. These routines set up registers as
follows:

R2=R(X)
R3
R4
R5

-pointing to 8CFFH
-will become the program counter on return
-pointing to the CALL routine in UT71
-pointing to the RETURN routine in UT71

The only difference between INITl and INIT2 is the
location to which they return. INITI returns to location
0005 with P = 3; INIT2 simply returns by setting P = 3
and assumes that the user has already set R3 pointing to
the correct return point. These programs are intended as
a convenience to free the user from generating the over­
head code required by the standard subroutine tech­
nique. They may also be used as an integral part of
custom support programs running on the MS2000.
Their absolute addresses are INITl EQU 83F3H and
INIT2 EQU 83F6H
The INIT routines should be used to set up R4 and R5.

Following are examples of the use of these programs:

Example 1 (INITl): INITl EQU 83F3H

Address Code Mnemonics Comments

0000 71 DIS, 0 .. Disable interrupts
0001 00
0002 CO LBR INITl . .Initialize registers
0003 83
0004 F3
0005 (USRPGM)- .. User program starts

.. here; P=3, X=2

Example 1 (INIT1): INIT2 EQU 83F6H

Address Code Mnemonics

0000 71 DIS,O
0001 00
0002 F8 LID A.I

(START)
0003 00
0004 B3 PHI R3
0005 F8 LDIA.O

(START)
0006 50
0007 A3 PLOR3
0008 CO LBR INIT2
0009 83
OOOA F6

0050 START-

Restarting UT71 (GOUT71)

Comments

.. Disable interrupts

.. Set R3 to return

.. Point

.. Call INIT2

.. User program starts

.. here; P=3, X=2

A means is provided to automatically transfer control
back to UTI I from a user program. An entry point
routine, GOUT71, is provided for this purpose. When
entered via this routine, UT71 will restart and issue a *
prompt to the terminal. A long branch to GOUTII at
location 83F9H will cause this transfer.

Line Printer Interfacing (LiNEPR)

The utility routine LINEPR located at 850EH is supp­
lied for line printer interfacing. It will output the byte in
RF.I to a line printer port. Line feeds are suppressed,
but carriage returns are replaced with a line feed­
carriage return pair. Return is made with D F= 1, unless
the character in REI is an ASCII 'DC3' (end-of-file
marker). In that case, the DC3 is not output, and DF=O
on return. This routine should be called with the Stan­
dard Call and Return Technique.

Disk Routines

The loader is a routine that loads memory by doing
track reads. It can load the I2-kilobyte MicroDOS
operating system in approximately one second. Data is
transferred to memory by D MA starting at address
9000H to BFFFH.

10. Additional Mlnltor Routines ___________________ _ 87

The loader resides in memory starting at 84OOH. It
requires a RAM area to set up a buffer containing the
bytes to be output to the disk controller and to store the
resulting status information. In addition, a stack area is
required for operation. RAM area between 8FOOH and
8FFFH is used for this purpose.

To load the operating system, first place a diskette
containing MicroDOS into drive O. Then type L after
the * prompt. After the operating system is loaded, it
will print a header followed by a > prompt, indicating
that it is ready to accept MicroDOS commands.

PARAMETER
BLOCK

UNIT
High

PHYSICAL
SECTOR--- -
NUMBER

Low
High

START
OF-- ---
BUFFER

Low

INCREASING
MEMORY

If the user wants to go back to the monitor, he can use
the U utility command and enter $U 8000. The monitor
will issued the * prompt and wait for monitor com­
mands. The user can go back to the operating system by
entering P 9000.

Fig. 21 - Conditions for calling SEEK, READ, and
WRITE routines.

If the user did not initially insert a diskette in drive 0, or
if the data that was loaded into memory was not an
operating system, the following will be printed:

FOUND
DDM

7

DRIVE
INACTIVE

6

DRIVE
FAll

5

WRITE
PROTECT

4

CRC
ERROR

3 2

TERM
ERROR

o

Fig. 22 - RD.O Status byte showing arrangement of bits after a driver function is finished.

INITl EQU 83F3H
SEEK EQU 87F6H
READ EQU 87F9H
WRITE EQU 87FCH

DIS .. DISABLE
INTERRUPTS

DCO
LBR INITl . .INITIALIZE

REGISTERS

A.I(PARM)-
.... > RF.I .. POINT AT PARA-

METER BLOCK
A.O(PARM)-

.... > RF.O

START CALL SEEK .. SEEK TO TRACK 0
CALL READ .. READ PSN 0 INTO

MEMORY
CALL WRITE .. WRITE MEMORY

BACK TO PSN 0
LBR START .. DO IT AGAIN

ORG lOOOH .. PARAMETER BLOCK
PARM DC OOH .. UNIT 0

DCOOOOH .. PSN 0
DC2000H .. READ/ WRITE

BUFFER

Fig. 23 - Example demonstrating use of SEK, READ, and WRITE routines.

88 User Manual for the RCA MlcroDlsk Development System MS2000

MICRODOS NOT LOADED

and the monitor will reissue the * prompt.
The monitor also contains the routines SEEK, READ,

and WRITE. These routines perform the actual driver
functions that link the operating system with the disk
drives.

Calls to Driver RoutInes

The following information is for users who may want
to utilize the disk I/O routines in UT71.

The SEEK, READ, and WRITE routines must be

called in accordance with the conditions shown in Fig.
21.

After the driver function is finished, RF will remain
pointing at the unit byte. RD.O will contain a status byte
showing the result of the operation. Fig. 22 shows the
arrangement of the status bits in RD.O.

The example in Fig. 23 demonstrates the use of the
SEEK, READ, and WRITE routines in UT71. It is a
complete program that will continuously read from and
write to PSN 0 on drive O. Programs written by the user
should test the status bits in RD.O after each call to a
disk routine to determine if that function was success­
fully performed. Recovery from failed functions should
be accomlished with retry logic.

89

Appendix A-
Diskette Organization and Structure

Each diskette has 70 tracks with 9 sectors on each track
(630 sectors per diskette). However, from MicroDOS's
point of view, the diskette is divided up into clusters with
1 sector in each cluster.
The system diskette has two basic configurations, one

with a directory and operating system and one with a
directory only. These configurations are generated with
the SYSGEN command. Because the operating system
requires about 4 per cent of the diskette, diskettes with
directory only have more disk area for storage of the
user's work meso

MicroDOS assumes that a me is a string of bytes.
When a me is created, a certain number of clusters is
allocated to it. If more space is needed for the data than
initially allocated, MicroDOS automatically allocates
more space. Once a me has been created by the user, the
operating system returns to the system any unused disk
cluster so that the next me to be created can use this
freed-up space. No cluster can be allocated to two dif­
ferent meso

Diskette Information Format
TRACK 0

Sector 1 = DISK ID

Bytes 0 - 11 Unused
Bytes 12 - 19 Date (8 ASCII characters)
Bytes 20 - 63 User ID (44 ASCII characters
Bytes 64 - 511 Unused

Sector 2 - 9 = DISK DIRECTORY

Every 16 bytes = one me directory entry
Within an entry:

Bytes 0-5

Bytes 6-8

Bytes 10-11

Byte 12

TRACK 1

First part of mename (6 ASCII
characters)
Filename extension (3 ASCII
characters)
Starting Sector Number (in
hexadecimal) -
Attribute code

Sector 1 = CLUSTER ALLOCATION TABLE

The first 623 bits indicate the status of the 630 clusters
on the disk: 1 = in use, 0 = free. Each cluster has 1 sector
in it. Note that there are:

512 bytes/ sector 630 clusters/ disk
1 sector/cluster 630 sectors / disk
9 clusters / track 70 tracks / disk

512 bytes / cluster 322,560 bytes / disk side

NOTE: Tracks are numbered 0 - 69 (ooH-45H)
Sectors are numbered 1 - 9 (0IH-09H)
Bytes are numbered beginning at 0
Bit 0 is the LSB on right-most bit in a byte

Start Sector Number (SSN)
The integer portion of the quotient SSN /9 equals the

track number, while the remainder +1 indicates the
sector within the track. For example, sector 114 is
located at sector 7 on track 12.

Non-contiguous mes may be broken up into 1 to 57
segments, which may be distributed throughout the
disk. A segment my contain 1 to 128 contiguous clusters
depending on how much contiguous free space there is
at that location on the disk.

The first sector of the first segment of any me is the
SSN given in the disk directory. It is called the Retrieval
Information Block (RIB) and contains information
needed to locate all segments of the me. The me's data
starts in the sector following the RIB.

RIB (located by the SSN given in the directory)

Each 24 bits may contain one Segment Descriptor
Word. SDW's are of two types: - -

SDW: (If file takes more than 1 segment
Bits 0 - 15 = PSN where segment starts
Bits 16 - 22 = number of contiguous clusters

(minus 1 allocated to this segment)
Bit 15 = 0 since more SDW's follow in

this RIB

LASTSDW:
Bits 0 - 14

Bit 15

= total number of sectors actually
used in me.
=1 to indicate it is the last SDW.

. --------------- User Manual for the RCA MlcroDlsk Development System MS2000

For binary files the RIB also contains:
Bytes 500-501 = number of bytes in the last sector
Bytes 502-503 = number of sectors to load
504-505 = starting load address in RAM
Bytes 506-507 = entry address for program

execution

CRC errors that show up during a disk write and
persist after five tries cause a deleted data mark to be
placed in the sector and that sector is passed over with­
out losing data. That sector is never used again by
MicroDOS.

Free space, however, is determined by the number of
unused clusters and does not reflect the unusable sectors
with DDM's.

Physical Structure (Decimal PSW)
Number Letter Contents

o
9

1 - 8
10 - 34

35

I
C
D
o
U

Disk ID
Cluster Allocation Table
Directory
Operating System
Unused

Hexa­
Decimal decimal

Sectors per track 9 1-9
0-70
0-629

1 - 9
0-46
0-275

Tracks per disk 70
Sectors per disk 630
Sectors per cluster 1
Clusters per disk 630 0 - 629 0 - 275

Diskette Structure
Following is a set of diagrams that describe the disk
structure of MicroDOS.

o
I

SECTOR
I 2 3 4 5 6 7 8 9
IDDDDDDDD
COOOOOOOO
000000000
OOOOOOOOU
UUUUUUUUU
UUUUUUUUU
UUUUUUUUU

T
R
A
C
K
S ~:: *
I
69

U U U U U U U U U
UUUUUUUUU

1= Disk Identification Block
D= Directory
C=Cluster Allocation Table
O=Operating System
U=Unused

Disk Identification Block

o 1 2 3 4 5 6 7 8 9 ABC D E F
o
1
2
3
4
5
6
7

D1 Y y~

Byte Size

O-BH 12
CH -13H 8
14H - 3FH 44
40H - IFFH -

NOT USED~ M MID

"'-USER
NAME

NOT
USED~

'"

Contents

Not used
Creation date
User name
Not used

Cluster Allocation Table (CAT)

o 1 2 3 4 5 6 7 8 9 ABC D E F
I&..-..

"
o
1
2
3
4
5
6
7

'-ALLOCA nON

~

"-

Offset Size

0-4DH 78
4EH -IFFH -

MA~ -- .
NOT USED ..-.-,..

...... .

Contents

Cluster Allocation Table
Not used

Each byte of the Cluster Allocation Table (CAT) con­
tains 8 bits for 8 clusters of allocation. Byte 4DH must
have bit 0 set to "1" because no sector corresponds to
this cluster number. All unused bytes have bits set to
"I".

Appendix A. DiskeHe Organization and Structure

Directory Sectors (DIR)

o I 2 3 4 5 6 7 8 9 ABC D E F

o ~--------+----+-r--~+----4
I

2 ~--------+----+-r--~+----4
3 ~--------+----+-r--~+----4
4 ~--------+----+-r--~+----4
5

6 ~--------+----+-r--+-+---~
7 , • t. to t SUFFIX PB ATR

NAME NOT NOT
USED USED

Segment Descriptor Word (SOW)

Byte Size Contents

0-5 6 Filename
6-8 3 Suffix

9 I Not used
AH-BH 2 Physical address of

Pointer Block (PB)
CH 1 Attributes
DH-FH 3 Not used

117 116 15 14 13 12 II 10 IF E DC B A 9 8 7 6 5 4 3 2 I 0 I

(NON-TEtMINATOR BIT) 1
NUMBER OF

CONTIGUOUS
CLUSTERS
MINUS ONE

STARTING
PHYSICAL SECTOR

NUMBER

Pointer Block

IF E DC B A 9 8 7 6 5 4 3 2 I 0 I

t r LOGICAL SECTOR NUMBER
OF LOGICAL I

(TERMINATOR
BIT)

END OF FILE

I SDW Can span 127 Clusters

o I 2 3 4 5 6 7 8 9 ABC D E I SDWI I SDW2 ISDw31 I I I

T IIIIIIIIIIIIIIIIIII

• RESERVED FOR LOADABLE
MEMORY IMAGE FILES

F

1

91

92 User Manual for the RCA MlcroDlsk Development System MS2000

There can be from I to 57 Segment Descriptor Words
(SDW) plus a terminator SDW.

Unused SDW's after terminator words are 0 (except
for memory image files).

File Allocation

FILE ALLOCATION

FILE DIRECTORY ENTRY I FILE NAME
RIB ADDRESS I

-;:; SOW ... 0
SOW ... I

- SDW#2
I LENGTH

-'

SEGMENT 0
OF FILE

REST OF SEGMENT

T LOGICAL SEC

LOGICAL SEC TOR j
LOGICAL SECT 6~~ 2 ~~J~bCJ'SL~6 ~~~~ B.

LOGICAL SECT ORO
"-1 II

-' P.B.

r jT

1- 32 PHYSICALLY
CONTIGUOUS CLUSTERS

~
t.L GICA o L SECTOR 3

tzCS-S4U8

SEGMENT 2
OF FILE

SEGMENT I
OF FILE

93

Appendix B
BNF Syntax of Assembler ASM8

The following is a compilation of the full BNF
(Backus-Naur Format) description ofthe assembly lan­
guage, ASM8. In these descriptions, the symbol "::="
means "is defined as." Where there is choice between
alternatives, the symbol "!" is used to separate the
choices. Angle brackets "<" and ">" are used to indi­
cate a non-terminal element, i.e., a description of some­
thing. A terminal element is written exactly as it would
appear when used.

<binary digit> ::= O! I
<octal digit> ::= <binary digit>!2!3!4!5!6!7
<decimal digit> ::= <octal digit>!8!9
<hexadecimal digit> ::= <decimal
digit>!A!B!C!D!E!F
<character> ::= Any printing ASCII character
<character string> ::= <character>!<character
string><character>
<break character>::=_
<alphanumeric character>::=<letter>!<decimal
digit>!<break character>
<identifier> ::=<letter>!<identifier>
<alphanumeric character>

Note: An identifier may have no more than nine alpha­
numeric characters including mUltiple adjacent break
characters.

<space> ::= a!<space>a
Note: The symbol a represents the ASCII space

character 20H.

<literal constant> ::= !<character string>!

Note: A literal constant may not contain a quote.
Note: A literal constant is ASCII encoded.

<binary constant> ::= <binary digit>B!<binary
digiD<binary constant>

<octal constant ::= <octal digit>Q!<octal digit>
<octal constant>

<decimal constant> ::= <decimal digit>!<decimal
digit>D!<decimal digiD<decimal constant>

<hexadecimal string> ::= <decimal digit>
!<hexadecimal string><hexadecimal digit>

<hexadecimal constant> ::= <hexadecimal string>H

<constant> ::= <binary constant>!<octal constant>
!<decimal constant>!<hexadecimal constant>

Note: A constant is truncated to the last two bytes of its
hexadecimal equivalent.

<location counter< ::= $
<dummy> ::= [<identifier>]
<least significant byte> ::= A.O«term»
<most significant byte> ::= A. I «term»
<element> ::= <identifier>!<constant>!<literal

constant>
!<location counter>!<dummy>!<least significant
byte>
!<mostsignificant byte>!«tenn»!<elementXspace>
!<space><element>

<factory> ::= <element>!-<element>!+<element>
!<factor>*<factor>!
<factor> / <factor>!<factor><Space>!<space>
<factor>

<term> ::= <factor>!<term>+<term>!<term>-
<term>!<term><space>!<space><term>

<relational operator> ::=
.EQ.!.GT.!.LT.!.LE.!.GE.!.NE.
<relation> ::= <term><relational operator>
<term>!<relation><space>!<space><relation>!
.NOT.<relation>!«logical term»!<term><logical
element> ::= <relation>!<logical element>
<space>!<logical element>.AND.<logical
element>!<space><logical element>

<logical factor> ::= <logical element>!<logical fac­
tor><space>!<space><logical factor> !<logical
factor>.XOR.<logical factor><logical term> ::=
<logical factor>!<logical term><space>!<space>
<logical term>!<logical term>.OR.<logical term>

Note: No expression (logical element, logical factor,
logical term, relation, element, factor, or term) may
contain more than twenty elements or more than twenty
operators. (+, -, *, /, A.I, A.O, RELATIONAL OPER­
ATOR, .NOT., .AND., .OR., .xOR.)

<first class instruction> ::= IDL!NOP!SEQ!REQ!
SA V!MARK!RET!DIS!LDX!LDXA!STXD!IRX!
OR!XOR!AND!SHR!SHRC!SHL!SHLC!ADD!

94 User Manual for the RCA MlcroDlsk Development System MS2000

ADC!SD!SDB!SM!SMB!SKP!LSKP!LSZ!LSNZ
!SNF!LSQ!LSNQ!LBNQ!LSIE!LDC!GEC!
STPC!DTC!STM!SCMI !SCM2!SPMI !SPM2!
ETQ!XIE!XID!CIE!CID!BCI!BXI!DADD!
DADC!DSM!DSMB!DSA V

<second class instructor> ::= SEP!SEX!LDN!L
DA!STR!INC!DEC!GLO!PLO!GHI!PHI!RLXA!
RSXD!RNX!SRET

<third class instructor> ::= LDI!ORI!XRI!ANI!
ADI!ADCI!SDI!SDBI!SMI!SMBI!BR!NBR!BZ!
NBZ!BDF!BPZ!BGE!BNF!BM!BL!BQ!BNQ!OUT!
INP!LBR.!LBZ! LBNZ!LBDF!LBNF!LBQ!LBNQ!
NLBR!DADI!DACI!DSMI!DSBI

<fourth class instruction> ::= RLDI!SCAL!DBNZ

<register> ::= R<hexadecimal digit>!<term>!
<register><Space>!<Space><register><immediate
operand> ::= <term>!<literal constant><operand
string> ::= <register>!<immediate operand>!
<operand string><space>!<space><operand
string>!<operand string> ,<operand string>

Note: An operand string may not have more than 76
characters, including those inserted by the assembler.

<immediate keyword> ::= IDLE!GOTO!NOGOTO!
SKIP!RETURN!DISABLE!POP!PUSH!SA VEl
GOST A TE!CALL!EXIT<branch keyword> ::= O!Q
!&=O!DF!PZ!GE!EFI !EF2!EF3!EF4!NQ!&>O!>
NDF!MINUS!LESS!NEFI !NEF2!NEF3!NEF4

<substitution> ::= IF<space><branch keyword>
<space>GOTO!<immediate keyword><load part>
::=@!@!!@<register>!@<register>!!@"<register>
!@«character string»!<term>!<register>.O!
<register>. I

Note: the above character string may not contain
parentheses.

<operator> ::= +!-!-+!+"!-"!-+"LAND.LOR.LXOR.
<object> ::= @!@"<register>!<term>

<manipulation part> ::= <operator>
<object>! / 2!·2!/ 2"!·2"
<arrow> ::= - >
<storage part> ::=<arrow><register>.O!<arrow>
<register>. I !<arrow>@<register>!<arrow>
@-!<arrow>@-"<register>!<arrow>@-{<character
string»<D-sequence statement> ::= <load
part>!<manipulation part>!<storage part>!<load
part><manipulation part>! !<load partXstorage
part>!<manipulation part><storage part>
!<load part><manipulation part><storage part>
<level II statement> ::= <substitution>!<D-sequence
statement>

ote: A level II statement may not contain more than
thirty-nine characters.

<executable statement> ::= <first class statement>
!<second class instruction><space><register>
!<third class instruction><space><immediate
operand>
!<fourth class instruction><space><register>,
<immediate operand>
!<level II statement>
!<executable statement><space>!<space><ex­
ecutable statement>

<statement set> ::= <executable statement>!<state­
ment set><space>!<Space><statement set>!<State­
ment set>;<statement set>

Note: A statement set may have no more than ten
executable statements.

<macro name> ::= <identifier>
<macro call statement> ::= <macro name>

!<macro name><space><operand string>
<label> ::= <identifier>

<comment> ::= .. <character string>
<line beginning> ::= <space>!<labeI><space>
<line ending>::=carriage return>!<Space»line
ending>!<comment><Iine ending>
<executable line> ::= <line beginning><statement
set><line ending>!<line beginning><macro call

statement><Iine ending>

<end statement> ::= END!END<space><Jabel>
<eject statement> ::= EJECT
<nolist statement> ::= NOLIST
<list statement> ::= LIST
<macro statement> ::= MACRO
<endm statement> ::= ENDM
<non-terminal major statement> ::= <eject state­
ment>!<list statement>!<nolist statement>
<non-terminal major line> ::= <line beginning>

<non-terminal major
statement>
<line ending>

<non-terminalline>::=<executable line>!<non­
terminal major line>
<equate statement> ::= <label><space>EQU
<space><term>!<label><space>EQU<space>R

<hexadecimal digit>
<constant declaration> ::= <line beginning>DC
<space><operand string>
<storage declaration> ::= <label><space>DS
<space><term>
<org statement>::= <label><space>ORG
<Space><term>
<page statement> ::= <label><Space>PAGE
<minor statement> ::= <equate statement>
!<constant declaration>!<storage declaration>
!<org statement>!<page statement>

Appendix B. BNF Syntax of Assembler ASM8 _____________ _ 95

<minor line> ::= <minor statement>
<line ending>

<end line> ::= <line beginning><end statement>
<line ending>
<macro line> ::= <line beginning>
<macro statement><line ending>
<endm line> ::= <line beginning>
<endm statement><line ending>
<if statement> ::= IF<space><lobical term>
<else statement> ::= ELSE
<endif statement> ::= ENDIF
<value> ::= <constant>!<value><space>
!<Space><value>

Note: Value will be truncated to I byte

<increment list> ::= <value>,<value>,<value>
<replacement list> ::= <operand string>
<increment marker> ::= =!<space>=
<replacement marker>::= :!<space>:
<do statement> ::= DO<space><dummy>
<increment marker><increment list>

!DO<space><dummy><replacement marker>
<replacement list>

<endd statement> ::= ENDD
<go statement> ::= GO<space><labeI>
<exitm statement> ::= EXITM
<if line> ::= <line beginning><if statement>
<line ending>
<else line> ::= <line beginning><else statement>
<line ending>
<endif line> ::= <line beginning>
<endif statement><line ending>
<do line> ::= <line beginning><do statement>
<line ending>
<endd line> ::= <line beginning>
<endd statement><line ending>
<go line> ::= <line beginning><go statement>
<line ending>

<exitm line> ::= <line beginning>
<exitm statement><line ending>

Note: No line may contain more than 80 characters

<line block> ::= <non-terminalline>!<if block>
!<do block>!<go line>!<line block><line block>
<if block> ::= <if line><else line><endif line>

!<if line><line block><else line><endif line>
!<if line><else line><line block><endif line>
!<if line><line block><else line><line block>
<endif line>

<do block> ::= <do line><line block>
<endd line>
<dummy list> ::= <dummy>!<dummy list>

<space>!<space><dummy list>
!<dummy list>,<dummy list>

<macro definition> ::= <line beginning>
<macro name><space><dummy list><line
ending>

<macro block> ::= <line block>!<exitm line>
!<macro block><macro block>

<macro> ::= <macro line><macro definition>
<macro block><endm line>

<macro library> ::= <macro>!<macro library>
<macro library>

<source code> ::= <line block>!<line block>
<macro library>

!<source code><end line>

Note: The cumulative size of all macros must not
exceed twelve kilobites.

Note: The substitution list may not exceed forty-three
characters in length.

Note: If there are more than six errors on a line, or more
than one hundred and twenty-eight errors in a
program, the assembler may not be able to con­
tinue processing.

96

Appendix C
MS2000 Memory Test

The MicroDOS System Diskette includes a file,
MEMTST.CM, that contains a memory test program
for the 60 kilobytes of RAM. The user can call up this
program at any time to verify that the RAM is func­
tional. It should be noted, however, that this test will
write over any program that is located in the RAM.

The memory test checks RAM from location 0000 to
7FFF and from 9000 to FFFF. In this test a "March"
pattern is executed with various combinations of the
8-bit data word. The test takes ten minutes to complete,
then auto-loads MicroDOS.

Test Procedure
The procedure for the memory test is as follows:
l. Type MEMTST (CR)

2. System will type out

MEMORY TEST STARTED

3. If no failures are encountered, after ten min­
utes the System will type out

MEMORY TEST COMPLETED

4. The program will then load MicroDOS.

5. If any failures are encountered, the System will
type out the address of the page on which the
failure occurred and then skip to the next page
of memory to continue testing. After all memory
is checked, the System will type out to the
screen

MEMORY TEST COMPLETED

and the program will then load MicroDOS.

Board Repair

For information on the repair of faulty boards,
contact:

Customer Service, Tel. 800-722-0094
RCA Corporation
New Holland Ave.
Lancaster, PA 17604

Example

Following is an example of a display resulting from
the MicroDisk memory test.

MEMORY TEST STARTED
ERROR AT ADDRESS 46XX
ERROR AT ADDRESS 46XX
ERROR AT ADDRESS 94XX
ERROR AT ADDRESS 94XX
ERROR AT ADDRESS CFXX
ERROR AT ADDRESS CFXX

MEMORY TEST COMPLETED

This example indicates that there were errors in three
pages at address locations 46XX, 94XX, and CFXX.
Note the redundant reporting as a result of repeated
testing with different patterns. If a RAM package is
completely nonfunctional, missing, purposely disabled,
or has been replaced with a ROM, there will be a long
stream of error reports. If a single bit is faulty, there will
be fewer reports, depending on how many patterns fail.

If a failure is detected, first determine which memory
board is at fault. There are two memory boards, both
types CDP 18S628. They differ in their address locations
and in that one has 32 kilobytes of RAM and the other 2
kilobytes of ROM followed by 30 kilobytes of RAM.

Error Address
OOXX through 7FXX
88XX through FFXX

Faulty Board
32-kB RAM
ROM/RAM

To diagnose the faulty board to the chip level, refer to
MB-628, "RCA CMOS Microboard Memories," for
details of the physical address map. The memory pack­
ages are socketed, so that replacement or swapping is
easy. Before anything else is done, however, check the
linking of the board to see that no changes have been
made. Some users may, for example, replace RAM with
ROM in order to test software that has been developed
and placed in ROM, and may fail to replace the RAMs
or to properly relink the board.

97

Appendix D

Error Messages

I. MicroDOS Error Messages
O. ERR=XX

Where XX = 00 - Tried to open an already opened or
reserved file. Make sure that the open parameter and
unit number are initialized correctly in the lOeB.

Where XX = 01 - DDM could not be written.

1. CRC ERR-X DR Y-PSN Z
X is the location in the operating system or user pro-

gram that caused the eRe error.
Y is the drive number.
Z is the physical sector number.
If the eRe happened on a WRITE, an attempt to

write five times is tried before a DELETED DATA
MARK (DDM) is written in that sector, and the data is
attempted to be written onto the next logical sector.
If the eRe happened on a READ and attempted to be

reread five times, the data will be passed back to the
program for processing.

Sectors with DDM will be skipped on a READ func­
tion. No error will be printed.

2. DIR FULL
No more room exists in the directory for a new entry.

A new diskette must be used.

3. DISK FULL
No more room exists on the disk for writing. A new

disk must be used or data deleted from the current disk.
When this error message is generated by any program
except ASM8 or EDIT, the incompleted file should be
deleted.

4. ILLEGAL DR. #I
A number other than 0 or I was used for the logical

disk number.

5. NOT USED

6. X DOES NOT EXIST
X is a filename.

7. ILLEGAL F.N.
The filename typed is not a valid filename.

8. <FILENAME> DUP. F.N.
The filename typed is a duplicate filename.

9. NO SUCH DV
The chosen device is not part of the current system. A

command that would cause this error message is copy
SYX,#DRUM where #DRUM is not a valid system
device.

10. INVALID DV
The device chosen cannot be used in this situation.

11. COMMAND SYNTAX ERR
An error occurred in syntactically analyzing the com­

mand line. Retype the correct command.

12. NOT USED
13. OPTION CONFLICT

There was a conflict in the option selections.

14. INVALID TYPE OF OB FILE
The file to be loaded was not of the correct file type.

15. INVALID LOAD ADDRESS
The load address is out of range of the current

machine.

16. NOT USED
17. INVALID RIB

The linkage structure of the disk has been destroyed.
Generally this message means that a non-MicroDOS
diskette is assumed to be a MicroDOS diskette.

18. INVALID EXEC ADR
This message means that the address is not part of the

loaded file.

19. INVALID FILE TYPE
The type of file is not acceptable for use.

20. LOG SECT NO. OUT OF RANGE
The logical sector number was greater than the maxi­

mum value or was greater than the end of file.

21. NOT USED

22. <FILENAME> F.N. NOT FOUND
The filename was not found in the specified directory.

DIR can be used to list out the filenames.

23. <FILENAME> FILE IS DELETE PROTECTED
<FILENAME> has the delete-protected attribute set.

98 User Manual for the RCA MlcroDlak Development Syatem MS2000

If the file is to be deleted, remove the protection with the
REN AME command and re-execute the DEL function.

24. CONFLICTING FILE TYPES
The file type being read from or written to did not

conform to the use.

25. INVALID DATA TRANSFER TYPE
The file type of the file did not conform to the device it

was being dumped to.

26. FILENAME IS WRITE PROTECTED
The filename cannot be written to because it has the

write-protection attribute set. This error can be cor­
rected by using the RENAME command.

27. NOT USED

28. NO RAM AT XXXX
When a file is being loaded, the RAM area does not

exist for the load address.

29. FORMAT ERROR
The ASCII-HEX file does not conform to the correct

format.

30. DV NOT READV
The selected device is not ready to accept or send data.

This message is issued before the transfer begins.

31. XX DR INACTIVE
This message means that the disk drive is not turned

on.

32. XX DR FAIL
The disk drive does not have a diskette properly

inserted in the unit.

33. XX LOG. EOF
The program requested more information from the

disk file than the disk file had. Usually, no DC3 was
present on the input file.

34. XX FILE NOT OPENED
The file being accessed in unit XX was not properly

opened before it was used.

35. TRM ERR-DR V-PSN Z
Termination error occurred at Y drive number and Z

physical sector number.

36. DDM ERR-DR V-PSN Z
Could not write out a DDM at Y drive number and Z

physical sector number.

80H. Same al 1

81 H. Same al 36

82H. Same al 35

COHo Same al 0

C1H. Same al 0

C8H. Same al 34

C9H. Same al 33

2. Utility Program UT71 Error Mellage

ERROR - This message is the result of an error in
syntax during the entry of a command to the monitor.

The following error messages are from the monitor
self-test routine.

UART BAD - Status byte read back from the UART
was not COH

PROM BAD - The contents of the monitor, after
EXCLUSIVE OR'ing every byte, did not match a refer­
ence value.

RAM BAD - Memory from 8800 to 8FFF was not able
to pass a write to and read back test.

The following error message is from the monitor oper­
ating system loader routine.

MICRODOS NOT LOADED - Results if no disk is in
drive 0, if a problem occurred during disk 1/0, or if the
data that was loaded was not MicroDOS.

3. EDIT Error Mellagel

Message

LINE TOO
LONG

Meaning

A line that EDIT is attempting to
TYPE has more than 78 characters.

BAD EDIT has found an invalid command
COMMAND?? in a command string. XXX ... X is
"XXX..XS" that part of the string not executed.

<BELL>

MEMORY
FULL
"XXX .. XS"

CAN'T SAVE

CAN'T FIND
"text"

<XX> IS
WRITE
PROTECTED

Filled work space warning. Delete
part of the command before ending
the command.

EDIT ran out of work space during an
execution. XXX .. X is the unproces­
sed part of the command string.

There is not enough room in the
SAVE area.

The specified character sequence was
not found between the pointer's pre­
vious position and the end of the
buffer.

The disk unit selected (XX) for output
is write protected. The command
string is aborted. No lines are written
or lost.

Appendix D. Error Mel88ges

<XX> DR
FAIL

ITERATION
STACK
FAULT

The disk unit selected for output is not
ready. The command string is aborted.
No lines are written or lost.

EDIT ran out of stack space during
execution of a command string. May
indicate improperly paired brackets in
the string.

99

A line containing an end-of-file mark
(DC3) has been read. The DC3 is
stored in the buffer and further appends
from the current file are ignored.

DISK FULL Output disk full. Replace disk and
SET UP CON-enter continuation file name after the
TINUATION query WRITE?
FILE WRITE?

100

Appendix E-
Sample Program Illustrating User Functions

!M
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000 I

0000
0000
0000
0000 I

0000
0000 I

0000
0000 I

0000
0000 F802B3,
0003 FBF3A31
0006 D3,
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007 I

0007
0007
0007 I

0007 I

0007
0007
0007
0007
0007 I

0007
0007
0007 I

0007
0007
0007
0007
0007
0007
0007
0007
0007
0007 I

0007 I

0007 Bl1
0008
OOOC 004F,

0001
0002
0003
0004
OOO~
0006
0007

· . USER FUNCTION EXAMPLE - COPY A FILE TO ANOTHER FILE.
· . THE FOLLOWINg INFORMATION IS A DEFINITION FOR THE PROgRAM:

· . NO_ERRORS: BOOLEAN - TRUE , .. NOT_EOF: BOOLEAN. TRUE,

0008
USER EXAMPLE 0009 .. BEQIN

0010
0011

OPEN INPUT FILE
OPEN OUTPUT FILE ,

0012
00·13
0014
001~

WHILE NOT_EDF AND NO_ERRORS
DO READ SECTOR ,
WRITE SECTOR TO FILE
REPEAT,

0016
0017
0018 .. END
0019

CLOSE INPUT_FILE,
CLOSE OUTPUT_FILE

USER EXAMPLE

0020
0021
0022
0023
0024
002~
0026
0027
0028
0029

· . START OF CODE
A. 1 (STARTl->R3. 1
A.0(STARTI->R3.0
SEP R3

PROgRAM EOUATES

0030 USER FUNCTION EOUATES
0031
0032 CREAD EOU 012H
0033 TYPE EGU 014H
0034 SRNAM EOU 024H
003~ CDERR EGU 028H
0036 OPEN EGU 0
0037 QETSEC EGU 6
0038 PUTSEC EGU 010H
0039 CLOSE EGU 2
0040 CDENT EGU 01EH
0041 UCALL EGU OB4~3H
0042 SRNERR EOU OB4~2H
0043

· . CONSOLE READ
· . CONSOLE TYPE
· . SEARCH FOR A FILENAME
· . PRINT ERROR MESSAQE

.. OPEN A FILE
· . gET A SECTOR FROM THE OPENED FILE

· . PUT A SECTOR TO THE OPENED FILE
· . CLOSE THE FILE

· . RETURN TO THE OPERATINg SYSTEM
· . ADDRESS FOR THE UCALL ROUTINE
· . ADDRESS FOR SRNAM ERROR BYTE

0044
004~
0046
0047

IOCB OFFSET EGUATES

0048 OPENPR EGU 0
0049 STATUS EOU 1
OO~O STARTB EOU ~

00~1 ENDBUF EOU 7
00~2 WRITEP EOU 9
00~3 UNITNO EGU 11
OO~ FILEDF EOU 24
OO~~ DEVICE EGU 31
00~6 SPACE EOU 020H
00~7
oo~B
00~9

0060
0061 IOCBR
0062
0063
0064

BUFFER AREAS

DC OBIH
DS 4

DC (INPBUF)

· . OPEN PARAMETER
· . IOCB STATUS BYTE
· . START OF SECTOR BUFFER
· . END OF SECTOR BUFFER
· . WRITE PARAMETER
· . UN I T NUMBER
· .FILE DEFINITION
· . DEVICE MNUMONIC

· . BLANK CHARACTER

· . OPEN PARAMETER

.. START SECTOR BUFFER

Appendix E. Sample Program illustrating User Functions

ooOE 024El
0010 I
002B I
oo2B 7A.
002C I
0030 004Fl
0032 024EI
0034
oo4F
024F
029F
02A3
02A3 I
02A3
02A3
02A3 I
02A3 I
02A3 00.
02A4 I
02A4 00.
02A:5
02A:5 I
02A:5 I
02A:5 I
02A:5 I
02A5
02A5 I
02A:5 494E505:5:54201
02AB 46494C4:54E41I
02Bl 4D4:520:544F201
02B7 424:520:524:5411
02BD 441
02BE 3EI
02BF 001
02CO I
02CO 494E:50:5:5:54201
02C6 :57:5249:544:5201
02CC 46494C4:54E41I
02D2 4D4:53E1
02D:5 001
02D6 I
02D6 46494C4S4E411
02DC 4D4:5204:5:52:52.
02E2 4F:521
02E4 ODOAI
02E6 :524:5:54:59:504:51
02EC 204E414D4:53EI
02F2 001
02F3 I
02F3 I
02F3 I
02F3 I
02F3 I
02F3 I
02F31
02F3 D4B4:531
02F6 141
02F7 02A:51
02F9 D403481
02FC D4B4:531
02FF 14.
0300 02COI
0302 D40387.
030:5 FB02BEI
030B FBA3AEI
030B EEl
030C 4EFli
030E CA03321
0311 D4B4:531
0314 061
031:5 00071
0317 D404191
031A FB02BEI
031D FBA3AEI
0320 EEl
0321 4EFli
0323 CA03321
0326 D4B4:531
0329 101
032A 002Bl
032C D404431
032F C0030:51

006:5
0066
0067 IoCBWl
006B
0069
0070
0071
0072
0073 INPBUF
0074 LINEBF
007:5 PACKET
0076
0077
0078
0079
OOBO
0081 NDTEoF
0082
0083 ERR FLO

DC (INPBUF+5lll .. END SECTOR BUFFER
DS 27

DC 07AH
DS 4

· . OPEN PARA~TER

DC (INPBUFl .. START OF SECTOR BUFFER
DC (INPBUF+5lll .. END SECTOR BUFFER

DS 27
DS :512
DS BO
DB 4

· . SECTOR BUFFER
· . CONSOLE INPUT BUFFER
· . SRNA" PACKET

PRoORA" VARIABLES I CONSTANTS

DC OOOH ..END OF FILE FLAO

0084 DC ooOH .. ERROR FLAO
OOB:5 IEDF EOU OC9H
0086 IoCBRO EOU 1:5
0087 IoCBPT EOU 12
OOBB T"PROl EOU 14
0089 T~R02 EOU 13
0090 T~R03 EOU 11

.. END OF FILE ERROR NU"BER
· .REOISTER USED TO POINT TO IOCB
· .DREQISTER USED TO POINT TO IOCB
· . TE"PoRARY REOISTER USED BY ROUTINES
· .TE~ORARY REOISTER USED BY ROUTINES
· . TEMPORARY REOISTER USED BY ROUTINES

0091 INP"SO
0092

0093
0094
009:5 WRT~l
0096

0097
0098
0099

0100
0101

0102
0103
0104
0105
0106
0107
0108
0109

RETYPE

0110 START
0111
0112
0113
0114
011:5
0116
0117
011B CP10
0119
0120
0121
0122
0123
0124
0125
0126
0127
012B
0129
0130
0131
0132
0133
0134
013:5
0136

DC 'INPUT FILE~ TO BE READ'

DC ,>'
DC ooOH

DC 'INPUT WRITE FILE~>'

DC ooOH

DC 'FILEN~ ERROR'

DC OODOAH
DC 'RETYPE N~>'

DC ooOH

THIS IS THE ~IN LOOP OF THE PRoOR~

CALL UCALL
DC TYPE
DC (INP"SOl
CALL DPENR
CALL UCALL
DC TYPE
DC (WRT"Ol l
CALL oPENW

A. 1 (NOTEoFl->T"PR01. 1 .. TEST IF EoF FLAO OR DISK ERROR
A.0(NOTEoFl->T~R01. 0
SEX T"PROl
eT"PR01!. DR. e
LBNZ CP20 .. BRANCH IF EoF DR ERROR
CALL UCALL
DC OETSEC
DC (IoCBRl .. READ ONE SECTOR
CALL CKRERR
A. 1 (NoTEoFl->T"PR01. 1 .. CHECK FOR EoF DR DISK ERROR
A.0(NoTEoFl->TMPR01.0
SEX T"PROl
eT"PROl !. DR. e
LBNZ CP20 .. BRANCH IF ERROR ON READ
CALL UCALL
DC PUT SEC
DC (IoCBWll .. WRITE SECTOR TO FILE .1
CALL CKW1ER
LBR CP10

101

102

0332 04B4'3.
033' 02.
0336 0007.
0338 040419.
033B 04B4'3.
033E 02.
033F 002B.
0341 040443.
0344 04B4'3.
0347 lE.
0348 •
0348
0348 •
0348
0348
0348
0348 0403C6.
034B 0007.
0340 04B4'3.
03'0 12.
03'1 024F.
03'3 '0.
03'4 04B4'3.
03'7 24.
03'8 029F.
03'A F8B4BE.
03'0 F8'2AE.
0360 ot.
0361 C20360.
0364 04B4'3.
0367 14.
0368 0206.
036A C00348.
0360 04B4'3.
0370 00.
0371 0007.
0373 F800BF.
0376 FB08AF.
0379 OF.
037A C20386.
0370 04B4'3.
0380 28.
0381 0007.
0383 C00364.
0386 0'.
0387
0387
0387
0387
0387
0387 0403C6.
03BA 002B.
038C 04B4'3.
038F 12.
0390 024F.
0392 '0.
0393 04B4'3.
0396 24.
0397 029F.
0399 FBB4BE.
039C F8'2AE.
039F OE.
03AO C203AC.
03A3 04B4'3.
03A6 14.
03A7 0206.
03A9 C00387.
03AC 04B4'3.
03AF 00.
03BO 002B.
03B2 F800BF.
03B' F82CAF.
03BB OF.
03B9 C203C'.
03BC 04B4'3.
03BF 28.
03CO 002B.
03C2 C003A3.
03C' 0'.
03C6
03C6 •
03C6 •

0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
01'0
0151
01'2
0"3
01'4
01"
01'6
01"
01'8
01'9
0160
0161
0162
0163
0164
016'
0166
0167
0168
0169
0170
0171
0172
0173
0174
01"
0176
0177
0178
0179
0180
0181
0182
0183
0184
018'
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218

User Manual for the RCA MlcroDlsk Development System MS2000

CP20 CALL UCALL
DC CLOSE
DC (IOCBR) .. CLOSE OUT FILES
CALL CKRERR
CALL UCALL
DC CLOSE
DC (IOCBW1)
CALL CKW1ER
CALL UCALL
DC COENT

OPEN SUBROUTINE

OPENR CALL IOCBIN
DC (IOCBR) .. INITIALI ZE IOCB
CALL UCALL
DC CREAD
DC (LINEBF)
DC 80 .. INPUT FILENAME
CALL UCALL
DC SRNAM
DC (PACKET) .. PUT FILENAME INTO IOCB
A. 1 (SRNERR) ->TMPRQ1. 1 .. TEST FOR ERROR
A.0(SRNERR)->TMPRQ1.0
.TMPRQl
LBZ OPRT" .. BRANCH IF NO ERROR

OPRT12 CALL UCALL
DC TYPE
DC (RETYPE)
LBR OPENR .. REDO NAME

OPRT15 CALL UCALL
DC OPEN
DC (IOCBR) .. OPEN FILENAME
A. 1 (IOCBR+l)->IOCBRQ. 1
A.O(IOCBR+l)->IOCBRQ.O
.IOCBRQ
LBZ OPRT30 .. BRANCH IF NO ERRORS
CALL UCALL
DC CDERR
DC (IOCBR) .. OTHERWISE PRINT OUT MESSAQE
LBR OPRTl2

OPRT30 EXIT

WRITE OPEN SUBROUTINE

OPENW CALL IOCBIN
DC (IOCBWl I .. INITIALIZE IOCB
CALL UCALL
DC CREAD
DC (LINEBF)
DC 80 .. INPUT FILENAME
CALL UCALL
DC SRNAM
DC (PACKET) .. PUT FILENAME INTO IOCB
A. 1(SRNERRI->TMPROl. 1 .. TEST FOR ERROR
A. 0(SRNERR)->TMPR01. 0
.TMPRQl
LBZ OPWTl, .. BRANCH IF NO ERROR

OPWT12 CALL UCALL
DC TYPE
DC (RETYPE)
LBR OPENW

OPWT1' CALL UCALL
DC OPEN
DC (IOCBW1) .. OPEN FILENAME
A. 1 (IOCBW1+l)->IOCBRO. 1
A.0(IOCBW1+1)->IOCBRO.0
.IOCBRQ
LBZ OPWT30 .. BRANCH IF NO ERRORS
CALL UCALL
DC CDERR
DC (IOCBW1) .. ELSE PRINT OUT MESSAOE
LBR OPWTl2

OPWT30 EXIT

Appendix E. Sample Program illustrating User Functions

03C6
03C6
03C6
03C6 46BCI
03CB 46ACI
03CA 8CFC09AE,
03CE 9C7COOBE,
03D2 F800~EI
03D~ lEI
03D6 'E.
03D7 lE,
03DB 'EI
03D9 lEI
03DA FB09ADI
03DD FB20SEI
03EO lEI
03El 2DI
03E2 BDI
03E3 CA03DDI
03E6 BEFC03AE,
03EA 9E7COOBE,
03EE FB02~E'
03Fl BEFC07AE,
03F5 9E7COOBE,
03F9 FB44'E,
03FC lEI
03FD FB4B~E,
0400 FB02BD,
0403 F89FAD,
0406 FB025D,
0409 ID,
040A FB4F~D'
040D ID,
040E ID,
040F BEFFl "D,
0413 2D,
0414 9E7F005D,
041B D51
0419
0419
0419
0419
0419
0419
0419
0419
0419 FBOOBE,
041C FBOBAE,
041F OEFBC91
0422 C20439,
0425 OEI
0426 C20442,
0429 FB02BE,
042C FBA4AE,
042F FB01~E,
0432 D4B453,
0435 2B,
0436 0007,
043B D5,
0439 FB02BE.
043C FBA3AE,
043F FB015E,
0442 D',
0443
0443.1
0443
0443
0443 I
0443
0443
0443 FBOOBE,
0446 FB2CAE,
0449 OE,
044A C2045C,
044D FB02BE,
0450 FBA4AE,
0453 FB015E,
0456 D4B4'3,
0459 2B,
045A 002B,
04~C D5,
045D

0219
0220
0221
0222
0223
0224
022'
0226
0227
0228
0229
0230
0231
0232
0233
0234
023'
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
024B
0249
0250
02'1
02'2
0253
02'4
02"
0256
0257
02'B
0259
0260
0261
0262
0263
0264
0265
0266
0267
026B
0269
0270
0271
0272
0273
0274
0275
0276
0277
027B
0279
02BO
02B1
0282
0283
02B4
02B5
0286
0287
028B
02B9
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
U300

IOCB INITIALIZE ROUTINE

IOCBIN 'R6!->IOCBPT. 1 .. POINT RF • IOCB
'R6!->IOCBPT.0
IOCBPT.0+WRITEP->TMPRQ1.0 .. ADVANCE POINTER TO WRITE PARM.
IOCBPT. l+"O->TI'IPR01. 1
O->'TMPRQl .. INIT. WRITE PARAMETER
INC TMPRQl
->'TI1PRQ1
INC TMPROI .. POINT T1 • UNIT NO.
->'TMPRQ1 .. DEFAULT OF 0
INC TMPRQl
9->TI1PRQ2.0

LOOPIW SPACE->'TI1PRQl .. BLANK OUT FILENAME ~ EXTENSION

CKRERR

CKR10

CKR20

INC TMPROl
DEC TMPR02
TMPR02.0
LBNZ LOOPIW
TMPRQ1.0+3-)TMPRQ1.0 .. POINT T1 • FILE DEF.
TMPRQ1. 1+"0-)TMPRQ1. 1
2->ITMPRQl .. INIT TO ASCII FILE
TMPRQ1. 0+7-)TMPRQ1. 0 .. POINT T1 • DEV. MNUMONIC
TMPRQ1. 1 + "O->TI1PRQ1. 1
'D'-).TMPRQl .. SET DEVICE TO DISK
INC TMPRQ1
'K'-)ITMPRQ1 IOCB INITIALIZED

A. 1CPACKET)-)TMPRQ2. 1 .. SETUP SRNAM PACKET
A. OCPACKET)->TI1PR02. 0
A.1CLINEBF)->lTMPRQ2 .. SETUP INPUT PARAMETER
INC TMPRQ2
A.OCLINEBF)-).TMPRQ2
INC TMPRQ2
INC TMPRQ2
TMPRQ1.0-21->ITMPRQ2 .. SETUP OUTPUT POINTER
DEC TMPRQ2
TMPR01. 1-"0-)'TMPR02
EXIT .. RETURN FROM ROUTINE

THESE ROUTINES CHECK FOR DISK ERRORS AND TAKE THE
APPROPRIATE ACTION.

A. 1 C IOCBR+1) ->TMPRQ1. 1
A. OCIOCBR+1)->TMPR01. 0
'TMPRQ1. XOR. IEOF
LBZ CKR10
ITMPRQ1
LBZ CKR20
A. 1CERRFLQ)->TMPRQ1. 1
A.OCERRFLQ)->TMPRQ1.0
l-)ITMPRQl
CALL UCALL
DC CDERR
DC CIOCBR)
EXIT

A. 1CNOTEOF)-)~PRQ1. 1
A. OCNOTEOF)->TMPRQ1. 0
1-)'TMPRQ1

EXIT

.. POINT Tl TO READ STATUS

· . TEST FOR END OF FILE
· . BRANCH IF EOF
· . TEST FOR ERROR
· . BRANCH NO ERROR

· . SET ERROR FLAQ

.. SET NOT EOF FLAQ

CHECK WRITE ERROR FOR FILE *1

CKWIER A. 1 (IOCBW1+1)->TMPRQ1. 1 .. POINT T1 • STATUS
A.OCIOCBW1+1)-)TMPRQ1.0
.TMPRQl
LBZ CKW110 .. BRANCH IF NO ERROR
A. 1CERRFLQ)->TI1PRQ1. 1
A.0(ERRFLQ)->TI1PRQ1.0
l-)'TMPRQl .. SET ERROR FLAQ
CALL UCALL
DC CDERR
DC CIOCBW1)

CKWll0 EXIT

103

104 User Manual for the RCA MlcroDlsk Development System MS2000

045D ; 0301 END BEQIN
0000
SUOOOO

C R 0 S S R E FER E N C E LIS TIN Q

SYI'IBOL ADDR DEF REFERENCES

BEQIN 0000 U 0301
CDENT 001E 0040 0146
CDERR 0028 0035 0178 0212 0275 0297
CKR10 0439 0278 0268
CKR20 0442 0281 0270
CKRERR 0419 0265 0126 0140
CKWll0 045<: 0299 0292
CKW1ER 0443 0289 0135 0144
CLOSE 0002 0039 0138 0142
CP10 0305 0118 0136
CP20 0332 0137 0122 0131
CREAD 0012 0032 0156 0190
DEVICE 00IF 0055
ENDBUF 0007 0051
ERRFLQ 02A4 0083 0271 0272 0293 0294
FILEDF 0018 0054
QETSEC 0006 0037 0124
IEOF 00C9 0085 0267

-INPBUF 004F 0073 0064 0065 0070 0071
I NPI'ISQ 02A5 0091 0112
IOCBIN 03C6 0222 0153 0187
IOCBPT OOOC 0087 0222 0223 0224 0225
IOCBR 0007 0061 0125 0139 0154 0172 0173 0174 0179 0265

0266 0276
IOCBRQ OOOF 0086 0173 0174 0175 0207 0208 0209
IOCBWI 002B 0067 0134 0143 0188 0206 0207 0208 0213 0289

0290 0298
LINEBF 024F 0074 0157 0191 0248 0250
LOOPIW 03DD 0233 0237
NOTEOF 02A3 0081 0118 0119 0127 0128 0278 0279
OPEN 0000 0036 0171 0205
OPENPR 0000 0048
OPENR 0348 0153 0113 0169
OPENW 0387 0187 0117 0203
OPRTl2 0364 0166 0180
OPRTl5 036D 0170 0165
OPRT30 0386 0181 0176
OPWTl2 03A3 0200 0214
OPWTl5 OlAC 0204 0199
OPWT3O 03C5 0215 0210
PACKET 029F 0075 0161 0195 0246 0247
PUT SEC 0010 0038 0133
RETYPE 02D6 0098 0168 0202
SPACE 0020 0056 0233
SRNAI'I 0024 0034 0160 0194
SRNERR B452 0042 0162 0163 0196 0197
START 02F3 0110 0023 0024
STARTB 0005 0050
STATUS 0001 0049
TI'IPRQI 000£ 0088 0118 0119 0120 0121 0127 0128 0129

0130 0162 0163 0164 0196 0197 0198 0224
0225 0226 0227 0228 0229 0230 0231 0233
0234 0238 0238 0239 0239 0240 0241 0241
0242 0242 0243 0244 0245 0253 0255 0265
0266 0267 0269 0271 0272 0273 0278 0279
0280 0289 0290 0291 0293 0294 0295

TI'IPRQ2 OOOD 0089 0232 0235 0236 0246 0247 0248 0249

0250 0251 0252 0253 0254 0255
TI'IPRQ3 OOOB 0090
TYPE 0014 0033 0111 0115 0167 0201
UCALL B453 0041 0110 0114 0123 0132 0137 0141 0145

0155 0159 0166 0170 0177 0189 0193 0200
0204 0211 0274 0296

UNITNO 0008 0053
WRITEP 0009 0052 0224
WRTI'IQI 02CO 0095 0116

105

Appendix F
I/O Group Assignments

The 1/ a group number is transmitted by the OUTl
instruction. The transmitted group number remains in
force until the next OUTl. Interim I/O instructions
OUT2 through OUT7 and INP 2 through INP7 will be
recognized only by those devices assigned to the current
group number.

External flags EFI, EF2, EF3, and EF4 are condi­
tioned by the group number, and change their meanings
as that number changes.

GROUP 1 - (0000 0001)2 - Terminal, Disk Printer

OUT2

OUT3

OUT6

INP2

INP3

EFI
EF4

Load data-terminal U ART transmit­
ter-holding register
Load data-terminal UART control
register
RESERVED - Printer data out
(parallel interface)
Read data-terminal U ART receiver­
holding register
Read data-terminal status register

Reserved for Printer
Data-terminal serial data in

GROUP 2 - (0000 0010)2 - Reserved for MOPS

OUT2

OUT3
INP2

INP3

Load MOPS UARTtransmitter-hold­
ing register
Load MOPS U ART control register
Read MOPS UART receiver-hold­
ing register
Read MOPS UART status register

GROUP 4 - (0000 0100)2 - Reserved for PROM
Program

OUT2
OUTJ
OUT4
OUT5
OUT6
INP4

Low-order address bits to PROM
High-order address bits to PROM
Data to PROM
Control to PROM
Control to PROM
Read data from PROM

EFI Switch Sl or PROM Programmer

Group 8 - (0000 1000) - Disk Controller

OUT4
OUT5
OUT7
INP4
INP5

EF3

Control byte to disk controller
Control byte to disk controller
DMA count to disk controller
Disk-controller status byte
Disk-controller results register

Disk-controller interrupt-identifier
flag

106

!M
0000
0000
0000 I

0000 I

0000 I

0000 I

0000
0000 I

0000 I

0000 I

0000
0000
0000
0000
0000 I

0000
0000
0000 I

0000 I

0000 I

0000
0000 I

0000
0000
0000 I

0000
0000
0000
0000
0000 I

0000 I

0000 I

0000
0000
0000 I

0000 I

0000 I

.DOOO
0000
0000 I

0000 I

0000 I

0000
0000
0000
0000
0000
0000 I
0000 I

0000 I

0000
0000 I

0000
0000
0000 I

0000 I

0000 I

0000
0000 I

0000

Appendix G
Utility Program (UT71) Listing

0001
0002

.. ***.

0003 .. NAME: UT71. VER 0.0
0004 .. DATE: B/2/B3 CHANGED HLT FROM 76 TO 60 MSEC. FIXED WRITA 10/24/8
0005
0006
0007
OOOB
0009
0010
0011
0012
0013
0014
0015
0016
0017
001B
0019
0020
0021
0022
0023

UT71 IS A MONITOR PROGRAM DESIGNED TO EXAMINE OR ALTER MEMORY.
TO BEGIN PROGRAM EXECUTION AT A GIVEN LOCATION. TO PROVIDE DISK.
TERMINAL. AND PRINTER INTERFACE ROUTINES. AND TO PROVIDE MEANS FOR
COMMUNICATING FROM TERMINAL TO DISK AND SYSTEM 1/0. THE MONITOR
COMMANDS ARE INITIATED BV TVPING, D. F. I. M. S. P. T. L. B. W. R.
!. OR? THE FUNCTIONS INCLUDE MEMORV DISPLAY <D>. FILL <F>.
INSERT <I>. MOVE <M>. AND SUBSTITUTE <S>. RUN PROGRAM <P>. SELF
TEST <T>. LOAD OPERATING SYSTEM FROM DRIVE 0 <L> OR ANY DRIVE <8>.
WRITE <W> OR READ <R> A SECTOR. AND WRITE <!> OR READ <?> AN 110
PORT. ALSO INCLUDED ARE THE STANDARD READ AND TVPE ROUTINES FOR
COMMUNICATION WITH THE USERS TERMINAL. AND A PARALLEL PRINTER
OUTPUT ROUTINE.
UPON STARTING UT71. THE CONTENTS OF ALL CPU REGISTERS EXCEPT RO
AND Rl ARE SAVED IN RAM AT .SCOO.
UT71 RESIDES IN ROM AT BOOO-B7FF. AND MUST HAVE RAM AT BBOO-SFFF
(BCOO-BCFF IF DISK ROUTINES NOT USED.) ~

UT71 PROVIDES MEANS FOR FORCING KEVBOARD READS TO GO TO A COMMAND
FILE INTERPETER INSTEAD.

0024 .. ***1
0025 SVSTEM EOUATES. CONSTA~TS ~ OFFSETS
0026 .. ***1
0027
002B
0029

COMMAND FILE INTERPETER START ADDRESS (SEE READ ROUTINE)

0030 CFREAD EOU BFFDH
0031
0032
0033

REGISTER ASSIGNMENTS - GEN. ~ UTILITIES

0034 SP EOU 002H
0035 PC EOU 003H
0036 CALL EOU 004H
0037 RETN EOU 005H
003B LINK EOU 006H
0039 TMPRGl EOU 007H
0040 TMPRG2 EOU OOBH
0041 TMPRG3 EOU 009H
0042 ADRPTR EOU OOSH
0043 CNT EOU OOAH
0044 SRC EOU OOBH
0045 TPTR EOU OOBH
0046 DELAV EOU OOCH
0047 PTER EOU OOCH
004S PTR EOU OOCH
0049 ASL EOU OODH
0050 DEST EOU OODH
0051 AUX EOU OOEH
0052 CHAR EOU OOFH

· . STACK POINTER
· . PROGRAM COUNTER
· . CALL ROUTINE REGISTER
· . RETURN ROUTINE REGISTER
· . SUBROUTINE. DATA LINK
· .TEMPORARV REGISTER
· . TEMPORARY REGISTER
· .TEMPORARV REGISTER
· . HOLDS ADDR DURING STORE FROM TP
· . BVTE COUNT
· . SOURCE REGISTER
· . TABLE POINTER
· .DELAV ROUTINE COUNTER
· . IOCB PTR
· . IOCB PTR
· . HEX INPUT REGISTER
· . DESTINATION REGISTER
· . AUX. 1 HOLDS BIT TIME CONSTANT
· . STORES ASCII 110

0053
0054
0055
0056
0057
005B
Q~~9
0060

RAM I ROM ALLOCATIONS

UT71 EOU OSOOOH
TOPSTK EOU OBCFFH
WRAM EOU OBC1FH

ASCII CONTROL CHARACTERS

Appendix G. Utility Program (UT71) Listing 107

0000 I
0000 I
0000
0000 I
0000
0000 I
0000
0000 I
0000
0000
0000
0000
0000 I
0000
0000
0000 I
0000
0000 I
0000
0000
0000 I
0000
0000
0000 I
0000
0000
0000
BOOO
BOOO 71;
BOOl 001
B002 FBBOBO;
BOOS
B005
BOOS
BOOS
BOOS I
BOOS I
BOOS
BOOS
BOOS FBBCB 1 I
BOOB FB1F ... l;
BOOB Ell
BOOC 21;
BOOD FBD073;
BOlO B1F6CF.
B013 F910;
B01S FCBll
B017 51;
B01B F33 ... 26.
B01B Dl;
B01C 731
801D B1FF033 ... 0C.
8022 73737351.
8026 COB3Bl;
B029 I
8029
802C
802C D4BOFEI
B02F 9EF ... 0 1 I
8032 3241;
B034
8034
8034
8034
8034
8034
8034 D4B3E8.
8037 D4B3FO.
803 ... ODO ... ;
803C 2 ... ;
B03D 00;
803E
803E
803E I

B03E
B03E I
B03E

0061
0062 NULL EGU OOOH
0063 COMM... EGU 2CH
0064 SEMCOL EGU 3BH
0065 BS EGU 008H
0066 LFEGU OO ... H
0067 CR EGU OODH
006B EOF EGU 013H
0069 SP ... CE EGU 020H
0070 CRLF EGU OODO ... H
0071
0072
0073
0074
0075
0076
0077
0078
0079
OOBO
OOBl
00B2
00B3
00B4
00B5

CONST ... NTS
BDSEL EGU 001H
LNECNT EGU OOFH
LINES EGU 014H
PQMSRT EGU OOOOSH
PROMPT EGU 02 ... H
ROWLEN EOU 02BH
TRMINL EOU 001H
U ... RTBD EOU 001H
URTCTL EOU 003H
CTLWRD EOU 01DH
CH ... R ... C EOU 002H
STATUS EOU 003H

.. NULL

.. COMM ...
· . SEMICOLON
· . B ... CK SP ... CE
· . LINE FEED
· .C ... RRI ... QE RETURN
· . END OF FILE
.. SP ... CE
.. CR LF

· . PORT FOR TWO LEVEL 1/0 SELECT
..• OF BVTES PER LINE IN DISPL ... V ROUTINE
· . NUMBER OF LINES PER SCREEN LO ... D
· .ST ... RT ... DDRESS FOR INITl
· . PROMPT CH ... R ... CTER
..• OF CHARACTERS IN ... ROW
· . SELECTS THE TERMINAL
· . SELECTS THE UART
· . WRITE TO U ... RT CONTROL REQISTER
· .UART CONTROL WORD
· . PORT FOR UART WORD OUT
· . PORT TO RE ... D U ... RT STATUS

00B6 . . ***
00B7 ORQ UT71
OOBB
00B9
0090
0091
0092
0093
0094
0095
0096
0097

DIS;
DC 0 .. DIS ... BLE
LDI A. 1(UT71) .PHI RO .. EST ... BLISH PROQR ... M COUNTER ... T

.. BOOO HEX

. . ***
REQISTER S ... VE

SAVES CONTENTS OF THE CPU REQISTERS •• BCOO.
CLOBBERS RO ... ND Rl (LEAVES O'S AS ... REMINDER)

009B .. ***
0099
0100
0101
0102
0103 LOOP
0104
0105
0106
0107
010B
0109
0110
0111
0112
0113
0114 UT71 ...
0115
0116
0117
011B START
0119
0120
0121

A. 1 (WR"'M)->Rl. 1
A. O(WRAM)->R1. 0
SEX Rl
DEC Rl
ODOH->.­
Rl.0/2ILSDF
ORI 10H
... DI B1H
->.Rl
XOR.BNZ UT71A
SEP Rl
->.-
R 1. 0-31 BNZ LOOP
->.-.<t-.e-.eRl
LBR INIT

ORQ UT71+002CH

C ... LL TIMALC
... ~x. 1; ... NI 01H
BZ SC ... Nl

· . TOP OF S ... VE ARE ...

· . POINT BELOW WHERE SAVED R IS TO QO
· . LOAD SEP RO INSTRUCTION FOR RETURN
· . FOR EVEN V ... LUES OF Rl
· . MAKE 9X INSTRUCTION
· . OTHERWISE BX INSTRUCTION
· . STORE FOR EXECUTION
· .LE"'VE IF NO R ... M THERE
· . QO EXECUTE
· ND STORE RESULT
· . LOOP FOR REQISTERS F - 2
· .FILL LOCATIONS FOR 0 ... ND 1 WITH 0

· . PRESERVE ST ... RT ... DDRESS

· . ECHO SET?
· . BR ... NCH IF- YES

0122 .. ***
0123 OUTPUT THE UTILITV PROMPT
0124 .. ***
0125
0126
0127 PRMPT
012B
0129
0130
0131
0132

C ... LL TPOFF
C ... LL OSTRNQ
DC (CRLF)
DC PROMPT
DC 0

· . SEL QROUP 1
· . TVPE SC ... N MODE '*' PROMPT

0133
0134
0135

.. ***
MONITOR COMM ... ND INTERPRETER

0136
0137

FETCHES THE ... DDRESS FROM THE COMM ... ND T ... BLE AND SETS
THE PROQR ... M COUNTER TO IT

REQ USED: PTR. CH ... R. SP. ...SL

108

B03E I
B03E I
B03E I

B03E D41
B03F B13El
B041 I
8041 9F~1
B043 FB:lBABI
B046 93BBI
B04B lB1BI
B04A 4B32B:l1
B04D F31
B04E 3A4BI
BO:lO BDADI
BO:l2 D4B1A2201
BO:l6 22221
BO:lB
BO:lB 4BB6.
BO:lA
B05A 4BA6.

·BO:lC D:l1
BO:lD
BO:lD
BO:lD
BO:lD 1
BO'D I
BO'D 441
BO:lE B2BDI
B060 491
B061 B3A71
B063 4DI
B064 B2F71
B066 461
B067 B240.
B069 :13.
B06A B0991
B06C :10.
B06D B29FI
B06F 541
B070 B74EI
B07iZ 4C.
8073 B40:l.
8075 4iZi
8076 8400.
B07B 57.
B079 B67A.
B07B :liZ 1
B07C 867C.
B07E iZl.
B07F B6EiZi
BOBl 3Fl
BOBiZ B7071
BOB4 00.
BOS'
BOB:I 1
BOB:I
BOB:I
BOB:I 1
BOB:I
BOB5 1
BOB' 1
BOB:I 1
BOB:I FBFFAiZ.
BOBB FBBCBiZ.
BOBB D41
BOBC B3FOI
BOBE ODOAI
B090 4:1:12:1iZ4F:liZ.
B09:1 001
B096 COBiZADI
B099
B099 1
B099 I

B099 I

B099
B099
8099 I

013B
0139
0140
0141
014iZ
0143
0144
014:1
0146
0147
014B
0149
01'0
01:11
01'iZ
01:13
01:14
015:1
01:16
01:17
01:1B
01:19
0160
0161
016iZ
0163
0164
016:1
0166
0167
0168
0169
0170
0171
017iZ
0173
0174
017:1
0176
0177
017B
017'i
0180
01Bl
01BiZ
01B3
01B4
01B:I
01B6
01B7
01BB
01B9
0190
0191
019iZ
0193
0194
019:1
0196
0197
019B
0199
0200
0201
OiZOiZ
OiZ03
OiZ04
OiZO:l
0206
0207
OiZOB
OiZ09
0210
OiZ11
021iZ
0213
0214

User Manual for the RCA MlcroDlsk Development System MS2000

· . **.,

SCNLTR SEP CALLI
DC (READ)

SCAN1

SCAN

CHAR. 1->esp
A.O(TABiZ-iZ)->TPTR.O
PC. 1->TPTR. 1
INC TPTR. INC TPTR
LDA TPTR.BZ ERROR
XOR
BNZ SCAN
->ASL.11->ASL.0
CALL TYPE61DC
DEC SPIDEC SP

LDA TPTRIPHI LINK

LDA TPTR.PLO LINK
SEP R5

· . READ COMMAND (LEAVES CHAR. IN D)

· . GET INPUT. STORE FOR COMPARE
· . INITIALIZE TABLE POINTER

· .PT TO NEXT (FIRST) ENTRY
· . ERROR IF END OF TABLE
· . LOOK FOR MATCH
· . LOOP IF NOT
· . ZERO CHARACTER REGISTER
· . SPACE STARTS COMMAND
· . FAKE IT FOR THE RETURN
· .PICK UP COMMAND ADDRESS
· . AND TRANSFER TO THE
· . SUBROUTINE BY EXECUTING

... A RETURN INSTRUCTION
· • P=3. X=iZ. R4 I SEP CALL ••• R:I I RETURN. R2-4I8CFF

· .***.**.*.,
COMMAND TABLES

· .*******.***.**.** •• **** •••• **.*** •• ,

TAB Ii! DC '0'
DC (DISPLY)
DC 'I'
DC (INSERT>
DC 'M'
DC (MOVE)
DC 'F'
DC (FILL)
DC'S'
DC (SUBST)
DC 'P'
DC (RUN)
DC 'T'
DC (TEST)
DC 'L'
DC (LOAD)
DC 'B'
DC (BOOT)
DC 'W'
DC (WDISK)
DC 'R'
DC (RDISK)
DC '"
DC (OUTPORT>
DC '?'
DC (INPORT>
DC 0

· . MEMORY DISPLAY

· . INSERT INTO MEMORY

· . MOVE A BLOCK OF MEMORY

· .FILL A BLOCK OF MEMORY

· . BYTE SUBSTITUTION

· . RUN A USER PROGRAM

· . RUN MONITOR SELF TEST

· . LOAD OPERATING SYSTEM FROM DRIVE 0

· . LOAD SAME FROM ANY DRIVE

· . UTILITY DISK WRITE

· . UTILITY DISK READ

· . UTILITY OUTPUT TO PORT

· . UTILITY INPUT FROM PORT

· . **.*******
UTILITY ERROR MESSAGE

NOTE: ENTRY HERE RESETS STACK TO TOP
· . REG USED: CHAR
· . *****.******************************.************.******************.****.

ORG UT71+0085H

ERROR LDI A. O(TOPSTK).PLO SP
LDI A. 1 (TOPSTK). PHI SP
SEP CALLI
DC (OSTRNG)
DC (CRLF)
DC 'ERROR'
DC 0

PRMPT1 LBR RENTER

· . ** ••
START OF SUBROUTINES

· . ***'

MONITOR SUBSTITUTE FUNCTION
DISPLAYS THE FIRST BYE FROM THE ADDRESS GIVEN FOLLOWED

Appendix G. Utility Program (UT71) Listing 109

B099
B099
B099
~099
B099
B099
8099
8099
8099 D4,
809A 82FO,
809C 9DBB,
809E BDAB,
80AO
BOAO 9FFBOA,
BOA3 32AF,
80A~ FB07,
80A7 3296,
80A9 FB2D,
BOAB 32B7,
80AD 308~,

80AF
80AF D4,
80BO 83FO,
BOB2 OD;
80B3 00;
80B4 D4;
80B5 80CD;
80B7
80B7 DC,
80B8 17;
BOB9 OBBF;
80BB D4;
80BC 81AE;
80BE D4;
80BF B3FO;
BOCl 2D;
BOC2 00;
80C3 OBAD;
80C~ I
BOC5 D4;
BOC6 82FOI
BOC8 8D~BI

BOCA lBI
BOCB 30AOI
80CD I
BOCD DCI
80CE 17,
80CF 9BBFI
8001 D4,
80D2 81AE,
80D4 BBBF1
BOD6 D4,
80D7 81AEI
80D9 041
80DA 83FOI
BOlle 20;
8000 00,
80DE D~,

80DF I
BODF
80DF
80DF
BODF I
80DF
BODF
80DF
BODF
80EE I
80EE D3,
80EF
BOEF 431
80FO
BOFO FFOll
BOF2 32EE,
80F4 30FOI
BOF6

021~
0216
0217
0218
0219
0220
0221
0222
0223
0224
022~

0226
0227
022B
0229
0230
0231
0232
0233
0234
0235
0236
0237
023B
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
02~2
02~3

0254
02"
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
028~

02B6
02B7
02B8
02B9
0290

BY A HYPHEN. IF A HEX PAIR IS ENTERED FOLLOWED BY A SPACE.
IT IS SUBSTITUTED FOR THE BYTE DISPLAYED. IF A SPACE IS
ENTERED THERE IS NO CHANGE. IN EITHER CASE THE DATA BYTE FROM
THE NEXT ADDRESS WILL THEN BE DISPLAYED. THE ROUTINE IS ENDED
BY ENTERING A RETURN.

· .REG USED: ASL. SRC. CHAR
· . **
SUBST SEP CALL,

DC (READHX)
GHI ASL;PHI SRC
QLO ASL;PLO SRC

DECODE QHI CHAR;XRI LF
BZ ADDOUT
XRI 007H
BZ PRMPTl
XRI 02DH
BZ OLDDTA
BR ERROR

ADDOUT SEP CALL;
DC (OSTRNQ),
DC CR
DC 0
SEP CALL;
DC (OUTl)

OLDDTA SEP DELAY;
DC 017H
LON SRC;PHI CHAR
SEP CALL;
DC (TYPE2)
SEP CALL,
DC (OSTRNG)
DC '-'
DC 0
LON SRC;PLO ASL

QETDTA SEP CALL;
DC (REAOHX)

OUTl

QLO ASLISTR SRC
INC SRC
BR DECODE

SEP DELAY,
DC 017H
QHI SRCIPHI CHAR
SEP CALL;
DC (TYPE2)
GLO SRC, PHI CHAR
SEP CALL;
DC (TYPE2)
SEP CALL;
DC (OSTRNQ),
DC SPACE
DC 0
SEP R5

· . INPUT ADDRESS
· . SAVE START ADDRESS

· , FIRST NON-HEX MUST BE
, . A LINEFEED OR
· ,TERMINATION OR

· ,A SPACE

· , ELSE ERROR

· ,WAIT TO FINISH READ
, . STAY ON SAME LINE

, ,HEX OUTPUT

,.OUTPUT A HYPHEN

· . COPY DATA FROM CELL INTO ASL

· . QET ANY CHANQE
,.RESTORE THE DATA INTO THE CELL
· ,OPEN THE NEXT CELL
· . EXAMINE INPUT

,.ROUTINE TO OUTPUT A HEX ~AIR

· . AND A SPACE

· .**
USER CALLABLE ROUTINE TO GENERATE A DELAY. THE DELAY
CONSTANT IS PASSED AS AN INLINE PARAMETER. THE CALL
IS MADE BY DOINQ A SEP RC

· .REQ USED: DELAY. PC
,.**

DEXIT SEP PC

DELAYl LDA PC

DELAY2 SMI 1
BZ DEXIT
BR DELAY2

ORG UT71+00EEH

110

BOF6 I
BOF6
BOF6
BOF6 I
BOF6
BOF6 I
BOF6
BOFE I
BOFE 93BCI
S100 FSEFI
S102 AC;
S103 E3;
S104 61;
S10' 01;
S106 63;
S107 lDI
S10S E2;
Bl09 I
S109 FBOOBEI
S10C D4B3FO;
B 1 OF ODOA"'43731;
Bl1' 20'64"220301
BllB 2E301
S11D ODOAI
S11F 2AI
S120 001
B121 D4B13E;
B124 9FFBOAI
SljiZ7 322AI
B129 D'I
B12A FB01BE;
B12D D'I
B12E
B12E I
812E
B12E
B12E
B12E
B12E
B12E I
B12E
S12E I
B12F
B12F FC071
B131 33371
B133 FCOAI
B13' 33691
B137 I
S137 FCOOI
B139 I
Bl39 9FI
B13A D'I
B13B I
B13B FB0038;
B13E I
B13E 931
B13F AFI
8140 I
B140 9EFEI
B142 C3BFFDI
B14' I
B14' 6BF61
B147 3B4'1
B149 6AI
814A FA7FBF;
B14D 324'1
B14F 9EF6;
Bl'l 33'B;
BU3 6BFE;
Bl" 3B'3;
Bl:57 9F'21
BU9 621
SUA 221
Bl'B
Bl'B
SI'B BF;
Bl:tC 3A39 I

0291
0292
0293

User Manual tor the RCA MlcroDllk Development SYltem MS2000

••
SETS UP POINTER TO THE DEL.AY ROUTINE. SETS UP THE UART.
AND SETS UP ECHO (AUX. 1-0) OR NO ECHO (AUX. 1-1).

0294 ..••
02"
0296
0297
029B

ORg UT71+00FEH

0299 TIMAL.C
0300

GHI PC;PHI DEL.AY
L.DI A.O(DEL.AYl)
PL.O DEL.AY

· .DEL.AY SUBROUTINE ADDRESS

0301
0302
0303
0304
0305
0306
0307
030B
0309
0310
0311

0312
0313
0314
03U
0316
0317
0318
0319
0320
0321
0322
0323
0324
032'
0326
0327
032B
0329
0330
0331
0332
0333
0334
033'
0336
0337
033B
0339
0340
0341
0342
0343
0344
034'
0346
0347
034B
0349
03'0
03'1
03'2
03'3
03'4
03"
03'6
03:57
03'B
03:59
0360
0361
0362
0363
0364
036'

SEX PC
OUT SDSEL.;
DC UARTBD
OUT URTCTL.;
DC CTL.WRD
SEX SP

ECHOTST O->AUX. 1
CAL.L. OSTRNG

· . SEL.ECT GROUP 1

· . SET UP UART

· .DEFAUL.T TO ECHO (FUL.L. DUPL.EX)

DC CR.L.F. 'UT71 VER O. O' .. PRINT UT71 VERSION NUMBER

DC CR.L.F
DC PROI'IPT
DC 0
CAL.L. READ
CHAR. llXRI L.F
BZ NOECHO
EXIT

NOECHO l->AUX. 1
EXIT

· . TYPE INITIAL. ••• PROMPT

· . WAiT FOR RESPONSE
· . CHECK FOR L.F
· . BRANCH IF YES

· . SET NO ECHO (HAL.F DUPL.EX)

• •••
READS ONE BYTE INTO CHAR. 1. WHEN ENTERED
VIA READAH. ANY HEX INPUT IS ASSEMBL.ED
INTO ASL. AND DF -1. EL.SE DF - 0 ON RETURN.

· . REG USED: CHAR. ASL. (AUX. 1 HOL.DS ECHO AND READ SOURCE FL.AGS)
• ••

ORG UT71+012FH

CKDEC ADI 7
SDF NFND
ADI OOAH
BDF FND

NFND ADI 0

REXIT GHI CHAR
SEP R'

READAH L.DI OISKP

READ GHI PC
PL.O CHAR

AUX. 1.2
L.BDF CFREAD

READl INP STATUSI/2
BNF READ1
INP CHARAC
ANI 07FHI->CHAR. 1
BZ READI

CFRET AUX. 1;12
BDF NEXT

RDWAIT INP STATUSI.2
BNF RDWAIT
CHAR. l-)eSp
OUT CHARAC
DEC SP

NEXT GL.O CHAR
BNZ REXIT

· . CHECK FOR ASCII DECIMAL.
· . OUT OF RANGE
· . SUBTRACT NET 30

:. SET DF • 0

· . PUT INPUT INTO D
..• RETURN

· .SKIP TO READl WITH D-O

· . CONSTANT> 0
· . SAVE ENTRY POINT

· . IF COMMAND FIL.E IS IN CONTROL..
· .GO TO IT. SKIP KEYBOARD READ

· . READ CHARACTER

· . IGNORE IF ITS'S A NUL.L.
· . COMMAND FIL.E RETURN POINT

· . ECHO IF ECHO BIT SET

· . CHECK ENTRY
· . ENTERED VIA READ

Appendix G. Utility Program (UT71) Listing 111

Bl~E
Bl~E 9FFF41i
B161 3B2F.
B163 FF06i
B16~ 33371
B167 FC101
B169 1
B169 FAOF73i
B16C 9DI
B16D FEFEFEFE:l2i
B172 BDi
B173 F6F6F6F6i
Bl77 F1BDi
B179 BDI
B17A FEFEFEFEi
B17E 12i
B17F F1ADi
B1Bl FFOO.
B1B3 3039.
B1B~
B1B~ I
B1B~ I
B1B~ I
B1B~
B1B~ I
B1B~ I

B1B~ I
B1B~
B1B~
B1B~
B1B~ I
B1B~ 1
B1B~
B1B~
B1B~
B1B~ I
B1B~ I

B1B~
B19B
B19B 30A4i
B19A I

B19C
B19C 30AOi
B19E
B19E
B19F I
B19F D~.

B1AO
B1AO 4~1
B1Al 3B.
B1A2 I
B1A2 46.
B1A3 3Bi
B1A4
B1A4 9F73.
B1A6 FBOAi
BlAB 3ACO.
B1AA FBBOi
B1AC 30C21
B1AE 9FF6F6F6F6i
B1B3 FCF6.
81B~ 3DB9.
B1B7 FC07i
B1B9
B1B9 FFC673.
B1BC FB10.
B1BE 30C2.
B1CO I
B1CO FBOO.
B1C2
B1C2 AF.
B1C3
B1C3 6BFE.
B1C~ 3BC31
B1C7 121
B1CB 621
B1C9 22i

0366
0367
036B
0369
0370
0371
0372
0373
0374
037~
0376
0377
037B
0379
03BO
03Bl
03B2
03B3
03B4
03B~

03B6
03B7
03BB
03B9
0390
0391
0392
0393
0394
0395
0396
0397
039B
0399
0400
0401
0402
0403
0404
040~
0406
0407
040B
0409
0410
0411
0412
0413
0414
041~
0416
0417
041B
0419
0420
0421
0422
0423
0424
042:1
0426
0427
042B
0429
0430
0431
0432
0433
0434
0435
0436
04~7

043B
0439
0440
0441
0442

CKHXE

FND

QHI CHARiSMI 041H
BNF CKDEC
SMI 6
BDF NFND
ADI 010H

. AND. OFH->e-
QHI ASL
SHL.SHL.SHLISHL.STR SP
QLO ASL
SHRiSHR.SHRiSHR
ORIPHI ASL
QLO ASL
SHL.SHLISHLISHL
INC SP
ORIPLO ASL
SMI 0
BR REXIT

· . CHECK FOR ASCII HEX
· . CHECK FOR ASCII DECIMAL
· . A THRU F
.. NO
· . SUBTRACT NET 37

· . SAVE TEMPORARILY
· . SHIFT DATA INTO ASL
· . SHL 4X

.. SET DF • 1

· .***t
TYPES ONE BYTE FROM CHAR. 1 AS AN ASCII
CHARACTER OR AS TWO HEX DIGITS. LINE FEEDS
ARE FOLLOWED BY SIX NULLS. USES REQISTER
CHAR AND A STACK LOCATION.
eSP-l HOLDS OUTPUT CHARACTER.
CHAR. 0 HOLDS THE NUMBER OF BITS (11) IN
ITS LOWER DIQIT AND THE FOLLOWINQ CODE IN
ITS UPPER DIGIT:

o BYTE OUTPUT
1 - FIRST HEX OUTPUT
2 - LAST NULL OUTPUT
B - LF OUTPUT

· .REQ USED: CHAR (AUX. 1 HOLDS ECHO AND READ SOURCE FLAGS)
· . ***l

TYPED

TEXIT

TYPE5

TYPE6

TYPE

TYPE2

TY1

TY2

ORQ UT71+019SH

BR TYPE
ORQ UT71+019CH

ORg UT71+019FH

LOA R5
SKP

LOA R6
SKP

· . PICK UP DATA

· . PICK UP DATA

GHI CHARi->e- .. KEEP A COPY
XRI LF .. IS IT A LINE-FEED?
BNZ TY2
LDI OBOH ..• BITS ADI • NULLS
BR TY3
GHI CHARiSHRiSHR.SHRiSHR
ADI OF6H .. CONVERT TO HEX
BNF TY1 .. IF A OR >. ADD 37
ADI 7

SMIOC6Hi->e­
LDI 010H
BR TY3

LDI 0

· . ELSE ADD 30
· . 10 ADI NO. OF BITS

· . NO OF BITS

TY3 PLO CHAR

BEGIN INP STATU~.*2
BNF BEGIN
INC SP
OUT CHARAC
DEC SP

· .PT BACK TO CHARACTER

112

81CA
81CA
81CE
81DO
81D2
81D4
8106
8108
81DA
81DA
81DD
81DF
81El
81E3
81E3
81E5
81E5
81E6
81EB
81E8
81E8
81E8
81E8
81E8
81E8
81E8
81E8
81E8
81E8
81E8
81E8
8200
8200
8201
8203
8205
8207
820B
820E
8210
8212
8214
8215
8217
8217
8219
821C
821E
8221
8223
8223
8225
8227
8229
822B
822D
822F
8231
8231
8231
8232
8234
8238
823C
82:£
823F
8240
8240
8240
8240
8240
8240
8240
8240
8240
8240
8240

8FFCFOAF.
3B9F.
FF10.
329F.
3BDA.
F800.
30E5.

9FFAOF.
FCF6.
3BE3.
FC07.

FFC6.

73.
30C3.

D4.
82FO.
9DBB.
8DAB.
F800ADBD.
9FFB20.
3231.
FBOD.
3A46.
D4.
82FO.

8B52.
8DF7AA.
9B52.
9D77BA.
333F.

8D5:i!.
8BAD.
02AB.
9D5:i!.
9BBD.
02BB.
3017.

D4.
82FO.
8DFF01AA.
9D7FOOBA.
333F.
lA;
05.

D4;

0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519

User Manual for the RCA MlcroDlsk Development System MS2000

NXCHAR QLO CHAR.ADI
BNF TEXIT
SMI 010H

OFOH,PLO CHAR

HEXl

HEX2

HEX3

BZ TEXIT
BNF HEXl
LDI 0
BR HEX3

QHI CHAR,ANI OOFH
ADI OF6H
BNF HEX2
ADI 7

SMI OC6H

-:>.-
BR BEQIN

· . SEP R5 IF NO MORE
· . TEST FOR ALTERNATIVES
· . TYPED LAST NULL
· . TYPED FIRST HEX
· . TYPED LF OR NULL

· .QET 2ND HEX DIQIT
· . CONVERT TO HEX
· . IF A OR MORE.
· . ADD NET 37

: . ELSE ADD NET 30

.. AND SAVE

. **
INPUT OPTION

ALLOWS ENTRY OF EITHER STARTINQ AND ENDINQ
ADDRESSES OR BYTE COUNT. SEP R5S WITH THE
STARTING ADDRESS IN REG SRC AND THE BYTE
COUNT IN REQ CNT. RETURNS WITH DF-l
IF SYNTAX ERROR EXISTS.

· . REG USED: ASL. SRC. CHAR. CNT
· . **

ORG UT71+0200H

OPTION SEP CALL,
DC (READHX)
GHI ASL,PHI SRC
QLO ASL,PLO SRC
LDI O.PLO ASL, PHI ASL
GHI CHAR.XRI SPACE
BZ CNTIN
XRI OODH
BNZ PRMPT2
SEP CALL;
DC (READHX)

BYTCNT GLO SRCiSTR SP
QLO ASL;SM.PLO CNT
QHI SRC.STR SP
QHI ASL;SMB;PHI CNT
BDF EXITOK

INVERT QLO ASL.STR SP
QLO SRC;PLO ASL
LDN SP;PLO SRC
QHI ASLISTR SP
QHI SRC;PHI ASL
LDN SP;PHI SRC
BR BYTCNT

CNTIN SEP CALL.

· .QET THE STARTINQ ADDRESS
· . AND SAVE IT

· . CLEAR THE INPUT REG.
· . FIRST NONSMI HEX MUST
· . BE A SPACE OR
· . A HYPHEN
· . ELSE SYNTAX ERROR

· . EXPECT ENDINQ ADDRESS

· . CALCULATE THE BYTE COUNT

· . CHECK FOR SRC < ASL

· . ELSE EXCHANQE THE CONTENTS OF
· . SRC AND ASL

· . RECALCULATE

DC (READHX) .. INPUT THE BYTE COUNT
QLO ASLISMI llPLO CNT
GHI ASL;SMBI O;PHI CNT
BDF EXITOK
INC CNT

EXITOK SEP R5 .. RETURN WHEN DONE

· . **1
FILL ROUTINE

LOADS MEMORY BEQINNINQ AT ADDRESS CONTAINED
IN SRC WITH DATA CONTAINED IN ASL.O FOR
THE NUMBER OF BYTES SPECIFIED BY CNT.
USER CALLABLE • USRFIL.

· . REG USED: ASL. SRC. CNT .CHAR
· . ******************************~***1

FILL SEP CALL;

Appendix G. Utility Program (UT71) Listing 113

8241 8303i
8243 D4i
8244 824Bi
8246
8246 C082ADi
8249 I
8249 IBI
824A 2Ai
824B 8D5BI
824D 8Ai
824E 3A49i
8250 9Ai
8251 3A49i
8253 D5i
8254
8254
8254
8254
8254
8254
8254
8254
8254
8254
8254 E2i
8255 8B52i
8257 8DF7i
8259 3A61i
825B 9B52i
825D 9D77i
825F 329Di
8261
8261 8B52i
8263 8DF7i
8265 9B52i
8267 9D77i
8269 3378i
826B OB5Di
826D 8Ai
826E 3A73i
8270 9Ai
8271 329Di
8273
8273 1131Di
8275 2Ai
8276 306Bi
8278
8278 8A52i
827A 8BF4ABI
827D 9A52i
827F 9B74BBi
8282 8A52i
8284 8DF 4ADi
8287 9A52i
8289 9D74BDi
828C 3B90i
828E
828E 309Ei
8290
8290 OB5Di
8292 8Ai
8293 3A98i
8295 9Ai
8296 329Di
8298
8298 2B2D2Ai
829B 3090i
829D
829D F6i
829E D5i
829F
829F
829F
829F
829F
829F
829F i

PRMPT2

NXTCEL

USRFIL

DC (READADl
SEP CALli
DC (uSRFILl

LBR RENTER

INC
DEC
GLO
GLO
BNZ
GHI
BNZ
SEP

SRC
CNT
ASLiSTR
CNT
NXTCEL
CNT
NXTCEL
R5

SRC

· . GET THE ADDRESSES

· . CALL THE MOVE

· . GOTO UT71 AND PROMPT

· . POINT TO NEXT CELL
· . REDUCE BYTE COUNT
· . LOAD THE DATAl USER
· . LOOP UNTIL COUNT z

· . EX IT THE CALL

ENTRY PT.
o

· .**

0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579 UP
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596

MOVE ROUTINE
COPIES A BLOCK OF MEMORY FORM ONE CONTINUOUS AREA
TO ANOTHER CONTINUOUS AREA IN MEMORY. THERE IS NO
RESTRICTION AS TO THE DIRECTION OF THE MOVE AND THE
AREAS MAY OVERLAP.
REG USED: SRC, DEST, CHAR, ~ CNT

· . **
USRMOV

DIRECT

MOVDN

MOVDN1

MOVUP

ERRGO

UP1

USRBYE

SEX SP
GLO SRCiSTR SP
GLO DESTiSM
BNZ DIRECT
GHI SRCiSTR SP
GHI DEST;SMB
BZ USRBYE

GLO SRC;STR SP
GLO DEST;SM
GHI SRC;STR SP
GHI DESTiSMB
BDF MOVUP
LDN SRCiSTR DEST
GLO CNT
BNZ MOVDN1
GHI CNT
BZ USRBYE

INC SRCi INC DEST
DEC CNT
BR MOVDN

GLO
GLO
GHI
GHI
GLO
GLO
GHI
GHI
BNF

CNT;STR SP
SRCIADDiPLO SRC
CNT;STR SP
SRC;ADC;PHI
CNT;STR SP
DEST;ADDiPLO
CNTiSTR SP
DEST;ADC;PHI
UP

BR USRBYE+1

LDN SRCiSTR
GLO CNT
BNZ UP1
GHI CNT
BZ USRBYE

DEST

SRe

DEST

DEST

· . TEST THE RELATIVE POSITION
· . OF SOURCE ~ DESTINATION
· . NOT EOUAL!
· . RETURN IF THEY ARE EOUAL

· . EX IT TO CALLER

· . ELSE TEST FOR UP OR DOWN
· . DIRECTION OF THE MOVE

· . DO THE MOVE DOWN AND
· . AND CHECK IF DONE

· . EX IT TO CALLER

· . ADJUST THE POINTERS
· . REDUCE THE BYTE COUNT
· . FINISHED

· . SET THE POINTERS TO THE
· . TOP OF MOVE AREAS

· . EXIT DF=1 IF OVERFLOW

· . DO THE MOVE UP
· . AND CHECK IF DONE

· . EX IT TO CALLER

DEC SRCiDEC DEST;DEC CNT .. ADJUST THE POINTERS
BR UP

SHR
SEP R5

· . SET DF=O IF A(FFFF
· . EX IT TO CALLER

· . **
STARTS A USER PROGRAM WITH SPECIFIED ADDRESS
IN REGISTER 0 AND X=O.

· . REG USED: CHAR, ASL, RO
· . ******************~***

114

B29F D4;
82AO 82FO;
82A2 FBOD;
82A4 CABOB~;
B2A7
B2A7 9DBO;
B2A9 BDAOI
B2AB EO;
B2AC DOl
B2AD
82AD I
B2AD
B2AD I
B2AD
B2AD FBB4AOI
B2BO FSB2BOI
B2B3 DOl
B2B4 FB34A3;
B2B7 FBBOB3;
B2BA COB3BF;
B2BD
B2BD I
B2BD I
B28D
B28D
B2BD
B2BD
B2BD I
B2BD I
B2BD D4;
B2BE B2001
B2CO FBOD;
B2C2 CABOB';
B2Cs I
B2Cs D41
B2C6 B3FOI
B2CB OA;
B2C9 001
B2CA D41
B2CB BOCD;
B2CD
B2CD
B2CD D41
B2CE B3FOI
B2DO 201
B2D1 00;
B2D2 I
B2D2 4BBFI
B2D4 D41
B2D5 B1AEI
B2D7 BAI
B2DB 3ADDI
B2DA 9AI
B2DB 32461
B2DD
B2DD 2A;
B2DE BBFAOFI
B2El 3AEB;
B2E3 D4;
B2E4 B3FOI
B2E6 3BI
B2E7 ODI
B2EB 00;
B2E9 30C';
B2EB I
B2EB F61
B2EC 33D21
B2EE 30CDI
B2FO
B2FO I
B2FO
B2FO
B2FO I
B2FO D4;
B2F1 B13B;
B2F3 33F01
B2F5 D'I

0'97
0'9B
0'99
0600
0601
0602
0603
0604
060~

0606
0607
060B
0609
0610
0611
0612
0613
0614
0615
0616
0617
061B
0619
0620
0621
0622
0623
0624
062~
0626
0627
062B
0629
0630
0631
0632
0633
0634
0635
0636
0637
063B
0639
0640
0641
0642
0643
0644
0645
0646
0647
064B
0649
06'0
0651
06'2
06'3
06'4
0655
0656
0657
0658
06'9
0660
0661
0662
0663
0664
0665
0666
0667
066B
0669
0670
0671
0672
0673

User Manual for the RCA MlcroDlsk Development System MS2000

RUN

RUN1

SEP CALL.
DC (READHX)
XRI CR
LBNZ ERROR

QHI ASL.PHI RO
GLO ASL;PLO RO
SEX RO
SEP RO

· . LOOK FOR STARTINg ADDRESS
· . FIRST NON-HEX MUST BE A
· .CR. ELSE SYNTAX ERROR

· . GET THE ADDRESS

· . AND gO!

· . ** ••••• * ••• * •• t
gENERAL REENTER ROUTINE

· .•• t

RENTER LDI A.0(RENTR1).PLO RO
LDI A. 1(RENTR1);PHI RO
SEP RO

RENTRl LDI A.O(PRMPT)IPLO PC
LDI A. 1 (PRMPT); PHI PC
LBR ENTER2

· . CAN BE ENTERED WITH X AND P
· . SET TO ANYTHINg AND RESETS
· . ALL THE SCRT REgISTERS

· .••• * •••• t
OUTPUT

FORMATS AND OUTPUTS MEMORY DATA BEGINNINg
AT THE ADDRESS IN REg SRC FOR THE NUMBER
OF BYTES SPECIFIED IN REg CNT

· . REg USED: SRC. CNT. CHAR
· .•• t

DISPLY SEP CALL.
DC (OPTION)
XRI CR
LBNZ ERROR

OUTPUT SEP CALL;
DC (OSTRNG);
DC LF
DC 0
SEP CALL.
DC (OUTU

SPCOUT SEP CALL;
DC (OSTRNG)
DC SPACE
DC 0

DATOUT LDA SRCIPHI CHAR
SEP CALL;
DC (TYPE2)
GLO CNT
BNZ NOT DON
gHI CNT
BZ PRMPT2

NOT DON DEC CNT
GLO SRCIANI LNECNT
BNZ SAMELN
SEP CALL;
DC (OSTRNG)
DC '1'
DC CR
DC 0
BR OUTPUT

SAMELN SHR
BDF DATOUT
BR SPCOUT

· . gET STARTING ADDRESS
· . TERMINATE WITH CR

· . START ON A NEW LINE

· . OUTPUT THE ADDRESS OF THE
· . CURRENTLY OPENED CELL

· . RETRIEVE THE CELL DATA

· . AND OUTPUT IT
· . DETERMINE IF THE
· . REQUESTED NO. OF BYTES
· . HAVE BEEN SENT
· . gET A NEW COMMAND

· . DEC THE BYTE COUNT

· . END OF CURRENT LINE?

· . WITHIN PAIR
· . ELSE BETWEEN PAIRS

· .••••••••••••••••••••• * ••••••••• * •••••••••••••••••••••••• ** •••••••••••••••• 4

FILLS ASL AS LONg AS HEX DIgITS ARE ENTERED
· .•••••••••••••••••••••••••• * •••••••• * ••• * ••••••••••••••••••••••••••••• ** •• *4

READHX SEP CALLI
DC (READAH)
.BDF READHX
SEP R5

Appendix G. Utility Program (UT71) Listing 115

82F6 0674
82F6 0675
82F6 0676
82F6 0677
82F6 0678
82F6 0679
82F6 0680
82F7 0681
82F7 D4; 0682
82F8 8303; 0683
82FA D4; 0684
S2FB 8254; 0685
82FD C38085; 0686
8300 C08246; 0687
8303 0688
8303 0689
8303 0690
8303 0691
8303 0692
8303 D4; 0693
8304 8200; 0694
8306 FB20; 0695
8308 3A60; 0696
830A ADBD; 0697
830C D4; 0698
830D 82FO; 0699
830F FBOD; 0700
8311 3A60; 0701
8313 D5; 0702
8314 0703
8314 0704
8314 0705
8314 0706
8314 0707
8314 D4i 0708
8315 813Bl 0709
8317 FBOD; 0710
8319 3A14; 0711
831B D5; 0712
831C I 0713
831C 0714
83lC 0715
831C 0716
831C ; 0717
831C F8EFAC; 0718
831F F880BCi 0719
8322 0720
8322 46BFi 0721
8324 322Bi 0722
8326 D4i 0723
8327 8198i 0724
8329 3022i 0725
832B 0726
832B D5i 0727
832C 0728
832C 0729
832C 0730
832C 0731
832C 0732
832C 0733
830!C 0734
830!C 0735
832C 0736
832C 9FFBOAi 0737
832F 3248, 0738
8331 9FFB13, 0739
8334 324C, 0740
8336 9FFBFF52, 0741
833A 34SA, 0742
833C 6622i 0743
833E 9FFBOD, 0744
8341 3A48, 0745
8343 F80ABF, 0746
8346 3036, 0747
8348 F80IF6, 0748
834B D5; 0749
834C F6, 0750

· .**
MOVE COMMAND
CALLS USRMOV AND REQUESTS SRC~DEST ADDR'S

· .**

MOVE

ORG UT71+02F7H

SEP CALL,
DC (READAD)
SEP CALLi
DC (USRMOV)
LBDF ERROR
LBR PRMPT2

· . GET SRC~DEST ADDR'S

.. DO THE MOVE
· . ERROR IF OVER FFFF ON MOVE
.. IF OK. GOTO UT71 PROMPT

· .**
SUBROUTINE TO GET THE ADDRESSES FOR OTHER ROUTINES

· .**

READAD SEP CALLi
DC (OPTION)
XRI SPACE
BNZ ERRI
PLO ASLiPHI ASL
SEP CALLi
DC (READHX)
XRI CR
BNZ ERRI
SEP R5

· . DETERMINE THE MODE
· . MUST BE A SPACE
· . ELSE ERROR
:.CLEAR INPUT REGISTER

· . INPUT THE CONSTANT
· . 'CR' TERMINATES
· . ELSE ERROR

· .**
FILLS ASL UNTIL A CARRIAGE RETURN IS ENTERED

· .**

READCR SEP CALLi
DC (READAH)
XRI CR
BNZ READCR
SEP R5

· .**
OSTRNG

· . **
MSGE

MSGEI

EXITM

LDI OEFHiPLO DELAY
LDI 080HiPHI DELAY

LDA LINKiPHI CHAR
BZ EXITM
SEP CALLi
DC (TYPED)
BR MSGEI

SEP R5

· .**
THIS ROUTINE PRINTS TO THE LINE PRINTER THE CONTENTS OF RF. 1.
·IT SUPRESSES PRINTING OF THE LINE FEEDS. AND REPLACES CARRIAGE
RETURNS WITH A CR-LF PAIR. NORMALLY. THIS ROUTINE RETURNS WITH
THE DFLAG SET. BUT IF THE CHARACTER IN RF. 1 WAS A DC3 (END OF
FILE). THE DFLAG WILL BE RESET ON RETURN.

· .**

PRNTRF GHI RFiXRI OAH
BZ EXITDF
GHI RF;XRI 13H
BZ EXITEF

PRINTI GHI RFIXRI OFFH,STR R2
Bl •
OUT 6iDEC R2
GHI RF,XRI ODH
BNZ EXITDF
LDI OAH,PHI RF
BR PRINTI

EXITDF LDI liSHR
EXIT

EXITEF SHR

· . IF LINE FEED. EXIT

· . IF DC3. EXIT

· . INVERT DATA
· . WAIT UNTIL READY
· . OUTPUT CHARACTER
· . CARRIAGE RETURN?
· . NO. EXIT
· . YES. PRINT A LINE FEED

.. SET DFLAG

· . RESET DFLAG

116

8340 O~I
834E
834E
834E
83~0 I
83~0 C082AO;
8360 C0808~;
8363 I
8363
8363 I
8363
8363 I
8363
8363
8363
8363
8363
8363 03;
8364 I
8364 E21
836~ 9673.
8367 8673.
8369 93B6;
836B B3A6;
8360 46B3;
B36F 46A31
8371 3063;
8373 I
8373
8373
8373 031
B374
B374 96B3;
8376 B6A3;
837B E212;
837A 72A6.
837C FOB61
837E 9F;
B37F
837F 3073;
8381 I
83Bl I
8381 I
8381 I
B3Bl I
93Bl I

B3Bl I
8381
8381 I
B3Bi I
83Bl FB2CA3;
83B4 F.B80B31
B3B7 30BF;
B3B9 I
B3B9 F80~A3.
83BC FBOOB3;
B3BF I
B3BF FBEFACI
B392 F880BCI
B39~ F883B4B~1
8399 FB64A41
839C F874A~1
839F F8FFA2;
83A2 F88CB2;
83A~ E203;
83A7
83A7
83A7 I
83A7
83A7 I
83A7
83A7
83A7
83A7
83A7
83A7
83A7

User Manual for the RCA MlcroDlsk Development System MS2000

07'1
07~2

EXIT

07~3 .. **
07~4 ORG UT71+03~DH
07~~
07~6 PRMPT~ LBR RENTER
07~7 ERRl LBR ERROR · . GENERAL FOR THIS PAGE
0758
07~9

0760
0761

· .**
· .DESC: STANDARD SEP CALL;.A(AND RETURN
· . REG USED: SP. PC. SEP CALL;.A(.RETURN.LINK. STACK

0762 .. **
0763
0764
0765
0766
0767
0768 EXITC
0769
0770 CALLR
0771
0772
0773
0774
077~

0776
0777
0778
0779
0780
0781 EXITR
0782
0783 RETR
0784
078~
0786
0787
0788
0789
0790
0791

ORG UT71+0363H

STANDARD CALL

SEP PC

SEX SP
GHI LINK;STXD
GLO LINK;STXD
GHI PC; PHI LINK
GLO PC;PLO LINK
LDA LINKiPHI PC
LDA LINK;PLO PC
BR EXITC

.. GO TO IT

· . SET R(X)
· . SAVE THE CURRENT LINK ON
· . THE STACK

· .PICK UP THE SUBROUTINE
· . ADDRESS

.. STANDARD RETURN

SEP PC

GHI LINKIPHI PC
GLO LINK;PLO PC
SEX SPI INC SP
LDXA;PLO LINK
LDXIPHI LINK
GHI CHAR

BR EXITR

· . RETURN TO MAIN PGM

· . SET THE STACK POINTER
· . RESTORE THE CONTENTS OF
.. LINK
· . PUT THE CONTENTS OF CHAR. 1 INTO D
· . BEFORE RETURNING

0792
0793
0794

.. ******************.***

079~
0796
0797
0798

REGISTER INITIALIZATION ROUTINE
INITIALIZES REGISTER C TO THE DELAY ROUTINE.
POINTER TO LOCATION 8CFF HEX. REG 4 TO CALL.
AND REG 3 AS PROGRAM COUNTER. FOR ENTERl REG
ENTER2 REG 3 MUST BE PRESET.
REG USED: PC. DELAY. CALL. RETURN. SP

REG 2 AS A STACK
REG :5 TO RETURN
3 IS OOO~. FOR

0799 .. **
0800
0801 INIT
0802
0803
0804

LDI A.O(START)IPLO 'PC
LDI A. l(START)IPHI PC
BR ENTER2

080~ ENTERl LDI A.O(PQMSRT)IPLO PC
0806 LDI A. 1 (PGMSRT); PHI PC
0807
0808 ENTER2
0809
0810
OBll
0812
0813
0814
081~

LDI
LDI
LDI
LDI
LDI
LDI
LDI
SEX

A.0(DELAY1);PLO DELAY
A. 1(DELAY1);PHI DELAY
A. 1 (CALLR)I PHI CALL;PHI
A.O(CALLR);PLO CALL
A.O(RETR);PLO RETN
A.O(TOPSTK);PLO SP
A. l(TOPSTK);PHI SP
SPISEP PC

.. DELAY ROUTINE

RETN

0816
0817
0818
0819

.. **

0820
0821
0822
0823
0824
0825

HEX BYTE INSERT ROUTINE
INSERTS HEX PAIRS INTO MEMORY STARTING AT A SPECIFIED
ADDRESS. AFTER A "I" ALL IS IGNORED UNTIL A RETURN
THEN A NEW ADDRESS IS EXPECTED. ANY NON-HEX DATA IS
IGNORED BETWEEN HEX PAIRS BUT NOTHING IS'PERMITTED
BETWEEN MEMBERS OF THE PAIR. ROUTINE IS TERMINATED
WITH A RETURN. EXCEPT AFTER A ".".
REG USED: ASL. SRC. CHAR

0826 .. **
0827

Appendix G. Utility Program (UT71) Listing 117

83A7 F800BDADI
83AB D4813BI
83AE 3BABI
83BO D482FOI
83B3 FB203A601
83B7 9DBBI
83B9 8DABI
83BB
83BB D4813BI
83BE 3BCAI
83CO D4813BI
83C3 3B601
83C' 8D'B1BI
83C8 30BBI
83CA I
83CA FBOD32'DI
83CE FB361
83DO 3ADBI
83D2 D483141
83D' D481A20A;
83D9 30A71
83DB
83DB FB171
83DD 3ABBI
83DF D483141
83E2 D481A20AI
83E6 30BBI
83E8
83EB I

83E8
83E8 I
83E8 I
83E8 E31
83E9 611
B3EA 011
83EB D'I
83EC I
83EC
83EC I
83EC I
83EC
83EC
B3FO I
B3FO C0831CI
B3F3 C083891
83F6 C0838FI
83F9 C082ADI
83FC C0815EI
83FF
83FF
83FF I
83FF
83FF 1

83FF
B3FF I
83FF 1
83FF
83FF 1
83FF
83FF
83FF I
83FF I
83FF
83FF 1
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF I
83FF 1
83FF I
83FF
83FF

0828 INSERT
0829 INSERT1
0830
0831
0832
0833
0834
0835
0836 NXTCHR
0837
0838
0839
0840
0841
0842
0843 NTDATA
0844
084'
0846
0847
0848
0849
08'0 COMCHK
08:U
0852
0853
08'4
0855

O-:>ASL. 1, ASL. 0
CALL READAH
BNF INSERT1
CALL READHX 1
· XOR.' , I BNZ ERR 1
ASL. l-:>SRC. 1
ASL.O-:>SRC.O

CALL READAH
BNF NTDATA
CALL READAH
BNF ERRl
ASL.O-:>.SRC; INC
BR NXTCHR

SRC

· XOR. CRIBZ PRMPT'
· XOR. ('I '. XOR. CR)
BNZ COMCHK
CALL READCR
CALL TVPE61DC LF
BR INSERT

· XOR. (" '. XOR. 'I ')
BNZ NXTCHR
CALL READCR
CALL TVPE61DC LF
BR NXTCHR

· . CLEAR INPUT REGISTER

· . IgNORE INPUTS UNTIL FIRST HEX
· . THEN INPUT UNTIL FIRST NON-HEX
· . IT MUST BE A SPACE

· . INPUTS WERE THE STARTING ADDRESS

· . IF NEXT INPUT IS HEX
· . GET A SECOND
· . WHICH MUST ALSO BE HEX
· . AND STORE HEX PAIR INTO MEMORY
· . LOOK FOR MORE

· . IF INPUT WAS CR, LEAVE

.. IF INPUT WAS 'I "
· . IGNORE EVERYTHING UNTIL CR
· . ADD L I NEFEED
· . START NEXT LINE WITH NEW ADDRESS

.. IF INPUT WAS ',',
· . IGNORE EVERYTHING UNTIL CR
· . ADD L I NEFEED
· . START NEW LINE WITHOUT NEW ADDRESS

08'6 .. **
0857 SELECT GROUP 1
08'8 .. **
0859
0860 TPOFF
0861
0862
0863
0864

SEX PC
OUT BDSEL
DC TRMINL
SEP R5

086' .. ***~**********
0866 UTILITV ENTRV TABLE
0867 .. **
0868
0869
0870
0871 OSTRNG
0872 INITl
0873 INIT2
0874 gOUT71
0875 CKHEX
0876
0877

LBR
LBR
LBR
LBR
LBR

ORG UT71+03FOH

MSGE
ENTER 1
ENTER2
RENTER
CKHXE

0878 . . **
0879 .. DISK 1/0 ROUTINES
0880 .. **
0881
0882 .. REgISTER EOUATES
0883
0884
0885
0886
0887
0888
0889
0890

DMAPTR
INTPC
IOCBPTR
CMDCNT
TRKCNT
PARA

EOU
EGU
EGU
EGU
EGU
EGU

0891 .. RAM EOUATES
0892
0893
0894
0895
0896

RAMADR
IOCB
STAO

EGU
EGU
EGU

o
1
7
8
9
OFH

UT71+800H
8FOOH
8F10H

0897 .. MICRODOS EOUATES
0898
0899
0900
0901
0902
0903
0904

STK
CAL
RET
ECHOTP
ENTRV
MICRO

EGU
EGU
EGU
EGU
EGU
EGU

OBFFFH
0918CH
0919CH
0910AH
09040H
OA843H

· . DMA POINTER
· . INTERRUPT PC
· . IOCB POINTER
· . NO. OF COMMAND WORDS
· . TRACK COUNT DURING LOAD
· . PARAMETER BLOCK POINTER

· . BEGINNING OF RAM
· . LOADER IOCB
· . STATUS 0

· . TOP OF STACK
· . CALL ADDRESS
· . RETURN ADDRESS
· . ECHO STATUS
· . ENTRY ADDRESS INTO
· . 'MICRODOS' NAME IN

MICRODOS
OP SYS

118

83FF I

83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF ;
83FF ;
83FF
83FF
83FF ;
83FF ;
83FF
83FF
83FF
83FF I

83FF
83FF I

S3FF
83FF I

83FF I

83FF
83FF
83FF
B3FF I

83FF
B3FF I

83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF
83FF ;
83FF
83FF ;
83FF
83FF ;
83FF
83FF
8400
8400 D4813B3BOO.
8405 82AF92BF.
8409 8D73.
840B FAFCCA808S.
8410 AOF890BO.
8414 F824A9.
8417 F884B9.
841A D48499.
8410 302E.
841F
841F
841F
8421
8421 C08254.
8424
8424
8424
8424
8424 01021C.
8427 020024.
842A 030020.
842D 00;
842E D4859C.
8431 8D3A7EI
8434 49.
8435 BD.
8436 49AD.
8439 D4859Cl
843B 8D3A7El

0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981

User Manual for the RCA MicroDisk Development System MS2000

· .DISK BOARD I/O EQUATES

DISKSEL
DMASEL
TERMCNT
NECSTA
COMMAND
DATA
BYTECNT

EQU 1
EOU 4
EOU 4
EOU 4
EOU 5
EOU 5
EOU 7

· . NEC COMMANDS

SPCMD
RCCMD
SKCMD
RDCMD
WTCMD
SISCMD
INVCMD

EOU 03H
EOU 07H
EOU OFH
EOU 46H
EOU 45H
EOU 08H
EOU OOH

· . DISK DATA CONSTANTS

BC
N
EDT
GPL3
DTL
FM
SRT
HLT
HUT
DMA
DMANOP
CRCREAD
DMAO
DMAI
RCA
NEC
MAXTRK
MAXSEC

EQU
EOU

EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU
EOU

04H
02H
09H
1BH
OFFH
40H
10H
3CH
OFH
OOH
OOH
01H
02H
03H
01H
08H
70
09

.. BOARD SELECTION
· . DMA DIRECTION SELECT
· . TERMINAL COUNT/ABORT
· . MAIN STATUS REGISTER
· . COMMAND/DATA REGISTER
· . COMMAND/DATA REGISTER
· . BYTE COUNT SELECT

· . SPECIFY
· . RECALIBRATE
.. SEEK
.. READ
· . WRITE
· . SENSE INTERRUPT STATUS
· . INVALID COMMAND

· . BYTE COUNT
.. N
.. EDT
.. GPL3
" DTL
· . DENSITY
· . STEP RATE: 15 MS
· . HEAD LOAD TIME: 60 MS
· . HEAD UNLOAD TIME: 240 MS
· . DMA OPERATION
· . NO DMA OPERATION
· . CRC READ
· . DISK WRITE
· . DISK READ
· . GROUP SELECT
· . GROUP SELECT 8
· . NUMBER OF TRACKS ON SONY
· . 9 SECTORS / TRACK

· . ***-**** ••••

BOOT
LOAD

LOAD MICRODOS

ORG UT71+0400H

CALL READAH.BNF BOOT
SP.O->PARA.OISP. l->PARA. 1
ASL. O->@-
. AND.OFCH.LBNZ ERROR
->DMAPTR.0190H->DMAPTR.l
A.O(TKTABL)->TRKCNT.0
A'. 1 (TKTABLl->TRKCNT. 1
CALL SPECIFY
BR LOADl

· . GET DRIVE .. (WAIT UNTIL HEX "'.E.Y)
· . ENTER FROM "L". ASSUME DRIVE = 0
· . DRIVE .. IS @ PARA
· . ERROR IF DRIVE> 3
· . BEGINNING OF MICRODOS AREA

· . TABLE FOR MICRODOS LOAD
· . SET UP DRIVE PARAMETERS

· .**

ORG UT71+421H

LBR USRMOV · . FOR COMPATIBILITY WITH UT62
· . MOVE COMMAND

· . **

TKTABL DC 1.2.28
DC 2.0.36
DC 3.0.32
DC 0

LOADl CALL SEEKA
ASL.OIBNZ NOLOAD
eTRKCNT!

LOAD2 ->ASL. 1
eTRKCNT!->ASL.O
CALL SEEKA
ASL.O.BNZ NOLOAD

· . TABLE CONTAINS TRACK ... STARTING
· . SECTOR .. (-1). AND BYTE COUNT (X12B)
· . FOR ALL MICRODOS LOAD
· . 0 ENDS TABLE
· . FIRST SEEK IS RECAL (ASL.l WAS 0)
· . EXIT IF ABNORMAL TERM.

· . SETUP TRACK ..
· . AND SECTOR ..
· . SEEK ALSO SETS UP FOR READ
· . EXIT IF ABNORMAL TERM.

Appendix G. Utility Program (UT71) Listing 119

B43E FBOIA7;
B441 F1IBFB71
B444 49S71
B446 D4BSFB;
B449 BD3A7EI
B44C 493A3S1
B44F
B44F I
B44F
B44F I
B44F FB43A71
B4S2 FBABB71
B4SS E71
B4S6 47;
B4S7 F31
B49 17;
B4S9 F31
B4SA FB47;
B4SC 3A7EI
B4SE
B4SE I
B45E I
B45E
B45E D4B3FOI
B461 ODOAOAOOI
B465 FBFFA2;
B46B FBBFB21
B468 FBBCA4;
B46E FB9CASI
B471 FBOAA71
B474 FB91B41
B477 B51
B47B B71
B479 9E57;
B47B C09040.
B47E
B47E
B47E I
B47E
B47E D4B3FO;
B4Bl OA4D4943S21
B4B6 4F444F53204E;
B4BC 4F54204C4F41;
B492 444S4400;
B496 COB2ADI
B499 I
B499 I
B499
B499
B499 I
B499 FB04A7 I
B49C FBBFB71
B49F E7;
B4AO FB3C731
B4A3 FBIF731
B4A6 FB03731
B4A9 FBFF731
B4AC FB00731
B4AF FB03ABI
B4B2 D4B4CD;
B4B5 DSI
B4B6 I
B4B6 I
B4B6 I
B4B6 I
B4B6 I
B4B6 FB03A71
B4B9 FBBFB7 I
B4BC E71
B4BD B0731
B4BF FB07731
B4C2 27;
B4C3 . FB00731
B4C6 FB02ABI
B4C9 D4B4CDI
B4CC D51
B4CD I

0982
09B3
O9B4
09BS
09B6
09B7
09BB

A.O(IOCB+l)-)IOCBPTR.O
A. l(IOCB+l)-)IOCBPTR. 1
eTRKCNT!->eIOCBPTR
CALL READA
ASL.OIBNZ NOLOAD
eTRKCNT!IBNZ LOAD2

· . POINT TO BYTE COUNT IN
· . LOAD IT FRDI'I TABLE
.. GO READ
· . EXIT IF ABNORI'IAL TERM.
· . REPEAT FOR ALL TRACKS

IOCB

0989 ..•••••••••••••• * ••• * ••• * •••• ** ••••••••••••••••••••••• *****.*****.* •• **** •••• *
0990
0991
0992 I'IICTST
0993
0994
099S
0996
0997
099B
0999
1000
1001

A.O(MICROI-)IOCBPTR.O
A. 1 (MICRO)-)IOCBPTR. 1
SEX IOCBPTR
eIOCBPTR!
XOR
INC IOCBPTR
XOR
XRI 47H
BNZ NOLOAD

· . POINT AT 'MICRODOS' IN OP SYS

· . GET '1'1' AND POINT X AT 'I'
· . EXCLUSIVE DR '1'1' AND 'I'
· . POINT AT 'C'
· . EXCLUSIVE OR '1'1/1' AND 'C'
· . WAS 'MIC' THERE?
· .OP SYS IS NOT IN MEMORY

1002 ..•• * ••••• *.**.*** •• * •••••• *.* ••• *
1003
1004
100S LOADOK
1006
1007
l00B
1009
1010
1011
1012
1013
1014
1015
1016
1017
101B

CALL OSTRNG
DC ODOAH.OAH.OO
A.O(STK)-)SP.O
A. 1 (STK)-)SP. 1
A.O(CALI-)CALL.0
A.O(RET)-)RETN.0
A.O(ECHOTP)-)IOCBPTR.O
A. 1 (CALI-)CALL. 1
-)RETN. 1
-)IOCBPTR. 1
AUX. l-)eIOCBPTR
LBR ENTRY

· . SET UP OP SYS STACK POINTER.
· . CALL. RETURN. AND ECHO STATUS

· .GO TO OPERATING SYSTEM

1019 ..•• * •••• * •••••••••• * ••••••• ** •••••• * ••• * •••••••••••••••••••••••••••••••••••••
1020
1021 NOLOAD CALL OSTRNG
1022 DC LF. 'I'IICRODOS NOT LOADED·.O

1023
1024

LBR RENTER

· . PRINT NOT LOADED MESSAGE

· .GO BACK TO MONITOR (FIXES SPI

102S ..••••••••••••••••• * ••
1026
1027
102B
1029 SPECIFY
1030
1031
1032
1033
1034
103S
1036
1037
103B
1039

SPECIFY SETS UP DRIVE PARAMETERS

A.0(IOCB+41-)IOC8PTR.0
A. 1 (IOCB+41-)IOCBPTR. 1
SEX· IOCBPTR
LDI (HLT.OR.OI'IAll-)e­
LDI (SRT.OR.HUTII-)e­
SPCMD-)e-
OFFH-)e-
DMANOp-)e-
3-)CMDCNT.0
CALL CMD
EXIT

· . RESET POINTER

· . HEAD LOAD TIME AND DMA
· . STEP RATE AND HEAD UNLOAD TIME
· . SPEC I FY COt'l/'lAND
· . CLEAR BYTE COUNT
.. DMANOP
· . BYTES IN COMI'IAND SEGUENCE

1040 ..••
1041
1042
1043
1044
1045 RECAL
1046
1047
104B
1049
1050
10Sl
1052
1053
1054

RECAL RECALIBRATES DRIVE: ENTER WITH DRIVE ~ IN DMAPTR.O
WAIT MUST BE USED AFTER RECAL

A.0(IOCB+3)-)IOCBPTR.0
A. 1 (IOCB+31-)IOCBPTR. 1
SEX IOCBPTR
DI'IAPTR.o-)e-
RCCMD-)e-
DEC IOCBPTR
DI'IANOP-)e-
2-)CMDCNT.0
CALL CHD
EXIT

· . POINT AT UNIT IN IOCB

· . HEAD AND UN IT
· .RECALIBRATE COMMAND

.. DMANOP

1055 ..••

120

84CD
84CD
84CD
84CD
84CD E3.
84CE 610B.
B4DO 3EDA.
B4D2 6CFE3BD2.
B4D6 6S0B.
84DB C4C4i
B4DA 6CFE3BDA.
84DE FE3BE4.
B4El 6D30DB.
B4E4 36D2.
84E6 F800A7.
84E9 F88FB7.
84EC E7.
84ED 64.
84EE 67.
B4EF E2.
84FO 6CFE3BFOI
84F4 E7.
84FS 6S1
B4F6 28.
84F7 883AEF i
84FA E3.
84FB 6101.
84FD DS.
84FE
84FE
84FE
84FE
B4FE
8SOE
8S0E COB32C 1
8S11
8S11
BSH
8S11
8S11
8511
8S11 .F8FFB71
8514 E3.
8515 6108i
8517 361Di
BS19 27971
8S1B 3A141
8S1D FB10A71
BS20 FBBFB71
8S23 F880S71
BS26 3E6Di
8528 1
8S28 E7i
8529 6CFE3B291
BS2D FA203A37I
8531 E31
8532 6S08;
8534 C43028;
8537
8S37 6DS2;
8S39 60C4i
BS3B 6CFE3B3B;
8S3F FE3B4S1
BS42 6D30391
854S 1
8S4S FB03A71
8S48 FBBFB7i
8S4B 02F3FA031
BS4F 3A111
85S1 E31
8SS2 02FACOi
BSSS 326Di
B5S7 6S00.
BSS9 C4C4i
BSSB 6CFE3BSBi
8SSF 6401i
BS61 6400.

10S6
10S7
10SB
1059
1060
1061
1062
1063
1064
106S
1066
1067
1068
1069
1070
1071
1072
1073
1074

CMD

CMD2

CMD4
CMDI

CMD3

User Manual for the RCA MlcroDlsk Development System MS2000

COMMAND ROUTINE OUTPUTS COMMAND WORDS FROM e IOCB FOR NUMBER
SPECIFIED IN CMDCNT.O. IT CLEARS SERVICE REGUEST FROM 76S FIRST.
AND CLEARS OUT ANV RESULTS THAT ARE PENDINg.

SEX PC
OUT DISKSELiDC NEC
BN3 CMDI
INP NECSTAi*2iBNF CMD2
OUT DATAiDC SISCMD
NOPiNOP
INP NECSTAi*2iBNF CMDI
*2;BNF CMD3
INP DATA.BR CMD4
B3 CMD2
A.O(IOCB)->IOCBPTR.O
A. 1(IOCB)->IOCBPTR. 1
SEX IOCBPTR
OUT DMASEL
OUT BVTECNT

· . SELECT DISK gROUP
· . IF 765 WANTS SERVICE
· . WAIT FOR RGM
· .DO SENSE INTERRUPT CO/'I/'IAND
· . WAIT FOR 76S
· . WAIT FOR RGM
· . IF 76S WANTS TO OUTPUT STATUS.
· . gET STATUS BVTES UNTIL CLEAR
· . LOOP IF SERVICE STILL WANTED
· . POINT AT IOCB

· . DIRECTION OF DMA
· . LATCH BVTE COUNT

1075 CMD6
1076 CMD5
1077

SEX SP
INP NECSTA.*2.BNF CMD5
SEX IOCBPT~

· . WAIT FOR RGM

107B
1079
1080
1081
1082
10B3
10B4
lOBS
10B6
10B7
10BB
1089
1090
1091
1092
1093
1094
109S
1096
1097
109B
1099
1100
1101
1102
1103
1104
110S
1106
1107
110B
1109
1110
1111
1112
1113
1114
IllS
1116
1117
1118
1119
1120
1121
1122
1123
1124
112S
1126
1127
112B
1129
1130
1131
1132

OUT COMMAND
DEC CMDCNT
CMDCNT.O. BNZ CMD6
SEX PC
OUT DISKSEL.DC RCA
EXIT

· . OUTPUT COMMAND WORDS
· . UNTIL COUNTER. 0

· . SELECT gROUP 1

.. ***

FOR COMPATABILITY WITH UT21 LINE PRINTER ROUTINE

'ORg UT71+050EH

LBR PRNTRF
. . **

WAIT ROUTINE WAITS FOR SERVICE REGUEST FROM 765. TIMES OUT IF NONE.
IF RESULT OF READ/WRITE. INPUTS STATUS BYTES. IF RESULT OF SEEK OR
RECAL. DOES SENSE INTERRUPT STATUS FIRST. IF WRONg DRIVE. REPEATS.
USES CRC DMA CYCLE TO CLEAR DMA REGUEST IN CASE OF SERIOUS OVER-RUN.

WAIT OFFH->IOCBPTR. 1
WAIT2 SEX PC

OUT DISKSELiDC NEC
B3 WAITt
DEC IOCBPTR. IOCBPTR. 1
BNZ WAIT2

WAITI A.O(STAO)->IOCBPTR.O
A. 1 (STAO)->IOCBPTR. 1
BOH->eIOCBPTR
BN3 ENDWAIT

WAIT5 SEX IOCBPTR
WAIT3 INP NECSTA;*2.BNF WAIT3

ANI 20H;BNZ WAIT4

WAIT4
WAIT8
WAIT6

SEX PC
OUT COMMAND. DC SISCMD
NOP; BR WAITS

INP DATA.->esp
IRX.NOP
INP NECSTA.*2.BNF WAIT6
*2. BNF WAIT7
INP DATA.BR WAITB

WAIT7 A.0(IOCB+3)->IOCBPTR.0
A. 1 (IOCB+3)->IOCBPTR. 1
esp. XOR.e. AND. 3
BNZ WAIT
SEX PC
esp. AND. OCOH
BZ ENDWAIT
OUT COMMAND. DC INVCMD
NOP.NOP

WAIT9 INP NECSTA.*2;BNF WAIT9
OUT DMASEL.DC CRCREAD
OUT DMASEL.DC DMANOP

· . SET UP TIMER

· . SERVICE DISK IF EF3
.. IF NO REGUEST IN 1.3 SEC.
· . (2. S SEC IF 2. 5 MHZ CLK)
· . SET UP RESULT POINTER

· .EXIT WITH TERM ERROR

· . START RESULT SERVICE
· . WAIT FOR RGM
· . IF BUSY BIT LOW (END OF SEEK)

· .DO SENSE INTERRUPT CO/'I/'IAND
· . AND SERVICE THAT RESULT

· . FIRST STATUS IS STO (SAVE)

· . WAIT FOR RGM
· . IF DIRECTION BIT STILL • IN.
· . INPUT STATUS AND LOOK AgAIN

· . WHEN ALL RESULTS INPUT. CHECK
· . IF DRIVE NUMBER FROM STO MATCHES
· . THAT FROM COMMAND. REPEAT IF NO

· . IF COMMAND TERMINATION (FROM STO)
· . WASN'T NORMAL
· .DO INVALID COMMAND
· . (WANTS ONE RESULT)
· . WAIT FOR RGM
· . ENABLE PHONY DMA IN CIRCUIT
.. (INPUTS RESULT IF DRG HUNG HIGH

Appendix G. Utility Program (UT71) Listing 121

B563 C4C4;
B565 6CFE3B6';
B569 FE3B6D;
B56C 6D;
B56D 6101;
B56F D5;
B570
B570
B570
B570 I
B570
B570
B570
B570
B'70
8570
B570
8'70
B'70
B570 I
B570
B570 I
B570
B570 FBOOBDI
B573 l'F4FAEI
B576 OFADI
BS7B 2F2FI
8S7A F80273FB40'21
BSBO FB07A71
BSB3 BDF7B7 I
BSB6 12BE77;
B5B9 3BBEI
85BB AE97AD;
BSBE 9D7EBDI
8'91 FOF673F076S21
8S97 271
BS9B B73AB3;
BS9B 121
8S9C I
BS9C FBOAA71
BS9F FBBFB7 I
B5A2 E71
BSA3 FBFF731
BSA6 FB1B731
B5A9 F809731
BSAC FB02731
BSAF BDFC01731
B5B3 FB00731
BSB6 9D731
BSIB OF731
BSBA FB03ABI
BSBD 9D3AC41
BSCO 2BI
BSC1 FB071
B5C3 CB,
B5C4 FBOF731
BSC7 FB0473;
BSCA FBOO571
B5CD D4B4CD;
B5DO D4B511 I
B5D3 FBBFB7 I
B5D6 FB10A7;
B5D9 07FACO;
B5DC 32ED;
85DE 07FA10;
85El FE'2;
BSE3 07FAOB;
BSE6 FEFEFEF 1;
B5EA C6FB02;
BSED ADDS;
B5EF
B'EF
B5EF
BSEF
B5EF
B5EF
B5EF I

1133
1134 WAIT10
1135
1136
1137 ENDWA IT
1138
1139

NOP;NOP
INP NECSTA;*2;BNF
*2; BNF ENDWAIT
INP DATA
OUT DISKSEL;DC RCA
EXIT

,.FROM DMA OVER-RUN)
WAIT10 · . WAIT FOR ROM

· . IF DRO DIDN'T INPUT RESULT
· . DO IT ANYWAY
· . BACK TO TERMINAL QROUP
· .EXIT DISK SERVICE ROUTINE

1140 .. **
1141
1142 .. SEEK ROUTINE
1143
1144
114'
1146
1147
114B
1149

· . WHEN ENTERED AT SEEKST, CALCULATES TRACK, SECTOR NO. FROM. PARA +1 AND +2.
· . CAN ALSO BE ENTERED AT SEEKA WITH ASL.l = TRACK NO .• ASL.O • SECTOR NO.-l.
· . (STILL USES .PARA FOR UNIT .)
· . DOES RECAL IF TRACK = O. SETS UP IOCB FOR LATER READS OR WRITES

11 SO
l1S1
1152
1153
1154, ..
1155
1156 SEEKST
l1S7
115B
l1S9
1160
1161
1162 SUBLP
1163
1164
116S
1166 SHRES
1167
116B
1169
1170
1171
1172 SEEKA
1173
1174
117S
1176
1177
117B
1179
11BO
11Bl
11B2
11B3
11B4
11BS
11B6
11B7
llBB SEEK5
11B9
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202 SEEK40
1203

PARAMETER BLOCK POINTER: e PARA - UNIT NO.
e +1 = PSN HIQH BYTE. e +2 = LOW BYTE
e +3 = BUFFER ADDRESS H.B .• e +4· L.B

SEEKST USES IOCBPTR.O FOR COUNTER,. 1 FOR TEMP STORE,
AUX. 0 AS DIVIDEND H.B., ASL.l FOR TRACK •• ASL.O FOR SECTOR. (-1)
ASL.O HOLDS TERMINATION RESULT AT END

O->ASL. 1
INC PARA;ePARA!->AUX.O
ePARA->ASL.O
DEC PARAIDEC PARA
2->(t-;40H->(tSP
7->IOCBPTR.0
ASL.o-e->IOCBPTR.l
INC SP;AUX.o-"e
BM SHRES
->AUX.O; IOCBPTR. l->ASL.O
ASL. 1*2"->ASL. 1
e/2->e-;e/2"->esp
DEC IOCBPTR
IOCBPTR.O;BNZ SUBLP
INC SP

A.0(IOCB+l0)->IOCBPTR.0
A. 1(IOCB+10)->IOCBPTR. 1
SEX IOCBPTR
DTL->e-
QPL3->e-
EOT->e-
N-::>e-
ASL.O+l-::>(t-
OOH-::>e-
ASL. 1-::>e-
.PARA->e-
3->CMDCNT.0
ASL. 1;BNZ SEEKS
DEC CMDCNT
RCCMD
LSKP
SKCMD-::>e-
BC->.-
DMANop->eIOCBPTR
CALL CMD
CALL WAIT
A. 1 (STAO)-::>IOCBPTR, 1
A.O(STAO)-::>IOCBPTR.O
eIOCBPTR. AND. OCOH
BZ SEEK40
@IOCBPTR.AND. 10H
*2->@SP
eIOCBPTR. AND. OBH
*2*2*2.0R.e
LSNZ;02H
-::>ASL.O;EXIT

· . CLEAR FUTURE RESULT
· . PSN HIGH BYTE
· . AND LOW BYTE

· . DIVISOR • 9 SHIFTED LEFT 6 TIMES
· . SUBTRACT AND SHIFT 7 TIMES

· . DIVIDEND - DIVISOR
· . IF NOT -

· . STORE NEW DIVIDEND
· . SHIFT NO BORROW INTO
· . SHIFT DIVISOR RIGHT

· . LOOP 7 TIMES
· .FIX STACK POINTER

.. POINT AT IOCB DTL VALUE

.. DTL

.. GPL3

.. EDT

.. N
· . SECTOR + 1
.. HEAD 0
· . TRACK
· . HEAD AND UNIT
.. 3 COMMAND BYTES IN SEEK
· . IF TRACK IS 0,
· . ONLY 2 COMMAND BYTES
· . AND RECAL COMMAND INSTEAD

· . OF SEEK COMMAND
· . BYTE COUNT
· . DMANOP

· . POINT AT RESULT STATUS

· . NORMAL TERMINATION ?
· . EXIT IF YES
· . GET DRIVE FAIL BIT
· .LINE UP FOR STATUS
· . GET DRIVE INACTIVE BIT
· . COMBINE WITH ABOVE
· . IF NEITHER, GET BAD TERM BIT
· . LOAD RESULT STATUS. AND EXIT

RESULT

1204 .. ***.
1205
1206
1207
120B
1209

.'. READ SECTOR ROUTINES (ALL MUST BE PRECEDED BY SEEK OR SEEKA)

.. READTR READS USING DMA ADDRESS FROM'. PARA AS DESCRIBED IN SEEK .

. . HIGH NIBBLE OF UNIT. INDICATES. OF SECTORS TO READ (.512B/S).

122

B5EF 1
B5EF D4B61D46031
B5F4 D51
B5F5
B5F5
BSF5 1
B5F5 D4B62946031
B5FA 'D51
BSFB
SSFB 1

B5FB 1
B5FB D4B6344603;
B600 D51
B601 1
B601
8601 1

B601 1
B601
B601 1
B601 1
B601 D4B61D45021
B606 30141
B60B 1
860B
B60B 1
B60B D4B62945021
B60D 30141
.B6OF 1

B60F
B60F 1

B60F D4B63445021
B614 1
B614 1
B614 1
B614 BD3A1CI
B617 D4B6341
B61A 46011
B61C D51
B61D 1
B61D 1
B61D 1
B61D 1
B61D FB01A7;
B620 FBBFB71
B623 OFFAFOI
B626 F6F657;
B629 1
B629
B629 1
B629 lF1F1FI
B62C 4FBOI
B62E OFAO;
B630 2F2FI
B632 2F2FI
B634
B634 1
B634
B634
B634
B634
B634
B634 FB02A71
B637 FBBFB71
B63A 46571
B63C 27271
B63E 46571
B640 FB09ABI
B643 D4B4CDI
B646 D4B511 1
8649 FB10A71
B64C FBBFI71
B64F 07FACOI
B652 327BI
.,654 07FA101
B657 FE521
B659 47FAOBI
B6K FEFEFEF 1521

User Manual for the RCA MlcroDlsk Development System MS2000

1210
1211 READTR CALL SETBCIDC RDCMD.DMAI
1212 EXIT
1213
12'14
1215

· .READST READS 1 SECTOR. USING DMA ADDRESS e PARA

1216 READST CALL SETRWIDC RDCMD.DMAI
1217 EXIT
121B
1219
1220

· .READA READS 1 SECTOR. DOES NOT SETUP DMA POINTER

1221 READA CALL DORWIDC RDCMD.DMAI
1222 EXIT
1223 .. **.
1224
1225 · . WRITE SECTOR ROUTINES (ALL MUST BE PRECEDED BY SEEK OR SEEKA)
1226 · . ALL DO CRC READ AFTER WRITE IF WRITE TERMINATED OKAY
1227
122B · .WRITTR WRITES MULTIPLE SECTORS AS DESCRIBED FOR READTR
1229
1230 WRITTR CALL SETBCIDC WTCMD.DMAO
1231 BR CKFCRC
1232
1233
1234

· .WRITST WORKS LIKE READ~T

1235 WRITST CALL SETRWIDC WTCMD.DMAO
1236 BR CKFCRC
1237
123B
1239

· .WRITA WORKS LIKE READA

1240 WRITA CALL DORW;DC WTCMD.DMAD
1241
1242
1243
1244 CKFCRC
1245
1246
1247 WRITEX

· . COMMON CRC CHECK

ASL. 01 BNZ WR ITEX
CALL DORW
DC RDCMD.CRCREAD
EXIT

.. IF TERMINATED OKAY

.. DO READ CRC

124B .. ***
1249
1250
1251
1252 SETBC
1253
1254
1255
1256
1257
125B
1259 SETRW
1260
1261
1262
1263
1264
1265
1266
1267
126B
1269
1270
1271 DORW
1272
1273
1274
1275
1276
1277
127B
1279
12BO
1281
1282
12B3
12B4
12B5
12B6

· . COMMON BYTE COUNT SETUP ENTER POINT

A.O(IoCB+l)-)IoCBPTR.O
A. 1 (IoCB+l)-)loCBPTR. 1
ePARA. AND. OFOH
12/2-)eloCBPTR

· . POINT AT BC IN IoCB
· . RETRIEVE • OF SECTORS AND STUFF
· .BC (. BYTES - 12B X BC)

· . COMMON SETUP DMA POINTER ENTER POINT

INC PARA; INC PARA; INC
ePARA!-)DMAPTR.1
ePARA-)DMAPTR.O
DEC PARA;DEC PARA
DEC PARAIDEC PARA

PARA · . POINT AT HI BUFFER ADDRESS BYTE
· . SET UP DMA OUTPUT BUFFER POINTER

· . POINT BACK AT UNIT BYTE

· . COMMON DO READ OR WRITE ROUTINE

· . CALL WITH IMMEDIATE BYTE - COMMAND. NEXT BYTE - DMA OPERATION
· . CAN DO ANY 9 WORD COMMAND. LEAVES ASL.O WITH RESULT STATUS
· . MUST HAVE SEEK DONE FIRST FOR ENTIRE SETUP

A.0(IoCB+2)-)loCBPTR.0
A. 1 (IoCB+2)-)IoCBPTR. 1
eLINK!-)eloCBPTR
DEC loCBPTR;DEC loCBPTR
eLINK!-)eloCBPTR
9-)CMDCNT.0
CALL CMD
CALL WAIT
A.O(STAO)-)loCBPTR.O
A. 1 (STAO)-)loCBPTR. 1
eIOCBPTR.AND.OCOH
BZ DoRWEX
eIOCBPTR.AND.l0H
*2-)eSp
eIDCBPTR!. AND. OBH
*2*2*2.OR.e-)eBP

.. PT TO COMMAND IN IoCB
· . AND. LOAD IT
· . POINT TO DMA DIRECTION
.. AND LOAD IT
.. 9 OUTPUTS FOR COMMAND
.. GoDoIT
· . AND GET RESULTS

· . POINT TO STATUS 0 BYTE
· . IF NDRMAL TERMINATION
· . GO EXIT
· . PUT DRIVE FAIL (STAO BIT 4)
· . INTO STATUS BIT 5
.. DR DR. INACTIVE (STAO BIT 3)
· . INTO STATUS BIT 6

Appendix G. Utility Program (UT71) Listing 123

B661 07FA02;
B664 FEFEFEFI52;
B669 47FA20;
866C F6F6F1521
B670 07FA40;
B673 FEF1;
B675 C6FB02;
B67B ADD51
B67A
B67A I
B67A
B67A I
B67A
B67A I
B67A
B67A BDCBI
B67C FBOI73;
B67F D4B4991
8682 D4B73241;
B686 BDAO;
B688 9DBO;
B68A D4B732441
B6SE 8D521
8690 FF0433DF I
B694 B2AFI
8696 92BFI
B69B 221
B699 F800BDI
B69C D4B59Ci
B69F BD3AD5;
86A2 D4B73254I
86A6 8D731
86AB FF4633DFi
B6AC D4B735i
86AF 53i
8bBO 2DI
86B 1 8DFF0933DF I
86B6 1202BDi
86B9 82AFI
86BB 92BFi
86BD lFI
86BE D4B59Ci
86Cl 8D3AD5i
86C4 12121
86C6 0232CEI
86C9 D4B5FBI
86CC 30Dli
t;l6CE D4B60F I
86Dl 8DC2S2ADi
B605 D483F01
B6D8 ODOA444953481
S6DE 001
86DF C08085;
.86E2 I
B6E2
86E2 I
B6E2 I

86E2
86E2 I
B6E2 I
B6E2 D4873247 i
86E6 8D731
B6EB D4B732501
d6EC 8DFA07C2BOB51
86F2 F960AEI
B6F5 O4B735421
B6F9 121
B6FA 61221
86FC F8D3731
86FF 8D73i
B701 8E521
8703 D21
B704 COB2ADi
870.7
B707 I
B707 I
B707 D4B73247I

12B7
12BB
1289
1290
1291
1292
1293
1294 DORWEX
1295
1296

.IoCBPTR.AND.02H

.2.2.2.oR .• ->.SP
eIoCBPTR!.AND.20H
/2/2. DR. e->esp
eIOCBPTR. AND. 40H
.2.OR.e
L.SNZi02H
->ASL.. 01 EX IT

· . DR WRITE PROT. (STAl BIT 1)
· . INTO STATUS BIT 4
· . DR CRC ERROR (STAI BIT 5)
· . INTO STATUS BIT 3
· .OR FOUND DDM (STA2 BIT 6)
· . INTO STATUS BIT 7
· . SET TERM. ERROR IF NONE ABOVE
· . STORE STATUS BYTE. EXIT

1297 ..••
129B KEYBOARD READ / WRITE ROUTINE
1299
1300
1301

USES SEEKA. WRITA. READA. RECAL.. ENDSTRQ. CKSTRG

1302 WDISK
1303 RDISK
1304
1305
1306
1307
130B
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
132B
1329
1330
1331
1332
1333
1334 CALWRT
1335 CKRDWR
1336 DERROR
1337

ASL..OIL.SKP
l->e-
CALL. SPECIFY
CAL.L. CKSTRGIDC 'A'
ASL..O->DMAPTR.0
ASL.. 1->DMAPTR. 1
CALL. CKSTRGIDC 'D'
ASL..o->esp
-4IBDF WREREX
SP.O->PARA.O
SP. 1->PARA. 1
DEC SP
O->ASL.. 1
CAL.L SEEKA
ASL..OiBNZ DERROR
CAL.L. CKSTROIDC 'T'
ASL..o->e­
-MAXTRKIBDF WREREX
CAL.L. ENDSTRG .
DC'S'
DEC ASL.
ASL..O-MAXSECIBDF WREREX
INC sPleSP->ASL.. 1
SP.O->PARA.0
SP. l->PARA. 1
INC PARA
CALL SEEKA
ASL..OIBNZ DERROR
INC SPIINC SP
eSPIBZ CALWRT
CALL. READA
BR CKRDWR
CALL. WRITA
ASL.OIL.BZ RENTER
CAL.L oSTRNG
DC CR. LF. 'DISK'. 0

WREREX LBR ERROR

· . (ASL. WAS ZEROED)
· . STORE READ / WRITE FL.AQ
· . INITIAL.IZE 765
· . PROMPT FOR ADDRESS

· . STORE DESTINATION ADDRESS
· . PROMPT FOR DRIVE.
· . STORE FOR RECAL. AND SEEK
· . ERROR I~ DRIVE. TOO HIQH

· . POINT PARA e DRIVE.

· . SET FOR TRACK 0
· .DO SEEK (DOES RECAL.l
· .EXIT IF TERM ERROR
· . PROMPT FOR TRACK.
· . STORE FOR SEEK L.ATER
· . ERROR IF TRACK. TOO HIQH
· . PROMPT FOR SECTOR.
· . LAST PROMPT. END INPUTS WITH CR
· . SEEK WANTS SECTOR. -1
· . ERROR IF SECTOR. TOO HIQH
· . RETRIEVE TRACK.

· . POINT PARA e DRIVE. AQAIN
· . AND SEEK (SETS UP FOR READ/WRITE)
· .EXIT IF TERM ERROR

· . IF READ FLAQ SET.
.. DO IT

· . OTHERWISE DO WRITE
· . SUCCESSFUL EXIT IF TERM OKAY

· . OTHERWISE PRINT DISK ERRDR

1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
134B
1349
1350
1351
1352
1353
1354
1355
1356
1357
135B
1359
1360
1361
1362

...
KEYBOARD INPUT/OUTPUT ROUTINE

USES CKSTRG.ENDSTRO. USES AUX. 0 FOR TEMP STORE

OUTPUT ROUTINE

oUTPoRT CALL CKSTRQ;DC 'Q'
ASL.O->.-
CALL CKSTRQIDC 'P'
ASL.0.AND.07HILBZ ERROR
. DR. 60H->AUX. 0
CALL ENDSTRGIDC 'B'
INC SP
OUT DISKSELIDEC SP
OD3H->.-
ASL.O->.­
AUX.O->.SP
SEP SP
LBR RENTER

INPUT ROUTINE

INPORT CALL CKSTRQIDC '0'

· . PROMPT FOR QRoUP •
· . STORE FOR LATER
· . PROMPT FOR PORT.
· . GET PORT •• ERROR IF 0
· . MAKE 6X INSTR .• STORE
· . PROMPT FOR OUTPUT BYTE
· . POINT SP • QROUP •
· . OUTPUT IT. FIX STACK
· . PUT RETURN (SEP R3) ON STACK
.. PUT OUTPUT BYTE ON STACK
· . OUTPUT INSTRUCT. ON STACK
· .Do OUTPUT COMMAND
· . BACK TO UTILITY (FIXES SP. QROUP .)

· . PROMPT FOR QROUP •

124

B70B BD731
B70D D4B735501
B711 BDFA07C2BOB51
B717 F96B521
B71A 121
B71B 61221
B71D FBD3731
B720 E31
B721 D21
B722 221
B723 AEI
B724 61011
B726 D4B1A20Al
B72A BEBFl
B72C D481AEI
B72F COB2ADI
8732
B732
8732 I
B732
8732 I
8732 I
B732
B732
8732 I
B732 FB20CBI
8735 F80D731
B738 46BFI
B73A D4B1 A41
B73D D4B1A23DI
B741 FBOOADBDI
B745 D4B2FOI
B74B 121
B749 F31
B74A CABOB51
B74D D51
B74E
B74E I
B74E
B74E
B74E I
B74E I
B74E F800A7521
B752 FBBOB71
8755 47F4521
B75B 97FFBBI
1375B 3B551
B75D 02326F I
B760 D4B3FOI
B763 OA524F4D201
876B 424144001
B76C COB2ADI
876F I
876F FBBOB71
B772 271
B773 E71
B774 FB5573i
B777 97FFB71
B77A 3A741
877C 171
B77D FOFBFF571
B7B1 72FBAAI
B7B4 327DI
8786 271
B7B7 97FFBOI
B7BA 3A9DI
B7BC D4B3FOI
B7BF OA4D454D4Fl
B794 5259204F4BOOI
B79A COB2ADI
879D i

B79D D4B3FOI
B7AO OA52414D201
B7A5 4241442C20501
B7AB 001
B7AC 97BFI
B7AE D4B1AEI

User Manual for the RCA MlcroDlsk Development System MS2000

ASL.O->It-
CALL ENDSTRQIDC 'P'
ASL.0.AND.07HILBZ ERROR
. OR. 6BH->ltSP
INC SP
OUT BDSELIDEC SP
OD3H->It-
SEX PC
SEP SP
DEC SP
->AUX.O
OUT BDSELlDC TRMINL
CALL TYPE61DC LF
AUX.0->CHAR.1
CALL TYPE2
LBR RENTER

· . STORE FOR LATER
· . PROMPT FOR PORT •.
· . ERROR IF INPUT PORT. 0
· . MAKE INPUT INST .• STORE
· . POINT SP It QROUP •
· . OUTPUT IT. FIX SP
· . PUT RETURN (SEP R3) ON STACK
· . (THIS SO INPUT WON'T CLOBBER SP)
· . DO INPUT
· . FIX SP
· . STORE INPUT FOR LATER
· . SEL. TERMINAL

· . AND DISPLAY BYTE

1363
1364
1365
1366
1367
136B
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
13BO
13B1
13B2
13B3
13B4
13B5
13B6
13B7
13BB
1389
1390
1391
1392
1393
1394
1395
1396
1397
139B
1399
1400
1401
1402
1403
1404
1405
1406
1407
140B
1409
1410
1411
1412

. . ***
HEX STRINQ INPUT ROUTINE

TYPES PROMPT (FROM @ LK!) •
ZEROES ASL. INPUTS CHA~ECTERS UNTIL NON-HEX INPUT
C~STRQ QOES TO ERROR IF NOT SPACE
ENDSTRQ GOES TO ERROR IF NOT CR

CKSTRQ " I LSKP
ENDSTRQ CR->e­

ItLINK!->CHAR.l
CALL TYPE
CALL TYPE6iDC '.'
0->ASL.0.ASL.1
CALL READHX
INC SP
. XOR. It
LBNZ ERROR

CKSTEX EXIT

· . LOAD SPACE
· . OR CR FOR CHECK

· . TYPE PROMPT

· . ZERO INPUT REQISTER
· . INPUT UNTIL 1ST NON HEX

· . IF DOESN'T MATCH ABOVE
· . ABORT

.. **4
MONITOR SELF TEST ROUTINE

DOES CHECKSUM OF PROM. WRITES AND READS 55 AND AA TO ALL RAM

1413
1414

TEST

TROMl

1415 RAMTEST
1416
1417
141B RAMI
1419
1420
1421
1422 RAM2
1423
1424
1425
1426
1427
1428
1429

A.0(UT71)->IOCBPTR.0.ltSP
A. 1(UT71)->IOCBPTR. 1
ItIOCBPTR!+It->ltSP
IOCBPTR. l-A. 1 (RAMADR)
BM TROMI
ItSPIBZ RAMTEST
CALL OSTRNQ
DC LF, 'ROM BAD'.O

LBR RENTER

A. 1 (UT71)->IOCBPTR. 1
DEC IOCBPTR
SEX IOCBPTR
55H->.-
IOCBPTR. I-A. 1 (RAMADR-l)
BNZ RAMI
INC IOCBPTR
It. XOR.OFFH->ltIOCBPTR
e!. XOR.OAAH
BZ RAM2
DEC IOCBPTR
IOCBPTR. l-A. 1 (UT71)
BNZ BRAMM
CALL OSTRNQ
DC LF. 'MEMORY OK'.O

1430 LBR RENTER
1431
1432 BRAMM CALL OSTRNQ
1433 DC LF. 'RAM BAD. P'.O

1434
1435

IOCBPTR. l->CHAR. 1
CALL TYPE2

· . ZERO CHECKSUM.
· .PT TO START OF PROM
· . ADD ALL PROM TOQETHER

· . LOOP UNTIL IT HITS RAM
· . IF CHECK NOT • 0

· . PRINT BAD ROM

· .EXIT TO UTILITY

· . POINT ~UST BELOW PROM

· .FILL ALL RAM WITH 55
· .PT AT ~UST ABOVE PROM
· . MAKE 55 -> AA AND RESTORE

· . CHECK AA WROTE

· . IF FIRST FAILURE IS IN PROM

· . PRINT OKAY

· . AND EXIT

· . BAD RAM MESSAGE

· . PRINT PAQE •

Appendix G. Utility Program (UT71) Listing 125

B7Bl COB2AD;
B7B4
B7B4
B7B4 I
B7B4 I
B7B4 I
B7DB I
B7DB COB14Fl
B7DB COB:5EFI
B7DE COB6011
87El COB:5FB;
B7E4 COB60Fl
B7E7 COMa61
B7EA C08:59C;
B7ED COB4CDI
B7FO COB2ADI
B7F3 COB:5U;
B7F6 COB:5701
B7F9 COB:5F:5;
B7FC COB60Bl
B7FF FFI
BBOO
BBOO
0000

1436 LBR RENTER .. AND EXIT
1437 .. ** ••
143B
1439
1440
1441
1442

.. DISK 110 ENTRY TABLE AND ROM TEST CHECK BYTE

ORg UT71+007DBH

1443 CFRETS LBR CFRET
1444 READTRS LBR READTR
144:5 WRITTRS LBR WRITTR
1446 READAS LBR READA
1447 WRITAS LBR WRITA
144B RECALS LBR RECAL
1449 SEEKAS LBR SEEKA
14:50 CMDS LBR CMD
14:51 RENTERS LBR RENTER
14:52 WAITS LBR WAIT
14:53 SEEKS LBR SEEKST
14:54 READS LBR READST
14':5 WRITS LBR WRITST
1456 CHECK DC OFFH
14'7
14'B END

· . COMMAND FILE RETURN POINT
· . READ MULTIPLE SECTOR. SET DMA FROM PARA.
· . WRITE AS ABOVE
· . READ SECTOR USINg ALREADY SET DMA POINTER
· . WRITE SECTOR AS ABOVE
· .RECALIBRATE. USE DMAPTR.O FOR DR .•
· . SEEK BY TRACK. SECTOR IN ASL •• PARA. DR .•
· . OUTPUT COMMAND BYTES
· .UT71 RENTRY ADDRESS
· . SERVICE FDC AFTER COMMAND
· . SEEK BY PSN IN PARA. BLOCK
· . READ SECTOR. SET DMA FROM PARA. BLOCK
· . WRITE SECTOR AS ABOVE
· . CHECK SUM BYTE (SET AFTER ASSEMBLY)

126 _______ _
User Manual for the RCA MicroDisk Development System MS2000

C R 0 S S R E FER E N C E LIS TIN G

SYMBOL ADDR DEF REFERENCES

ADDOUT 80AF 0236 0229
ADRPTR 0008 0042
ASL OOOD 0049 0151 0151 0225 0226 0252 0256 0374

0376 0378 0379 0382 0477 0478 0479 0479
0488 0490 0493 0494 0496 0497 0504 0505
0528 0602 0603 0697 0697 0828 0828 0833
0834 0840 0955 0976 0978 0979 0981 0986
1156 1158 1162 1165 1166 1166 1179 1181
1184 1202 1244 1294 1302 1306 1307 1309
1314 1316 1318 1322 1323 1324 1329 1335
1347 1349 1355 1363 1365 1393 1393

AUX OOOE 0051 0119 0309 0319 0347 0355 1015 1157
1163 1165 1350 1356 1373 1376

BC 0004 0928 1189
BDSEL 0001 0073 0303 0861 1368 1374
BEgIN 81C3 0438 0439 0460
BOOT 8400 0953 0181 0953
BRAMM 879D 1432 1427
BS 0008 0065
BYTCNT 8217 0487 0499
BYTECNT 0007 0914 1074
CAL 918C 0900 1009 1012
CALL 0004 0036 0141 0202 0223 0236 0240 0246 0248

0254 0263 0266 0268 0475 0484 0502 0519
0521 0597 0626 0631 0635 0639 0645 0655
0670 0682 0684 0693 0698 0708 0723 0810
0811 1009 1012

CALLR 8364 0770 0810 0811
CALWRT 86CE 1334 1331
CFREAD 8FFD 0030 0348
CFRET 814F 0355 1443
CFRETS 87D8 1443
CHAR OOOF 0052 0144 0228 0245 0262 0265 0316 0339

0345 0353 0359 0364 0367 0420 0425 0436
0444 0444 0452 0480 0644 0721 0788 1376
1390 1434

CHARAC 0002 0083 0352 0360 0441
CHECK 87FF 1456
CKDEC 812F 0332 0368
CKFCRC 8614 1244 1231 1236
CKHEX 83FC 0875
CKHXE 815E 0367 0875
CKRDWR 86Dl 1335 1333
CKSTEX 874D 1398
CKSTRG 8732 1388 1305 1308 1317 1346 1348 1362
CMD 84CD 1060 1038 1053 1191 1277 1450
CMDl 84DA 1066 1062 1066
CMD2 84D2 1063 1063 1069
CMD3 84E4 1069 1067
CMD4 84D8 1065 1068
CMD5 84FO 1076 1076
CMD6 84EF 1075 1080
CMDCNT 0008 0881 1037 1052 1079 1080 1183 1185 1276
CMDS 87ED 1450
CNT OOOA 0043 0488 0490 0504 0505 0507 0527 0529

0531 0558 0560 0564 0567 0569 0571 0573
0580 0582 0585 0647 0649 0652

CNTIN 8231 0502 0481
COMCHK 83DB 0850 0845

Appendix G. Utility Program (UT71) Listing 127

COMMA 002C 0063
COMMAND 0005 0912 1078 1112 1128
CR OOOD 0067 0238 0311 0312 0599 0628 0658 0700

0710 0843 0844 1337 1389
CRCREAD 0001 0939 1131 1246
CRLF ODOA 0070 0129 0204
CTLWRD 001D 0082 0306
DATA 0005 0913 1064 1068 1115 1119 1136
DATOUT 82D2 0644 0663
DECODE 80AO 0228 0258
DELAY OOOC 0046 0243 0260 0299 0301 0718 0719 0808

0809
DELAYl 80EF 0285 0300 0808 0809
DELAY2 80FO 0287 0289
DERROR 86D5 1336 1316 1329
DEST OOOD 0050 0546 0549 0553 0555 0557 0563 0572

0572 0574 0574 0579 0585
DEXIT 80EE 0283 0288
DIRECT 8261 0552 0547
DISKSEL 0001 0908 1061 1082 1099 1137 1353
DISPLV 82BD 0626 0165
DMA 0000 0937 1032
DMAI 0003 0941 1211 1216 1221
DMANOP 0000 0938 1036 1051 1132 1190
DMAO 0002 0940 1230 1235 1240
DMAPTR 0000 0884 0957 0957 1048 1260 1261 1306 1307
DMASEL 0004 0909 1073 1131 1132
DORW 8634 1271 1221 1240 1245
DORWEX 8678 1294 1282
DTL OOFF 0932 1175
ECHOTP 910A 0902 1011
ECHOTST 8109 0309
ENDSTRG 8735 1389 1320 1351 1364
ENDWAIT 856D 1137 1106 1127 1135
ENTERl 8389 0805 0872
ENTER2 838F 0808 0616 0803 0873
ENTRY 9040 0903 1016
EOF 0013 0068
EOT 0009 0930 1177
ERRl 8360 0757 0696 0701 0832 0839
ERRGO 828E 0577
ERROR 8085 0200 0148 0234 0600 0629 0686 0757 0956 1338

1349 1365 1397
EXITC 8363 0768 0777
EXITDF 8348 0748 0738 0745
EXITEF 834C 0750 0740
EXITM 832B 0727 0722
EXITOK 823F 0508 0491 0506
EXITR 8373 0781 0790
FILL 8240 0519 0171
FM 0040 0933
FND 8169 0373 0335
GETDTA 80C5 0254
GOUT71 83F9 0874
GPL3 001B 0931 1176
HEXl 81DA 0452 0448
FILE: UT70. XRF DISK: UT70 WORK DISK I R.H. ISHAM

HEX2 81E3 0457 0454
HEX3 81E5 0459 0450
HLT 003C 0935 1032
HUT OOOF 0936 1033
INIT 8381 0801 0114

128 User Manual for the RCA MicroDisk Development System MS2000

INITl 83F3 0872
INIT2 83F6 0873
INPORT 8707 1362 0189
INSERT 83A7 0828 0167 0848
INSERT1 83AB 0829 0830
INTPC 0001 0885
INVCMD 0000 0924 1128
INVERT 8223 0493
IOCB 8FOO 0894 0982 0983 1029 1030 1045 1046 1070

1071 1121 1122 1172 1173 1252 1253 1271
1272

IOCBPTR 0007 0886 0982 0983 0984 0992 0993 0994 0995
0997 1011 1014 1015 1029 1030 1031 1045
1046 1047 1050 1070 1071 1072 1077 1097
1101 1101 1103 1104 1105 1108 1121 1122
1161 1162 1165 1168 1169 1172 1173 1174
1190 1193 1194 1195 1197 1199 1252 1253
1255 1271 1272 1273 1274 1274 1275 1279
1280 1281 1283 1285 1287 1289 1291 1405
1406 1407 1408 1415 1416 1417 1419 1421
1422 1425 1426 1434

L:.F OOOA 0066 0228 0311 0312 0316 0421 0633 0847
0853 1022 1337 1375 1412 1429 1433

LINES 0014 0075
LINK 0006 0038 0155 0157 0721 0771 0772 0773 0774

0775 0776 0783 0784 0786 0787 1273 1275
1390

LNECNT OOOF 0074 0653
LOAD 8405 0954 0179
LOAD 1 842F 0975 0961
LOAD2 8435 0978 0987
LOAD OK 845E 1005
LOOP 800C 0103 0112
MAXSEC 0009 0945 1323
MAXTRK 0046 0944 1319
MICRO A843 0904 0992 0993
MICTST 844F 0992
MOVDN 826B 0557 0565
MOVDNl 8273 0563 0559
MOVE 82F7 0682 0169
MOVUP 8278 0567 0556
MSGE 831C 0718 0871
MSGEl 8322 0721 0725
N 0002 0929 1178
NEC 0008 0943 1061 1099
NECSTA 0004 0911 1063 1066 1076 1109 1117 1130 1134
NEXT 815B 0364 0356
NFND 8137 0337 0333 0370
NOECHO 812A 0319 0317
NOLO AD 847E 1021 0976 0981 0986 1000
NOTDON 82DD 0652 0648
NTDATA 83CA 0843 0837
NULL 0000 0062
NXCHAR 81CA 0444
NXTCEL 8249 0:?26 0530 0532
FILE: UT70. XRF DISK: UT70 WORK DISK I R. H. ISHAM

NXTCHR 8388 0836 0841 0851 0854
OLDDTA 80B7 0243 0233
OPTION 8200 0475 0627 0694
OSTRNG 83FO 0871 0128 0203 0237 0249 0269 0310 0632 0640

0636 1005 1021 1336 1411 1428 1432
OUTl 80CD 0260 0241 0636

Appendix G. Utility Program (UT71) Listing 129

OUTPORT 86E2 1346 0187
OUTPUT 82C5 0631 0660
PARA OOOF 0889 0954 0954 1157 1157 1158 1159 1159

1182 1254 1259 1259 1259 1260 1261 1262
1262 1263 1263 1311 1312 1325 1326 1327

PC 0003 0035 0146 0283 0285 0299 0302 0344 0614
0615 0768 0773 0774 0775 0776 0781 0783
0784 0801 0802 0805 0806 0815 0860 1060
1081 1098 1111 1125 1370

PGMSRT 0005 0076 0805 0806
PRINTl 8336 0741 0747
PRMPT 8034 0127 0614 0615
PRMPTl 8096 0207 0231
PRMPT2 8246 0524 0483 0650 0687
PRMPT5 835D 0756 0843
PRNTRF B32C 0737 1090
PROMPT 002A 0077 0130 0313
PTER OOOC 0047
PTR OOOC 0048
RAMl 8774 1418 1420
RAM2 877D 1422 1424
RAMADR 8800 0893 1408 1419
RAMTEST 876F 1415 1410
RCA 0001 0942 1082 1137
RCCMD 0007 0919 1049 1186
RDCMD 0046 0921 1211 1216 1221 1246
RDISK 867C 1303 0185
RDWAIT 8153 0357 0358
READ 813E 0344 0142 0315
READ1 8145 0350 0351 0354
READA 85FB 1221 0985 1332 1446
READAD 8303 0693 0520 0683
READAH 813B 0342 0671 0709 0829 0836 0838 0953
READAS 87El 1446
READCR 8314 0708 0711 0846 0852
READHX 82FO 0670 0224 0255 0476 0485 0503 0598 0672 0699

0831 1394
READS 87F9 1454
READST 85F5 1216 1454
READTR 85EF 1211 1444
READTRS 87DB 1444
RECAL 84B6 1045 1448
RECALS 87E7 1448
RENTER 82AD 0611 0207 0524 0756 0874 1023 1335 1358 1378

1413 1430 1436 1451
RENTERS 87FO 1451
RENTR1 82B4 0614 0611 0612
RET 919C 0901 1010
RETN 0005 0037 0810 0812 1010 1013
RETR 8374 0783 0812
REXIT 8139 0339 0365 0384
ROWLEN 0028 0078
RUN 829F 0597 0175
RUNl 82A7 0602
FILE: UT70. XRF DISK: UT70 WORK DISK I R.H. ISHAM

SAMELN 82EB 0662 0654
SCAN 8048 0147 0150
SCANl 8041 0144 0120
SCNL TR 803E 0141
SEEK40 85ED 1202 1196
SEEK5 85C4 1188 1184
SEEKA 859C 1172 0975 0980 1315 1328 1449

130 User Manual for the RCA MlcroDlsk Development System MS2000

SEEK AS 87EA 1449
SEEKS 87F6 1453
SEEKST 8570 1156 1453
SEMCOL 003B 0064
SETBC 861D 1252 1211 1230
SETRW 8629 1259 1216 1235
SHRES 858E 1166 1164
SISCMD 0008 0923 1064 1112
SKCMD OOOF 0920 1188
SP 0002 0034 0144 0153 0153 0200 0201 0307 0359

0361 0375 0381 0440 0442 0487 0489 0493
0495 0496 0498 0544 0545 0548 0552 0554
0567 0569 0571 0573 0770 0785 0785 0813
0814 0815 0954 0954 1007 1008 1075 1115
1123 1126 1160 1163 1167 1170 1198 1284
1286 1288 1290 1309 1311 1312 1313 1324
1324 1325 1326 1330 1330 1331 1352 1353
1356 1357 1366 1367 1368 1371 1372 1395
1405 1407 1410

SPACE 0020 0069 0270 0480 0641 0695
SPCMD 0003 0918 1034
SPCOUT 82CD 0639 0664
SPECIFY 8499 1029 0960 1304
SRC OOOB 0044 0225 0226 0245 0252 0256 0257 0262

0265 0477 0478 0487 0489 0494 0495 0497
0498 0526 0528 0545 0548 0552 0554 0557
0563 0568 0568 0570 0570 0579 0585 0644
0653 0833 0834 0840 0840

SRT 0010 0934 1033
STAO 8F10 0895 1103 1104 1193 1194 1279 1280
START 802C 0118 0801 0802'
STATUS 0003 0084 0350 0357 0438
STK BFFF 0899 1007 1008
SUBLP 8583 1162 1169
SUBST 8099 0223 0173
TAB2 805D 0164 0145
TERMCNT 0004 0910
TEST 874E 1405 0177
TEXIT 819F 0412 0445 0447
TIMALC 80FE 0299 0118
TKTABL 8424 0971 0958 0959
TMPRG1 0007 0039
TMPRG2 0008 0040
TMPRG3 0009 0041
TOPSTK 8CFF 0057 0200 0201 0813 0814
TPOFF 83E8 0860 0127
TPTR OOOB 0045 0145 0146 0147 0147 0148 0155 0157
TRKCNT 0009 0888 0958 0959 0977 0979 0984 0987
TRMINL 0001 0079 0862 1374
TROMl 8755 1407 1409
TVl 81B9 0430 0427
TV2 81CO 0434 0422
TV3 81C2 0436 0424 0432
FILE: UT70. XRF DISK: UT70 WORK DISK I R.H. ISHAM

TVPE 81A4 0420 0405 1391
TVPE2 81AE 0425 0247 0264 0267 0646 1377 1435
TVPE5 81AO 0414 0408
TVPE5D 819C 0408
TVPE6 81A2 0417 0152 0847 0853 1375 1392
TVPED 8198 0405 0724
UARTBD 0001 0080 0304
UP 8290 0579 0575 0586

Appendix G. Utility Program (UT71) Listing 131

UPl 8298 0585 0581
URTCTL 0003 0081 0305
USR8VE 829D 0588 05~0 0561 0577 0583
USRFlL 8248 0528 0522
USRMOV 8254 0544 0685 0966
UT71 8000 0056 0087 0091 0116 0198 0281 0297 0330

0403 0406 0410 0473 0680 0754 0764 0869
0893 0951 0964 1088 1405 1406 1415 1426
1441

UT71A 8026 0114 0109
WAIT 8511 1097 1124 1192 1278 1452
WAIT 1 8510 1103 1100
WAIT10 8565 1134 1134
WAIT2 8514 1098 1102
WAIT3 8529 1109 1109
WAIT4 8537 1115 1110
WAlT5 8528 1108 1113
WAlT6 8538 1117 1117
WAIT7 8545 1121 1118
WAIT8 8539 1116 1119
WAIT9 8558 1130 1130
WAITS 87F3 1452
WDlSK 867A 1302 0183
WRAM 8C1F 0058 0100 0101
WREREX 86DF 1338 1310 1319 1323
WRITA 860F 1240 1334 1447
WRITAS 87E4 1447
WRITEX 861C 1247 1244
WRITS 87FC 1455
WRITST 8608 1235 1455
WRITTR 8601 1230 1445
WRITTRS 87DE 1445
WTCMD 0045 0922 1230 1235 1240

132 __ _

!:

" Q
)(
w
:J:
I-
Z
II(
0
ii: -z
" -en
t-
en
~
...I

0

0 NUL

1 SOH

2 STX

3 ETX

4 EOT

5 ENQ

6 ACK

7 BEL

8 BS

9 HT

A LF

B VT

C FF

0 CR

E SO

F SI

NOTES:

Appendix H
ASCII - Hex Table

MOST SIGNIFICANT HEX DIGIT

1 2 3 4 5

OLE SP 0 @ P

DC1 1 A Q

DC2 " 2 B R

DC3 # 3 C S

DC4 $ 4 0 T

NAK % 5 E U

SYN & 6 F V

ETB 7 G W

CAN (8 H X

EM) 9 Y

SUB * J Z

ESC + K [

FS < L \

GS = M]

RS > N

US / ? 0

(1) Parity bit In most significant hex digit not Included.

6

\

a

b

c

d

e

f

g

h

k

m

n

0

(2) Characters In columns 0 and 1 (as well as SP and DEL) are non-printing.
(3) Model 33 Teletypewriter prints codes In columns 6 and 7

as If they were column 4 and 5 codes.

7

P

q

r

s

t

u

v

W

x

Y

z

DEL

82CS-34738

133

Appendix 1-
Connection List for Terminal Interface Cable

COP 185516
EIA R5I3IC Terminal

PI PI Signal PI
I 1 Ground 6 0 • 5
2 2 Data to MS2000 7 0 0 4

3 3 Data to Terminal 8 0 0 3
10 7 Signal Ground 9 0 0 2
7 5 Clear to Send 10 0 0

6 6,8 Data Set Ready-
Held High by MS2000

Note: P2 is a 25-pin D connector, male.
(Adaptor supplied to convert to female.)

1M __ _

Appendix J - Adding Generic Devices

Three tables are used when generic devices are added
to the RCA Microdisk Development System. These
tables are:

I. Generic Device Table
II. Control Block Table

III. Device Driver Table
The Generic Device Table contains the two-character

mnemonic for the added device and a pointer to the
control block, the Control Block Table, the Device
Descriptor Flags, and the unused area for user informa­
tion. The Device Driver Table contains three long
branches to routines that control the turning on and off
of the device and the character input or output instruc­
tions. Only the Generic Device Table entry for the
added device must be in a specific place. Only three
devices may be added to the system.

II. Control Block Entry

o
USER INFO

AREA
DEVICE

2

DRIVER
ADDRESS
USER INFO

4

AREA
DEVICE

6

DESCRIPTOR
FLAGS

USER INFO
7

II
AREA

Notes: Bit 5 in the first byte of the IOCB must be set to
zero before the IOCB is opened for added generic
devices.

Register F must have the same value exiting
these routines as when the routine was entered.

I. Generic Table Entry

o

2

4

Note: a zero must be placed after the last entry to
terminate the Generic Device Table.

1 BIT 6=FOR OUTPUT
BIT 5=FOR INPUT
BIT 3=CONSOLE DEVICE
BIT I=DISK DEVICE

Appendix J. Adding Generic Devices

III. Device Driver Table Entry

o

3

6

9

An example follows for adding to the system a line
printer with the mnemonic PT

Generic Table

Generic Table

9S39H P T
ADDRESS OF

CONTROL BLOCK
9S3DH __ ..!!. __ J!. __

Control Block

ORG $+2
DC LPJP
ORG $+2
DC40H
ORG $+4

Device Driver Address

- LP1P LBR PTON--.r
LBR PTOFF
LBRPTIO --.

New Device # 1

New Device #2

. . Output device flag

0- RD.O
SEP RS

1 0- RD.O I
...... -=SE=P RS .

0- RD.O
SEP RS

135

136

Appendix K
MicroDisk Development System

MS2000 Specifications

System Components

20-slot Industrial Microboard Chassis
CDPI8S605 Microboard Computer less memory
CDPI8S618 Microboard Memory configured as 32-
kilobyte RAM
CDPI8S628 Microboard Memory configured as 30
kilobyte RAM plus 2-kilobyte ROM
CD P 18S651 Microboard Disk Controller
MSIM 50 Dual Microfloppy Disk Drive Module
MSIM 40 Power Supply
UT71 Monitor Software, ROM-based (On
CDPI8S628)
CDPI8S516 EIA RS232C Terminal Interface Cable

Memory

RAM
32 kilobytes at OooOH - 7FFFH
30 kilobytes at 8800H - FFFFH

ROM
2 Kilobytes UT71 at 8000H - 87FFH

Disk Drive and Controller

Dual Microfloppy Disk Drive Module MSIM 50
Occupies 8 Microboard slots
Capacity: 322.5 kilobytes per drive
Tracks: 70
Sectors: 9 per track, 512 bytes per sector
Transfer rate: single density 250 kilo bits per

second
double density 500 kilo bits per
second

Step rate time: 15 ms
Step settling time: 15 ms
Head load time: 60 ms
Latency: 50 ms (average)
Rotational speed: 600 rpm
Powerrequirements:+15 V at 800 rnA typo

operating

+5 V at 850 rnA typo
operating

Signal cable: 26-line to connector on Microboard
Disk Controller CDPI8S651

Power Supply and Controls

Plug-in Power Supply
Output:

+5 V at 3 A
+ 15 V at 1.6 A, 2A peak
-15 V at 0.8 A

Input:
90 to 132 V, 47 to 440 Hz (MS2000)
180 to 264 V, 47 to 440 Hz (MS2000E)

Fuse: lA, slow-blow, front-panel mounted
Controls:

Power on-off switch - front panel
RESET - RUN U switch
RESET - RUN P switch

Indicators:
RUN LED
+5 VON LED

Dimensions

Height: 5.76 inches (146 mm)
Width: 14.7 inches (373 mm)
Depth: 10.08 inches (256 mm)

Weight: 18.5 pounds (8.4 kilograms)

Operating Temperature Range

Expansion Capabilities

Four standard Microboard slots available in chassis
Reserve power available:

+5 V-I A
+15 V - 500 rnA
-15 V - 800 rnA

Appendix K. MlcroDlsk Development System MS2000 Specifications ______ _ 137

Text Editor Commands

Move Pointer
Delete
Append
Insert
Find
Save
Search & Substitute
Type
Output

Monitor Program Commands

Monitor Self Test
Read or Modify Memory
Read Saved State of CPU Registers
Start Program at Given Location
Load MicroDOS Operating System
Move Memory
Fill Memory
Substitute Memory

MlcroDOS Operating System Commands

List Directory
List Free Space on Disk
Copy Disk File to Terminal, Line Printer, or

another File
Delete File Name
Rename File
Convert ASCII-Hex Object File to Binary
Format a New Disk
Verify Disk Files
Merge Files
Save Memory under File Name
Examine Disk File Contents
Organize Disk Files
Transfer Files from PERTEC Unit/Track Format

to MicroDOS
Transfer Files from Cassette Tape to MicroDOS
Translate CRA or ASM4 Assembly Language

Source Code into ASM8 File

138 __ _

Appendix L
Contents Directory of MS2000

System Diskette (Typical)

DRIVE: 1 DISKID: 12/9/83 MICRODISK 1.0 (c) 1982 RCA CORPORATION

ASM8 .CM ATTR WDSC.l SSN 00058 SIZE 00025 DEN 30
CDSBIN .CM ATTR WDSC.l SSN 00229 SIZE 00004 DEN 61
CDS BIN .SR ATTR WD ... 2 SSN 00083 SIZE 00033 DEN 31
CONASM.CM ATTR WDSC.l SSN 00185 SIZE 00020 DEN 41
COPY .CM ATTR WDSC.l SSN 00225 SIZE 00004 DEN 60
DEL .CM ATTR WDSC.l SSN 00278 SIZE 00004 DEN 71
DIAG .CM ATTR WDSC.l SSN 00284 SIZE 00004 DEN 73
DIR .CM ATTR WDSC.l SSN 00036 SIZE 00014 DEN 10
EDIT .CM ATTR WDSC.l SSN 00310 SIZE 00013 DEN 84
EXAM .CM ATTR WDSC.l SSN 00212 SIZE 00011 DEN 50
FORMAT.CM ATTR WDSC.l SSN 00208 SIZE 00004 DEN 43
FREE .CM ATTR WDSC.l SSN 00205 SIZE 00003 DEN 42
HELP .CM ATTR WDSC.l SSN 00116 SIZE 00003 DEN 32
HELP .MSG ATTR WDS .. 2 SSN 00119 SIZE 00028 DEN 33
MEM .CM ATTR WDSC.l SSN 00050 SIZE 00003 DEN 11
MEM .SR ATTR WD ... 2 SSN 00233 SIZE 00022 DEN 62
MEMTST.CM ATTR WDSC.l SSN 00223 SIZE 00002 DEN 51
MERGE .CM ATTR WDSC.l SSN 00147 SIZE 00014 DEN 34
OP .SYS ATTR WDSC.3 SSN 00010 SIZE 00026 DEN 80
PERTEC .CM ATTR WDSC.l SSN 00255 SIZE 00010 DEN 63
PRINT .CM ATTR WDSC.l SSN00294 SIZE 00004 DEN 82
PROM25.CM ATTR WDSC.l SSN 00323 SIZE 00006 DEN 85
RENAME.CM ATTR WDSC.l SSN 00161 SIZE 00006 DEN 35
SURMIT .CM ATTR WDSC.l SSN 00265 SIZE 00013 DEN 70
SYSGEN .CM ATTR WDSC.l SSN 00167 SIZE 00018 DEN 40
TAPED .CM ATTR WDSC.l SSN00053 SIZE 00005 DEN 12
U .CM ATTR WDSC.l SSN 00282 SIZE 00002 DEN 72
VERIFY .CM ATTR WDSC.l SSN 00288 SIZE 00006 DEN 81
XREF .CM ATTR WDSC.l SSN 00298 SIZE 00012 DEN 83

TOTAL NUMBER OF SECTORS: 00319
TOTAL DIRECTORY ENTRIES SHOWN: 00029

Note:

Address locations on System Diskette are subject to future revision. For update service on software changes, contact:

Microsystems Marketing
RCA Solid State
Box 3200
Somerville, N.J. 08876

Appendix M
Format of SUBMIT command

SUBMIT <filename> [<pararnXdelim> ...](CR)

BNF of command file language
<command file definition> :: = [label] <command file statement>

<line delim> ... <eot'>
<eot'> ::=(CR)
<line delim>::=(CR)
<command file statement> :: = <Micro DOS commands>

: <application programs>
: <application program responses>
: <command file command>

<command file command> :: = <comment>
<if command>
<go command>
<type command>
<exit command>
<read command>
<.J operation command>

<comment> ::= -qOMMENT] <character string>
<if command> ::= -IF <expression> <command file command>
<expression> :: = <operand> <space> <relop> <space> <operand>
<operand> :: = - J

i <fparam>
i <numeric constant>
i <string constant>

<numeric constant> ::= <decimal digit> [<decimal digit>]
<decimal digit> ::= 0: 1:2:3:4:5:6:7:8:9
<string constant> :: = '<fparam>'

: '<character string>'
<character string> ::= [<char> ...]
<char> ::= printable ASCII char including SP
<fparam> :: = -<decimal digit>
<relop> ::=<: > i >=: <=: <>: =
<go command> :: = <goto> <label>
<goto> ::= -G[OTO]
<label> ::= %<string>
<string> ::= <anchar>[<anchar> ...]
<anchar> ::= printable ASCII char excluding -,%,$,SP
<type command> ::= -T[YPE] <space><string>[<space><string> ...]
<exit command> ::= -E[XIT]
<read command> :: = <block read>

i <line read>
<block read> ::= -K[READ]

139

140 User Manual for the RCA MlcroDlsk Development System MS2000

<line read> ::= -L[READ]
<Joperation command> ::= -IN[C1]

<space> :: = Sp

: -S[ET 1] <space><numeric constant>
: -D[EC1]

