REGA s

RCA CMOS

MICROSYSTEMS

User Manual for the
RCA MicroDisk Development System
MS2000

MPM-241 Suggested Price $5.00

User Manual for the
RCA MicroDisk Development System
MS2000

Somerville, NJ ¢ Brussels ¢ Paris « London
Hamburg ¢ Sao Paulo ¢ Hong Kong

RGA s

CLASS A
RADIO INTERFERENCE WARNING

This equipment complies with the requirements in Part 15 of
FCC Rules for a Class A computing device. Operation of this
equipment in a residential area may cause unacceptable
interference to radio and TV reception requiring the operator
to take whatever steps are necessary to correct the
interference.

2488834-1

Information furnished by RCA is believed to be accu-
rate and reliable. However, no responsibility is
assumed by RCA for its use; nor for any infringement
of patents or other rights of third parties which may
result from its use. No license is granted by implica-
tion or otherwise under any patent or patent rights of
RCA.

Tradmark(s)® Registered
Marca(s) Registrada(s)

Copyright 1984 by RCA Corporation
(All rights reserved under Pan-American Convention)

The software described in this manual Is copyrighted by RCA Corporation.

Printed in USA 5-84

Foreword

The RCA MicroDisk Development System MS2000 is a micropro-
cessor computer system designed to facilitate the development of
hardware and software for applications based on the RCA 1800 series
of CMOS microprocessors. It utilizes 3-14 inch, high-density micro-
floppy disk drives. The disks provide 645 kilobytes of on-line mass
memory storage. Featuring higher speeds than its predecessors, the
MS2000, with its new DMA controller, has reduced system load time
to 0.6 second.

The MicroDisk Development System is contained in a 20-slot Micro-
board Industrial Chassis containing not only the four Microboards
provided, but also the power supply and the complete Dual Micro-
floppy Disk Drives. The chassis provides four additional spare slots for
expansion and enhancements with any of the extensive line of RCA
Microboards.

The memory includes 632 kilobytes of RAM, 2 kilobytes of ROM,
and 645 kilobytes of on-line mass memory storage on microfloppy
disks. Software provided includes an augmented resident monitor
program UT71 and the MicroDOS operating system. MicroDOS
includes an Editor and a MacroAssembler ASM8 that operates not
only with all the RCA CMOS Microprocessors CDP1802A,
CDPI1805AC, CDP1806C, and CDP1806AC, but with RCA Micro-
processors to be added to the expanding line.

Conversion programs are included that provide transportability of
source code from all other RCA Development Systems to the MS2000.

Optional add-ons include a PROM Programmer package, BASICI,
BASIC2, the CDP18S040 CRT Terminal providing full-screen edit-
ing, and the MS3001 MicroEmulator.

This Manual describes in detail the hardware structure and the
software features and commands of the MicroDisk Development Sys-
tem MS2000. The user should also refer to the User Manual for the
CDP1802 Microprocessor, MPM-201, for a detailed description of the
instruction set and the architecture of the CDP1802 CMOS Micro-
Processor.

CONTENTS
Page Page
System Structure and Set-up 8 MERGE..........coiiiiiiiiiiiiiiinnnnns, 27
Chassis . ovvvviii ittt i iieieiinineeanas 8 PERTECiiiiiiiiiiiinnnnnnnnnnns 28
Microboard Computercovvvvnnnnnnnn 9 PRINToiiiiiiiiiiiiiiiiiiiiinnieeenns 29
Microboard Memoriesovvvvvunnnnnnn 9 PROM2S .\ttt iiiiiieneeenannns 29
MicroboardDisk Controller.................. 10 RENAMEcoiiiiiiiiii it 29
Dual Disk Drivesovovveveeveennnnnnnn 10 SUBMIT ... iiiiiiiiiiiiiiiiiiinennnnnnnns 30
Power Supply ...ovvviiiiiiiiiiiiiiiiinnn, 10 SYSGEN ..iiiiiiiiiiiiiiiinnnnennnnnnnnes 34
System Set-up .. vviiiiiiiiiiii i 11 TAPED ... oottt iiiiineneennns 37
Monitor Program Checkcovvuuunnn 11 L 37
Disk Operation Checkovvvvviieeiennnnn 11 VERIFY ..ttt iiiiiiieiiiieaennns 37
Understanding MicroDOS..................... 13 User Program Generation 39
Introductionciiiiiiiiiiiiiiiinann, 13 Case l.iiiiiiiiiiiinneeiinneneeronnnannnns 39
MicroDOS System Ingredients 13 L7 T 39
Files and File Names 13 Case 3. . ittt e 40
Diskettes and Diskette Handling.............. 14 DiskEditorc.c0viiiiiiiinnenn.. 41
Mgtpory Requirements.................... 14 Introductionciiiiiiiiiiiieiniiann. 41
Ut11}ty Progran.l UT7L oo 15 Operating Instructionscoeevevn... 42
Peripheral DCV}CCS [EERRRRTTTTRR 15 Memory Space Requirements 49
Program Creation and Translation.......... 15 Input and Output Filesoovveennnn.... 42
How MicroDOS Operatescccvveeenn.. 15 Record FOIMALS 42
Resource Management 15 Buffer Pointerccovviiiiiiiiiin.., 43
Qewce Name Format 15 EDIT Command Operation.................. 44
File Name Format 15 Command Stringsoovvveerennnnnnn 44
“Wild-Cafrd” (;onstruct """"""""" 16 Command Formats...........cccvuveeennn. 44
Referencing Files R R R RRRERRPPRPPPPPRPP 16 Correcting Command Typing Errors 4
Development Station Console 16 Interrupting EDIT Execution 45
Command Intepreterc.c.... 16 Filled Workspace Warning 45
Command Format 16 File Assignments........oovvvivvnnnnenn.. 45
Error Messagescoeuneiinnnnn, 17 EDIT Commands - Single 45
lekette File Management............... 17 Pointer Control Commands................ 45
File Typesocovvivininiiinnnnn. 17 BEGINNING .. .veveneenenennnannnn. a5
File Attributesoovvviiiiineeeennnn, 17 END OF BUFFER oo, 45
Diskette Structurevvvverienniannnnn 18 CHARACTER STEP ..ovo oo, 46
MicroDOS Commandsccvv... 18 LINESTEP. . oo oo oo 46
MicroDOS Command Descriptions 19 TYPE LINE NUMBER................. 46
CDSBIN ..ttt iiiiiiininneneeeaenss 19 File Manipulation Commands.............. 46
CONASM ..ttt iiiiinnnneenaanennns 20 INPUT FILE SELECTION 46
160) 2 At 20 OUTPUT FILE SELECTION 46
) 21 21 APPEND......ciiiiiiiiiiiiiennnnnnns 46
) 7 22 NEXT .iiiiiiiiiiiinenenererennnnnnns 46
) 02 22 MERGEFILEcoovviiiiiiinnn.. 46
EXAM i i it 24 Deletion Commands........ooevuvnnenennn 47
FRMT i iieieieeeeeeens 26 DELETEciiviiiiiiininnninnn. 47
FREE....ciiiiiiiiiiiiiiiiiiiiiieeneennns 26 | 1 50 47
HELP. ...ttt iiiiiinennnenanns 26 Text Insertion and Data Manipulation....... 47
MEM .. ittt it iiiiieeeaeas 27 INSERT . ..ciiiiiiiiiiiiiiininnnnnnnns 47

6 User Manual for the RCA MicroDisk Development System MS2000

Page Page

GET ... i e 47 Major Statementscc0evenenn.. 61
FINDoiiiii e 47 Status Statementsc00in... 61
SUBSTITUTEccciviiiiinnnnn. 47 Conditional Assembly Statements........... 62
Output Commandsccovvunn.n 47 Sample Program - Major Statements 64
TYPE ... i i 47 Level II Assembly Language 64
PRINT ..ot 47 Executable Statements: Level II 64
TYPE EDITOR STATUS............... 47 Substitution Instructions 64
WRITE and DELETE 47 D-Sequence Instructions 65
END ..o i i i e 48 Sample Program Illustrating D-Sequences. 67
FILECLOSEcciiiiiiiiinnnnnn. 48 Macrosand TheirUseccouvunnn. 67
QUITEDITSESSIONccvnne. 48 The Mechanics of Macro Usage 67
RETURN TO UTILITY PROGRAM...... 48 Sample Program Using Macro 68
Summary of Commands and Control Assembler (ASMB8) Operating Procedures 68
Characterscoovivvveninnnnennnn. 48 Cross-Reference Listing 70
EDIT Commands - Composite 49 Error Messagesc.coviiiiiinnnnnnnn.. 70
Horizontal Tabsccoiiunnnnn.. 51 Non-Fatal Errorsccoo..... 70
Additional Notecccvvunnn. 51 Fatal Errors............cciiiiiiiine.., 71
File Development and Manipulation 51 Warningsoooiiiiiii it 71
Creatinga File..............ooooiiienns 31 MicroDOS User Functions 72
AddingtoaFilecoooiiinnn 52 1/0 Control Block and Buffers 72
Deleting a Section ina File 52 IOCB Initialization 72
Moving a Sectionina File................. 52 Byte 0 - Open Parameter 7
Modifying a Sectionina File 53 Byte 1 - Status Byteo.vvn.... 72
‘Some ?omrgand Examples 53 Bytes 2 to 4 - Non-User Area............. 73
File Maplpulatlon S}lmmary 53 Bytes 5, 6 - Start of Sector Buffer 73
Creatu}g a New Fl!e R R R R R TR LR EE 53 Bytes 7, 8 - End of Sector Buffer.......... 73
Changing an Existing File 53 Byte 9 - Write Parameter 73
Disk Assembler (AS8), 55 Byte 11 - Unit Number 73
Assembler Operationccovvvvunn.. 55 Bytes 12 to 20 - Name and Extension 73
Backus-Naur Format (BNF) 56 Byte 24 - File Definition................. 73
Basic Definitionscoovveininin i 57 Byte 31, 32 - Device Mnemonic........... 73
Character Set..........coovvviiiininnenn. 57 IOCB Changes After a File Is Opened 73
Character Strings, Identifiers, and Labels. 57 Bytes 5 to 8 - Sector Buffer 73
Constantscovviiiiiiiiiiiiiiiieeean. 57 Byte 0 - Open Parameter 73
Keywords...ooovviiiiiininiiiinnenn. 58 Byte 9 - Write Parameter 73
Level I Assembly Language 58 Bytes 11 to 20 - Unit Number, Name, 73
Line and Statements 58 and Extension00uuu.. 73
Expression Evaluation 58 Bytes 31. 32 - Device Mnemonic 73
Arithmetic Expressions...........coouuu... 58 IOCBExamplecccvvvvunnnnnnnnn. 73
Relational Expressionscvvu.. 59 Introduction to User Functions............... 74
Logical Expressionscccovvveen.. 59 Console /O Routines 74
Bitslice Expressions..............ccouvun.. 59 CREAD ...ttt 74
Limitationscciviiiiiinneannn. 60 TYPE ... i i 75
Executable Statements: Level I 60 Disk /O Routinesoovvviiiinnnn... 75
First Class Instructions.................... 60 GETCHR ..., 75
Second Class Instructions 60 PUTCHRcoiiiiiiiiiiiiiinnnn, 75
Third Class Instructions 60 GETSECcoiiiiiiiii it 76
Fourth Class Instructions.................. 60 PUTSEC ...ttt iiiiiiiiiennnnes 76
Macro Call Statement 60 CLOSE ...ttt i, 76
Directives . o oo vt vvieeeriinneereennnannnns 61 OPEN ... i ittt 76
Minor Statement............cviennenenn.. 61 REWINDcoiiiiiiiiiiiiiiiiennn, 77

Contents 7
Page Page
IOCB Setup Aid Routine...........oovvunnn. 77 TypeRoutine.........coovviviiiinnnnnnnn. 85
SRNAM ...ttt ieiienanns 77 Example 1 (TYPES)covvvvvnennn.. 85
Return to MicroDOS Operating System Example 2(TYPE6)ccoveinnnn. 85
Routinecoiiiiiiiiiiniinnnnnn, 79 Example 3 (TYPE and TYPE2) 85
CDENT &t iiiiii it ieeeeeennnnnns 79 Example 4 (OSTRNG).........cvvvennnn. 85
Operating Sequence Summary 79 Additional Monitor Routines 86
. ASCII to Hex Conversion (CKHEX).......... 86
Monitor Programs UT71oconvenen. 80 Initialization Routines (INIT1 and INIT?)......86
Reglster SaAVE . vttt i i i i et 80 Example 1 (INITI) 86
Self Test . oviein ittt ittt iinnnnnns 80 Example 2 (INITZ) 86
UT71 Commandscovvvvenenenennnnns 80 Restarting UT71 (GOUT71) 86
T Test RAM/PROM ... 80 Line Printer Interfacing (LINEPR). 86
D: Dlsplay Memory 80 Disk Routinescccvvvvnnnnnnnn. 86
I Insert into Memory........... 81 Calls to Driver Routines..................... 88
M: Move Memory.............. 81 Appendices

F: Fill Memory................ 81 A. Diskette Organization and Structure 89
S: Substitute Memory 81 B. BNF Syntax of Assembler ASMS 93
P: Run Program............... 82 C. MS2000 Memory Test.evveenr..... 9
L: Load System, D“VCO, """" 82 D. Error Messages..........ccevvvennnnnnn. 97
B: Load System, any Drive....... 82 1 MicroDOSvueeenennnnnnnn. 98
R: Read a Sector 82 2. Utility Program UT71 98
w: Write a Sector 82 3UEAIOT «veveeneeeeeneeeeenenennns 98

7 Input from Port............. 82 E. Sample Program Illustrating User
t Output to Port.............. 82 Functionsccviiiivivennnnns. 100
Terminal Interfacing e 83 F. 1/0O Group Assignments 105
UART ACtionvvvtiiiviiiiiiieennenns 83 G. Utility Program (UT71) Listing 106
., ASCIICoding.....oovvvvuvnnnnnnnennnnnnn. 83 H. ASCII HexTable...................... 132
UT71 Routines READ, TYPE, and OSTRNG83 I. Terminal Interface Cable CDP18S516..... 133
Register Use....oovvernerennenennenennnnnns 83 J. Adding Generic Devices 134

READ . ittt e i 84 K. MicroDisk Development System MS2000
TYPE .. ittt ieieans 84 Specificationsol 136
OSTRNG....iiii ittt ittt e 84 L. Contents Directory of System Diskette

Examples of READ and TYPE Usage 85 (Typical) ..cvviiiee ittt 138
READRouting........ooovvvvinnnnnnnnnen 85 M. Format of SUBMIT Command 139

1. System Structure and Set-up

Two Memory
Disk Drives

32-kB Disk Controller
RAM Board
30-kB RAM
2-kB ROM

Four Expansion

DBWE 1

Power Supply and

Positions Control Panel

Fig. 1 - MS2000 chassis with two front covers removed to show typical module locations.

One of the features of the MicroDisk Development
System MS2000 is its modular construction. Fig. 1
shows an arrangement of the modules that provides
good mechanical and electrical balance. The modules
that make up the MS2000 include:

1. 20-Slot Microboard Industrial Chassis with
Backplane

2. CMOS Microboard Computer (CPU)

3. Microboard Memory Module with 32 Kilobytes
of RAM

4. Microboard Memory Module with 30 Kilobytes
of RAM and 2 Kilobytes of ROM

5. Microfloppy Disk Controller

Dual Disk Drive Module

7. Power Supply Module

o

Chassis

The chassis supplied with the MS2000 is a 20-slot
customized MSI8820 Industrial Chassis. It includes an
integral card rack, backplane, and case. The top and
bottom covers are perforated and removable. The front
and back covers are removable as are the side panels and
end bezels.

The backplane is a standard Microboard universal
backplane in which any module may occupy any posi-
tion. To prevent magnetic interference between the
MSIM40 power supply and the MSIMS0 Disk Drives,
always mount the modules with at least four card slots
between them. Table I shows the backplane signals and
their pin assignments.

The signal naming convention is to give each signal an

1. System Structure and Set-Up 9
Table I—Pin Terminals and Signals for the RCA Microboard Universal Backplane.
Wire Side Component Side
Signal Signal

Pin | Mnemonic | Flow | Description Pin Mnemonic Flow Description

A TPA-P Out System Timing Pulse 1 1 DMAI-N In - DMA Input Request
B TPB-P Out | System Timing Pulse 2 2 DMAO-N In DMA Output

C DBO-P In/Out | Data Bus 3 RNU-P — Run Utility Request
D DB1-P In/Out | Data Bus 4 INT—N In Interrupt Request

E DB2-P In/Out | Data Bus 5 MRD-N Out Memory Read

F DB3-P In/Out | Data Bus 6 Q-P Out Programmed Output Latch
H DB4-P In/Out | Data Bus 7 SCo0-P Out State Code

J DB5-P In/Out | Data Bus 8 SC1-P Out State Code

K DB6-P In/Out | Data Bus 9 CLEAR-N In Clear-Mode Request
L DB7-P In/Out | Data Bus 10 WAIT-N In Wait-Mode Request
M AOQ-P Out Multiplexed Address Bus | 11 -5/-15V — Auxiliary Power

N A1-P Out Multiplexed Address Bus | 12 SPARE — Not Assigned

P A2-P Out Multiplexed Address Bus | 13 | CLOCK OUT Out Clock from CPU Osc.
R A3-P Out Multiplexed Address Bus | 14 NO-P Out 1/0 Primary Address
S A4-P Out Multiplexed Address Bus | 15 N1-P Out 1/0 Primary Address
T AS5-P Out Multiplexed Address Bus | 16 N2-P Out I1/O Primary Address
U AB-P Out Multiplexed Address Bus | 17 EF1-N In External Flag

v A7-P Out Multiplexed Address Bus | 18 EF2-N In External Flag

W MWR-N Out Memory Write Pulse 19 EF3-N In External Flag

X EF4-N In External Flag 20 +12V/+15V - Auxiliary Power

Y +5V +5V dc 21 +5V +5V dc

z GND Digital Ground 22 GND Digital Ground

alphanumeric name descriptive of its major logic func-
tion, followed by either -N or -P. The -N means that the
named function is true or asserted when the voltage on
that particular wire is at ground. The -P means that the
named function is true when the voltage is at +5 volts.
Thus, a signal NAME-N, after passing through a logic
inverter, becomes NAME-P, and vice versa.

The user may wish to rearrange the position of the
existing modules when adding expansion modules. For
example, if a UART card or a Modem card is added, the
two memory cards can be moved to slots 13 through 16
to place the serial-interface card near the left side for
ease of cable entry. Alternatively, the cable may be
passed under the disk-drive assembly at the front, top,
or bottom and the serial card placed in slots 13 through
16. There is sufficient space to pass a 34-wire flat cable
(wider cables may be folded). The size of the connector
needed with the wider cables will require that the disk
module be pulled part way out while placing the cable.

When using the PROM Programmer CDP18S680,
the left side panel may be removed and the Programmer
placed in slot 1 for access through the left-hand end
bezel.

Always allow clearance for air circulation at the top
and bottom of the chassis. Overheating and drive or
supply failure could result otherwise.

Microboard Computer

The Microboard Computer supplied as the CPU of
the system is a variant of the CDP18S605 Microboard
Computer. The on-board memory has been left out
because the system memory is wholly contained in the
two memory Microboards. As a result, the CDP1802A
Microprocessor and the CDP1854A UART are the
main functional units. The UART provides the serial
data path to an external data terminal through an
RS232C interface. The baud rate is selectable by the
setting of a DIP switch on the CPU Microboard. Baud
rates from 50 to 19,200 are available. Table II is a baud
rate selection chart showing the position of each of the
four rockers of switch S1 for each output baud rate
available.

Microboard Memories

Both memory Microboards supplied with the MS2000
are made from the CDP18S628. One is populated with
32 kilobytes of RAM and occupies memory space from
0000H through 7FFFH (H indicates hexadecimal nota-
tion). The other is populated with 30 kilobytes of RAM
and 2 kilobytes of ROM. The ROM contains the moni-
tor program UT71. The ROM occupies memory space

10 User Manual for the RCA MicroDisk Development System MS2000

Table II—Selection Chart Showing Rocker Positions for
Each Baud Rate Available on the CPU Board.

Switch S1 Output Rate
4 3 2 1 Baud*
C C C ¢ 19200
cC C O ¢ 50
c C O o 75
cC O C ¢ 134.5
c O C o 200
C O O ¢ 600
cC O o o 2400
O C C ¢C 9600
O C C o 4800
O C O ¢C 1800
0O C O O 1200
O O C ¢C 2400
O O C O 300
O O O ¢C 150
O 0O o o 110

“Actual input to UART is 16 times the indicated output rate,
assuming a clock frequency of 2.4578 MHz. O = open; C =
clothes.

8000H through 87FFH, and the RAM 8800H through
FFFFH.

Microboard Disk Controller

The Microboard Disk Controller CDP18S651 pro-
vides the I/ O interface between the system software and
logic and the two disk drives. Instruction and status data
are transferred by output and input commmands; bit
data are transferred by Direct Memory Access (DMA).
The logic to control the DMA process is built into the
disk controller Microboard to interface with the on-chip
DMA controller of the CDP1802A on the CPU Micro-
board. At the end of a DMA transfer, external flag EF3
is used to signal the completion to the software.

The monitor program UT71 contains the I/ O driver
routines for performing all the commands for the disk
operating system (MicroDOS). The disk controller can
perform the following functions:

. Seek a track

. Format a track

. Write a sector

. Read a sector

. Read multiple sectors

. Write multiple sectors

. CRC READ (Read without data transfer but
with error checking).

8. Recalibrate (Return heads to home position on

track 00).

NAWVHE WN -

The disk controller is capable of a variety of formats.
Appendix A - Diskette Organization and Structure
shows the format and disk organization used by the
MS2000 MicroDisk Development System.

Dual Disk Drives

The two MicroDisk drives are contained in the
MSIMS50 module. The module occupies eight slots in
the 20-slot chassis. An edge connector picks up power
from the backplane, and power-conditioning circuits
then provide +5 and +12 volts to the two disk drives. The
signal cable is a “daisy chain” configuration using a
26-wire flat cable. The controller end of this cable is a
50-pin connector mating with the CDP18S651 Micro-
board Controller. The controller is located immediately
to the left of the disk drive module in the chassis. Be
careful that the cable doesnt “push” on the cover of
Drive 0: disk errors will result.

The drives are labeled 0 and 1, corresponding to the
drive number used in MicroDOS commands. Drive 0 is
the left drive.

The mating 3!4-inch diskette has a hard cover with a
sliding cover over the head access window. As supplied,
the diskettes are not write protected. Activate this fea-
ture by breaking out the protect tab, rotating it 90°
counterclockwise, and reinserting it. Slide the tab out-
ward for write protect and inward for write enable.

Always mount the MSIMS50 at least four card slots
away from the MSIM40.

Power Supply

The MSIM40 Power Supply Module plugs into the
system chassis and occupies four slots. The edge connec-
tor supplies +5, +15, and -15 volts to the system back-
plane and interfaces the control logic to the system.

An AC input cord, fuseholder, power on-off switch,
and power-on indicator (+5 volt LED) are on the front
panel. In addition to the power functions, the front
panel provides two system control switches and a run-
ning indicator.

The two control switches are momentary-action,
double-throw types having a center-off position. The
RUN UTILITY (RNU) switch, when pressed down,
causes a system reset followed by a start at address
8000H, the beginning of the monitor program UT7I.
The RUN PROGRAM (RNP) switch, when pressed
down, causes a system reset followed by a start at
address 0000H, where a user program may have been
stored in RAM. If either switch is pressed upward, a
system reset is generated and latched until either switch
is pressed down. The indicator LED labeled RUN is
lighted during program execution and extinguished
when an IDLE instruction, a WAIT condition, a

1. System Structure and Set-Up

1"

RESET condition,or any malfunction preventing nor-
mal fetching of instructions is encountered.

System Setup

As the first step in system setup, remove the chassis
from the carton and place it on a table on its four rubber
feet. Using a No. 1 Phillips screw-driver, remove the two
screws from the left-most front cover (the one with the
“RCA” on it). Remove the cardboard spacer that held
the boards in place during shipment. Remove the left-
most board (the CPU board) by lifting up on the black
card extractor on the top of the board. Push the card
extractor down and carefully remove the CPU board.
NOTE: Handle the board on the edges only since the
CMOS parts on it are sensitive to static electricity.
Locate the red four-position baud-rate switch and set
the baud rate corresponding to your terminal, as given
in Table I1. In this table, C means on, O means off. Now
reseat the other three boards by lifting up on their
extractor. Then push it down and firmly press the
boards back into place. Any of the boards may be
removed for your inspection but remember to be careful
in handling them; and make sure that they are firmly
reseated. Finally, replace the CPU board in the left card
slot. NOTE: Make sure the component side of the board
faces left.

The 10-pin connector on the top edge of the board is
the RS-232 terminal connector. Remove the black cable
from the parts box, push the 10-pin end of the cableinto
the back of the chassis between the left rear handle and
the chassis body. Then feed it into the slot in the forward
part of the plate on the left side next to the CPU board.
Finally, place the 10-pin connector over its mating pins
on the CPU board, being careful to align the plugged
hole with the position of the missing pin. Now connect
the other end with the 25-pin D connector, to your
terminal. If the sex of the connector is incorrect for your
terminal, use the “gender bender” included in the parts
box.

Next plug in the computer system and terminal; turn
on the terminal, then the computer system. The red
“SV” light on the right panel indicates the presence of
the +5 volts DC.

Monitor Program Check

With the +5 volts available, the red “RUN” light will
come on and an asterisk and UT71 version number will
be displayed on the terminal. The asterisk is the prompt
for the UT71 Monitor program. (If no asterisk appears,
try restarting the monitor program by depressing and
releasing the RUN U toggle switch.)

Now type T (CR)
where (CR) means carriage return. The system should
respond with

MEMORY OK

*

The “T” command does a checksum of the Monitor
ROM, and does a read-write test on all RAM (RAM is
left filled with “AAs”).

Now type
D8000 20 (CR)

The system will respond with
8000 7100 F880 BOF8 8CBI1 F8I1F
Al1F1 21F8 D073
8010 81F6 CFF9 10FC 8151 F33A
26D1 7381 FF03

*

The monitor command “D” displays the contents of
memory at the terminal. The command displays the 20
hex (32 decimal) bytes of data starting at location 8000
on the terminal, then returns the prompt. Since terminal
communication has been established, the front cover,
removed earlier, can be replaced.

Disk Operation Check

The system disks can now be used. Take the blue-
plastic-enclosed 3!4-inch diskette with the white stick-
on label from the parts box. This diskette contains the
MicroDOS Operating System, some utility programs,
and the Editor and Assembler.

Check to see if this disk has been “write-protected” to
prevent data being inadvertently written to it, possibly
destroying existing programs. To do this, find the small
rectangular cutout in the corner of the back of the
diskette, the side with the round metal hub in the center.
If the removable tab is either missing or has slid against
the outside edge of the cutout, the disk is write pro-
tected. If the disk has not been write-protected, you
must complete the procedure described in the next
paragraph.

Carefully pry up the tab and break it loose. Turn the
tab 90° from its original position. On one of the short
ends, there is a small protrusion. This will line up with
the depression in the side of the slot from which the tab
was removed. Carefully insert the tab in the slot, align-
ing the protrusion on the tab with the depression on the
side of the slot, and snap the tab in place. When properly
inserted, the tab will slide back and forth in the slot
without coming out. Slide the tab towards the closest
edge of the diskette. This will write-protect it. You can

12 User Manual for the RCA MicroDisk Development System MS2000

un-write-protect a disk with a missing tab by covering
the slot with tape.

Turn the diskette over and slide the metal protector so
that the oval cutout is in the center of the diskette in line
with the load access hole in the blue plastic. The record-
ing media can be seen through this hole. Now insert the
diskette into the left disk drive, the one marked
“DRIVE O.” Orient the diskette so that the metal hub is
towards the right (away from the CPU board) and the
edge with the head access hole fits into the disk drive slot
first. Push the diskette all the way into the drive until it
clicks into place and the red light on the drive blinks on
then off. The diskette will not latch if improperly
oriented. This completes the loading of the diskette.

Auto-shutter diskettes, mounted in drives so-equip-
ped, will open and close the cover automatically.

Now load the disk operating system. Type “L”, and
the system will load the 12 kilobytes of operating system
into memory. About 0.6 second after typing L, the
MicroDOS prompt is issued:

(C) Copyright 1982 RCA Corporation
MicroDOS X.X

The “>"sign is the MicroDOS prompt. The X.X will be

two digits, the revision number of the diskette (e.g., 0.0).

Now type DIR;S (CR) . This entry will run the disk
directory program, which will display the name of the
diskette and an alphabetical listing of all the files on the
disk.

Next type HELP (CR) and follow the instructions
given you on the first screen. The HELP utility gives a
brief description and format of each of the MicroDOS
utilities.

As afirst use for the system prepare a second diskette
in the parts box for use. This diskette must be formatted
and initialized for MicroDOS;this is done by using
FRMT and SYSGEN. Place this diskette in drive 1 in
the same manner as described above for the system
diskette, but don’t write-protect it. Type FRMT (CR)
and follow the instructions. When this task is complete,
type SYSGEN;E (CR) and follow those instructions.
You will then have created a duplicate of the system
diskette. The original can be removed and set aside for
safe keeping.

This description demonstrates only a very small part
of the system capability. Refer to the remainder of this
manual for descriptions of the other utilities and the
Editor and Assembler.

13

2. Understanding MicroDOS

Introduction

The Microboard Disk Operating System (Micro-
DOS) associated with the MicroDisk Development
System MS2000 is a powerful and easy-to-use tool for
software development. It is an interactive mass-memory
storage system capable of dynamic file operation and
management. Its commands, obtained via the system
console, reference files stored on the diskette. By means
of its dynamic operating system, MicroDOS keeps
track of changes in file size during software develop-
ment and allocates disk space as needed. Disk space not
needed by a file is freed and made available for use by a
different file. The file operating system can have multi-
pleinput and output files open at the same time and can
thereby provide the user with considerable design flexi-
bility. The operating system also provides a set of func-
tions that can be called by a user program to perform

utility operations such as open files, close files, and the
like.

MicroDOS System Ingredients

Use of the MicroBoard Disk Operating System
(MicroDOS) requires a MicroDisk Development Sys-
tem MS2000. The software needed for MicroDOS
operation includes the UT71 Utility Program, provided
on ROM, and the programs provided on the Micro-
DOS System Diskette. These programs include:

On Disk:

1. MicroDOS Operating System (OP. SYS)

2. MicroDOS System Commands (CDSBIN,
COPY, DEL, DIR, FREE, MERGE, PRINT,
RENAME, SUBMIT, SYSGEN, U, VERIFY)

. MicroDOS Macro Disk Assembler (ASMS8)

. MicroDOS Disk Editor (EDIT)

. Memory Save Program (MEM)

. Diskette File Examination and Modify Program
(EXAM)

. Diskette Diagnostic Program (DIAG)

. ASM4 to ASM8 Source Conversion Utility
(CONASM)

9. Pertec to or from MicroDisk Transfer Utility

(PERTEC)

10. Cassette to or from MicroDisk Transfer Utility

(TAPED)

[« N I — V]

oo

11. Memory Test Utility (MEMTST)
12. Diskette Format Utility (FRMT)
13. Instructions for MicroDOS (HELP)
14. Twelve User Functions

On ROM (UT71)
1. Disk Loader
2. 1/O Transfer Routines (READ, WRITE)
3. UT71 Self-Test Routine

Files and File Names

All user-generated programs stored on diskette are
identified by file names of up to nine alphanumeric
characters. The names for these files are devised and
assigned by the user. Each diskette maintains a dynamic
directory of all user files kept up to date automatically
by the MicroDOS Operating System. Access to a user
file is by its name only; the user has no need to know
where a program resides and need not maintain track
number information for any of the programs.

The major advantage of the MicroDOS Operating
System and its use of file names is that only the Operat-
ing System is loaded into memory. All other function
files stay on diskette and go into memory only when
they are used. This dynamic file management system
gives the user maximum service from the MS2000
memory capabilities for programming needs.

A file is composed of a set of sectors grouped into a set
of clusters. Each cluster contains one sector. Files are
located by MicroDOS only on one disk and are identi-
fied by name, extension, and device unit number.

The file name consists of from one to six alpha-
numeric characters and an extension consisting of from
one to three alphanumeric characters. The first charac-
ter of the file name and the extension must be alpha-
betic. The standard format for a file name is given by the
following example:

FILEN1.SXX:#

where FILEN1 is a 1 to 6 character name
SXX is a 1 to 3 character extension, and

is the number of the drive unit (either 0 or 1)

All the MicroDOS system commands are files on the
system diskette. These commands are brought into
execution when the command name is typed on the
console input. Because the main Operating System

14 User Manual for the RCA MicroDisk Development System MS2000

resides in memory in locations 9000-BFFF, its area
cannot be used by any program. Care must be taken,
therefore, not to write a program that uses that area.
The majority of memory, however, is left available for
execution of the system commands or the user pro-
grams. Once a system command or user program has
finished operation, the memory area used is returned to
the system so that other programs can use that same
area.

All file names are stored on a special area of a
diskette. This special area is called the Directory and is
not the same as the DIR.CM utility which is discussed
later in this manual. The Directory resides on track 0 of
all diskettes and cannot be deleted. Any diskette that is
to be used by MicroDOS must have this file. It can be
generated only by the SYSGEN command. Thus, each
new diskette must be initialized using the SYSGEN
command before it can be used.

MicroDOS supports two types of files: ASCII and
binary. ASCII files contain only ASCII characters.
Examples are assembly source and object files. Binary
files contain only binary information and are used for
system programs such as the Assembler and Editor.
Binary files require only half the space for storage and
can be loaded twice as fast as their ASCII equivalents.
Files generated by the system, however, are ASCII
unless they have been created by use of the program
CDSBIN, which converts an ASCII object file to
binary.

A file called the Operating System appears in the
Directory as OP.SYS and is designated as file type 3.
This file is the actual MicroDOS Operating System and
cannot be copied or merged. It can be deleted if the
delete protection is removed with the RENAME com-
mand. It resides on tracks | through 3 and is also
transferred only by the SYSGEN command. The
information in this file is in binary. The Operating
System does not have to be on a MicroDOS diskette. It
only has to be on the diskette that is used to load
MicroDOS. Not having the Operating System on the
diskette frees three tracks for user information, approx-
imately 4% of the diskette area. By means of the DIR
command with S option, the presence of the Operating
System on a diskette can be ascertained.

Diskettes and Diskette Handling

The diskettes used by MicroDOS are of the double-
density type and can store over 322,000 bytes. The drive
mechanism has two drive units (the left hand one is
designated 0; the right hand one is designated 1). The
system has a capacity of over 644,000 bytes of on-line
storage.

To assure trouble-free reading and writing files, the

diskettes, although fairly rugged, must be handled and
stored with care. To avoid damage to the recording
surface and to prevent diskette deformation, the follow-
ing specific precautions should be carefully observed.

* Close the disk guard cover when not in use.
Do not touch its recording surface.

Do not smoke when handling the diskette.

Do not clean the recording surface.

Do not bend the diskette or deform it with paper
clips or other similiar mechanical devices.

*
*
*
*

The operating and storage environment must be
compatible with the materials of the diskette. The envir-
onment of the diskette should meet the following
criteria:

* No noticeable dirt, dust, or chemical fumes in
the immediate area.

* Temperature between 50° F (10° C) and 115° F
45° C).

* Relative humidity between 8 and 80 percent.

* Maximum wet-bulb temperature of 85° F (30°
O).

* No direct sunlight on diskette surface for pro-
longed periods.

* No nearby magnetic fields.

Loading a diskette into a drive mechanism and re-
moving it requires a few precautions to avoid damage
and to assure proper operation. These precautions
include:

* Do not insert or remove a diskette unless power
is applied to the System.

* Insert diskette with read/write access slot first.

* Insert diskette until it automatically becomes
locked in.

* Do not remove a diskette from a drive if the
select light for that drive shows any sign of
activity.

* Format each new diskette with the FRMT
utility and then initialize it with the SYSGEN
utility

* Do not leave diskette idling in system for pro-
longed periods.

‘Memory Requirements

MicroDOS requires memory in the following areas:

Hexa-

Decimal Decimal

Address Address
User Areas 0000-7FFF 0-32767

C000-FFFF 49152-65535
Utility Program 8000-8FFF 32768-36863

Operating System Area 9000-BFFF 36864-49151

2. Understanding MicroDOS

15

The user area (0000-7FFF and C000-FFFF) is used
by either the user programs or by MicroDOS com-
mands. The memory area from 9000 to BFFF is
reserved for MicroDOS.

Utility Program UT71

The Utility Program UT71 contains the bootstrap
program that initially loads the Operating System into
memory. It may be loaded from drive 0 with the “L”
command or from any drive with the “B” command. If
the specified drive does not contain a diskette, an error
message is printed and control remains with UT71. To
load the Operating System, place the system diskette in
drive unit 0 and type L.

After the Operating System has been loaded, control
is transferred to it. If the user wishes to use the debug
feature in UT71, the user must press the RESET/RUN
U key or return to the UT71 by typing U,8000. If the
user is operating under UT71 and wishes to return to the
Operating System, which was previously loaded, he
must type P9000(CR).

Peripheral Devices

All communications between the peripheral devices is
handled by either UT71 or the Operating System. When-
ever the command interpreter requires 1/ 0O, it goes to
the appropriate routine in UT71 or MicroDOS where
the function takes place. When the function has been
completed, control returns to the command interpreter.
Usually the user will not have to be concerned with the
peripheral devices because communication with them is
handled by MicroDOS automatically.

Program Creation and Translation

With the Editor, the user can create or modify an
existing program. The program may be stored on the
diskette under a file name with or without an extension.
Once the source file has been created on the diskette, it
can be input to the Assembler or Editor by referring to
its file name.

To speed the loading of object file modules and save
space on the diskette, MicroDOS has a command that

converts ASCII-HEX object files into binary object files
(CDSBIN).

How MicroDOS Operates
Resource Management
A major function of MicroDOS is to manage the

resources of the development system so that the user
does not have to. MicroDOS provides these functions

by having a fixed way of identifying each file on the
diskette and the peripheral devices such as the console
or line printer.

Device Name Format. With MicroDOS, a specific
name is assigned to each peripheral generic device. The
device name always begins with the symbol “#” and
includes two additional characters. The generic device
names pre-assigned by MicroDOS include:

#TY Teletypewriter console printer
#KB Console keyboard

#LP Line printer

#SC CRT screen

Additional names for other peripheral devices can be
assigned by the user. A device name for the disk drive
mechanism is not needed because its designation is
implicit in the file name format.

File Name Format. Each file to be stored on the diskette
is identified by a three-part designation consisting of a
NAME, an EXTENSION, and a DRIVE NUMBER.
Fig. 2 shows the format for assigning identifying desig-
nations to files. In this format, NAME is a user-assigned
name consisting of an alphabetic character followed by
up to five alphabetic or numeric characters.

(NAME) . (EXTENSION) : (DRIVE)

number
1 to 3 alphanumeric characters
1 to 6 alphanumeric characters

92CsS-31642

Fig. 2 - Format for naming files.

The EXTENSION, separated from the NAME by a
period, may be used to differentiate versions or revisions
of the same program. The EXTENSION is one to three
alphanumeric characters the first of which, like the
NAME, must be alphabetic. Although an EXTEN-
SION is not required when a file designation is assigned,
if an EXTENSION is added it must be used every time
the file is referenced. When the command CDSBIN is
used, if an EXTENSION is not specified by the user,
MicroDOS will assign one (CM).

The DRIVE portion of the file designation is a
number, either 0 or 1, preceded by a colon(:) and is the
logical number of the drive unit. If the DRIVE number
is not specified, MicroDOS assumes it is 0 except for the
Editor and Assembler. If the file does not reside in the
unit specified, an error message is printed.

Whenever FILENAME is used throughout this
manual, it means:

:=<NAME>[.<EXTENSION>][:<DRIVE>]

16 User Manual for the RCA MicroDisk Development System MS2000

Examples of FILENAMES are:

AB
AB.XY
AB.XY:0

“Wild-Card” Construct. When a directory is being
searched for a file name, the user can take advantage of
the “wild-card” construct with certain commands to
broaden the search. The “wild-card” construct refers to
the use of an asterisk * in the place of some or all the
characters in a name or extension. The asterisk means
match anything when the directory is being searched.
For example:

NAME.* - means match any file name with
NAME and extension or without an
extension.

means match any file name with EXT
and any name.

- means match any file name.

* EXT -
* *

The asterisk can also specify a wild-card match for the
remainder of the name or extension. For example:

AB*.HEX - means match any file name with AB as
first two characters of the name and HEX as the exten-
sion. These file names would match:

ABC.HEX, ABXYZ.HEX, AB.HEX.

Referencing Files. The MicroDOS method of referring
to files by means of a user-selected name that can be
both brief and mnemonic can save the user a great deal
of time as compared to a physical retrieval and defining
of the unit number and track number for a file. Micro-
DOS keeps track of where the file was established and
where it is located on the disk. The file name is con-
verted by MicroDOS to physical addresses for the sys-
tem to use when the file is opened.

The opening of a file reserves a table for referencing
the file and for holding pointers to the file’s beginning.
As the user accesses the file, the pointers change. The
system or the user program may continue to reference
this file until it is closed. When one of the system com-
mands (such as VERIFY) makes access to files, the
opening and closing of files are done within the com-
mand. If the user writes a program that opens or closes
files, the program must contain the open and close
function. Refer to the chapter entitled MicroDOS User
Functions, for more details.

Development Station Console. The console is used to
echo the user input, display messages that direct the user
to perform specific functions, or display data. It may be
either a hard-copy terminal or a CRT terminal and is
used to communicate with MicroDOS. The designation
for the console input device is #KB and is actually the

console keyboard. The designation for the console out-
put device may be either #TY for a hard-copy terminal
or #SC for a CRT terminal.

When #SC is selected as the output device and when a
large data file is sent to the CRT screen, only 22 lines of
data will be displayed at a time. The prompt “****> will
also appear at the bottom of the screen indicating that
more data is to follow. The user may view the next 22
lines by pressing the space bar. This procedure is
repeated until the entire file or message has been viewed.

A program that can be halted with the BREAK key
(EXAM, COPY, etc.) can usually be either aborted with
the Q key or continued with any other key after it has
been halted by the BREAK key.

Command Interpreter

The command interpreter is the main interface
between the user and the Disk Operating System. The
user enters commands through the main console device.
Prior to command entry, however, the Operating Sys-
tem has to be loaded into memory from disk. The
Operating System is designated MicroDOS VV.RR,
where VV is the version number and RR is the revision
number. MicroDOS tells the user that it is ready for
more input, after it is loaded, by the single prompt
“>”. At this point, interrupts are disabled. If the user’s
program sets interrupts and returns to MicroDOS
through the system function CDENT, interrupts remain
as set by the user’s program. If the user reenters
MicroDOS through P9000, interrupts will be disabled.
Once MicroDOS is executed either by loading with the
L command or by executing a P9000 from UT?71, inter-
rupts are disabled. Entering MicroDOS any other way
will leave the interrupt state as the user program
assigned them.

The command to the Operating System includes the
name of the system file to be executed plus any parame-
ters or options that the file may need. Because all com-
mands are names of files stored on the disk, the user may
add to the existing set of commands very easily.

Command Format. The format for the command line is
given by:

<FILENAME>{<DELIM>
<IDENTIFIER>]
[;<OPTIONS>]

where
<FILENAME> is of the form defined in
Fig. 2
<DELIM> is a non-numeric character
such as comma, space, or slash
<IDENTIFIER> is either another file name
or a generic device name

2. Understanding MicroDOS

17

<OPTIONS> are either one or more
<IDENTIFIER> or a <NUMBER> de-
pending on the command

All system commands are given the extension “CM”.
If the user does not type an extension with the filename
when specifying a command, MicroDOS will assume
thatitis “CM™. A command cannot have a blank exten-
sion. When the user wishes to load an object file with a
blank extension, he must add an extension after the file
name with the RENAME command. The unit number
default value is 0, unless otherwise specified.

When afile is loaded, one of three actions is taken. (1)
If the file is a binary file created by CDSBIN, the file is
loaded and executed at the starting address given by the
CDSBIN program. (2) If the file is an ASCII-HEX file,
with no $U information at the end of the file, the file is
loaded and control is passed to the command interpre-
ter. To execute the loaded file, the user must press
RESET/RUN U followed by a P and execution address
command on the console device. (3) If the file is an
ASCII-HEX file with the $U information at the end of
the file, such as a listing or hex file created by the
Assembler, the file will be loaded and executed at the
address following the $U.

<DELIM> between file names in the command
must be non-alphanumeric characters (such as A or = or
[or,) that are not used by the file name.¢ The following

commands, therefore, would all perform the same
function.

DIR MEM.SOH
DIR=-MEM.SOH
DIR/MEM.SOH
DIR, MEM.SOH

In addition to the above delimiters, MicroDOS
ignores leading spaces of a command and treats multi-
ple spaces between commands as one delimiter.

If the file name is not found on the system, the

“FILENAME NOT FOUND”

message will be printed. If an erroneous file name such
as 2.4 is typed, the message

WHAT?

is typed and control is returned to the command inter-
preter. The CTRL-C character (03) will cause deletion
of the entire command line. The LF character (0A) will
type the current contents of the command line.

The rubout key (7F) will print a left bracket “[”
followed by the deleted character. When the key for
non-delete character is pressed, a right bracket “]” is
printed followed by the pressed character. The rubout

¢ Symbol A is used here to indicate a blank space.

deletes the last character entered into the buffer. NOTE:
Unless otherwise specified, all console inputs are termi-
nated by a carriage return (CR). Note also that correc-
tions cannot be made by backing the cursor and typing
over the erroneous characters.
To pass control from MicroDOS to the Utility Pro-
gram UT71:
Type U,8000 (CR) or press the RESET/RUN U
key.

To pass control from UT71 to MicroDOS:
Type P9000 (CR)

Error Messages. All error messages are displayed in a
text manner. If a file name cannot be found, MicroDOS
prints a message giving the file name requested and
stating that it was not found. Recovery from error
message depends on the MicroDOS program being
executed. Subsequent chapters of this Manual explain
the recovery from certain error messages and provide a
listing of the error messages along with a description.

The description aids in leading the user to a recovery
procedure. A list of the MicroDOS error messages is
given in Appendix D.

Diskette File Management

File Types. All data on the disk are in a combination of
ones and zeroes. In different files, however, the combi-
nation of one and zero bits is interpreted in different
ways. The Assembler and Editor, for example, create
ASCII files and accept only ASCII files. The use of
other types of files, such as binary, would yield unpre-
dictable results. ASCII files may be printed. Other files
on disk may have some printing result but they will
probably be unreadable. For loading purposes, ASCII-
HEX files must have an address associated with the
object code.

Transferring a file from ASCII-HEX to binary is
performed by the CDSBIN program. The resultant
binary files consist of only a machine language represen-
tation of the program. There are no addresses in the file
because all address information is in the file’s descriptor
area. An ASCII-HEX file, therefore, cannot be loaded
as a binary file.

Some of the programs in MicroDOS such as CDSBIN
add specific extensions to the file. Its default extension is
CM. The other programs, however, such as the Editor,
do not have any default extensions. Their default exten-
sion is three blank characters.

File Attributes. The attributes that may at the user’s
option be associated with a disk file include:

1. System (invisible)
2. Write protection

18 User Manual for the RCA MicroDisk Development System MS2000

3. Delete protection
4. Contiguous

When a file is created, all attributes are usually false or
not set. By means of the RENAME command, all the
attributes except contiguous may be set or reset. Con-
tiguous must be set when the file is created.

A system file is one that is constantly used, such as the
Assembler or Editor. These files do not appear in Direc-
tory lists and are not members of deleted sets unless a
special option is selected when the DIR or DEL com-
mand is used.

Write protection is set so that a file cannot be written
to. This protection prevents the user from inadvertently
destroying a file.

Delete protection is set so that a file cannot be deleted
with the delete command. To delete a delete-protected
file, the user must first unprotect the file with the
RENAME command and then delete the file.

A contiguous file is one that is stored without inter-
ruption in a set of contiguous sectors. The only file in the
system that must be contiguous is the binary file because
of the manner in which binary files are loaded by the
operating system.

Diskette Structure

Refer to Appendix A for details on diskette organiza-
tion and structure.

MicroDOS Commands

Files on a disk can be manipulated by the user with
either the system functions or the system commands.
This section deals only with file manipulation by means
of the system commands. The system functions are
discussed later.

MicroDOS commands perform the following opera-
tions:

. Format new diskette

2. Initialize new diskette

3. Load and execute programs

4. Create, delete, and list diskette files and direc-
tories

5. Change file formats

All diskettes that have never been used are completely
blank and must first be formatted with the FRMT
utility. Once formatted, the diskettes must be initialized
with the SYSGEN utility. Complete system diskettes
may be generated.

Program loading and execution are performed by
entering the file name. If the ASCII-HEX program is

not terminated by $UXXXX, control returns to the
command interpreter. Control can then be passed to the
program by means of UT71 or the MicroDOS U com-
mand. If the file is binary, execution starts at the address
established by CDSBIN when the file was generated.

Program creation, deletion, and the control opera-
tions such as the listing of diskette files and directories
are performed by the following commands.

COPY Transfers data

DEL Deletes unprotected files

DIR Displays directory and associated
information

EXAM Displays or modifies actual infor-

mation on a diskette

FREE Lists unused areas of the diskette

MERGE Merges two or more files into one
file

PRINT Transfers data to line printer with
more flexibility than COPY com-
mand

RENAME Changes file names and attributes

U Starts programs from MicroDOS

VERIFY Verifies one file against another

The use of the Assembler (ASM8) and Editor (EDIT) in
the creation of files and the use of additional programs
for diskette control and problem diagnosis are covered
in later sections.

The changing of file formats and the editing and
assembly of files are performed by the following
commands.

CDSBIN Converts MicroDOS ASCII-HEX
files to MicroDOS binary files
EDIT Creates and changes ASCII files
ASMS8 Converts source programs in assem-
bly language into executable (hexa-
decimal) machine code.
Converts ASM4 source files into
ASMS source files.

Transfers files from Pertec drives
to MicroDisk drives and from-
MicroDisk drives to Pertec drives.
Transfers files from cassettes to
MicroDisk drives and from Micro-
Disk drives to cassettes.

CONASM

PERTEC

TAPED

NOTE: Diskette Recovery

If the directory on a system diskette becomes unusa-
ble, there is no way of recovering the data on that
diskette. The user, therefore, should always keep backup
copies of key files.

19

3. MicroDOS Command Descriptions

This chapter describes in detail each system com-
mand available on MicroDOS. The commands included
are:CDSBIN, CONASM, COPY, DEL, DIAG, DIR,
EXAM, FRMT, FREE, HELP, MEM, MEMTST,
MERGE, PERTEC, PRINT, RENAME, SUBMIT
SYSGEN, TAPED, U, and VERIFY. ASM8 and
EDIT, which are the Assembler and Editor, respec-
tively, are discussed in greater detail in subsequent
chapters.

For ease of use, the system command descriptions are
givenin a standard format which includes the command
name, its purpose, its format, its action, error messages,
and examples. In the description for each command, the
angular braces < and > indicate required inputs. The
square brackets [and] indicate optional inputs. The
symbol ::= means “is defined to be.” In the examples, the
underlined material represents printout generated by
the system such as prompts = or queries to the user.
(CR) means carriage return.

Note: The system diskette is assumed to be in drive 0 in
most of the following examples, so that the command
name does not have to be followed by a specific drive
number. If the system diskette was in drive 1, the com-
mand would have a “:1” appended to it.

Alisting of all the MicroDOS error messages is given
in Appendix D.

1. Command: CDSBIN

2. Purpose:
CDSBIN converts an assembler object file, an assem-
bler listing file, or the ASCII-HEX file generated by the

memory save program (MEM) file into a binary object
file.

3. Format:
CDSBIN<DELIM><CDSFILE>{,<BFILE
>I;<OPTION>] (CR)

Both <BFILE> and <CDSFILE> have the form
<NAME>{.< EXTENSION>][:<DRIVE>]

where <CDSFILE> is an ASCII-HEX loadable file
and <BFILE> will become a binary object loadable
file. If <EXTENSION> for <CDSFILE> is omitted,
then a blank is assumed. If <BFILE> is omitted, then
the name portion of BFILE will be the name portion of

CDSFILE and the extension will be CM.

<DRIVE> is assumed to be 0. <OPTION> is used
to specify starting address in hexadecimal. <OPTION>
default is address 0. Any CDSBIN-generated file will
automatically start after it has been loaded. To prevent
automatic starting, the user should make the starting
address 9005 to return to MicroDOS or 8029 to return
to UT71.

4. Action:

The file <CDSFILE> is read to see how much con-
tiguous disk space must be made available. Once the
amount is determined, <BFILE> is allocated the
required disk space.

The CDSBIN program is located in memory from
F9A3-FFFF. If the user wishes to create a binary file
that resides in this area, he must change the origin
statement (starting point) ORG in the CDSBIN source
file (CDSBIN.SR), reassemble the program, and create
a new binary file using CDSBIN with the correct start-
ing address specified in the CDSBIN command. With
this new version of the CDSBIN program, the user may
create the desired binary file.

If the starting address is specified, the specified
address will override the address in the $U record. The
address must be a valid hexadecimal number in the
range 0000-FFFF, and it must be contained in the
memory region spanned by BFILE. If not, an error
message is printed.

S. Error Messages:

<FILENAME> F.N

NOT FOUND <CDSFILE> not found

<BFILE> DUP F.N.

COMMAND SYNTAX ERR

DISK FULL No room is available for
<BFILE>

FORMAT ERROR <CDSFILE> did not have
the correct format

LOG EOF A DC3 was not part of the

<CDSFILE>
INVALID FILE TYPE <CDSFILE> was not of
file type ASCII

6. Examples:
From an ASCII-HEX file AHFILE located on unit

20 User Manual for the RCA MicroDisk Development System MS2000

0, generate a binary file on unit 0 called AHFILE.CM.
The execution address is to be 0.

= CDSBIN,AHFILE(CR)
>

From the same ASCII-HEX file, generate a binary
file on unit 1 with the name AH.XY and the execution
address of 1000 (hex).

2 CDSBIN,AHFILE,AH.XY:1;1000(CR)

1. Command: CONASM

2. Purpose:

CONASM allows a program written in ASM4 source
code to be used with the ASM8 assembler. The ASM4
source code must be error free.

3. Format:

CONASM<DELIM><FILENAMEI1>,Z
FILENAME2>{;<OPTIONS>]

<FILENAMEI1> is the ASM4 input source code file

<FILENAME2> is the ASM8 output source code
file

<OPTIONS>;N Warnings and errors will not be
inserted into output as comments

4. Action:

In asingle pass, the syntax of the ASM4 source file is
modified to conform to that of ASM8. Where context
determines appropriate action, a warning is generated
and the most likely use is considered. Where SETC, L™’
(the length operator) are encountered, an error message
is generated. Invalid characters also generate warnings
and are replaced with the A character. System limita-
tions generate fatal errors. Warnings and errors are sent
to the console screen (#SC) and, unless suppressed, are
inserted into the output as comments.

5. Error Messages:
The following message is generated if the input file
name is incorrect.

INVALID INPUT FILE NAME
RETYPE>

The following message is generated if the output file
name is incorrect.

INVALID OUTPUT FILE NAME
RETYPE>

The following messages are generated during warning
conditions.

** WARNING ** THE NUMBER OF WARN-
INGS HAS EXCEEDED 65,535

** WARNING ** THE NUMBER OF ERRORS
HAS EXCEEDED 255

** WARNING ** AN ORG STATEMENT HAS
BEEN CHANGED TO A DS STATEMENT

** WARNING ** AN'INVALID CHARACTER
HAS BEEN REPLACED WITH A

** WARNING ** A LABEL - <LABEL> HAS
BEEN TRUNCATED TO 9 CHARACTERS

** WARNING ** THIS MAY NEED TO PRE-
CEDE THE FIRST USE OF EXPRESSION

** WARNING ** A LABEL - <LABEL> HAS
BEEN DUPLICATED BY TRUNCATION

** WARNING ** <LABEL> IS A SYSTEM,
SOURCE LABEL DUPLICATE

The following messages are generated during error
conditions.

*** ERROR *** INPUT LINE EXCEEDS 80
CHARACTERS

*** ERROR *** THE ERROR LIST HAS
OVERFLOWED

*** ERROR *** THE OUTPUT LINE BUFFER
HAS OVERFLOWED

*** ERROR *** AN UNBREAKABLE LINE
TOO LONG HAS BEEN ENCOUNTERED

*** ERROR *** UNBALANCED PAREN-
THESES

*** ERROR *** NO LABEL FOUND WHERE
EXPECTED

*** ERROR *** THE NEW ASSEMBLER CAN-
NOT PROCESS SETC OR L STATEMENTS

*** ERROR *** MISSING QUOTE IN A
NUMBER

*** ERROR *** SYMBOL_ TABLE OVER-
FLOW

The following messages are included at the end of the
conversion to show the total number of warnings and
errors.

* THERE WERE XXXXX WARNINGS IN THIS
CONVERSION

* THERE WERE XXX ERRORS IN THIS CON-
VERSION

1. Command: COPY

2. Purpose:

COPY is a generalized copy routine that can take a
data file from one peripheral device to another. It can
copy from disk to disk, disk to teletypewriter printer,
disk to screen, keyboard to disk, and disk to line printer.
It can copy either ASCII or binary.

3. Format:
COPY<DELIM><NAMEI><DELIM>
<NAME2> (CR)
<DELIM> is a command line delimiter
<NAMEI> is the name of the source file or source

3. MicroDOS Command Descriptions

21

device, and <NAME2> is the name of the destina-
tion file or destination device.

If <KNAMEI1> is a disk file name, it is of the format
<NAMEI>{.<EXTENSIONI>][:<DRIVEI>]
and <NAME2> must be specified.

If <DRIVEI> is not specified, “0” will be used.

If <EXTENSIONI1> or <EXTENSION2> is not
specified, blank will be used.

If <NAME2> is a disk file name, it is of the format
<NAME2>{,<EXTENSION2>][:<DRIVE2>]

The following are mnemonics for the non-disk de-
vices used with the command COPY:

#LP Line printer

#TY Teletypewriter printer
#SC Console screen

#KB Console keyboard

4. Action:
Three types of file copying can be requested:
Disk to disk
Disk to device
Device to disk

Disk-to-disk copy takes the information associated
with one file name and copies it to the other file name.
Both file names must be specified. Disk- to-device copy
is a transfer from a disk file to a line printer or console
printer. This transfer permits the printing of a disk file.
Device-to-disk copy is a transfer from a keyboard to a
disk file. Transfer from keyboard to disk file is termi-
nated by entering CTRL-S (EOF).

To pause the transfer of the COPY program, press
the BREAK key on the keyboard. To abort COPY after
a pause, press the Q (QUIT) key. Any other key will
continue the copying. Note:When #TY or #SC are used,
both will output the file to the CRT screen. #TY will
copy the file onto the screen until the BREAK key is
pressed; #SC will only output 22 lines and then stop. To
continue, the space bar must be pressed.

5. Error Messages:
<FILENAME> F.N. NOT FOUND
<NAMEI> does not exist.

DIR FULL No more room exists for another
file name in the directory.

DISK FULL No more room exists for file on
disk. Some of the data may have
been transferred.

INVALID Disk file being copied to a non-

FILE TYPE

disk device has a file type other
than ASCII or ASCII-HEX for-
mat. COPY cannot dump non-
ASCII files to an ASCII device.
The Operating System or any oper-

ating system file cannot be copied.
Disk was entered (e.g., #DK).
Peripheral device specified does
not exist in system.

INVALID DATA Device requested does not

INVALID DV
NO SUCH DV

TRANSFER transfer data in the direction

TYPE requested (e.g., copy to an input-
only device or copy from an output-
only device).

COMMAND A name contained a wild

SYNTAX ERR card construct, or no file name was

found as the first or second param-
meter.

6. Examples:
Copy the ASCII file ASCII to the screen.
2 COPY,ASCIL#SC (CR)

Copy the ASCII file ASCII on unit 0 to the ASCII file
ASCII on unit 1.
= COPY,ASCIIASCII:1 (CR)

1. Command: DEL

2. Purpose:

DEL deletes MicroDOS file names from a directory
and de-allocates all disk space belonging to the deleted
file. A single file, a list of files, or a family of files may be
deleted.

3. Format:

DEL<DELIM><NAME>{.<EXTENSION>]:
<DRIVE>][;<OPTION>](CR)

<DELIM> is a command line delimiter;

<NAME> specifies a file name, a list of file names, or
a family of file names,

<EXTENSION> specifies an extension or a family
of extensions, and

<DRIVE> is the logical drive number.

<OPTION>;S includes files with the system attrib-
ute when deleting.

If the S option is not chosen, system files will not be
deleted and
<FILENAME> F.N. NOT FOUND

error message will be displayed.

4. Action:

The list of file names specified on the command line
are searched for in the specified directories. If a specified
file is not found in a directory, the message

<FILENAME> F.N. NOT FOUND
will be displayed. Otherwise, the message
<FILENAME> DELETED
will be displayed.

If a file to be deleted has the delete-protection attrib-

ute set, the message.
<FILENAME>IS DELETE PROTECTED

22 User Manual for the RCA MicroDisk Development System MS2000

will be displayed. Protected files cannot be deleted until
their protection has been removed (see RENAME
command). Control will be passed back to the operating
system when the last file name has been deleted.

S.Error Messages:
See 4. Action, above.

6. Examples:
Delete file XYZ on unit 1 and QST on unit 0.
2 DEL,XYZ:1,QST:0(CR)

Delete all files having the extension Al on unit 0, file
Al onunitl, and all files with the first two letters XY on
unit 0.

> DEL,*.Al,:1, XY*.*(CR)
Delete system file ABC.
2 DEL,ABG;S(CR)

For an explanation of the * symbol, see “Wild-Card”
Construct in the chapter entitled Understanding
MicroDOS.

1. Command:

2. Purpose:

DIAG is a diskette diagnostic program that provides
the facility of detecting media errors. These errors are
called CRC (Cyclic Redundancy Check) errors. They
indicate that the Read and Read CRC operations result
in the detection of a possible data error. Some CRC
errors can render a diskette unreadable by the Editor
and Assembler. DIAG provides the user the option of
attempting to fix such errors.

DIAG

3. Format:
DIAG(CR)

4. Action:

Each sector on the diskette contains CRC bytes.
These CRC bytes are generated from a cyclic permuta-
tion of data bits starting with bit 0 of the first byte and
ending with bit 7 of the last byte. When data is read from
a diskette, status bits are checked by the diagnostic
program. The Floppy Disk System hardware automati-
cally computes the CRC during a read operation, and if
an error is found, the CRC status bit is set at the end of
the read.

The diskette diagnostic program DIAG seeks each
sector (starting from sector #01 of track #00 of the
selected drive), and the Read CRC command is issued.
If a CRC error is detected, the CRC Read operation is
repeated. There are two types of CRC errors that can be
detected:

1. A“SOFT”ERROR s anerror that can be recovered
by data rereading. A marginal diskette is indicated if
many soft errors are present.

2. A“HARD”ERROR is an error that can not be fixed
even by rereading.

If a CRC error is detected, 16 attempts to reread the
data are made. If a successful read is made, the error will
be labeled as being “soft”. If the 16th attempt also fails,
the error is considered “hard”. After any detected error,
the program prints a message giving the track number,
sector number, and the type of the CRC error detected.
A fix-up option is also provided to attempt fixing hard
errors by rewriting the data back into the sector. If a
hard error is not fixed by data rewriting, the user
receives an “error-not-fixed” message and the specified
sector should not be used for data storage. If the CRC
error is corrected by data rewriting, the “error-fixed”
message is printed and the specified sector can be used
for data storage.

It should be noted, however, that a sector so “fixed”
may now contain data not exactly the same as that
which was originally intended. Because a CRC error
was detected, some data was recorded incorrectly. Data
rewritten by the fix-up routine attempts to remove the
CRC discrepancy, but cannot correct a garbled byte.
Thus, a file so fixed should be visually inspected for
corrections and fixed by means of the EXAM program.

In the case of either a hard or soft error, the program
continues processing the rest of the sector on the
diskette.

Any diskette exhibiting errors has become marginal
and should be copied immediately and the marginal
disk discarded. The user can abort the program while it
is testing the diskette by pressing and holding the
BREAK key.

5. Error Messages:

In addition to the errors described under 4 above, if
the drive fail bit is set, the “CK DRIVE” message is
issued. In this case, the program has to be restarted.

6. Example:
2 DIAG(CR)
DISKETTE DIAGNOSTIC PROGRAM
FIX UP ? Y(CR)
ENTER UNIT NUMBER: 1(CR)
UNIT: 1
TRACK: 00 SECTOR: 01 SOFT ERROR
TRACK: 35 SECTOR: 08 ERROR FIXED

TRACK: 69 SECTOR: 09 ERROR NOT FIXED
TEST DONE
>

1. Command: DIR
2. Purpose:

DIR displays MicroDOS file names from a directory.
An entire directory or selective parts of it may be dis-
played on the console screen. The minimum directory
information displayed is 4 file name and extension. At

3. MicroDOS Command Descriptions

23

the user’s option, an entire directory entry, in addition
to its allocation information, can be displayed.

3. Format:

DIR<DELIM>[<NAME>{ . <EXTENSION>]:
<DRIVE>]][;<OPTIONS>](CR)

<DELIM> is a command line delimiter,

<NAME> specifies a file name or a family of file
names,

<EXTENSION>> specifies the extension or a portion
of the extension,

<DRIVE> specifies the logical disk drive number

and

<OPTIONS> specifies one of the following defined

actions:

E- Displays entire directory entry information
(attributes, starting sector number, file size,
and directory entry number).

A - Displays complete allocation description
for each file name (segment descriptors).

L- Displays directory information on the line
printer.

S- System files (files with ‘S’ attribute) may be
included when a family of files is displayed.

4. Action:

The disk directory specified by <DRIVE> is searched
for the specified <NAME> and <EXTENSION>. If
the drive number is omitted, drive 0 will be selected. If
only the drive number is specified (explicitly or implic-
itly), all directory entries other than system files on that
drive will be searched for. Directory entries found by the
above search procedure will be displayed on the system
console unless option ‘L’ is specified. The following
format will be used to display the directory entries:

DRIVE: DISKID:
NAME.EXTENSION[<ATTR><SSN>
<SIZE><DEN>]

<ATTR> is a list of attributes,

<SSN> is the number of data sectors actually
used, and

is the entry’s directory entry number
(index to physical location in direc-
tory). <DEN>> consists of two hex-
adecimal digits (an 8-bit binary num-
ber). The upper four bits are the
physical sector number within the
directory. The lower four bits are the
entry’s physical position within a direc-
tory sector (0-7). These quantities are
displayed only if the ‘E’ or ‘A’ option
has been specified.

is taken from the special ID sector.
See SYSGEN command for informa-
tion on DISKID. Refer to Appendix

<DEN>

<DISKID>

A for details of diskette organization.

<ATTR> is always displayed as a six-character
field of the form:
WDSC.# Each position contains either a letter

or a period ‘." indicating the presence
or absence of that attribute, respec-
tively. The following meanings are
associated with the specific attribute
positions:
W = write protection
D = delete protection
S = system file
C = contiguous allocation
= file format - a digit from 1 to 3
1 = > binary
2 = > ASCII
3 = > Operating System
After all directory entries from the search have been
displayed, the message

TOTAL NUMBER OF SECTORS: YYYYY
TOTAL DIRECTORY ENTRIES SHOWN:
XXXXX

will be displayed. XXXXX is a decimal count of the
displayed directory entries. YYYYY is the sum of the
size of all displayed files (decimal sectors). YYYYY is
displayed only if the E or A option is used. If no direc-
tory entries are found in the search, the message

NO DIRECTORY ENTRIES FOUND

will be displayed. After all entries returned by the search
are displayed, control will be returned to the command
interpreter.

If the A option s specified, the information contained
in a file’s first sector (sector pointer block) will be dis-
played in addition to the full directory entry. Following
each displayed directory entry will be one line of alloca-
tion information for each segment of the file. The for-
mat follows:

SEG ISECT J SIZE K

where I is the segment number, J is the sector number
that starts the segment, and K is the number of allocated
sectors in the segment.

5. Error Messages:
See 4 above.

6. Examples:

Get a listing of the directory on unit 0.
= DIR (CR)

See if file QRS is on unit 1.
> DIR,QRS:1(CR)

List the directory information of all files on unit 0

24 User Manual for the RCA MicroDisk Development System MS2000

with the extension CM.
= DIR,*.CM;E,S(CR)

List on the line printer all the allocation information
for all files on unit 0.
2 DIR,*.*;A,L(CR)

For an explanation of the * symbol, see “Wild-Card”
Construct in the Chapter on Understanding MicroDOS.

1. Command: EXAM

2. Purpose:
EXAM is a utility program that allows examination
or modification of information on a diskette.

3. Format:
EXAM<DELIM>{;<OPTION>](CR)
<DELI M> is a command line delimiter, and
<OPTION> is L if the header and data are to be
printed on the line printer.

4. Action:

After printing a header, the program asks for various
parameters such as drive, track, sector, filename, physi-
cal sector, or logical sector depending on which mode is
selected.

EXAM can operate in one of three modes. In the
UNIT/TRACK mode, the user enters the drive, track,
and sector that he wishes to examine or modify. In the
PHYSICAL mode, the user enters the drive and the
physical sector number. In the LOGICAL mode, the
user enters the drive, the filename, and the logical sector
number.

Each 512-byte sector is displayed as two 256-byte
screens. The top of each screen displays a header con-
taining decimal values that show such information as
drive, track, sector, physical sector, filename, or logical
sector depending on which mode is selected. The left
side of each screen shows the position of each byte

within the sector. The right side of each screen shows the
ASCII equivalent of the data bytes. All non-printing
data bytes are presented as a ‘.’ in this area. The bottom
of each screen displays a menu of possible operations
that can be performed after viewing a screen.

The user can halt the program while it is displaying
data by pressing and holding the break key. After the
program halts, it can be resumed by pressing the space
bar. If the Q key is pressed, the program will revert to
the menu.

If the modify function is selected, the program will
ask how to modify the sector that is being displayed.
The user can enter new information in either ASCII or
hexadecimal. After the program prompts for the new
data, the user should enter either MH for modify hex or
MA for modify ASCII, a space, a hex number specify-
ing the byte position in the displayed sector to start
modifying, a space, and finally the new data. In the MA
mode, the ASCII characters will be converted to their
hexadecimal equivalents before being changed on the
diskette.

5. Error Messages
*¥xxxx BEGINNING OF DISK ******

Message obtained when the user attempts to access a
physical sector with a value less than 0.

*xxxxx END OF DISK A kok ok ok k

Message obtained when the user attempts to access a
physical sector with a value greater than 629.

6. Example:
Examine physical sector 11 on the diskette in drive 1

and change byte FEH in this sector from a 35H to a
37H.

= EXAM(CR)

3. MicroDOS Command Descriptions

25

DISKETTE EXAMINATION PROGRAM
ENTER (L) LOGICAL (P) PHYSICAL (U) UNIT/TRACK :P(CR)

ENTER DRIVE NUMBER :1(CR)

ENTER PHYSICAL NUMBER :11(CR)

DRIVE: 1

0C21 4DOD 0A30 3030
2020 2020 2020 2020
3030 3020 3B20 2020
2020 2030 3030 3220
S554E 4354 494F 4E20
2D20 434F 5059 2041
2041 4E4F 544B 450D
2EOD 3030 3030 203B
BYTE: 0080 2020 2020 2020 3030
BYTE: 0090 2046 4F4C 4C4F 5749
BYTE: 00A0 4D41 5449 4F4E 2049
BYTE: 00B0 4E49 5449 4F4E 2046
BYTE: 00CO 4520 5052 4F47 5241
BYTE: 00D0 3B20 2020 2020 2020
BYTE: 00E0 3030 3420 2E2E 0D30
BYTE: 00F0 2020 2020 2020 2020

BYTE: 0000
BYTE: 0010
BYTE: 0020
BYTE: 0030
BYTE: 0040
BYTE: 0050
BYTE: 0060
BYTE: 0070

(1) AHEAD ONE SCREEN(2) AHEAD ONE SECTOR(3)

PSN:

3020
2030
2020
2E2E
4558 414D
2046 494C
0A2E 5220
2020 2020
3033 202E
4E47 2049 4EA46
5320 4120 4445
4F52 O0DOA 2E20
4D3A 0D30 3030
2020 2020 2020
3030 - 3020 3B20
2020 2030 3030

3B20
3030
2020
5553

2020
3120
2020
4552
504C
4520
4649
2020
2E54

0011

2020 .'M 0000 ;

0D30 0001 .0

2020 000 ;

2046 0002 USER

4520 FUNCTION EXAMPLE
544F -COPY AFILETO
4C45 ANOTHER FILE

2020 0000 ;

4845 0003 THE

4F52 FOLLOWING INFOR-
4649 MATION IS A DEFI-
5448 NITION FOR THE
3020 PROGRAM 0000

2030 ;0

2020 004 0000 ;

3520 0005

AHEAD CONTINUOUS

(4) BACK ONE SCREEN (5) BACK ONE SECTOR (6) BACK CONTINUOUS
(7) MODIFY (8) NEW PSN (9) RESTART (A) EXIT

ENTER NUMBER OF DESIRED FUNCTION :7(CR)

ENTER NEW DATA :MH FE 37(CR)

DRIVE: 1

0C21 4DOD 0A30 3030
2020 2020 2020 2020
3030 3020 3B20 2020
2020 2030 3030 3220
S54E 4354 494F 4E20
2D20 434F 5059 2041
2041 4E4F 5448 450D
2EOD 3030 3030 203B
BYTE: 0080 2020 2020 2020 3030
BYTE: 0090 2046 4F4C 4C4F 5749
BYTE: 00A0 4D41 5449 4F4E 2049
BYTE: 00B0 4E49 5449 4F4E 2046
BYTE: 00C0 4520 5052 4F47 5241
BYTE: 00D0 3B20 2020 2020 2020
BYTE: 00E0 3030 3420 2E2E 0D30
BYTE: 00F0 2020 2020 2020 2020

BYTE: 0000
BYTE: 0010
BYTE: 0020
BYTE: 0030
BYTE: 0040
BYTE: 0050
BYTE: 0060
BYTE: 0070

PSN: 0011

3020
2030
2020
2E2E
455B 414D
2046 494C
0A2E 5220
2020 2020
3033 202E
4E47 2049 4E46
5320 4120 4445
4F52 O0DOA 2E20
4D3A 0D30 3030
2020 2020 2020
3030 3020 3B20
2020 2030 3030

3B20
3030
2020
5553

2020
3120
2020
4552
504C
4520
4649
2020
2E54

2020
0D30
2020
2046
4520
S44F
4C45
2020
4845
4F52
4649
5448
3020
2030
2020
3720

'M 0000 ;

0001 .0

000 ;

0002 USER
FUNCTION EXAMPLE
- COPY A FILE TO
ANOTHER FILE

0000 ;

0003 THE
FOLLOWING INFOR-
MATION IS A DEFI-
NITION FOR THE

E PROGRAM : 0000
;0

004 0000 ;

0007

(1) AHEAD ONE SCREEN (2) AHEAD ONE SECTOR (3) AHEAD CONTINUOUS

(4) BACK ONE SCREEN (5) BACK ONE SECTOR (6) BACK CONTINUOUS

(7) MODIFY (8) NEW PSN (9) RESTART(A) EXIT
ENTER NUMBER OF DESIRED FUNCTION :A(CR)

>

26 User Manual for the RCA MicroDisk Development System MS2000

FRMT

2.Purpose: FRMT isused toformat a new diskette or
one that that has been damaged by a magnetic field. It
will completely erase all previous headers and data,
write a new header for each sector, and fill each sector
with its corresponding track value in hexadecimal. It
verifies each track and reports errors.

All diskettes will be formatted with double-density,
512 bytes per sector and nine sectors per track (num-
bered 1 to 9). The user may specify drive number, (0-3,
defaults to 1), number of tracks (70 or 80, defaults to 70),
and single or double-sided (defaults to single).

1. Command:

3. Format:
FRMT(CR)

4. Action:
FRMT prints thg following message:

RCA MICRODISK FORMAT PROGRAM
DEFAULT VALUES:
DRIVE # = 1, # OF TRACKS = 70, # OF SIDES =1
FORMAT, CHANGE/PRINT DEFAULTS, OR
QUIT (F, C, P, OR Q)?
If the user presses the C key, the program will prompt
for new drive number, number of tracks, and single-
or double-sided. Keys outside the specified ranges
will be ignored except for (CR) which will return to
the menu.

If the user presses the P Key, the present set of default
values for drive, number of tracks, and single- or
double-sided will be printed.

If the user presses the Q key, the program will return
to MicroDOS.

If the user presses the F key, the program will prompt
with:

OK TO FORMAT DRIVE X (Y/N)?

(X is the selected drive number). If the user responds
with any key but Y, the program will return to the
menu. If Y is pushed, the diskette in the selected drive
will be formatted and verified. If a drive not ready or
write-protected condition is found, the program
returns to the menu. If a track does not successfully
format and verify on the first try, but does within 5
tries, a soft error message and the track number will
be printed. If the track cannot be verified in 5 tries, a
hard error message is printed. Pushing the break key
at any time will abort the operation.

5. Error Messages:
DRIVE NOT READY DURING (ACTION),
TRACK XX
A Dirive-not-ready signal was encountered. The
(ACTION) could be a SEEK, FRMT, or VERIFY

attempt. The track number is in decimal.

DRIVE OR CONTROLLER FAILED DURING
(ACTION), TRACK XX.
A drive fail signal was encountered during (ACTION).

DISKETTE WRITE PROTECTED DURING FOR-
MAT, TRACK XX.

A write protect signal was encountered when attempt-
ing to format.

SOFT ERROR DURING VERIFY, TRACK XX.
A CRC or other disk read error was encountered
during the CRC READ. It was recovered within §
tries.

HARD ERROR DURING VERIFY, TRACK XX.
An error as above was not correctible within 5 tries.

TERMINATION ERROR DURING (ACTION),
TRACK XX.
An otherwise unidentified error was encountered.

1. Command: FREE

2, Purpose:

FREE informs the user how many non-allocated sec-
tors remain on the disk and how many unused directory
entries are available.

3. Format:
FREE[<DELIM>:<DRIVE>] (CR)
<DELIM>is a command line delimiter, and
<DRIVE>is the logical drive number. If <DRIVE>
is not specified, 0 will be assumed.

4. Action:

FREE will cause the following message to be printed
on the display:

DRIVE O DISKID:(DATE AND ID FROM
ID SECTOR)
XXXXX SECTORS YYYYY FILES

XXXXX and YYYYY are decimal numbers. The
maximum number of free sectors on the disk is 620; the
maximum number of entries allowed in the directory is
128 if the capacity of the disk will allow this number of
files.

S. Error Messages:
None applicable

6. Example:
List on the console the free area of drive 1.
> FREE :1(CR)

1. Command:

2. Purpose:
HELP is a file that contains instructions for using
each of the other MicroDOS commands.

HELP

3. Format:
HELP(CR)

3. MicroDOS Command Descriptions

27

4. Action:

After HELP is loaded, a numbered listing of the
MicroDOS commands is displayed on the screen. The
operator enters the number of the command he plans to
use followed by (CR). HELP then displays the instruc-
tions for using the selected command. '

S. Error Messages:
None applicable

1. Command: MEM

2. Purpose:

MEM is used to save on a diskette user object code
located anywhere in memory. A memory file thus saved
may later be rapidly reloaded into memory. Data is
saved in ASCII-HEX format.

3. Format:
MEM(CR)

4. Action:

MEM normally resides in memory FB8C through
FFFF. Memory from 0000 to FFFF may be selectively
saved by this command. The program is written so that
only the first ORG statement need be changed to
relocate it. Relocation is accomplished by use of the
Editor program to change the ORG statement and the
Assembler program to generate object code.

Once assembled, the hex code file should be con-
verted to a binary file by use of CDSBIN. The MEM
program is loaded by the command interpreter.

After
MEM(CR)

is keyed in, the program starts by typing the following
header message.

DISK SAVE PROGRAM
FIRST ADDR?XXXX(CR)

The user should enter the first address of memory to be
saved. The program then asks

LAST ADDR?XXXX(CR)

The user replies to this query with an address XXXX.
Memory from the first address up to and including this
address is selected for saving.

Next, MEM requests the selection of a disk file name.

WRITE?FILENAME (CR)

S. Error Messages:
See Appendix B, MicroDOS Error Messages.

6. Examples:

Copy a program onto disk that is loaded in memory
at location 0000 through 0340. Give it the file name
WFIL2. MicroDOS is currently in control.

= MEM(CR)

DISK SAVE PROGRAM

FIRST ADDR?0000(CR)

LAST ADDR?0340(CR)

WRITEIWFIL2(CR)

2> CDSBIN WFIL2(CR) ..To convert to binary
.file WFIL2.CM which
..starts execution at

The saved program can be called from disk at any time
by typing its file name WFIL2.CM.

See Appendix C - MS2000 Memory Test. MEMTST

1. Command: MERGE

2. Purpose:

MERGE copies and merges one or more ASCII files.
Its main use is for continued files or multi-diskette files
generated by the assembler or the editor. The ASCII
files do not have to be terminated by a DC3.

3. Format:
MERGE<DELIM>NAMEI>
<DELIM><NAMEn>]n(CR)
<DELIM> is a command line delimiter,
<NAMEI> is the name of the destination file,
<NAMEn> is the names of the files to be merged

The default values for any extension is three blank
characters. The default value for any unit number is 0.

4. Action:

MERGE copies the first file from the source list into
the destination file name. Whenever a null file name is
encountered, the MERGE command adds a DC3 to the
output file and closes all opened files. If any of the
source file names cannot be found, an error message is
printed. MERGE then allows the user to retype the
erroneous file name or to exchange disks (i.e., put into
the drive being used for the source files the diskette
containing the desired files) and retype the file name.
MERGE cannot be aborted by pressing the BREAK
key. It can be aborted only by typing a (CR) in response
to a request to retype file name. The DC3 end-of-file
marker will be removed from files before they are
merged.

If the destination file name was incorrectly typed or if
the file name already exists on the diskette, MERGE
will inform the user and allow him to correct the file
name or replace the diskette with another diskette. The
resulting file name will have the attributes of the first file
in the input file list. MERGE should be used only on
ASCII or ASCII-HEX files.

28 User Manual for the RCA MicroDisk Development System MS2000

5. Error Messages:
SYNTAX ERROR Either an illegal file name or
a wild-card type file name.
The user should retype the
correct name when prompt-
ed. A (CR) will abort
MERGE and return control
to MicroDOS.

File name not found on
diskette. User should either
place diskette contairting the
file into the drive unit or
retype the name specifying
that file is in other unit. Only
a (CR) is needed to abort
MERGE.

No more room exists for
another file name in the direc-
tory.

No more room exists for file
on disk. Some of the data
may have been transferred.
Delete the incompleted file.
A file other than ASCII was
called for. The user should
type a (CR) to abort merge
and return control to
MicroDOS.

<FILENAME> F.N.
NOT FOUND

DIR. FULL

DISK FULL

BAD FILE TYPE

6. Example:
Merge files SOURCE.X1 and SOURCE.X2 into file
DESTFN.
2 MERGE DESTFN,SOURCE.X]I,
SOURCE.X2(CR)

1. Command: PERTEC

2. Purpose:

PERTEC is used to copy an ASCII file from a Pertec
drive to a MicroDisk drive or from a MicroDisk drive to
a Pertec drive. It can also generate a binary file from a
hexadecimal or list file in a Pertec drive to a MicroDisk
drive.

3. Format:
PERTEC(CR)

4. Action:

When the transfer is from the Pertec drive to the
MicroDisk drive, the user should first prepare a source,
hexadecimal, or list diskette of the desired input file on
an 8-inch diskette. It must be in unit/track format and
start on track 0. This requirement can be met by use of
the FCOPY command. This diskette must then be
placed in Pertec drive 0.

After the program is loaded, it will print the follow-
ing:

8” TO MICRODISK ASCII OUTPUT (A)
8” TO MICRODISK BINARY OUTPUT (B)
OR MICRODISK TO 8” ASCII OUTPUT?(C)

If the user types an A, the copy-ASCII mode is
selected. The program then prompts for the name of the
output file that will be generated on the MicroDisk
drive. After this name is entered, the entire file is copied
from the Pertec drive to the MicroDisk drive.

If the response to the initial prompt had been a B, the
generate-binary mode would be selected. The program
prompts for the name of the output file and execution
address. After these names are entered, the entire hex-
adecimalor list file is loaded from the Pertec drive into
memory. The hexadecimal or list file must have been
assembled from a source file that had an END state-
ment. A binary file is then generated on the Microdisk
drive. This binary file will automatically start execution
at the specified address if it is later loaded from the
MicroDisk drive. If no address is specified, execution
starts at address 0000H.

If the response had been a C, the program will ask for
the input filename on the MicroDisk drive. After the
name is entered, it will ask if it is OK to write to unit 0,
track 0 on the Pertecdrive . If a Y is entered, the ASCII
copy will take place.

In any mode, the program can be aborted by pressing
the BREAK key. The following will be printed

** ABORTED**
Control will then be returned to the operating system.

S. Error Messages:
<OUTFILE> DUP F.N.

The specified output file name already exists.

6. Examples:

Copy the ASCII file in Pertec drive 0 to MicroDisk
drive 1 and give it the name ABC.XYZ.

2 PERTEC(CR)

8” TO MICRODISK ASCII OUTPUT (A)

§8” TO MICRODISK BINARY OUTPUT (B)
OR MICRODISK TO 8” ASCII OUTPUT

(C)?A(CR)
ENTER OUTPUT FILENAME ; ABC.XYZ:1
2

Convert the list file in Pertec drive 0 to a binary file in
MicroDisk drive 0 and give it the name TEST.CM.
Specify an execution address of 024CH.

= PERTEC(CR)

8” TO MICRODISK ASCII OUTPUT (A)

8” TO MICRODISK BINARY OUTPUT (B)

OR MICRODISK TO 8" ASCIL OUTPUT
(C)?B(CR)

3. MicroDOS Command Descriptions

ENTER OUTPUT FILENAME AND EXECU-

TION ADDRESS :TEST.CM;24CH
>

1. Command: PRINT

2. Purpose:
PRINT gives the user a variety of options in output-
ting one or more files to a line printer.

3. Format:
PRINT<DELIM><FILENAME>{
;<OPTIONS>](CR)
<FILENAME>is the name of the file to print. Both
drives will be searched if no unit number is specified. If
no file name is given, a blank page will be ejected. A file
name may actually consist of a list of files to be printed.

<OPTIONS>

H- Suppress the header that comprises the
name of the file and the name of the disk-
ette.

P- Suppress the page numbers.

Lnn - Use nn lines per page (0<nn<100)

Snn - Skip nn-1 lines between each printed line.
(1<nn<99)

D- If aline contains one or more CONTROL-

H characters, count it as a double-
sized line and adjust the line counter
accordingly.

Ttttttt...d - Print the text, tttttt..., at the top of each
page. The delimiter, d, is either an
ESCAPE character or the end of the
command line.

Cnn- Print nn copies of each file specified.
(0<nn<100)

E- Exit the print program.

Wnnn - Width of paper. nnn columns per page.

(0<nnn<200). Starts with 117 columns.

Remembers last W command.

Width of paper for this command line, nnn

columns per page. (0<nnn<200) Remem-

bers old width and restores it after finish-

ing present command.

N- Suppress resetting page numbers between
files. Action is that page number will con-
tinue from Ist page of previous file. N
command is inoperative if C command is
specified.

Xnnn -

4. Action:

If both the file name and the options are omitted
when the PRINT program is loaded, the program
responds with a prompt “:” after which commands can
be entered.

§S. Error Messages:

INVALID Wild-card format “*”

FILENAME cannot be used

<FILENAME> F.N. Specified file not found

NOT FOUND

01 DR FAIL Drive number was not speci-
fied and drive al did not con-
tain a diskette

**+ PRINTER NOT

READY. CONTINUE

OR EXIT (C/E)? Line printer not ready

6. Examples:

Print a single file and return to MicroDOS

2 PRINT MEM.SR(CR)

Print a file ABC and suppress the header and page
numbers.

2 PRINT ABC;HP(CR)

With print already loaded, print 5 copies of file
report.
:REPORT;C5(CR)

With print already loaded, return to MicroDOS.
5E(CR)

1. Command: PROM25

Operating instructions for this command are given in
the technical literature for the PROM Programmer
CDP18S680.

1. Command:

2. Purpose:

RENAME allows the names, extensions, and attrib-
utes to be changed in a directory. The information in the
file remains the same.

RENAME

3. Format:

RENAME<DELIM><FILENAMI1>

[L.<FILENAM2>][;<ATTR>](CR)

<DELIM> is a command line delimiter;

<FILENAMI> equals <NAMI1>

[.<EXTENSIONI>][:<DRIVE> which is the name
of the file for which the name or attributes are to be
changed.

<FILENAM2> equals <NAM2>

<EXTENSION2> which is the new file name.

The contents of <ATTR> is the new set of attributes.

IfF<NAM?2> is omitted, then <NAM 1> will be used.
If the <EXTENSIONI1> is omitted, a blank will be
used. If <DRIVEI1> is omitted, 0 will be used.

<ATTR> will be one or more of the following letters
having the meanings indicated.

30 User Manual for the RCA MicroDisk Development System MS2000

Set delete protection

Set write protection

Set system file program

Set non-system file program
Remove delete and write protection

4. Action:

The name or attributes of a file name or a family of
file names will be changed. <FILENAMI1> must be
specified. Either <FILENAM?2> or <ATTR> or both
must be specified. If <FILENAM2> or <ATTR> is
not specified, the message “INPUT FILENAME
AND/OR ATTRIBUTES” will be printed requesting
the information. If <FILENAM?2> is a duplicate file
name, a duplicate file name message will be printed and
the RENAME command will be aborted. If
<FILENAMI1> does not exist, a “FILENAME NOT
FOUND” message will be printed and the RENAME
command will be aborted.

The command line interpreter allows a file name to
be specified with the “wild-card” construct “*.*”, With
the RENAME command, however, only a partial wild-
card construct can be used. An asterisk may appear to
the left of the period or to the right of the period but it
cannot be placed in both positions. If two asterisks are
used in this manner, an illegal file name message will be
printed and the RENAME command will be aborted.
With RENAME, however the complete wild-card con-
struct “*.*” may be used for changing attributes.

If a unit number is associated with <FILENAM?2>,
it will be ignored and only the unit associated with
<FILENAMI> will be used.

X ZwugU

S. Error Messages:
See 4. Action, above.

6. Examples:

Change the extension on all file names having the
extension DEF to the extension XY.

> RENAME*.DEF,.XY(CR)

Change the name of file ABC.XY to XYZ.AB.

> RENAME ABC.XY,XYZ.AB(CR)

Make file XYZ on unit 1 delete protected.
= RENAME XYZ:1;D(CR)

Remove all protection from files on unit 1 having the
extension CM.
= RENAME *.CM:1;X(CR)

Change the name of file XYZ to ABC and make it a
system file
> RENAME XYZ,ABC;S(CR)

Change all file names that have ABC as the name
portion of the file name to XYZ, as the new name
portion of the file name.

> RENAME ABC.* XYZ.*(CR)

1. Command: SUBMIT

2. Purpose:

SUBMIT is a program that permits sequences of
commands to MicroDOS or application programs to be
stored in a command definition file and executed. It is
especially useful for repetitive operations, and frees the
user from keystroke errors and keyboard attendance
during serial program execution.

A special command definition file named AUTO.SUB
is automatically sought when MicroDOS is initially
loaded. This permits the user to define execution of an
initial sequence of commands immediately following
load of MicroDOS. if AUTO.SUB does not exist, no
attempt is made to execute from such a file. Since a
search for this file is made on drive 0, the user will notice
disk activity on drive 0. Subsequent warm start of
MicroDOS from the UT level may bypass execution of
AUTO.SUB by starting execution of MicroDOS at
address #9005.

A command file language permits additional fea-
tures during command file execution:

® passes up to 10 parameters at command file invo-

cation time
® types messages to the terminal display (~TYPE)
® directs that input be tken from the terminal key-
board rather than the command file, with resump-
tion of execution from the command file
(~LREAD, ~KREAD)

® annotates the command file (~COMMENT)

® exits from the command file to MicroDOS
(~EXIT)

® automatically translates dollar sign character ($)

to esc character for EDIT

® recognizes the break key to abort command file

execution

® detects error calls to CDERR of MicroDOS and

recovers by suspending command file execution to
give user a choice to either continue or abort

® supports an index (~J) which may take on a range

of values from 0 to 99. It may be set, incremented
by one, or decremented by one (~SETJ, ~INCJ,
~DEC))

® controls sequencing through the command file

with jumps (~GOTO) and conditional tests (~IF)

3. Format

SUBMIT<delim><filename> [<param>
<delim>...]J(CR)

The <delim> may be a space or comma character.

<filename>> is the command definition file.

Parameters, up to a maximum of 10, may be passed
to the command file when SUBMIT is invoked. These
parameters may be referenced in the command file as
~0, ~1, ~2,...~9. During command file processing,
these parameters are replaced by their actual values,

3. MicroDOS Command Descriptions

31

taken from the invocation line.

The command definition file is prepared by the user
with the editor. The default file extension may be .SUB
and the default drive may be 0 for the command defini-
tion file. It may contain all printable ASCII characters
plus space character and carriage return and linefeed.
Five characters are given special treatment.

® linefeeds are ignored, carriage returns must sepa-

rate each command line

® All dollar signs ($) are converted to an esc charac-

ter for EDIT.CM.

® The tilde (~) is the command file character. It

precedes command file keywords and the com-
mand file index.

® The percent (%) indicates a command file label. It

is part of label references and definitions.

® The end of file (DC3) character must terminate the

command file. The editor normally inserts this

character into a command file.
A command definition file is assumed to have default

extension SUB and exist on drive 0. Its contents may
consist of
® MicroDOS commands or application program
names
® responses to MicroDOS commands
® responses to application programs if they perform
keyboard reads via READ of UT (for ex, EDIT,
ASMS8, MEM, PROM25)
® command file commands

4. Action

SUBMIT works in two phases. In phase 1, it reads
and processes the command definition file creating an
intermediate file named Z.TMP on drive 0. If the
diskette in drive 0 is write protected or the drive is not
active, Z.TMP is assigned to drive 1. Phase 1 occupies
memory starting at #C000 and loads phase 2 code into
memory #8AS0-#8FFF. Phase 2 code also resides in
#B2EB-#B440.

Phase 1:

® resolves parameters

® tokenizes command file commands

® converts $ character to esc character

® deletes ~COMMENT lines

® resolves labels and their references

® detects, reports and then aborts on errors
The final action of phase 1 is to set the high bit of the
high byte of register E as the command file flag and to
rewind Z.TMP for phase 2. Phase 2 is the runtime
phase. Execution of intermediate file Z.TMP is per-
formed. Phase 2:

Phase 2:

® substitutes READ of keyboard via UT with aread

from Z.TMP
® executes all command file keyword commands
® detects, reports and aborts on errors

® detects error calls to CDERR to give the user a

choice to either continue or abort

® sounds the bell character and exits to MicroDOS

upon detection of end of command file (DC3)

Caution—do not use SUBMIT with the PLM com-
piler because both programs use the same memory
space between #8AS0-#8FFF. Some programs which
do not use READ of UT will not work with SUBMIT
(for ex. BASIC2).

SUBMIT files may be chained, but not nested. That
is, SUBMIT may be the last command in a command
definition file, but it may not appear in the middle of a
command definition file.

A BNF (Backus-Naur Form) of the command file
language is located in Appendix B: Below is a descrip-
tion and examples of command language. A carriage
return (CR) delimits the end of acommand line. A space
delimits between parts of the command file line.

Expressions
All expresions consist of an operator between two
operands. a single space delimiter must be present
between operands and operator. The operands may be
numeric constants, string constants, ~J index, or
parameters. If a parameter is referenced as a string
constant it must be enclosed in quotes. If the parameter
is referenced as a numeric constant, no quotes are used.
A numeric constant may be a maximum of 2 digits. A
string constant may be a maximum of 12 characters in
length, otherwise truncation to 12 characters occurs.
Only relational operators are permitted (=, <>, <,
>, <=, >=). Only the ~IF command contains an
expression.
Examples
53<=~J
'ANYSTRING' = "~0’
0=0
~1>0
All command file commands are recognized by their
first unique characters. The possible command files
commands are ~COMMENT, ~IF, ~GOTO, ~TYPE,
~LREAD, ~KREAD, ~SETJ, ~DECJ, ~INCJ,
~EXIT. They may be abbreviated respectively to ~C,
~IF, ~G, ~T, ~L, ~K. ~S, ~D, ~IN, ~E.

COMMENT
The ~COMMENT permits user annotation of the
command file. These are especially useful for mainte-
nance and readability reasons. The ~COMMENT lines
are deleted by phase 1, so they do not appear in the
intermediate file.
Examples
~COMMENT This file interfaces the
EDIT program to
~COMMENT automatically make
backups of files

32 User Manual for the RCA MicroDisk Development System MS2000

~IF

The ~IF command permits conditional sequencing
based on the evaluation of an expression. If the expres-
sion is found to be true the command file command
following the expression is executed. Otherwise the next
line is executed.

Examples
~IF ~J = 0~GOTO %LABELI1
~IF ~0'<>"”~EXIT
~IF~0=1~IF~1=1~GOTO %L1
~GOTO

The ~GOTO command provides a means of altering
the flow of command sequences. It permits a jump to a
labeled line, either forward or backward. Labels must
begin with a percent sign character (%). Labels are
composed of a maximum of 9 alphanumeric characters
following the percent sign. They are entered into a
symbol table during phase 1 and used to resolve label
references. At the end of phase 1, if any labels are not
defined, an error message is issued and command file
processing aborts.

Examples
~GOTO %BEGIN
~GOTO %ENDALL
~SETJ, ~DECJ, ~INCJ

The ~J index may be changed in value by operations
to set it, decrement it by one, and increment it by one.
~J has a default value of 0, and may take on the range of
values between 0 and 99. If ~J takes on a value less than
0, a phase 2 error message:

~UNFL
occurs. If ~J takes on a value greater than 99, a phase 2
€rror message:

~OVFL
occurs.
Example:
~SETJ 98
~INCJ
~DECJ

This sequence sets ~J to 98, increments it by one, and
then decrements it by one. The final value of ~J is 98.

~LREAD, ~KREAD

The read commands permit pause for keyboard input
during phase 2 of command file execution. ~LREAD
permits a line of input terminated by a cariage return,
while ~KREAD permits input until a termination key-
stroke (control d) is input. These features are useful for
entering additional options at the end of a command
line or to pause in mid execution to check for errors
before proceeding.

Caution: ~LREAD and ~KREAD must be termi-
nated by a (CR) in command definition file because

phase 1 recognition ignores all characters beyone K or L
until a (CR) is detected.

If the user wishes to use ~KREAD for a mid com-
mand line pause, he continuation of that command line
must be on a new line.

Example

COPY ~KREAD
DEST.FN

During phase 2, ~KREAD suspends execution so
the user may enter via the keyboard the name of the
source file which will then be copied to DEST.FN. Note
the space needed before DEST.FN.

As another example, ~LREAD is used to permit
completing options for the DIR command.

Example

DIR X. X;~LREAD

This example pauses for keyboard input to complete

the options for the DIR command.

~TYPE
The ~TYPE command permits message display dur-
ing execution of a command file. These messages may
prompt the user for specific action during command file
processing or simply report progress.
Example
~TYPE Please change disks in drive 1
and type (CR) then ready
~LREAD
This sequence types a message to user to perform the
action of a disk change and then pauses with the
~LREAD command, continuing after the (CR) charac-
ter is keystroked.

~EXIT

The ~EXIT command directs that the command file
is to be exited and control given to MicroDOS. No
further commands are taken from the command file.
This command can ensure that certain lines of the com-
mand file are not executed. For example if an error in
handling routine is located at the end of a command file,
an EXIT command would be placed preceding the
routine:

Example

~EXIT
%ERROR

The ~EXIT command used in conjunction with the
~IF command is useful for providing more than one
execution path in a command file:

3. MicroDOS Command Descriptions

Example

~IF ~0" =" ~EXIT

~IF '~0’" = 'TAPE’ ~GOTO
%TAPEIT

~IF '~0’ = 'DISK’ ~GOTO
%DISKIT

~TYPE no valid device found

~EXIT

%TAPEIT ~COMMENT process
tape file

~EXIT
%DISKIT ~COMMENT process
disk file

~EXIT
This command file tests a parameter for equality to
the string value of null, TAPE, or DISK. If TAPE or
DISK if found ~GOTO branches to the appropriate
path for handling that type of file. The ~EXIT com-
mand before the label % TAPEIT ensures that com-
mands after the label are not executed unless an explicit
branch to that label is made. The ~EXIT command
before the label % DISKIT serves the same function.
Limits
The limits of values allowed in command files are
summarized below:
® ~J value range is 0 to 99
® Numeric constants may be only 1 or 2 digits, they
are treated as decimal values
® String constants must be enclosed in quotes; max-
imum length is 12 characters
® Labels are preceded by the percent (%) character,
followed by a maximum of 9 alphanumeric char-
acters. The maximum number of labels is 10,
otherwise the symbol table overflows
® Maximum number of parameters is 10. Parame-
ters may be a maximum of 12 characters.

5. Error Messages
During phase 1, in most cases, when errors are
detected an error message with a line number is dis-
played and command file processing is aborted. In two
cases, however, warning messages are issued and pro-
cessing continues. These cases are:
® when a null parameter value is found
® when string constants are truncated to 12 charac-
ters in length
During phase 2, two conditions may cause an abort:
® when the break key is depressed
® if a runtime error such as ~J value overflow or
underflow, or bad expression

The format of a phase 1 error is a line number

message followed by an error message. For example:
ERROR IN LINE NUMBER 00004
COMMAND FILE OPERATOR
ERROR

Phase 1 error messages and some possible causes are
detailed below:
CAN'T OPEN COMMAND FILE—command defini-
tion file not on default drive 0, does not have default
extension SUB, or not given in invocation line
CANT OPEN COMMAND WORK FILE—insuffi-
cient space on diskette in drive 0, diskette not present in
drive 0
CANT READ COMMAND FILE—attempt to read
from command definition file fails
CANT REWIND COMMAND WORK FILE—at-
tempt to rewind Z. TMP file at end of phase 1 processing
fails
COMMAND FILE DUPLICATE LABEL—a second
definition is found for a label already defined
COMMAND FILE KEYWORD PROBLEM-—at-
tempt to find end of ~KREAD or ~LREAD command
fails
COMMAND FILE LABEL REFERENCE NEVER
DEFINED—at end of phase 1, a label is found to be
undefined
COMMAND FILE OPERAND ERROR—attempt to
recognize an operand as a string constant, ~J index, or
numeric constant fails
COMMAND FILE OPERATOR ERROR—operator
not recognized, only <>, >, <, <=, >=, = are
permitted
COMMAND FILESYMBOL TABLE OVERFLOW—
attempt is made to enter more than 10 symbols in
symbol table
COMMAND LINE FILENAME ERROR—attempt
to recognize command definition filename from invoca-
tion line fails
COMMAND LINE PARAMETER ERROR—para-
meter exceeds 12 characters in length, in the invocation
line
EXPR SPACE DELIM NOT FND—a space delimiter
is expected in expression but is not found
IMPROPER USE OF TILDE (~)—~ was not recog-
nized to be part of command file command, or ~J, or
parameter
INVALID STRING OPERATOR—operator found
that is not <> or =
NUMBER EXCEEDS 2 DIGITS—numeric constants
must be 2 digits or less
SETJ FOLLOWED BY A STRING EXPR—numeric
constant must follow SETJ, but a string constant is
found
TARGET OF GOTO NOT PRECEDED BY PER-
CENT (%)—expected label reference followinga GOTO

34 User Manual for the RCA MicroDisk Development System MS2000

not found

UNEXPECTED END OF FILE FOUND—a DC3
character found before logical end of command file
found

Phase 2 error messages are as follows:

~CMD FILE ABORT—break key was detected
~EXPR ERR—operand other than ~J, numeric con-
stant, or string constant found

~QVFL—~J exceeds 99 in value

~UNFL—~J below 0 in value

~SETJERR—value for ~SETJ does not evaluate to
a numeric value

~ERR, TYPE Y TO CONTINUE>—call to CDERR
detected, command file execution is suspended, user is
given choice to continue or abort.

6. Examples:

Four examples follow illustrating how the command
file facility may be used.

Example 1 contains simply the commands to
MicroDOS that perform an assembly, creation of a
binary file, and execution of the binary file.

The file EX1.SUB contains the following:

ASMB USEMAC.ASM,MAC.ASM,USEMAC.

LST:;M

CDSBIN USEMAC.LST:1,USEMAC.CM:0

USEMAC.CM

At invocation time the command line appears as:

SUBMIT EX.ISUB

Example 2 shows how parameters may be passed
into a command file to allow varying source assembly
and macro files to be assembled, made into binary files,
and then executed. This command file performs the
same sequence of steps as the one in Example 1 but it has
the additional versatility that it may be used to assemble
files other than nust USEMAC.ASM and MAC.ASM

In a file named EX2.SUB is the following:

ASMB~0.ASM,~1.ASM,~0.LST:1;
M
CDSBIN ~0.LST, ~0.CM:0
~0.CM
The invocation line appears as:
SUBMIT EX2.SUBUSEMAC,MAC

Example 3 shows acommand file to automate use of
EDIT.CM. Itinvokes the editor, specifies the input and
output files, performs the appends to bring the file into
workspace, and lists the first 22 lines. After the user
completes his edit session by a control D deystroke, the
command file performs an exit from the editor, creates a
backup file, and renames the most recent output file as
the most current version of the edited file. The user may
think of his file as having a constant name.

In a file names EX3.SUB is the following:

EDIT
RO$$~0.~1:1
~0.TMP
AAB22T$$~KREAD
E$SUSSDEL ~0.BAK:1
RENAME ~O. ~1:1,.BAK
RENAME ~0.TMP:1,.~1

This file is invoked as:
SUBMIT EX3.SUB TEDIT,DAT

Example 4 illustrates use of the control structures
and index. The parameter specifies the number of times
the command file is repeated.

In a file named EX4.SUB is the following:

~SETJ 1

%START ~COMMENT this is a
backup routine for disks

~TYPE Put a new diskette into drive
1, type (CR) when ready to proceed

COPY F1.LEXT:0F1.LEXT:1~LREAD

COPY F2.EXT:0 F2.EXT:1

COPY F3.EXT:0 F3.EXT:1

~INCJ

~IF ~J <= ~0 ~GOTO %START

Notice the placement of the ~LREAD command to
insert a pause before the COPY command is completed
with a (CR).

When this file is invoked as:

SUBMIT EX4.SUB3
Three backup copies of the specified files may be made.

1. Command: SYSGEN

2. Purpose:

SYSGEN is used to initialize new disks before they
can be used by MicroDOS or to duplicate MicroDOS
files from one diskette to another. It can be used to
duplicate selective programs or entire diskettes to pro-
vide a backup copy. SYSGEN can be used to produce
identical copies of diskettes or to produce the same
information reorganized to eliminate file gaps that may
have been generated during editing and program devel-
opment. The reorganization will physically remove all
previously deleted files and leave all unused sectors in
one block rather than scattered throughout the diskette.
This capability helps to compact data on the disk and
frees up additional storage area. The system diskette
should be in unit 0 and the new diskette in unit 1.

3. Format:
SYSGEN <DELIM> [;<OPTIONS>](CR)
<DELIM> is a command line delimiter, and
<OPTIONS> is one or more of the letters listed

below with their meanings.

L List the file names being copied on the line printer

3. MicroDOS Command Descriptions

Do not print the copied file names on the console
or printer

Copy the operating system

Omit copying the operating system; retain exist-
ing DISK ID and directory on unit 1

Make an exact copy of the diskette in drive 0. No
file reorganization will take place. Every sector
will be written exactly as it is on the disk in drive 0.

oo =z

es]

4. Action:

After the SYSGEN program has been loaded into
memory and the directory has been loaded from the
diskette in unit 0, the following message is printed.

INPUT USERID>

Up to 44 characters may be assigned to the USERID.
This information will be placed in the ID sector.
Whenever a DIR or FREE command is executed, the
USERID will be printed.

After the user presses (CR), the following message is
printed.

INPUT DATE (MM/DD/YY)>

Up to eight characters may be assigned to the date. No
specific format is required for the date; the format
shown is only a suggestion. This information will be
placed in the ID sector. Whenever a DIR or FREE
command is executed, the DATE will be printed.

After the date has been typed, the following message
appears:

SELECT COMMAND-TYPE H FOR HELP

The user may type any of the following commands
which will perform the prescribed function. Any com-
mand may be repeated any number of times.

HELP

Format: H(CR)

Action: The HELP command lists the format of
the following commands and gives a short
description of each command.

PRINT SELECTED FILES

Format: P(CR)

The P command will list on the console or
line printer all the files from the directory
of the diskette in unit 0 that are selected to
be copied when the copy function begins.

PRINT NON-SELECTED FILES

Format: N(CR)

Action: The N command will list on the console or
line printer all the files from the directory
of the diskette in unit 0 that are not
selected to be copied when the copy func-
tion begins.

QUIT
Format: Q(CR)
Action: When all commands finish executing, con-

trol is returned to SYSGEN
The QUIT command is used to return con-
trol to the operating system.

SELECT FILES TO BE COPIES

Format: S[<DELIM><FILENAME
SEQUENCE>](CR)
<DELIM> is a command line delimiter,
<FILENAME SEQUENCE>::=<FILE
DESCRIPTORS>[,<FILE DESCRIP-
TOR>]n <FILE DESCRIPTOR>:
=<FILENAME>/<FAMILY NAME>/
<FILE NO.>/
<<FILE NO.><FILE NO.>>
<FILE NO.> is the number associated
with the file name from the listing pro-
duced by the PRINT or PRINT NON-
SELECTED FILES command.
<<FILE NO.>-<FILE NO.>> includes
all the files between these numbers for
selecting files to be copied.

After SYSGEN has begun, the first S or D
command given will automatically per-
form the complement function for all file
names not specified in the command. Each
following S or D command, then, will
perform only the explicit function. The
select command will select all the files in
the <FILENAME SEQUENCE> for
copying.

DESELECT FILES TO BE COPIED

Format: D[<DELIM><FILENAME SE-
QUENCE >](CR) <DELIM> is a com-
mand line delimiter, and <FILENAME
SEQUENCE> is a list of files to be de-
selected as described in the command
“SELECT FILES TO BE COPIED”.

After SYSGEN has begun, the first S or D
command given will automatically per-
form the complement function for all file
names not specified in the command. Each
following S or D command, will perform
only the explicit function. The deselect
command will deselect all the files in the
<FILENAME SEQUENCE> from being
copied.

REINPUT ID AND DATE
Format: I
Action: The following message is printed

Action:

Action:

36 User Manual for the RCA MicroDisk Development System MS2000

INPUT USERID>

Up to 44 characters may be assigned to the
USERID. This information will be placed
in the ID sector. Whenever a DIR or
FREE command is executed, the USERID
will be printed.

After the user presses (CR), the following
message is printed:

INPUT DATE

(MM/DD/YY)>>
Up to eight characters may be assigned to
the date. No specific format is required for
the date; the format shown is only a sug-
gestion. This information will be placed in
the ID sector.
Whenever a DIR or FREE command is
executed, the USERID will be printed.

COPY COMMAND
Format: C(CR)
Action: The transfer of data will begin from unit 0

to unit 1 under the following conditions:

1. If no D or S command is executed,
then SYSGEN will select all the files dis-
played in the P command for transfer.
The disk will be reorganized with all free
space in one block at the end of the disk.
2. If S*.* is typed, the result will be the
same as in the previous paragraph.

3. If D*.* is typed, the output disk will
have a blank directory with a copy of the
operating system also on the diskette, if O
(copy the operating system) had been
typed as an option. Other wise, only a
blank directory would be copied.

For all copies other than exact copies, file names will
be printed on the console or line printer. If the operating
system is to be copied, the user must be sure that the
operating system is on the diskette in unit 0.

The BREAK key aborts the printing of file names or
the copying of diskettes.

S. Error Messages:
If the diskette in drive 1 is write protected, the follow-
ing will be printed.

THE DISKETTE IN DRIVE 1 IS WRITE
PROTECTED

If after five attempts to read a track from drive 0 fail,
the following will be printed:

TERMINATION ERROR WHILE READING
FROM DRIVE 0

If after five attempts to write a track to drive 1 fail, the
following will be printed:

TERMINATION ERROR WHILE WRITING
TO DRIVE 1

In each case, control is returned to the operating
system.

6. Examples:
Make an exact copy.

=SYSGEN;E(CR)
IS IT OK TO COPY TO DRIVE 1?7Y
EXACT COPY BEING MADE
#Q(CR)
Reorganize files on a diskette containing an operating
system. The system diskette in unit 0 must contain an
operating system.

2 SYSGEN ;0(CR)

TYPE USERID>XXXX(CR)

TYPE DATE>XXXX(CR)

#S* *(CR)..Select all files to be copied
#C(CR) ..Make a system diskette

IS IT OK TO COPY TO DRIVE 1?7Y
#Q(CR) ..Return to command interpreter

Reorganize files on a diskette not containing an oper-
ating system.

= SYSGEN(CR)

TYPE USERID>XXXX(CR)

TYPE DATE>XXXX(CR)
#S**(CR)

#C(CR)

IS IT OK TO COPY TO DRIVE 17Y
#Q(CR)

Copy only the files having the extension CM from a
diskette.

= SYSGEN(CR)

TYPE USERID>XXXX(CR)

TYPE DATE>XXXX(CR)

#D* *(CR)..Deselect all files

#S* *CM(CR)..Select all .CM files
#C(CR)

IS IT OK TO COPY TO DRIVE 1?Y
#Q(CR)

Initialize a new diskette to have a blank directory.

2 SYSGEN(CR)

TYPE USERID>XXXX(CR)

TYPE DATE>XXXX(CR)

#D* *(CR)..Deselect all files

#C(CR)

IS IT OK TO COPY TO DRIVE 1?7Y
#Q(CR)

Add six files from 0 to existing MicroDOS diskette in
unit 1.

3. MicroDOS Command Descriptions

37

2 SYSGEN;D(CR)

#S 1-6(CR)..Select first six files to be copied
#C(CR)

IS IT OK TO COPY TO DRIVE 1?7Y
#Q(CR)

1. Command: TAPED

2. Purpose:

TAPED is a copy routine that can take a data file from
disk to cassette tape or from cassette tape to disk. It can
copy ASCII only.

3. Format:
TAPED<DELIM><NAMEI1>
<DELIM><NAME2>(CR)
<DELIM> is a command line delimiter
<NAMEI> is the name of the source file or source
device, and
<NAME2> is the name of the destination file or
destination device.
If <NAMEI> is a disk file name, it is of the format
<NAMEI>[.<EXTENSIONI>][:< DRIVE1>]
and <NAME2> must be specified.
If <DRIVEI> is not specified, “0” will be used.
If <EXTENSIONI1> or <EXTENSION2> is not
specified, blank will be used.
If <NAME2> is a disk file name, it is of the format
<NAME2>{,<EXTENSION2>][:<DRIVE2 >]

The following are mnemonics for the non-disk
devices used with the command TAPED:

#TR Read from tape

#TW Write to tape

4. Action:
Two types of file copying can be reqested:
Disk to device
Device to disk

Disk-to-device copy is a transfer from a disk file to a
cassette tape. Device-to-disk copy is a transfer from a
cassette tape to a disk file.

To pause the transfer of the TAPED program, press
the BREAK key on the keyboard. To abort TAPED
after a pause, press the Q (QUIT) key. Any other key will
continue the copying.

5. Error Messages:
<FILENAME> F.N. NOT FOUND
<NAMEI> does not exist.

DIR FULL No more room exists for another file
name in the directory.

DISK FULL No more room exists for file on disk.
Some of the data may have been trans
ferred.

INVALID Disk file being copied to a non-disk

FILE TYPE device has afile type other than ASCII

or ASCII-HEX format. TAPED can-
not dump non-ASCII files to an ASCII
device. The Operating System or any
operating system file cannot be copied.
INVALID DV Disk was entered (e.g., #DK).
NO SUCH DV Peripheral device specified does not
exist in system.

INVALID Device requested does not transfer
DATA data in the direction requested (e.g.,
TRANSFER copy to an input-only device or copy

TYPE from an output-only device).

COMMAND A name contained a wild-card con-

SYNTAX ERR struct, or no file name was found as the
first or second parameter.

6. Examples:
Copy the ASCII file ASCII to the cassette tape.
=TAPED,ASCIL#TW(CR)
Command: U
2. Purpose:

U is a utility program that allows restarting CPU
execution at any specified address while MicroDOS is
still in control.

3. Format:
U<DELIM>< ADDRESS>{<DELIM>
<PARAMETERS>](CR)

4. Action:

The program in memory located at the starting
address specified will be executed. In addition, any speci-
fied parameters will be passed to the program being
executed.

S. Error Messages:
None applicable.

6. Examples:
Restart UT71 at 8000H
=U 8000(CR)

Provided that the Directory program has been loaded
into memory, restart is giving the file name ABC:1;E as a
parameter.

=U,0000,ABC:1;E(CR)

1. Command: VERIFY

2. Purpose:

VERIFY compares two disk files. If any of the sectors
do not compare, a message will be printed. If all sectors
compare but one file is longer than the other, a message
will be printed.

3. Format:
VERIFY<DELIM><FILENAMI1>
<DELIM><FILENAM2>(CR)
<DELIM> is a command line delimiter.

38 User Manual for the RCA MicroDisk Development System MS2000

If the extension for <FILENAMI1> or
<FILENAM2> is omitted, a blank will be assumed.
If <DRIVE> is omitted for <FILENAMI1>
or <FILENAM2>, zero will be assumed.

4. Action:
When a successful verification has been completed,
the following message is printed:

FILE #1 IDENTICAL TO FILE #2

The VERIFY command compares sectors between
file 1 and file 2. If two sectors are not equal, the following
message will be printed:

FILE #1 LSN XXXXX IS UNEQUAL TO FILE #2
LSNYYYYY

Verification will continue until the end of file is
reached.

If the files are unequal in length, the following message
will be printed:

FILE #X IS LONGER THAN FILE #Y

X, Y are either file 1 or file 2. Upon completion, control
returns to the command interpreter.

If the files are of different types, they will not be
compared and the following message will be printed:

MIXED FILE TYPES

and control is returned to the command interpreter.
Any time during the comparison, control can be

returned to the command interpreter by pressing the

BREAK key. The following message is printed:

ABORTED

39

4. User Program Generation

The user of the MicroDisk Development System
MS2000 will generally be creating one of three types of
programs:

1. A program designed to run on the MicroDisk
Development System itself.

2. A program designed to run on a different
CDP1802-based system, such as a Microboard system,
but for which hardware is not yet available.

3. Same as 2, except that hardware is available and
the program is to be downloaded into the hardware and
tested.

In all cases, the original source file is created using the
Editor. The file is then translated into machine code by
use of ASM8 assembler or one of the optional compilers
available. Finally, the program is loaded and tested.
From this point on the operational procedure varies.
Note also that the programs have to be molded to the
hardware on which they are to be run.

The following paragraphs give a brief summary of the
programming considerations for each of these three
cases. Details on use of the programming and debug-
ging tools of the MS2000 are given in subsequent chap-
ters. For general CDP1802 programming information,
refer to the User Manual for the CDP1802 Micropro-
cessor, MPM-201.

Case 1

Programs designed to run on the MS2000 must
adhere to the programming conventions of RCA soft-
ware. Register assignments are:

RO - Do not use; reserved for DMA operations.

R1- Do not use; reserved for interrupt.

R2 - Points to a free byte on a stack; stack grows
toward lower addresses.

R3 - Program counter.

R4 - Contains address of the CALL routine in
UT71.

RS - Contains address of the RETURN routine in
UT71.

R6 - Points to a return point (or immediate byte) after
a subroutine call.

The user should refer to the routine INIT1 and INIT2
described in the chapter on Monitor Program UT?71, for

aid in setting up the registers. He should also study the
chapter on MicroDOS User Functions, to find out how
to interface the MicroDOS operating system so as to be
able to read and write disk files, input from the key-
board, and the like. At a more elementary level, the
chapter on Monitor Programs UT71 tells how to
directly interface the Monitor Program UT71. Note
that these functions require additional specific register
assignments.

Programs planning to use MicroDOS functions must
avoid the area where MicroDOS resides. Refer to the
memory map given in Fig. 3. For similar reasons, a
program cannot be loaded into the Utility Program’s
memory area.

ADDRESS

(HEX)

FFFF

FOO0

EO00 k':g;

D000 /

e MICRODOS AREA

A000 9000-BFFF

UT7I RAM 8800-8FFF

9000 AN\ UT?71 8000-87FF
8000

7000 N

6000

3000 USER

00 | et

2000 MOST SYSTEM SOFTWARE

LOADING STARTS AT 0000

1000

0000

92CS-34179RI

Fig. 3 - System Memory Map.

Once a program has been written and assembled, it
can be loaded simply by typing its filename. Either a
complete listing file, a hexadecimal-only file, or a binary
file can be loaded this way. Unlike binary files, listing
files may not begin to execute immediately. This delay is
usually preferable during the debugging phase. The U
command is used to start a loaded listing file.

Case 2

Programs intended to be run on a different CDP1802-
based system and for which the specific hardware is not
yet available can be loaded into the MS2000, and the
terminal can be “borrowed” through interfacing with

40 User Manual for the RCA MicroDisk Development System MS2000

MicroDOS user functions. Or, sections of code requir-
ing no I/O can be tested in the System’s RAM. The
same considerations apply as for Case 1.

Case 3

A program designed for another system can be trans-
ported and debugged in one of two ways: (1) the pro-

gram can be burned into PROM’s, using a PROM
programmer, or, (2) the program can be down-loaded
into a RAM-based system using the MicroEmulator
MSE3001 or the Micromonitor CDP18S030 and MOPS
software. In either case, the MicroEmulator or the
Micromonitor as a stand-alone device or, the Micro-
monitor in conjunction with MOPS, can be used for
debugging.

41

5. Disk Editor

Introduction

The MS2000 Disk Editor (EDIT) is a program that
facilitates the creation and modification of local files for
storage on a floppy disk. Typically, the files are source
programs. However, they may also be any other kind of
conventional document.

After the user has written his assembly language pro-
gram and wants to assemble and run it, he immediately
faces the problem of converting the hand-written source
file into a machine-readable form. This conversion
involves a keyboard-to-disk operation in which lines on
the coding sheet are transcribed to become lines on a
source file. The Disk Editor will be used at this point to
create the source file. The Editor provides assurance
that the created files are in proper format for later
reading by the assembler and for later modification, if
necessary, by the Editor. Details on formats are given in
the description of the Editor which follows.

Once a source file has been created and a first Assem-
bly run made, it is very likely that error diagnostics will
be returned by the Assembler asking for corrections to
the source file to conform to its rules.

Typically, the changes required at this point are “triv-
ial” but necessary. For example, spaces may have to be
removed in one or more expressions. The same symbol
may have been erroneously used for two purposes.An
operation mnemonic may have been misspelled or a
punctuation character such as a comma, colon, or single
quote omitted. The number of possible trivial errors is
clearly large.

To correct the errors and to alter the source file to
conform the program to the Assembler’s rules, the Edi-
tor is used. Typically, modifications at this point merely
involve insertion and deletion of single characters or
replacement of a small string of characters by a substi-
tute string. The erroneous source file is used as an input
to the Editor and the user generates a corrected source
file as an output. The new file is then assembled or
reassembled. At this point other trivial errors may
appear that were not apparent on the first run. For
example, an erroneous instruction operand may not
have been flagged on the first assembly because its
associated statement label or operation mnemonic may
have also been in error. Thus, a new Edit-Reassemble
pass may be necessary. Finally, a programs developed

to which the Assembler does not object. At this point, a
first run can take place.

The probability of a logical error in the program
depends on its length and the previous experience of the
programmer. Assuming one or more logical errors are
found (via some “debugging” procedure), the source file
must again be modified. Often such modifications are
no longer trivial. For example, it may be necessary to
find all instructions that branch to a given location and
precede some of them with one or more instructions
currently not in the program. Often, it may be necessary
to delete some code or insert some code or move some
code to a different point in the program. Several dupli-
cated sets of in-line instructions may have to be removed
and replaced with calls to one common subroutine
which is to be added. The user may decide to “clean up”
the program logically, in any one of several ways, or to
improve its “readability” by modifying its comments or
statement formats (by inserting TAB’s or SPACE’s, for
example).

Such modifications to the source file also involve use
of the Editor. After they are completed, a reassembly
may again turn up new errors of the “trivial” variety.
And so on. Thus the generation of a bug-free program
typically involves the chart shown in Fig. 4. It is thus
quite likely that the amount of time spent “conversing”
with the Editor will be much larger than that spent with
the Assembler.

CREATE SOURCE FILE
USING EDITOR

FIX "TRIVIAL" ERRORS (RE) ASSEMBLE
USING EDITOR ~ ANY ERROR DIAGNOSTICS?

FIX LOGICAL ERRORS
usmsqsonon
3

YES

NO

RUN
ANY BUGS?

NO YES

PROGRAM WORKS
92CSs -28198

Fig. 4 - Flowchart for “bug-free” program.

42 User Manual for the RCA MicroDisk Development System MS2000

A source program may be viewed as a long sequence
of characters. When the Disk Editor Reads the source
file, it places this character sequence in memory, with
the code in each memory byte representing one source
program character. The user is then free to type com-
mands to the Editor to manipulate the memory repre-
sentation of the program. For example, the user may
identify a specific location and specify a character
sequence to be inserted there. He may also identify
certain characters to be deleted or altered. He may ask
the Editor to search for the occurrence of specific char-
acter sequences, after which further memory modifica-
tions (corrections) may be made.(Details of available
commands are given later).

After he is satisfied that the new memory representa-
tion of the file contains all of the desired changes (fre-
quently the user begins an editing session with a
hand-written list of the changes to be made), he asks the
Editor to write (create) a new file containing the new
version of the program. This new file is then used as the
input file for a reassembly.

Operating Instructions

Memory Space Requirements

The EDIT program occupies approximately 6 kilo-
bytes of memory space. It is supplied on the MicroDOS
System Diskette for loading into the RAM of the
MS2000.

EDIT requires about 100 bytes of the RAM work
space for its own internal purposes. The remainder of
the available RAM space is used as an editing area
called a buffer. Virtually all EDIT operations involve
the buffer. EDIT is designed to take advantage of all of
the available RAM space below 8000H for its buffer
area.

Input and Output Files

Normally, a user creates a file using EDIT by filling
the buffer from the I/ O terminal keyboard and then
causing EDIT to write this information onto a diskette
(which will contain the created file).

An existing (input) file may be modified (edited) by
reading portions of it into the buffer, then using EDIT
commands to alter the contents of the buffer, and finally
writing the results onto the output file. Typically, the
output file is a new version of the input file. After an
editing session, the new version is retained and the old
version is discarded (although it may be temporarily
saved for future reference or backup).

Thus, EDIT has means to read an input file into the

buffer, means to examine and modify the contents of the
buffer in many ways, and means to write the buffer
contents onto an output file. Alternatively, when an
input file does not exist, the user creates an output file by
loading the buffer from the keyboard.

Record Formats

In order to understand the various commands EDIT
is designed to execute, it is fundamentally important
that the user understand how information is normally
recorded on the disk and in the buffer.

A file is a sequence of records or lines. Each line
consists of a sequence of characters. The length of aline
is restricted to 78 or fewer characters of data. Thus, a
line in a file is normally printable as a line on the I/O
terminal printer. Each character is represented by an
8-bit ASCII code or byte, either on the file or in
memory. Typically, every character in a line is a print-
able character (including space or blank). Every non-
printing character code represents a control character.
A control code may be generated on the keyboard either
by hitting an appropriately marked key (e.g., RETURN,
ESC, etc.) or by depression of the CTRL button while
hitting another key. The terminal reacts to the receipt of
a control character in one of several possible ways.
Some control characters (such as carriage return, line
feed, bell, etc.) cause the terminal to execute a specific
control function. Other control codes either are ignored
by the terminal or may generate a special symbol on the
display.

A line in a file may contain control characters (with
certain restrictions to be discussed later). EDIT treats
most of the control characters it encounters within a line
in the same manner as it treats printing characters.
However, certain control characters have special mean-
ing in EDIT.

The proper format for disk files is shown in Fig. 5.
Each line is terminated with a CARRIAGE RETURN
(CR), and an optional LINE FEED (LF). Note that the
last line of the disk should be followed by a “dummy”
line containing only the single character DC3. DC3is a
special control character generated on the keyboard by
hitting CTRL and S. It acts as an END OF FILE
indicator.

UP TO 78 DATA
CHARACTERS | CR | LF }; oc3

L || L

T L ~ T 1 ~ T 1 T
FIRST LINE SECOND LINE LAST LINE END OF FILE

(FOLLOWED BY LF) (FOLLOWED BY "DUMMY " LINE
LF)

92Cs-28478

Fig. 5 - Disk file format.

5. Disk Editor

DATA CHARACTERS CR }f

DC3 CR

. .

In |

! I v | !

LINE | LINE 2

T =-1r -

LINE m I_PRESENT ONLY IF LINE m IS THE
LAST LINE IN THE INPUT FILE

92CM- 28214

Fig. 6 - Memory buffer format.

File records read by EDIT are deposited into the
buffer as they appear on the diskette, but with all LF’s
ignored. While EDIT operates on the data in its buffer,
it specifically uses the CR character as an indicator of
the end of a line. (Recall that a line has a variable
length.)A new line is assumed to start with the next
character in the buffer. Thus, the buffer format is of the
form shown in Fig. 6.

When EDIT is depositing keyboard data into its
buffer, the ASCII code equivalent of each struck key
(any printing character and almost any control charac-
ter, with exceptions as noted below) goes into memory
and is also “echoed” back to the printer. EDIT, how-
ever, especially ignores the LF key. Further, when the
RETURN key is hit, the CR character goes into
memory and a CR, LF pair of characters is echoed back
to the printer to start a new line. Thus, the user termi-
nates a line of keyboard input with a single carriage
RETURN. Normally, then, the LF character should
not appear at any point in the buffer.

Whenever EDIT transmits a CR character to the
terminal, it automatically appends to it LF and NULL
characters to provide sufficient time delay for the car-
riage to settle.

It is conceivable that because of a user error, one or
more lines on the input file or in the buffer may exceed
the 78 data character length restriction. For example,
data alterations in the buffer may have resulted in
deleted CR’s. (Note that each CR deleted in the buffer
causes the concatenation of its adjacent lines.) EDIT has
the following provisions for handling lines that exceed
the length restriction:

() Whenever EDIT is outputting a line to the termi-
nal as the result of a user TYPE command, if the
line exceeds 78 characters, a“LINE TOO LONG”
message will also be printed.

(2) If EDIT encounters too long a line while writing
from the buffer to the disk, the line will be broken
up, using as many 78-data character records as are
necessary each terminated by a CR.

(3) A line which is too long on the input file is trun-
cated to 78 characters, with a CR appended, in the
buffer.

Buffer Pointer

The total RAM space available for the buffer is
generally partially filled. When EDIT is first initialized,
the buffer is empty. When data is added to the buffer
(from the keyboard or from the disk input file) the
buffer expands. When data is deleted, the buffer con-
tracts. EDIT continually keeps track of the present
extent of the buffer within the work space.

EDIT maintains a virtual pointer which identifies
some point between two characters in the buffer. This
pointer has the same function as what is commonly
called a “cursor”. Most EDIT operations are executed
relative to this pointer. Further, several EDIT opera-
tions exist specifically to alter the location of the poin-
ter. Because the pointer is not visible, it is the user’s
responsibility to keep track of where the pointer is.
Often, its location is verified by asking EDIT to type
information in the buffer at the current pointer position.
Alternatively, the user may first initialize the pointer to
a known reference point (e.g., the beginning or end of a
line, or the beginning or end of the buffer) and then
move it relative to this known origin.

In illustrative examples, the location of the pointer is
indicated with an arrow below and between the two
buffer characters. For example, in

AB CDE

the char;cter before the pointer is B and that after the
pointer is C.

Unless otherwise noted, whenever text is deleted from
the buffer, the character sequence to be deleted exists
either immediately to the right or immediately to the left
of the pointer. After the deletion, the buffer has con-
tracted by the number of characters deleted. If the field
deleted is to the right of the pointer, the character
immediately to the left of the pointer remains the same.
The character to the right of the pointer then becomes
the character that was immediately to the right of the
deleted field. A corresponding statement can be made
for deletion to the left of the pointer.

When text is inserted, the buffer expands. Unless
otherwise noted, text is inserted between the two charac-
ters at the position of the pointer. After the insertion, the

44 User Manual for the RCA MicroDisk Development System MS2000

pointer is positioned immediately after the inserted test.
Thus, the character to the right of the pointer remains
the same.

The execution of many EDIT operations starts at the
present pointer position and proceeds either towards the
end or towards the beginning of the buffer. EDIT
insures that the pointer cannot be moved past the pres-
ent limits of the buffer. If the pointer reaches the begin-
ning or the end of the buffer, the operation stops
-leaving the pointer at that point. For example, if the
pointer is positioned n characters from the end of the
buffer and the user asks to move the pointer m charac-
ters to the right, with m greater than n, then the opera-
tion will stop after the buffer pointer has been incre-
mented by only n.

EDIT Command Operation
Command Strings

When control is transferred to EDIT, it will print the
initial message

COSMAC DISK EDITOR VER.X.XX

and then follow this message with its “—>>"user prompt.
The —> prompt always indicates that EDIT is ready to
receive a new user command from the keyboard (having
executed the previous one).

After receiving the —>, the user types a sequence of
one or more commands which EDIT will execute in
order. The first command should tell EDIT where to
read the input file and where to write the output file.
(See later discussion of EDIT File Assignments.) Most
commands may be optionally delimited (ended) by an
ESCAPE character. Commands which include text
arguments of variable length must include this character
to define the end of a text field. The command string is
always terminated by two successive ESCAPES.
Because the (CR) character (often used as a line termi-
nator) is treated by EDIT as data, it cannot be used as
the command terminator. EDIT uses instead the ESCape
character.

The system operates in the full duplex mode. Nor-
mally, a program merely “echoes” back to the display
which it has just received from the keyboard. However,
whenever EDIT receives an ESC character, it is echoed
back to the display followed by a $ to give a visual
indication of the ESC key depression. Thus, a typical
command string normally appears on the screen as

COMMANDI$COMMAND?2S...
COMMANDNS$$

where in most cases the separating ECS’s are optional

but the final pair is mandatory. A command string must
be terminated by two depressions of the ESC key.

Command Formats

The heart of the command is a single letter mnemonic
(such as “T” for TYPE, “I” for INSERT, etc.). In many
cases, this letter may be optionally preceded by a
decimal number (later denoted by n) indicating the
number of characters or lines involved. Further, in some
cases this number may be preceded by a minus sign (-)
indicating a direction (from the present pointer posi-
tion) toward the beginning of the buffer rather than
toward the end (as is normally assumed). If no number
is present, EDIT assumes the value 1.

Given an arbitrary pointer location, the possible
EDIT interpretations for n are normally as follows:

(1) Character Operations: Positive n identifies the n
characters to the right of the pointer (including
control characters and spaces).

Negative n identifies the n characters to its left.
Unless otherwise noted n=0 results in no oper-
ation.

(2) Line Operations: Positive n identifies all charac-
ters to the right of the pointer up to and including
the nth CR encountered. If the pointer is in the
middle of a line, the first line will constitute only
the remainder of that line. Negative n identifies all
characters to the left of the pointer up to but not
including the -n + 1st CR. If the pointer is in the
middle of a line, the last line (in this set of lines)
will consist of only those characters in the present
line to the left of the pointer. Thus, n=0 specifically
indicates the portion of the present line to the left
of the pointer.

In certain cases a command mnemonic letter is fol-
lowed by one or two variable-length text arguments
(whenever the user needs to specify some sequence of
characters to insert or to search for). All such arguments
must be terminated by the ESC character (echoed as $).
In subsequent discussion, an arbitrary text argument
will be denoted by a symbolic statement such as “text”.

Correcting Command Typing Errors

A typing error in a command string may be corrected
by use of the RUBOUT (DEL) character to ‘erase”
previous characters already typed. Each time EDIT
receives a RUBOUT within a command string, it erases
the last character from its stored version of the com-
mand string. Kurther, it echoes back to the terminal the
character just erased. For example, suppose the user
types the command string ABS$DE (each of the letters

5. Disk Editor

is a valid command mnemonic) followed by four
rubouts. On the terminal, he would see

ABCSREPSC
where the last four characters were those erased. The
characters AB would then remain in EDIT’s stored
command string register. Clearly, any such erasures
must occur before the double ESC character, which
terminates the command string, is struck.

If EDIT finds an invalid command while in execution
of a command string (i.e., after the user has typed the
double ESC), it returns to the user the error message

BAD COMMAND?7xxxx..xx$”

where xxxx..xx reproduces that part of the command
string that has not been executed.

Interrupting EDIT Execution

The user may usually stop EDIT execution by
depressing and holding the BREAK key on the key-
board. This key is used, for example, to stop a long
typeout. On receipt of the BREAK, EDIT stops execu-
tion at whatever point was reached and returns to the
command input mode by issuing another prompt. To
assure the clean entry of succeeding commands, the
DEL key should be depressed to erase any erroneous
noise characters that may have been entered as a result
of the break.

After a BREAK, the user should normally verify or
reinitialize the buffer pointer position before resuming
further editing.

Filled Work Space Warning

If EDIT determines that a command string threatens
to use up the remaining work space, it will stop echoing
keyboard input characters to the printer and will echo
instead the BELL control character causing the I/O
data terminal to ring its bell as a warning. The user
should immediately respond by erasing part of it with
the RUBOUT key until the bell stops echoing. It is
particularly important during an INSERT that when
the bell sounds, additional characters are not entered.
The last few characters of the buffer should be deleted
and the INSERT mode ended. After some of the buffer
is written out, the user should go back and repair the last
line as necessary. An attempt to insert more characters
after the bell can result in the loss of the entire buffer
contents. The WRITE AND DELETE command W is
used to empty the buffer onto the diskette.

If the EDIT runs out of space during command
execution, it will return the error message

MEMORY FULL”xxx..xx$”

where again, xxx...xx is a reproduction of the unpro-
cessed part of the command string.

File Assignments

The Editor program is loaded by means of the com-
mand interpreter. Output generated by the program is
underlined. The $ symbol indicates the ESC key.

> EDIT
COSMAC DISK EDITOR VER X.X
—>

At this point EDIT is asking the operator to assign an
input file and output file. A new file name can be
established during the course of an EDIT session with-
out having to restart the EDIT program. The new file
can be established any time after a —>>is received. Each
time EDIT is restarted, via the E, Y, or Q commands
(explained in the next section EDIT Commands),the
output and input files are closed. The format for input
and output file name assignments is shown below.

—>R$$
READ = <FILENAME>(CR) ..Default unit No.
is0
==>08%

WRITE = <FILENAME>(CR) ..Default unit No. is 1
—>

Note:The R and O commands may be issued at the same
time as shown below.

—=>ROS$$
READ = <FILENAME>(CR)
WRITE = <FILENAME>(CR)

=
EDIT Commands - Single

This section contains a summary of the individual
commands that EDIT is designed to recognize. Each
command is described with a specification of its accep-
table format and an explanation of its execution.
Examples are also given.

Pointer Control Commands
BEGINNING

Format: B
Execution:Pointer repositioned to the beginning of the
buffer.

END OF BUFFER

Format: Z
Execution:Pointer repositioned to the end of the buffer.

46 User Manual for the RCA MicroDisk Development System MS2000

Note:This command must be used with caution. If the
current buffer contains a DC3, the Z command will
reposition the pointer beyond the DC3. Any insertion
made after the Z is typed, consequently, will not be
added to the file because it is beyond the DC3 or end-of-
file. The user, therefore, should always type Z-L to
position the pointer in front of the DC3.

CHARACTER STEP

Format: nC
Execution: Step pointer right (or lefte) by n characters.

LINE STEP

Format: nL
Execution:Step pointer down (or up) by n lines.

TYPE LINE NUMBER

Format: *

Execution: Type line number of pointer position within
buffer.

File Manipulation Commands
INPUT FILE SELECTION

Format: R
Execution: Causes EDIT to type

READ = <FILENAME>

The operator should respond with the file name of the
source file. This command may be issued at any time
during the edit session. This command opens a file for
reading. If the R command is entered by mistake, the
operator should respond to the “READ=" prompt with
an (ESC) or (CR). The read assignment will be un-
changed.

OUTPUT FILE SELECTION

Format: O
Execution: Cause EDIT to type

WRITE = <FILENAME>

The operator should respond with the file name of the
source file. This command may be issued at any time
during the edit session. If the O command is entered by
mistake, the operator should respond to the “WRITE="
prompt with an (ESC) or (CR). The write assignment
will be unchanged. This command opens a file for
writing.

¢ A positive (unsigned) n indicates the direction of right
or down; a negative n indicates left or up for all
commands.

APPEND

Format: A
Execution: Lines are read from the input file (continu-
ing from the last line) and appended to the end of the
buffer. The operation continues until one of the follow-
ing occurs:

(1) End of file character detected (i.e., last line has been
read).

(2) 3/4 of the remaining available space has been filled.
(3) 100 lines have been transferred.

The pointer is repositioned to the beginning of the first
appended line. In large memory systems, multiple
appends may be used to bring additional lines into the
buffer. Multiple APPEND commands must be typed as
a string of A’s. The form nA is not acceptable.

Note: The keyboard BREAK key should not be used
during execution of an APPEND.

NEXT

Format: nN

Execution: Lines are read from the input file (continu-
ing from the last line) and appended to the end of the
buffer. The operation continues until one of the follow-
ing occurs:

(1) End of file character detected (i.e., last line has been
read).

(2) 3/4 of the remaining available space has been filled.
(3) n lines have been transferred.

MERGE FILE

Format: M

Execution: Allows further appends to the buffer. The
difference between this command and an A(ppend)
command is that once an end-of-file marker (DC3) is
read, EDIT will not allow further Appends until this
M(erge) command has been issued. After the M com-
mand is issued, the Append is used to bring subsequent
sections of a second file into memory. When this com-
mand is used, it is assumed that the end of the current
file is already in the buffer. To merge this file with
another one, the user must first delete the end-of-file
marker from the buffer, select the input file to be
merged, and then issue the M command. An example is
given below. Output generated by EDIT is underlined.

= AS$..Bring the end of the current file
into memory.
..Editor responds that the end-

of-file has been reached.

‘#tES !F#**

—y

—>BF(DC3)$-D$$..Find and delete the ASCII
(DC3) control
..character end-of-file marker

5. Disk Editor

47

—==>RS$$
READ=XY2(CR)
—>MS$$

..Select file to be merged

..Enter the first portion of the
new file at the end of the memory
buffer

Repeated A100W3 commands are then issued until the
next EOF is found. The second file is now following the
first.

Deletion Commands
DELETE

Format: nD
Execution: n characters right (or left) adjacent to the
pointer are deleted.

KILL

Format: nK

Execution: n lines right (or left) adjacent to the pointer
are deleted.

Text Iinsertion and Data Manipulation
INSERT

Format: Itext$
Execution: Typed text is inserted to the left of the

present pointer position. The text may contain multiple
lines.

SAVE

Format: nX

Execution: Copy n lines adjacent to the pointer into a
special SAVE area external to the buffer. The pointer
position is not changed. Previous contents of the SAVE
area are overwritten. EDIT types CAN'T SAVE if there
is insufficient room in the SAVE area and it does not
save any lines. EDIT clears the SAVE area if n=0 (zero).

GET

Format: G
Execution: Equivalent to a INSERT, but uses the pres-
ent contents of the SAVE area as an implicit text argu-
ment. Note: SAVE and GET are especially useful in
sequence as a copying mechanism to MOVE text.
EDIT dynamically allocates the available RAM
work space to its SAVE area, stack area, and the buffer
or editing area. Once lines have been SAVE'd, they
remain in the SAVE area indefinitely until the next
SAVE command overwrites them. If many characters
have been SAVE’d, the area available for the buffer will
be proportionally reduced. The SAVE area is not auto-
matically cleared by a GET command. Several GET
commands may be issued against the same SAVE area.

It is good practice, therefore, to clear the SAVE area
when it is no longer needed in order to make that area
available to the buffer. This step is accomplished by
typing 0X (zero-X).

If an attempt is made to save more lines than there is
room for, EDIT will type

CANT SAVE “XXXX...XX$”

and will not transfer any lines to the SAVE area.
XXXX...XX is the portion of the command not
executed.

FIND

Format: Ftext$

Execution: A search for the specified character sequence
“text” occurs from the current pointer position toward
the end of the buffer. It stops either when a match is first
encountered or when the end of the buffer is reached. In
the first case, the pointer ends positioned immediately
after the matching string. In the latter case, a “CAN’T
FIND” message is printed, and the pointer position is
unchanged.

SUBSTITUTE

Format: S search text $substitute text$

Execution: Operates as FIND does above (using search
text as the search argument). However, on a match, the
substitute text replaces the matching sequence with the
pointer positioned after the inserted text. The substitute
text must not be omitted from the command.

Output Commands
TYPE

Format: nT
Execution: Type the n lines adjacent to the current
pointer. The pointer position remains unchanged.

PRINT

Format: nP

Execution: The n lines adjacent to the pointer are sent to
a printer or punch if one is provided. The pointer posi-
tion remains unchanged. The lines are not deleted from
the buffer.

TYPE EDITOR STATUS

Format:#
Execution: Type out size of the buffer, number of bytes
available, size of the save area, and the end of memory.

WRITE and DELETE

Format: nW
Execution: n is treated as positive. The n lines at the
beginning of the buffer are written to the output file and

User Manual for the RCA MicroDisk Development System MS2000

(START >
EDITOR

USE R COMMAND
TO SELECT

INPUT LO

CATION

USE O COL'MAAND

TO SELECT
OUTPUT LOCATION

BODY OF
s EDIT
SESSION

1S
OUTPUT TO
BE SAVED

?

END WITH
COMMAND

ISSUE U
COMMAND AND
STOP

END WITH
COMMAND

END

WITH
Y
COMMAND

y

92CS-28480RI

Fig. 7 - Flowchart showing methods for terminating an EDIT session.

deleted from the buffer. The pointer ends up positioned
at the beginning of the remaining buffer.

END

Format: E

Execution: The buffer is written to the output file and
any lines remaining on the input file are then copied to
the output file and the file is closed. EDIT then reinitial-
izes for a new editing session with buffer cleared and
with the pointer positioned at the beginning of the work
space.

FILE CLOSE

Format:Y

Execution: Places an end-of-file character (DC3) at the
end of the working buffer, outputs the buffer to disk,
and restarts EDIT. ALL FILE CREATION SES-
SIONS MUST END WITH THIS COMMAND. Fig.
7 shows the methods of terminating an edit session. The
Y command may also be used to truncate a copied file.

QUIT EDIT SESSION

Format: Q

Execution: Restarts EDIT. Execution of this command
destroys the contents of the working buffer. Fig. 7
shows alternate methods of terminating an edit session.
The output file is not closed.

RETURN TO UTILITY PROGRAM

Format: U

Execution: Restarts CDOS, which will type a > to the
terminal indicating that it is ready to accept commands.
No closing of file will take place.

Summary of Commands and
Control Characters

A summary listing of the foregoing commands
together with the meaning of each one is given in Table
III. A summary of the special EDIT control characters

5. Disk Editor

49

Table Ill - EDIT Command Summary

Format Meaning

R Define input (Read file name). Response READ=FILENAME

0} Define output file name. Response WRITE=FILENAME.

B Move pointer to BEGINNING of buffer.

zZ Move pointer to END of buffer.

nC Step pointer right (or left) by n CHARACTERS.

nL Step pointer down (or up) by n LINES.

* TYPE out the line number of the pointer within the buffer.

A APPEND lines to end of buffer from input file. Reposition pointer to beginning of
APPENDed area.

nN APPEND the next n lines into the buffer, if there is room. Default for n is 1.

nD DELETE n characters after (or before) pointer.

nK KILL n lines after (or before) pointer.

Itext$ INSERT text at present pointer position. (Position pointer after it).

nX Save n lines after (or before) pointer. (Pointer position unchanged.)Clears the SAVE
area if n= 0.

G GET the last SAVEd lines and INSERT them.

Ftext$ FIND the first occurrence of text, searching from present pointer position toward end of|

Ssearch text $substitute

buffer. If found, position pointer after the match. If not, type CAN'T FIND.
FIND search text and SUBSTITUTE substitute text for it.

TYPE n lines after (or before) pointer. (No change in pointer location.)
PRINT/PUNCH n lines after (or before) pointer. (Buffer and pointer remain un-

WRITE (and delete from buffer) the first n buffer lines on the output file. n is positive.
(Pointer ends up at beginning of remaining buffer.)

END the editing session. Equivalent to an nW, with n equal to or greater than the
number of buffer lines, followed by a copy of remaining input file to output file.
Used to end a file-creation session. Places an end-of-file marker on the bottom of the

text$
nT
nP
changed.)
nW
TYPE Editor status.
E
Y
buffer and outputs the buffer.
Q Restart Editor program and clear buffer.
M Merge buffer contents with selected input file.
U Exit to MicroDOS.

is given in Table IV. The EDIT error messages are
summarized in Table V.

The EDIT error message

DISK FULL
SET UP CONTINUATION FILE
WRITE?

,is of interest because it tells the user how to proceed. The
user should replace the full disk with one that has free
space and then enter the continuation <FILENAME>
after WRITE? The remaining output will be stored
under this file name. Caution must be exercised, how-
ever, when disks are being changed that the source input
is not removed. This file continuation procedure can be

used any number of times. Before anything is done with
the output files, however, they must be merged by
means of the CDOS MERGE command. MERGE is
the only program that can accept multi-file inputs.

EDIT Commands - Composite

EDIT also permits the user to specify composite
commands. A composite command is a command
string (one or more commands) enclosed within angle
brackets (<...>>). A command string may be preceded
by a decimal number indicating the number of times
that the string within the brackets should be executed.

50

User Manual for the RCA MicroDisk Development System MS2000

Table IV - Summary of EDIT Control Characters

Message Meaning
(1) ESCAPE Echoed as $. Optional command separator.
Required after a TEXT field.
Two required at the end of a command string.
(2) LINE FEED Ignored on input.
Inserted after CR on output.
(3) CARRIAGE RETURN Line terminator character. Stored in buffer.
(4) NULL Ignored on input.
Set of six inserted after LF to terminal
(5) RUBOUT or DELETE Erases previous character in a command string.
(6) DC3 End-of-file character.
Inserted by user at end of a created file or read in from an existing input file.
(7) HORIZ TAB Echoed as 1 to 8 spaces when typed.
Converted to 1 to 8 spaces on file output.
Can begin a command implying a previous INSERT.
(8) BREAK Pressing BREAK will terminate a long command.

Note: Within acommand string but not within a text field, EDIT ignores any inserted spaces or CR’s. Spaces or CR’s
may be used to improve the readibility of the command string if desired.

Table V - EDIT Error Messages

Message

Meaning

LINE TOO LONG
BAD COMMAND?? “XXX..X$”

<BELL>
MEMORY FULL “XXX..X$”

CAN'T SAVE
CAN'T FIND “text”

<XX> IS WRITE PROTECTED
<XX> DR FAIL

ITERATION STACK FAULT
kR EQF***

DISK FULL

SET UP CONTINUATION FILE
WRITE?

A line that EDIT is attempting to TYPE has more than 78 characters.
EDIT has found an invalid command in a command string. XXX...X is
that part of the string not executed.

Filled work space warning. Delete part of the command before ending the
command.

EDIT ran out of work space during an execution. XXX..X is the unpro-
cessed part of the command string.

There is not enough room in the SAVE area.

The specified character sequence was not found between the pointer’s
previous position and the end of the buffer.

The disk unit selected (XX) for output is write protected. The command
string is aborted. No lines are written or lost.

The disk unit selected for output is not ready. The command string is
aborted. No lines are written or lost.

EDIT ran out of stack space during execution of a command string. May
indicate improperly paired brackets in the string.

A line containing an end-of-file mark (DC3) has been read. The DC3 is
stored in the buffer and further appends from the current file are ignored.
Output disk full. Replace disk and enter continuation file name
after the query WRITE?

One composite command may include another. Thus,
EDIT permits the “nesting” of commands. For example.

B5<3C4<DI1$>L>$$

causes replacement of the 4th through the 7th characters

in the first S lines in the buffer by spaces. The pointer
ends positioned at the beginning of the sixth line.
With nested commands, the user must be aware of the
order in which commands will be executed and the
number of times individual operations will occur. The

5. Disk Editor

51

following example should indicate the general algo-
rithm. Other examples will be given later. Consider the
command string

a<b<CS1>c<d<e<C S2>CS3>CS4>>

where the lower case letters represent numbers and
where each CSi represents an elementary command
string. Fig. 8 indicates EDIT’s flow chart for the execu-
tion of this command string. It is derived by properly
pairing the angle brackets in the string.

ENTER

EXECUTE CSI

NO
b Tl?MES

S

EXECUTE CS2

92Cs-28199

Fig. 8 - Execution of nested composite commands.

Notice, for example, that CS2 is executed a number
of times equal to the product of a, c, d, and e.

To execute a nested command, EDIT maintains a
stack in part of the available work space. The amount of
stack space required depends on the depth of nesting in
the command, i.e., on the number of loops within loops,
as in Fig. 8, which in turn depends on the depth of
bracket-pairs-within-bracket-pairs in the command
string. If EDIT runs out of stack space during execu-
tion, it will issue the error message:

ITERATION STACK FAULT.

This error message is most likely to occur if the

brackets in the command string are not paired properly.
In particular, it occurs if a bracket is missing.

Note that if the user fails to terminate a text string
with the required ESC character, all subsequent charac-
ters until an ESC does occur will be treated as part of the
presumed text string. Thus, it is quite possible that a
missing ESC in a nested command string could also
result in the “improperly paired-brackets” error message

ITERATION STACK FAULT.

Horizontal Tabs

EDIT assumes an implicit horizontal tab stop after
every eight character positions in a line. If the user types
a HORIZ TAB character (CTRL and I) as part of a text
field, EDIT will insert this character into its buffer, but
it will echo back to the printer a sufficient number of
spaces to reach the next implied tab stop. HORIZ TAB
characters read from the input file are loaded into the
buffer as is. On output, each HORIZ TAB buffer char-
acter is converted into the required number of spaces,
extending the line length in the process. Thus, HORIZ
TAB characters cannot appear on the output file. The
TAB character can be used to produce straight columns
in a source file.

NOTE: As a special case, EDIT interprets a text
beginning with a HORIZ TAB character as if an
INSERT command had preceded it.

Additional Note

Normally, the INSERT of a non-existent text field
(i.e., the command I$) results in no operation. Further,
it is normally illegal to precede an INSERT command
with a numeric argument. However, the specific com-
mand nI$ (combining the two), is legal. It causes the
insertion of a single character whose ASCII decimal
value is n(modulo 128). For example, 97I$ will cause
insertion of an “a” (hex 61).

File Development and Manipulation

In this section, information is given on the develop-
ment and manipulation of a file through the use of the
EDIT. In addition, some useful common sequences are
given to illustrate EDIT’s data manipulation facilities.

Creating a File

A file is created by a repeated sequence of the follow-
ing steps:

(1) Fill buffer from keyboard with sequence of
INSERT’s
(2) WRITE buffer to output file.

52 User Manual for the RCA MicroDisk Development System MS2000

A single I command may take as an argument a text
string of arbitrary length. Thus, many lines may be
inserted with a single I command. Each line is termi-
nated by pressing the RETURN key. A typical INSERT
will thus appear on the printer as

I line 1
line 2

iine n$$

because each CR is echoed as CR, LF. Such commands
may be sequenced until the buffer is nearly filled. These
sequences are then normally followed by an nW
(WRITE) command with n equal to or greater than the
number of lines in the buffer. By use of the W command,
the buffer is cleared after the WRITE to the output file
and is ready for a new set of INSERT’s.

The last line of a created file should be followed by the
insertion of a terminating dummy line consisting of the
single character DC3 (CTRL and S) indicating the end
of the file. The DC3 character is automatically added
when the Y command is used to end a filecreating
session. The file-terminating commands Y and E also
generate a string of null characters after the DC3 to
assure that data is written on the diskette.

Adding to a File

A section is added to an existing file by first copying
the portion before the insert and finally copying the
portion after the insert. The first copy involves one or
more APPEND’s followed by WRITE’ up to the
APPEND which reads in the section of the input file
containing the insertion point. Note that appending to
the end of a file may also be considered as an insertion
just before the last DC3 terminating line.

Assuming the insert point is arbitrarily located within
the buffer, several variations exist for adding text mate-
rial. For any of these variations, the pointer must first be
moved to the insert point. Then a sequence of INSERT’s
is made at that point, particularly if the amount of the
inserted material is small. Alternatively, one could
SAVE all lines following the pointer (with an nX, n
sufficiently large), delete them with an nK command,
and then WRITE the data remaining in the buffer with
an nW (n sufficiently large). The buffer then becomes
empty with all records preceding the addition written to
the output file. Additional INSERT’s and WRITE’s
may now be made. Finally, a GET followed by a
WRITE will attach the material after the insert point.
Now, if there is more unread material on the input file,
the GET may be followed directly by an END com-

mand. This command will automatically copy the
remaining input file.

In summary, one inserts material into an existing
file by beginning with a copy sequence (a series of
APPEND’s followed by WRITE’). Then, with the
pointer positioned properly, one may execute nX nkK
nW (n sufficiently large). Now, one operates in the
CREATE mode with INSERT’s followed by WRITE’s.
Finally a GET or GnW will complete the sequence.

When appending to the end of a file, one has the
alternative of removing, after the last APPEND, the
dummy termination line via a Z-IK command string.
Operation then is as in the CREATE mode. For this
case, the Y command should be used to terminate the
file.

Deleting a Section in a File

To delete a section in a file, the user should first copy
up to the deletion point, as previously discussed. Lines
to be omitted may then be explicitly deleted from the
buffer (by nK, with pointer properly positioned). If
further lines to be deleted exist on the input file, further
APPEND?s are required.

Moving a Section in a File

Assume that the file section to be moved is sufficiently
small. If the movement is toward the end of the file, the
following sequence may be used:

(1) Copy input file up to the section to be moved.

(2) SAVE the section to be moved. Then DELETE it
in the buffer.

(3) Continue copying the input file up to the insertion
point.

(4) GET and WRITE the SAVE'd section.

(5) Copy the remaining part of the input file.

If the movement is toward the beginning of the file, one
must first find the section to be saved, SAVE it,
DELETE it, and then reinitialize the input file. After
this, the sequence of steps 3,4, and 5 above will effect the
insertion.

Several complications of this simple procedure can
occur. First, the material to be moved may overlap two
APPEND?s. In this case, one does not SAVE until the
second APPEND has been executed. Second, the mate-
rial to be moved may consist of a substantial portion of
the input file so large that it must first be copied onto a
third temporary file which might be called an “insertion
file”. If this condition exists, the user should be suffi-
ciently familiar with EDIT so that he will be able to
create and use this special temporary file.

S. Disk Editor

53

Modifying a Section in a File

By now the reader should be reasonably familiar with
the commands APPEND, WRITE, END, INSERT,
SAVE AND GET.

The most common use of EDIT is to modify the
contents of afile at a given point (typically, to correct an
error). To make such a modification, the user must first
read that section of the file into the buffer. Normally, a
copy of the initial portion of the file is necessary, up to
the APPEND which brings into the buffer the section to
be modified. Now, the remaining EDIT commands are
available to effect the modification. After the change is
made, the process is terminated with an END command
if modifying an existing file, or the Y command if the file
is being created.

Some Command Examples

Below are several examples of useful command
sequences to further acquaint the reader with EDIT’s
data manipulation facilities. In each example a com-
mand string is given and followed by a short explana-
tion of what it will do.

(1) Assume the pointer is arbitrarily positioned within a
line in the buffer:

OLT Types the entire line leaving the pointer at its
beginning.

oTT Also types the entire line, but leaves the
pointer unchanged.

0K Erases the portion of the line to the left of
the pointer.
K Erases the portion of the line to the right of

the pointer.
OLK Erases the entire line.

For each of the following command sequences, it is
assumed that n is sufficiently large.

BoK Erases the entire buffer.
(1.4 Erases the entire SAVE area.
BnT Prints the entire buffer.

(2) Assuming the pointer is positioned at the beginning
of a line in the buffer,

0XnKZ-mLG

will move the next n lines to m lines from the end of the
buffer and erase them from their original position.

(3) The command
Bn<mCI $L>,

for nsufficiently large, inserts a field of spaces in all lines
at a point m characters from the beginning of each line.

(4) One can also scan the entire buffer with a FIND or
SUBSTITUTE command by similarly using a suffi-
ciently large numeric argument (called n below). The
command will terminate when the end of the buffer is
found with a CAN'T FIND message. For example:

Bn<Sfield1$field2$> will replace all occurrences of
field1 by field2.

Bn<Ftext$-mD>> will delete all occurrences of text, if
m=the length of the text field.

Bn<Ftext$OLT1L> will print all lines containing
text.

Bn<Ftext$OLK>> will delete all lines containing text.

Bn<F;$I(CR)$> will break all lines containing semi-
colons into as many lines as there are semicolons - each
terminating in a semicolon. (Note: In this case, any line
originally ending in a semicolon will be followed by a
“line” containing zero characters).

Bn<S$(CONTROL D$L> will replace the first space
in every line in the buffer by a horizontal tab control
character.

Bn<AS0TS50K> will perform the following n times;
append in the next (first) section, type it, and delete it
from the buffer. This command string can be used to
type a long file that can’t be held all at once in the buffer.
Itis particularly useful in typing the listing output file of
the assembler.

File Manipulation Summary

This section summarizes the steps needed to create a
new file or to change an existing file.

Creating a New File

1. Use O (Output) to define the file that will be
created. (Will default to drive 1 if drive is not
specified).

2. Use I (Insert) to input text to buffer. End insert
mode with ESCape ESCape ($3).
to edit.

4. UseY (Closefile) to output buffer contents to disk
and to end the edit session.

Changing an Existing File

1. Use R (Read) to define the file that will be edited.
(Will default to drive 0 if drive is not specified).

2. Use O (Output) to define the file that will be
created. (Will default to drive 1 if drive is not
specified).

Use A or N (Append) to bring lines from the input
file into the editor buffer.

to edit.
If the entire file to be edited is too large to fit in the

User Manual for the RCA MicroDisk Development System MS2000

editor buffer, use W (Write) to write out edited
text to the disk. Then repeat steps 3, 4, and S as
needed.

Use E (End) to output buffer contents and/or the
rest of the file to disk and end the edit session.

55

6. Disk Assembler (ASMS8)

The computer understands only programs written in
machine code, a sequence of hexadecimal characters.
Most people, however, find that writing programs in
machine code is usually tedious and often frustrating
because of the need to keep track of where each instruc-
tion is located in memory and where all the variables are
stored. An assembler is a program which automatically
performs these housekeeping functions, allowing the
user to write programs using convenient symbols,
names, and expressions. The user can also add com-
ments to his program to aid in debugging, and to make
understanding and documenting easier.

The MS2000 disk assembler (ASMS) is such an
assembler. It allows the user to program in assembly
language. The ASMS8 produces the machines code
(hexadecimal) which can then be executed on the
CDP1800-series microprocessors. A simple comparison
of the same program in machine and assembly lan-
guage, shown in Fig. 9, illustrates the ease of using
assembly language. The ASM8 is designed to run under
MicroDOS without the need of another computer. It
includes level I, level II, macro, and cross-reference
capability. Each of these capabilities is discussed in this
chapter.

MACHINE ASSEMBLY LANGUAGE
CODE (ASM8)
F800 B8F8 ANSWER_AD EQU R8 .OUTPUT AD-

DRESS WILL BE STORED HERE
24AB F80A FIRST_-NUM EQU 10

73F8 14F4 SECOND_NU EQU 20 .THE TWO NUM-
BERS TO BE ADDED
A.1(ANSWER)~>ANSWER_AD.1;A. (AN~
SWER)—~>ANSWER AD.0..THESE COM-
MENTS ARE ALLOWED IN THE PRO-
GRAM
(FIRST_NUM+SECOND_NU)—~>@AN-
SWER_AD ..ADD THE TWO NUMBERS
ANSWER DS 1 ..AND STORE AT AN-
SWER

Fig. 9 - Machine code and ASM8 assembly language
compared.

5872 0000

The assembly language program consists of a sequence
of lines called the source code. Most of these lines are
directly translated by ASM8 into machine code and

placed in an output fill called the listing along with an
echo (reprinting) of the source code. The hexadecimal
portion of the listing is called the object code and is the
machine-executable program. Some lines do not directly
produce code, but rather tell the assembler to do some-
thing. These lines are called directives.

In this manual, the assembly language is described
using illustrative examples and BNF notation. A full
description of the language in BNF is given in Appendix
B. BNF is a concise and easy-to-understand format for
learning and reviewing assembly language.

Note: The MicroDisk Development System MS2000
can assemble and edit Microprocessor CDP1804,
CDP1805, and CDP1806 instructions, and a hexade-
cimal or listing file that contains these instructions can
be downloaded into the system under test through the
Micromonitor CDP18S030 or through the MicroEmu-
lator MSE3001. The CDP1804, CDP1805 and CDP1806
instructions can be run and debugged by the Micro-
Emulator but not by the Micromonitor. An alternative
method of transporting assembled CDP1804, CDP1805,
or CDP1806 code is to program it on a PROM and
install the PROM into the system under test.

Assembler Operation

ASMS8 is a two-pass assembler. In the first pass the
symbol table consisting of user-defined labels and con-
stants is created. In the second pass the object code and
the listing are generated.

As AMS runs, it simulates filling a memory with the
machine-code equivalent of the user’s source program.
A two-byte location counter is used to point to the area
in this simulated memory where the next piece of code is
to be inserted. As each statement is coded, the hexade-
cimal equivalent is inserted in the actual object file on
disk, and the location counter is advanced by the
number of byes whose insertion into memory it has
simulated. The programmer can also control and refer-
ence the location counter if he wishes. This simulation
allows ASM8 to predict the results and effects of actual
loading.

The most useful function of an assembler is keeping
track of where branch points are and where variables
are stored. To perform this function, an assembler
builds a symbol table. Each identifier (defined later) is

56 User Manual for the RCA MicroDisk Development System MS2000

entered in the table along with the address in memory
that it stands for or whatever information is appropriate
to it. The user references the symbol table whenever he
uses an identifier. The user can add to the symbol table
by defining an identifier. Both of these uses of the
symbol table are described in greater detail later.

The user may often wish to use a numeric or literal
constant in his program. He may wish to address two
consecutive bytes in memory, for example. If he were
programming in machine code, he would have to
address each one of these bytes separately. The assembler
evaluates simple expressions and allows the programmer
to name one byte “WEIGHT,” for example, and the
next byte would then be “WEIGHT + 1.” The use of this
feature is explained in detail later.

Backus-Naur Format (BNF)

BNF notation is a concise and convenient way to
express the syntax of a language. There are two major
elements in notation: terminal and non-terminal ele-
ments. A terminal element is written exactly as it would
appear when used; a non-terminal element is a descrip-
tion of something and always appears between angle
brackets. For example:

<FIRST THREE LETTERS OF THE
ALPHABET> ::= ABC

ABCis not adescription of the item, it is the item itself.
There are no commas between the letters, because a
comma is not part of the alphabet. Likewise, there are
no spaces between the letters as spaces are not part of
the alphabet. “FIRST THREE LETTERS OF THE
ALPHABET” is a description and appears between
angle brackets. The symbol ::= can be read as “is
defined as” and will be used in every definition. Where
there is a choice between alternatives, the symbol ! will
be used to separate the choice.

Examples:
<one>:=1
<plus sign> 1=+
<minus sign> ::= -
<tree> ::= <woody plant>
<binary digit> = 0!l

A binary digit could be either a0 or a 1, but not both.
A binary digit canbe only a0 or a 1. A decimal digit can
be defined in two ways.

<decimal digit> ::= 0!1!2!3!4!5!6!7!8!9!
<decimal digit> ::= <binary digit>!2!3!4!5!6!7!8!9!

Notice that the decimal digit could be defined by
explicity listing every possibility or by defining it in

terms of already defined objects. The use of the descrip-
tion of a binary digit eliminates the need to explicity list
0 and 1.

Example:
<primary color> ::= <red>!<green>!<blue>
<American coin names> ::= PENNY!NICKEL!
DIME!HALF-DOLLAR

Note that PENNY is the name itself and so is a
terminal element. Red as a non-terminal element de-
scribes the color, not the name of the color.

<certain breed of dog> ::= <collie>!<German
shepherd>!<beagle>

<certain name of dog> ::= REX!SPOT!SHAD!
ROVER

If it were necessary to list every possible combination
explicity, BNF would be an extremely voluminous de-
scription of anything. Fortunately, it is possible to de-
scribe an item recursively, using its own description as
part of the description. An unsigned binary number can
be defined recursively as follows:

<unsigned binary number> ::= <binary digit>
I<binary digit> <unsigned binary number>

Under this definition 01 is an unsigned binary
number because it is 0 (a binary digit) followed by 1 (an
unsigned binary number) and 1 is an unsigned binary
number because it is 1 (a binary digit). Both the first and
second part of the definition were used. 03 is not an
unsigned binary number because 03 is not a binary digit
(0 or 1 only), and though 0 is a binary digit, it is not
followed by an unsigned binary number. Because 03
does not satisfy either of the alternatives of the defini-
tion, it is not an unsinged binary number. Notice that
under the definition of an unsigned binary number,
any string of 1’s and 0’s of any length is an unsigned
binary number. In practice, the computer has finite
capacity and there are usually additional restrictions.
These restrictions will be given as notes in the text.

Examples:
<forest> ::= <tree>!<tree><forest>
<crowd> ::=<person>!<person><crowd>

In reading BNF notation, blanks are ignored. Where
ablank is required by syntax of the language, the special
character A is used. In order to improve the readability
of the BNF in the text, many of the spaces have been
removed. If there is a question concerning syntax, the
syntax description in Appendix B is complete and
should be referred to.

It is important to remember that the assembler will
be interpreting the program instructions using the syn-
tax described in this manual.

6. Disk Assembler

57

Basic Definitions

Character Set
ASMB8’s character set includes all twenty-six upper-

case letters, all ten decimal digits, and all other printing
ASCII characters.

Character Strings, Identifiers, and Labels

A character is any of the characters in ASM8’s char-
acter set. A character string is any sequence of charac-
ters. Any valid line of assembly language is a character
string, but not any character string is a valid line of
assembly code. An identifier is any character string of
up to nine alphanumeric characters, beginning with a
letter. An identifier may contain as many break charac-
ters as desired, but may not contain any special charac-
ters including spaces. If break characters are in any
identifier they are counted as part of the nine alphanu-
meric characters that make up the maximum length
identifier. A label is an identifier that is used to mark a
location in the program. A label always begins in
column 1, and ASMS8 assumes that any identifier begin-
ning in column 1 is a label.

<character string> ::= <character>!<character
string><character>

<break character> ::=

<alphanumeric character> ::=<letter>!
<decimal digit>!<break character>

<identifier> ::= <letter>!<identifier><alpha-
numberic character>

<label> ::= <identifier>

<space> ::= Al <space>A

Examples:

DFJSHRJQGQH Character string (too many charac-
ters for an identifier)

FIRST_NUM Character string and identifier

F Character, character string, and iden-
tifier

1 Character and character string

Note that while an identifier is always a character
string, a character string may not always be an identifier.

Constants

ASMB recognizes two types of constants: numeric
and literal. A literal constant is simply any character
string between quotes. A common error is to forget the
closing quote on a literal constant. The assembler then
considers the rest of the line to be part of the literal
constant.

<literal constant> ::= ‘<character string>’

When no other constants are defined on the same
line, a literal constant can be 72 characters long.

There are four types of numeric constants: binary,
octal, decimal, and hexadecimal. A binary constant is a
string of 1’s and 0’s followed immediately by a B. An
octal constant is a string of octal digits (0-7) followed
immediately by a Q. A decimal constant is a string of
decimal digits (0-9) followed immediately by a D. A
hexadecimal constant is a string of hexadecimal digits
(09, A, B, C, D, E, and F) followed immediately by an
H. The D at the end of a decimal digit is optional. When
ASMS8 encounters a string of digits without either a B,
Q, D, or H following it, it assumes that the string is a
decimal constant. ASM8 immediately converts numeric
constants to their hexadecimal equivalents and literal
constants to their ASCII equivalents. All numeric con-
stants are truncated to two bytes.

<binary digit> ::= 0!1

<octal digit> ::= <binary digit> !2!3!4!5!6!7

<decimal digit> ::= <octal digit> !8!9

<hexadecimal digit> ::= <decimal digit>
!A!B!C!D!E!F

<binary constant> ::= <binary digit>B!<binary
digit><binardy constant>

<octal constant> ::= <octal constant>Q!<octal
digit><octal constant>

<decimal constant> ::= <decimal digit>!<decimal
digit>D!<decimal digit><decimal constant>

<hexadecimal string> ::= <decimal digit>!<hexa-
decimal string™><hexadecimal digit>

<hexadecimal constant> ::= <hexadecimal string>H

Note that not spaces are allowed within numeric
constants and that spaces within literal constants are
considered valid parts of the constants.

Examples:

1 Decimal constant

1B Binary constant

1Q Octal constant

1H Hexadecimal constant

1D Decimal constant

IFH Hexadecimal constant (equivalent
to 31 decimal)

OFIH Hexadecimal constant; note that
because the first digit of any numeric
must be a decimal digit, a leading
zero is necessary here.

0000000000F1H Hexadecimal constant; note that
because of its length this constant is
truncated to 00F1H.

93898838D Decimal constant (equivalent to
E3003H); note that because of its
length, this constant is truncated to
3003H.

‘9389838’ Literal constant; note that the

quotes turn a decimal constant into

58 User Manual for the RCA MicroDisk Development System MS2000

a ASClI-encoded literal constant.
Quotes within literal constants are

coded as ¢ ‘ (two quotes).
Errors:
F1H Interpreted as an identifier because
it begins with a leter.
Keywords

ASMS reserves several words for special use. These
reserved words should not be used as identifiers because
they may cause confusion if used in Level II statements.
The mnemonics for the instruction sets of the CDP1800-
series microprocessors are reserved keywords, as are the
register names RO, R1, R2, etc. Other keywords will be
mentioned throughout this manual. If a keyword is used
as an identifier, ASMS attempts to code it properly; but
if unable to, ASMS8 returns a duplicate-label error
message.

Level | Assembly Language

Line and Statements

Obviously, not all combinations of characters result
in valid lines of assembly language just as not all combi-
nations of characters result in valid English sentences.
An English sentence is made up of words and, in the
same manner, a line of assembly is made up of state-
ments.

There are four kinds of lines: executable, major,
macro call, and minor. Each of these types of lines has a
unique syntax. In machine code, there may be no
spaces; but in ASM8, spaces may be added anywhere to
improve readability. Normally, a space is a string of any
number of blanks or spaces. A statement set is a string of
up to ten executable statements (which will be defined
later) separated by semicolons (;). Spaces may be arbi-
trarily inserted between executable statements in a
statement set. A comment is any character string pre-
ceded by two periods (..) and may be added to any line to
facilitate reading. ASM8 prints out the comment on the
listing, but otherwise ignores it. Executable lines are
lines that contain a major statement, and minor lines
contain a minor statement. Executable lines may begin
with alabel in column 1. Anything other than an identi-
fier must not begin in column 1. One can always add a
label to any line that does not already have one, but except
for use with executable lines, the labels are useless.
Executable, macro call, major, and minor statements
are discussed in the following pages. Each line ends with
a carriage return and cannot be more than 80 characters
long, exclusive of the carriage return.

<space> ::= Al<space>A
<statement set> ::= <executable statement>!<state-
ment set> ; <statement set>

A statement set may not contain more than ten
executable statements.

<comments> ::= ..<character string™>

All lines must end with a carriage return and may or
may not be commented.

<line ending> ::= <carriage return>!<comment>
<carriage return>

<executable line> ::= <label> <statement set>
<line ending>!<space><statement set><line
ending>

<macro call line> ::= <label> <macro call state-
ment><line ending>!<space>><macro call state-
ment><line ending>

<major line> ::= <label> <major statement><line
ending>!<space><major statement><line
ending>

Labels with major lines are virtually useless, but are
acceptable.

<minor lines> ::= <minor statement™><line ending>

Expression Evaluation

A convenient feature of ASMS is its ability to evalu-
ate expressions in the source code. These expressions
can then be used as the operands in various statements.

Arithmetic Expressions: As explained earlier, ASM8
keeps a location counter that points to the address in the
simulated memory where the next piece of machine
code is to be placed. The value of this location counter
can be used in an expression by using the symbol, §$.
Likewise, the value of an identifier, once defined, may
be used in an expression by merely using its name. A
term (explained below) may be used by putting it in
parentheses according to normal algebra practice. A
constant can be used in an expression, but whenever a
constant is used, only the last two bytes of its hexade-
cimal equivalent are used. When evaluating an expres-
sion, ASM8 normally carried two bytes, but often the
programmer will wish to address only the upper or
lower byte of a number. The programmer can do so by
using the operators A.0(*) to extract the low-order byte
of *, or by using A.1(*) to extract the high-order byte of
_ (is used here to represent a term, which will be
explained later.) No spaces may appear between the
period and either the A or binary digit. An expression
may also contain special elements called dummies.
Dummies are identifiers within brackets,[], and always
stand for another identifier or constant. Their use is
explained later. The location counter, a constant, a
literal constant, an identifier, the least or most significant
byte, and adummy are all known as arithmetic elements.
If a literal constant is used, it is truncated to its last two
bytes.

6. Disk Assembler

59

<location counter> ::=§

<dummary> ::= [<identifier>]

<least significant byte> ::= A.0(<term>)

<most significant byte> ::= A.1(<term>)

<element> ::= <identifier>!<constant>>!<location
counter>!<dummy>!<least significant bytes>!
<most significant byte>!<term>)

Examples:

$ Location counter

[FIVE] Dummy

A.0(ADDRESS) Least significant byte of address

01SH Constant

A.1(ADDRESS) Most significant byte of address

TIME Identifier

($*2+4) (Term)

‘A’ Literal constant (equivalent to
0041H)

Errors

4+3 This term is not in parentheses

Expressions can be built up according to the normal
rules of algebra. Factors may be multiplied together or
divided to produce other factors. Terms can be added
together or subtracted. Except where parentheses over-
ride the hierarchy, negation is performed first followed
by multiplication or division from left to right, and then
by addition or subtraction from left to right.

<factor>::= <element>!+<element>!-<element>

I<factor>*<factor>!<factor>/<factor>
<term> ::= <factor>!<term>+<term>!
<term>-<term>

Examples:

A+B Term

A*B Factor, term
A.0(ADD) +5 Term

(A+B) Element, factor, term
(5+3)*2-6 Term (evaluates to 10)

Relational Expressions: The term is the highest form
of arithmetic result. But, because for certain statements
logical results are needed, ASM8 is capable of compar-
ing two terms to obtain a logical result. There are six
relational operators, .EQ., .GT., .LT., .LE,, .GE., and
.NE.. The result of a comparison can be “NOTTED” by
use of the operator .NOT.. Spaces may be inserted
arbitrarily before or after any relational operator.

<relational operator> ::= .EQ.!.LT.!.GT.!.LE.
.GE..NE.

<relation> ::= <term> <relational operator>
<term>!.NOT. <relation>

Examples:
5.EQ.5 The result is true
.NOT.5.EQ.5 The result is false

3.GT.5 False

3.GE.S False

3LTS True

5.NE.5 False

Errors:

3.LT.5 The . must immediately follow and

precede the letters in the relational
operator. This example is read as a
constant followed immediately by
a space and character string.

Logical Expressions: Just as arithmetic expressions
can be built by the rules of ordinary algebra, logical
expressions can be built by the rules of Boolean algebra.
The three operators are . AND., . XOR., and .OR.. The
result of an .AND. operation is true if and only if both
operands are true. The result of an .XOR. operation is
false if the two operands are equal and true if the ope-
rands are unequal. The result of an .OR. operation is
true if either or both of the operands is true. . AND.
operations are performed first, followed by .XOR. and
.OR. operations, except where parentheses are used to
override the hierarchy. Spaces may be inserted arbitrarily
before or after the operators.

<logical element> ::= <relation>!(<logical term>>)!
<logical element> .AND. <logical element>

<logical factor> ::= <logical element>!<logical
factor> .XOR. <logical factor>

<logical term> ::= <logical factor>!<logical term>
.OR. <logical term>

Examples:
ADR .GT. 1000H .AND. A.0(ADR)
.EQ.0 Logical element

.NOT. (ADD .LT. FIVE+BEGIN) .OR.

THIS .GT. THAT Logical term
S*TEN - -6 .EQ. 0 .AND. B.EQ.EIGHT

.OR. A .EQ.B Logical term
‘THIS’ .EQ. ‘THAT’.OR. ‘I" .EQ. ‘I’ Logical term

Errors:
NOT FIVE Without the periods, this example
AND ONE is interpreted as four identifiers.

Bitslice Expressions: When ASMS8 encounters a rela-
tion, it evaluates one in the same way that it evaluates an
arithmetic operation, except that it returns only one of
two values: OFFFFH (-1H) for true, and 0000H (0) for
false. The logical operators actually work on a bit-by-bit
basis so that a term may be used as a logical element
instead of a relation. Because this facility can lead to
programming complications, it is not recommended
that the beginning programmer use it.

Examples:

0101B .AND. 0011B Equivalent to 0001B

60 User Manual for the RCA MicroDisk Development System MS2000

0101B .XOR. 0011B
010IB .OR. 0011B
.NOT. 0101B

Equivalent to 0110B
Equivalent to 0111B
Equivalent to 1010B

Limitation: Because the assembler must store partial
results to expressions, there are limits to the size and
complexity of expressions that can be evaluated. The
general guideline is never to use an expression that has
more than twenty elements or twenty operators. An
operator is any of the normal logical, relational, or
arithmetic operators.

<arithmetic operator> ::= +!-!*!/

<byte extraction operator> ::= A.0('A.1)

<relational operator> ::=
.EQ.I.NE.!.LT.!.GE.!..LE.\.GT.

<logical operator> ::= .NOT.!.AND.!.OR.!.XOR.

Executable Statements: Level I

Level I executable statements consist of CDP1800-
series mnemonics and the appropriate operands. The
CDP1800-series instruction set can be divided into four
classes. The first class contains those instructions that
have no operands. The second class of instructions
includes those that require a single operand which must
be a register. The third class includes those that require
an immediate operand. The fourth class contains those
instructions that require both a register and an imme-
diate operand.

A register is any hexadecimal constant, an R fol-
lowed immediately by a hexadecimal digit, or a term.
Only the last four bits of the hexadecimal digit or term
result are used. Some of the third class instructions
require operands that are only one byte. If the operand
given or evaluated is longer than one byte, the low-order
byte is used. If the instruction requires two bytes and the
operand given or evaluated is only one byte, the high-
order byte is 0. an operand string is a set of immediate
operands and registers, separated by commas. There
can be no more than 49 characteres in the operand
string.

In summary, the operand must be appropriate to the
instruction. An executable statement is any first class
instruction, a second class instruction and a register, a
third class instruction and an immediate operand, or a
fourth class instruction, a register, and an immediate
operand.

<register> ::= <term™>!R<hexadecimal digit>
<immediate operand> ::= <term>
<operand string> ::= <immediate operand>
I<register>
I<operand string>>, <operand string>

First Class Instructions:
Forall types: IDL, NOP, SEQ, REQ, SAV, MARK,

RET, DIS, LDX, LDXA, STXD. IRX. OR, XOR.
AND, SHR, SHRC, SHL, SHLC, ADD, ADC, SD,
SDB, SM, SMB, SKP, LSKP, LSZ, LSNZ, LSNF,
LSQ, LSNQ, LSIE

For types CDP1805C, CDP1806C, CDPI1804AC,
CDPI1805AC and CDPIS06AC only: LDC, GEC,
STPC, DTC, STM, SCMI1, SCM2, SPM1, SPM2,
ETQ, XIE, XID, CIE, CID, BCI, BXI

For types CDP1804AC, CDP1805AC, and CDP
1806AC only: DADD, DADC, DSM, DSMB, DSAV.

Second Class Instructions:
For all types: SEP, SEX, LDN, LDA, STR, INC,
DEC, GLO, PLO, GHI, PHI

For types CDP1805C, CDP1806C, CDP1804AC,
CDPI805AC, and CDP1806AC only: RLXA, RSXD,
RNX, SRET.

Third Class Instructions:

For all types: LDI, ORI, XRI, ANI, ADI, ADCI,
SDI, SDBI, SMI, SMBI, BR, NBR, BZ, NBZ, BDF,
BPZ, BGE, GNF, LBR, LBZ, LBNZ, LBDF, LBQ,
LBNQ, NLBR, BM, BL, BQ, BNQ, OUT, INP

For types CDP1804AC, CDP1805AC, and CDP
1806AC only: DADI, DACI, DSMI, DSBI.

Fourth Class Instructions:
For types CDP1805C, CDP1806C, CDP1804AC,
CDP1805AC, and CDP1806AC only: RLDI, SCAL

For types CDP1804AC, CDP1805AC, and CDP
1806AC only: DBNZ

<executable statement> ::= <first class instruction>
!1<second class instruction><register>
1<third class instruction™> <immediate operand>
1<fourth class instruction><register>,
<immediate operand>

Examples:

LDI FIVE + FOUR Third class

LDX First class

CALL UCALL, TYPE, Fourth class (CALL is
BUFFER explained later

STR RF Second class

Errors:

LDI LDI requires an operand; it is thrid class
L DI No spaces are allowed in instruction
mnemonics

Macro Call Statement. A macro is explained in detail
later, but it can be thought of as a user-defined mne-
monic. Once defined, it can be used in the same manner
as any other mnemonic except that it may not be part
of a statement set. A macro call statement consists of the

6. Disk Assembler

61

macro name followed by a space and an operand string
if appropriate. The operands that make up the operand
string must be in the order and type that is correct for
that macro. Because the assembler cannot know what the
programmer’s macro does, it cannot tell if it has been
provided with an incorrect operand string. The macro
name can be any identifier.

<macro name>> ::= <identifier>
<macro call statement> ::= <macro name>
<operand string>

Directives. As stated earlier, certain lines of the source
code do not directly result in a piece of machine mode.
These directives use keywords similar to mneomonics
called pseudo-ops. There are two types of directives, the
major and minor statements. The minor statements are
used to change the location counter or the symbol table.
The minor statements must begin in column 1. Two of
them must begin with a label, and three must begin with
either a label or a space in column 1. None of the major
statements may begin in column 1, but like the executa-
ble statements, all may have an operational label preced-
ing them.

Minor Statement. There are five types of minor state-
ments. The first of these statements, the simplest, is used
to change the symbol table. It is called the EQUATE
statement. The EQUATE statement consists of a label
(beginning in column 1) followed by a space, the word
EQU, another space, and an immediate operand, a label,
or a register. When ASMS8 encounters an EQUATE
statement, it puts the label in the symbol table along
with the value that it is equated to.

The second type of minor statement is the constant
declaration. It consists of an optional label followed by
a space, the word DC, another space, and an operand
string. When the assembler encounters a constant decla-
ration it simply places the immediate operands directly
into the object code, with the exception that literal
constants are not truncated to two bytes.

The third type of minor statement, is the storage
declaration. It is an optional label followed by a space,
the word DS, another space, and a term. When the
assembler encounters a storage declaration it defines the
label as the starting address of a buffer area whose
length is equal to the term. In handling both the constant
and storage declarations, ASM8 advances the location
counter by the number of bytes inserted. Two statements,
the ORG and PAGE statements change the location
counter directly. The ORG statement consists of an
optional label followed by a space, the word ORG,
another space, and a term. The location counter is set
equal to the value of the term. The PAGE statement
consists of an optional label followed by the word
PAGE, and it sets the location counter to the start of the

next page. (A page is equal to 256 bytes.)
<equate statement> ::= <labe[> EQU <term>

I<label> EQU <register>
<constant declaration> ::= <labe[> DC
<operand string>

1<space> DC <operand string>
<storage declaration> ::= <label> DS <term>
<org statement> ::= <labe[> ORG <term>

I<space> ORG <term>
<page statement> ::= <labe> PAGE
I<space> PAGE
Examples:
FIVE EQU 5

Equate statement
OUTPUT DS 10
Storage declaration (10 bytes)
OUTPUT ORG $+10
Advance the location counter by 10 bytes and
label the first byte. Note that this statement
is equivalent to the statement above
DC ‘THE QUESTION’
Constant declaration (ASCII encoded)
INPUT DS INELENGTH
Storage declaration
DC 568393H, 5798192H
Constant declaration (truncated to 83938192H)
NEWPAGE PAGE
Page statement

Sample Program - Level I. Fig. 10 is a sample program
that illustrates some of the elements of level 1 assembly
language that have already been covered.

Major Statements. There are two types of major state-
ments: status and conditional assembly.

Status Statements. The status statements are the simpler
of the two sets. There are six types of status statements.
The simplest is the END statement which tells ASM8
that there are no more assembly lines to process and to
ignore anything that follows. This statement should be
the last line of any program. The next statement, the
EJECT statement, tells ASM8 to insert a top-of-form
character in the output. It does not affect the processing.
A NOLIST statement directs the assembler to cease
echoing the source code to the listing. The machine code
is still inserted in the listing, but the source code is no
longer printed. A LIST statement tells the assembler to
resume echoing the source code and thus cancels the
effect of the NOLIST statement. Each of these state-
ments consists of a keyword that may be arbitrarily
preceded or succeeded by spaces. The keywords are
END, EJECT, NOLIST, and LIST. The remaining two
major statements are used with macros. They are used
to indicate the beginning and end of a macro. These

62 User Manual for the RCA MicroDisk Development System MS2000

.THIS PROGRAM IS A SAMPLE PROGRAM.
.IT WILL ADD TWO NUMBERS TOGETHER.

.THIS PROGRAM IS NOT EFFICIENT, BUT IS INTENDED TO

.ILLUSTRATE THE USE OF ASSEMBLY LANGUAGE.

.THE NUMBERS ARE DEFINED SO THAT THEY
..CAN BE CHANGED EASILY

..REGISTER 8 WILL BE USED AS A TEMPORARY
..PUT THE FIRST NUMBER IN THE D REGISTER

FIRST_NUM EQU 25
SCND_NUM EQU 31
UTILITY EQU R8

LDI FIRST_NUM

PLO UTILITY ..PUTIT IN THE LO ORDER BYTE OF THE
.TEMPORARY
ANI 0 ..CLEAR THE D REGISTER

PHI UTILITY
LBR ADD_NUMS
DC OF8CCH, 134DH
ADD_NUMS GLO UTILITY

..CLEAR HI ORDER BYTE OF THE TEMPORARY
..BRANCH AROUND THE NEXT AREA

..ADD A CONSTANT FOR NO REASON

..PUT THE LO ORDER BYTE OF THE TEMPORARY

.INTO THE D REGISTER

ADI SCND_NUM
PLO UTILITY
LDI A.1(ANSWER);PHI R7

..ADD THE SECOND NUMBER
..PUT THE SUM BACK IN THE TEMPORARY
.PUT THE HI ORDER BYTE OF THE ANSWER’s

..ADDRESS IN R7 FOR LATER USE

LDI A.O(ANSWER);PLO R7

GLO UTILITY ..GET THE SUM
STR R7

IDL .STOP

ANSWER DS 1

..PUT THE REST OF THE ADDRESS IN R7
..AND PUT IT IN THE ANSWER BUFFER

..SET ASIDE ONE BYTE FOR THE ANSWER

Fig. 10 - Sample Level | assembly language program.

statements are explained later in detail, but they are
presented here because they have the same form and
function as the other major statements.

<end statement> ::= END <label>!END
<eject statement™> := EJECT

<nolist statement> ::= NOLIST

<list statement>> ::= LIST

<macro statement> ::= MACRO

<endm statement> ::= ENDM

Remember that because major lines do not have la-
bels, all of these statements must begin in a column
other than 1.

Examples:
END END statement
EJECT EJECT statement
NOLIST NOLIST statement
LIST LIST statement
MACRO MACRO statement
ENDM ENDM statement

Conditional Assembly Statements. Conditional assem-
bly statements tell the assembler to assemble portions of
the source code only if certain conditions are met. A
LINE block is a sequence of lines. An IF block begins
with an IF line and ends with an ENDIF line. There is
an ELSE line between the IF and the ENDIF lines.
When ASMS encounters an IF line, it evaluates the

logical term. If the result is true, then the statements
between the IF line and the ELSE line are processed. If
the result is false, then the statements between the ELSE
line and the ENDIF line are processed. The IF line
consists of the keyword IF followed by a logical term
separated by a space. The ELSE and ENDIF statements
have the same format as the status statements, using the
keywords ELSE and ENDIF.

The IF blocks can be nested (an IF block can contain
an IF block) but it must be remembered that the
assembler associates an ELSE or ENDIF line with the
IF line that most recently preceded it. It is good practice
to always include the ELSE statement explicity in the
source code.

<if statement> ::= IF <logical term>

<else statement> ::= ELSE

<endif statement> ::= ENDIF

<line block> ::= <line>!<line block><line>
<if block> ::= <if statement><line block>
<else line><line block><endif line>

Remember that each line is separated from the next
by a carriage return, and that the line blocks could be
empty (contain no lines).

The next type of conditional assembly block is the
DO block. The DO block consists of a DO line, fol-
lowed by a LINE block and then by an ENDD line. The
DO statement consists of the keyword DO, a space, a

6. Disk Assembler

63

dummy, and then either an = and an increment list, or a
: and a list of replacement values. The increment list
consists of three expressions separated by commas.
Each of these expressions is truncated to 1 byte, so that
its range is from 0 to 255. The replacement list consists
of a series of terms separated by commas. The values of
the terms in a DO line may not be changed within the
DO block. An attempt to do so will result in incorrect
code.

If the = and increment list are used, then the lines
within the DO block are assembled several times. The
first time they are assembled, the dummy has the value

of the first constant in the increment list, called the
beginning value. The third constant is called the step
value, and the dummy is incremented by the step value
each time the DO block is assembled. The second con-
stant is called the ending value. The assembler continu-
ally increments the dummy until its value exceeds the
ending value. It then resumes normal processing after
the ENDD statement. If the : and replacement list are
used, then the dummy takes on a different value from
the replacement list each time the block is assembled
until there are no more values left in the list.

A DO block may be nested within another DO

.THIS IS A SAMPLE OF WHAT CAN BE DONE WITH MAJOR STATEMENTS

ONE EQU 1
TWO EQU 2
IF ONE .EQ. TWO
LDI ONE
ELSE
IF TWO .EQ. ONE
ELSE
DO[I]=1,2,1 LDI [I]
ENDD
ENDIF
ENDIF
GO FORWARD
THIS IS JUNK WHICH WILL BE IGNORED
FORWARD PAGE

..IS THIS TRUE?
..IS SO THEN LOAD ONE IMMEDIATE

.IF NOT TRY AGAIN
. THERE IS NO TRUE PART
..DO THIS TWICE

..ADVANCE TO THE NEXT PAGE

ORG 1111H ..CHANGE THE LOCATION COUNTER
DO[I]:ONE,TWO,ONE, TWO
LDI 1}
ENDD
NOLIST ..STOP ECHOING THE SOURCE
..IT WILL NOT PRINT THIS COMMENT
LIST
END
Fig. 11(a) - Sample program illustrating major statements source code.
M
0000 ; 0000 .THIS IS A SAMPLE OF WHAT CAN BE DONE
..WITH MAJOR STATEMENTS
0000 ; 0002 ONE EQU 1
0000 ; 0003 TWO EQU 2
0000 F801 ; 0009 LDI 1 ..DO THIS TWICE
0002 F802 ; 0009 LDI 2 ..DO THIS TWICE
0004 ; 0016 FORWARD PAGE ..ADVANCE TO THE NEXT PAGE
0100; 0017 ORG 1111H ..CHANGE THE LOCATION
..COUNTER

1111 F801; 0018 LDI ONE
1113 F802; 0018 LDI TWO
1115 F801; 0018 LDI ONE
1117 F802; 0018 LDI TWO
1119;
1119 ;
0000

Fig. 11(b) - Sample program illustrating major statements listing.

64 User Manual for the RCA MicroDisk Development System MS2000

block, but the assembler associates an ENDD statement
with the DO line that most recently precedes it.

<beginning value> ::= <constant>

<ending value> ::= <constant>

<step value> ::= <constant>

<do statement> ::= DO <dummy> :
<operand string>
!DO <dummy> = <beginning value> ,
<ending value> , <step value>

<endd statement> ::= ENDD

<do block> ::= <do line><line block>
<endd line>

Remember that each line is separated by a carriage
return.

There is one remaining conditional assembly state-
ment - the GO statement. The format for the GO state-
ment is GO followed by a space and a label. When the
assembler encounters a GO statement, it stops process-
ing the source code until it finds the label. Because the
assembler cannot find the label if it precedes the GO
statement, it must not precede.

<go statement> ::= GO <label>

When the conditional assembly statements are used,
it should be remembered that a GO statement cannot
point to a label that is outside the DO or IF block the go
line is in, or to a label that precedes it.

Sample Program - Major Statements. The sample pro-
gram in Fig. 11 illustrates the use of major statements.
Immediately following the source code, Fig. 11(a), is the
listing, Fig. 11(b). A comparison of the two illustrates
how the major statement directs the assembler.

Level II Assembly Language

In order to make programming easier, in Level II
operations several of the op-code mnemonics can be
replaced with codes that correpond to their most fre-
quent use. Likewise, operations involving the D register
can be done using D-sequence instructions. In D-
sequence instructions, special characters are used instead
of op-code mnemonics making D-sequence instructions
similar in appearance to APL statements. (APL is a
high-level programming language).

Executable Statements: Level I1

Substitution Instructions. The substitutions for the op-
code mnemonics fall into two forms. The mnemonics
and their substitutions are listed in Table VI. The first
form involves simply the use of an immediate keyword
in the same way that the mnemonic was used. These
keywords are IDLE, GOTO, NOGOTO, SKIP, RE-
TURN, DISABLE, POP, PUSH, SAVE, GOSTATE,
CALL, and EXIT. EXIT is treated like a first class

instruction and CALL is treated like a macro call in that
it is followed by an operand string. They are used to
execute the standard call and return procedures. In
order to use them, the registers 2 through 6 must already
be set aside for the standard call and return procedure.
They can be initialized by using the Utility Program
UT?71 built-in subroutines, INIT1 and INIT2 (Refer to
Chapter 8). The operands of CALL consist of the
address of the subroutine, followed by any inline
parameters that the programmer wishes to pass. EXIT
has no operands.

The second form consists of the word IF followed by
a space, a BRANCH keyword, another space, and the
keyword GOTO. The BRANCH keywords indicate the
condition on which a branch is to take place. They are
=0, Q, &=0, DF, PZ, GE, EF1, EF2, EF3, EF4, NQ,
&>0,>0, NDF, MINUS, LESS, NEF1, NEF2, NEF3,
and EF4.

Table VI - Level || Substitutions for
Level | Mnemonics

Level | Level Il

B1 IF EF1 GOTO

B2 IF EF2 GOTO

B3 IF EF3 GOTO

B4 IF EF4 GOTO

BDF IF DF GOTO

BGE IF GE GOTO

BL IF LESS GOTO

BM IF MINUS GOTO

BN1 IF NEF1 GOTO

BN2 IF NEF2 GOTO

BN3 IF NEF3 GOTO

BN4 IF NEF4 GOTO

BNF IF NDF GOTO

BNQ IF NQ GOTO

BNZ IF 80 GOTO
IF >0 GOTO

BPZ IF PZGOTO

BR GOTO

BQ IFQ GOTO

BZ IF &=0 GOTO
IF =0 GOTO

DIS DISABLE

IDL IDLE

LDXA " POP

NBR NOGOTO

RET RETURN

SAV SAVE

SEP GOSTATE

SKP SKIP

STXD PUSH

SEP R4 CALL

SEP R5 EXIT

6. Disk Assembler

65

<immediate keyword> ::= IDLE!GOTO
INOGOTO!SKIP!RETURN!DISABLE!POP
'PUSH!SAVE!GOSTATE!CALL!EXIT

<branch keyword> ::= 0!Q!&=0!DF!PZ!GE!
!EFI'EF2!EF3!EF4INQ!&>0O!>0!NDF!
IMINUS!LESS!NEFI1!NEF2!NEF3!NEF4

<substitution> ::= IF <branch keyword>

GOTO!<immediate keyword>
Examples:

IDLE IDL
GOTO ADD_NUMS BR ADD_NUMS
IF =0 GOTO

BEGINNING BZ BEGINNING
IF NEF4 GOTO END BN4 END
GOSTATE RS SEP RS
CALL TYPE, SEP R4;

‘MESSAGE’ DC TYPE

DC ‘MESSAGE’

PUSH X STXD X
POPY LDAY

D-Sequence Instructions. The D-Sequence instructions
consists of three parts; the load part, the manipulation
part, and the storage part. What each of these parts
corresponds to is listed in Table VII. Not all parts are
needed in a statement. Any single part can be present or
all can be present. Two parts can also be present, but if
more than one part is present, the order load, manipula-
tion, and storage part must be maintained.

The load part tells the assembler what should be
loaded into the D-register. A register name followed by
a.0or.1 indicates that either the low- or high-order byte
of that register should be loaded into D. A constant,
identifier, or term in parentheses indicates that the value
of that constant, identifies or term should be loaded
immediately into the D-register. An @ indicates that the
D-register should be loaded from memory. If a register
name follows the @, then the byte pointed to by that
register is used. If no register name is specified, the
register named by the X register is used. If a “precedes
the register name it indicates that the X-register should
be set to point to that register. If memory is accessed and
a!ends the load part, the contents of the register used is
incremented. If the @ ends the load part, a comment in
parentheses may be inserted immediately (without
spaces) after the @.

The manipulation part tells the assembler what is to
be done with the D-register. There are 9 binary opera-
tions which can be performed and 4 unary operations.
The binary operations are + (add), - (subtract), —+ (sub-
tract and negate), +” (add with carry), -” (subtract with
borrow), —+” (subtract and negate with borrow), . AND.
(and), .OR. (or), and .XOR. (exclusive or). The manipu-
lation part for the binary operations consists of the

operator symbol followed without spaces by the source
of the second operand. The source can be a memory
location, a constant, an identifier, or a term in paren-
theses. If a constant, identifier, or term is used, its value
is immediately used. To use the memory, an @ imme-
diately follows the operation symbol. Immediately fol-
lowing the @ there is a “ followed by a register name.
The X-register is set to register name and the register
points to the memory byte that is used. The unary
operators are /2 (shift right), *2 (shift left), /2" (shift
right circular) or *2” (shift left circular).

The storage part tells the assembler what to do with
the contents of the D-register. All storage parts begin
with —> (a minus followed by a greater than). If a
register name followed by .0 or .1 follows the arrow
(—>), the contents are stored in the low- or high-order
byte of that register. If an o follows the arrow, the
contents are stored in memory. If a register name fol-
lows the g, it points to the byte in memory where the
D-register contents are to be stored. If no register name
follows the g, the register specified by the X-register is
used. The o may be followed by a - indicating that the
contents of the register used should be decremented. If
the - is used, then the register name (if there is one) must
be separated from the - by a ”. The X-register is set to
the register name given. If the o is the end of the storage
part, then a comment within parentheses may imme-
diately follow the o-.

<load part> ::= @!@!!'@<register>!
1@<register>!
1@"<register>!@(<character string>)
I<register>.0!<register>.1!<term>

<object> 1= @!@"<register>!<term>

<operator> ;= +!-1-+!+"1-"1-+"| AND.
1.OR..XOR.

<manipulation part> ::= <operator><object>
1/21%21/271%2”

<storage part> ::= —><register>.0
1—><register>.1
1=->@<register>!1—>@-!—->@-"<register>
1=>@—(<character string>)

<D-sequence statement> ::= <load part>
!<manipulation part>!<storage part>
I<load part><manipulation part>
I<load part><storage part>
!<manipulation part><storage part>
I<load part><manipulation part>

<storage part>

Note that no spaces are allowed between the special
characters involved or between the special characters
and any identifiers or registers that are used. There is
also a limit on the length of a Level I statement. It may
contain no more than thirty-nine characters.

66

User Manual for the RCA MicroDisk Development System MS2000

Table VIl - D-Sequence Statements

Symbol Level | Action

Load Part

@ LDX M(R(X))—>D

@"N SEX N;LDX N—->X;M(R(X))—>D
@(COMMENT) LDX ..COMMENT M(R(X))—>D

@N LDNN M(R(N))—>D FOR N<>0

N.O GLON R(N).0—~>D

N.1 GHIN R(N).1—->D

@N! LDAN M(R(N))—>D;R(N)+1—=>R(N)
CONSTANT LDI CONSTANT A.O(CONSTANT)—>D

@! ' LDXA M(R(X))—=>D;R(X)+1—=>R(X)
Manipulation Part

+@ ADD D+M(R(X))—~>DF,D

+@"N SEX N;ADD N—->X;D+M(R(X))—~>DF,D
+CONSTANT ADI CONSTANT D+CONSTANT—>DF,D

-@ SM D-M(R(X))—>DF,D

-@'N SEX N;SM N->X;D-M(R(X))—>DF,D
-CONSTANT SMI CONSTANT D-CONSTANT—>DF,D

-+@ SD M(R(X))-D—>DF,D

-+@"N SEX N;SD N—>X;M(R(X))-D—>DF,D
~+CONSTANT SDI CONSTANT CONSTANT-D—>DF,D

+"@ ADC D+M(R(X))+DF—>DF,D
+"@"N" SEX N;ADC N—->X;D+M(R(X))+DF—=>DF,D
+"CONSTANT ADCI| CONSTANT D+CONSTANT+DF—>DF,D
=" SMB D-M(R(X))-NDF—>DF,D
-"@"N SEX N;SMB N—>X;D-M(R(X))-NDF—>DF,D
-"CONSTANT SMBI CONSTANT D-CONSTANT-NDF—>DF,D
-+'@ SDB M(R(X))-D-NDF—>DF,D
-+"@"N SEX N;SDB N—>X;M(R(X))-NDF—>DF,D
-+"CONSTANT SDBI CONSTANT CONSTANT-D-NDF—>DF,D
.AND.@ AND D.AND.M(R(X))—>D
.AND.@"N SEX N;AND N—>X;D.AND.M(R(X))—>D
.AND.CONSTANT ANI CONSTANT D.AND.CONSTANT—>D
.OR.@ OR D.OR.M(R(X))—>D

.OR.@"N SEX N;OR N—>X;D.0R.M(R(X))—~>D
.OR.CONSTANT ORI CONSTANT D.OR.CONSTANT—>D
XOR.@ XOR D.XOR.M(R(X))—=>D
XOR.@"N SEX N;XOR N—->X;D.XOR.M(R(X))—>D
.XOR.CONSTANT XRI CONSTANT D.XOR.CONSTANT—>D

/2 SHR SHIFT D RIGHT NONCIRCULAR
*2 SHL SHIFT D LEFT NONCIRCULAR
/2" SHRC SHIFT D RIGHT CIRCULAR
2" SHLC SHIFT D LEFT CIRCULAR
Storage Part

—->N.0 PLON D—>R(N).0

->N.1 PHIN D—>R(N).1

->@N STRN D—->M(R(N))

->@- STXD D—->M(R(X));R(X)-1—>R(X)
->@-"N SEX N;STXD N-=>X;D—=>M(R(X));R(X)-1->R(X)
—->@-(COMMENT) STXD ..COMMENT D—->M(R(X));R(X)-1—=>R(X)

Note 1: Whereever an N appears, a register may be placed. (R followed by ahexadecimal digit or a hexadecimal
constant less than 10H).

Note 2: Wherever the word constant appears, a constant or valid identifier may be placed.

Note 3: Wherever an @ appears at the end of a part (not followed by “N, N, or!), it may be replaced with @ (comment).

Note 4: Note that —>@ will result in STXD instruction.

6. Disk Assembler

67

Examples:
5—>R5.0 LDI 5;PLO RS
5 LDI §
A LDI A
FIVE+2—->R7.0 LDIFIVE;ADI2;PLOR7
@N!—>@-"N LDA N;SEX N;STXD
.XOR.CAR_RET XRI CAR_RET
(FIVE+SIX)—>

@UTILITY LDI 1L;STR UTILITY

Sample Program Illustrating D-Sequences. Fig. 12 is a
repeat of Fig. 11, the first sample program written in
Level IT assembly. It illustrates the use of the D-sequence
statements and substitutions.

Macros and Their Use

A macro is a programmer-defined collection of state-
ments that, in its entirety, has been assigned a special
mnemonic or name by the programmer. Once a macro
has been defined, the programmer may call in the macro
by the use of its name in the same way that a normal
mnemonic would be used. When the assembler encoun-
ters a mnemonic that is not a normal op-code, mnemonic,
or identifier, it checks to see if it is a macro name. If it is,
the assembler substitutes the lines of the macro into the
listing. This process is called text insertion or macro
expansion.

When the assembler inserts the text of a macro into the
listing it can make changes to the text in two basic ways.
The calling line may have parameters in the form of
operands which are to be substituted for certain dummies
in the macro. Using the major directives for conditional
assembly, the programmer may direct the assembler to
assemble only portions of the macro text.

It is important that a programmer understand the
difference between a macro and a subroutine. A subrou-

.THIS IS A REPEAT OF THE PROGRAM
.TO ADD TWO NUMBERS TOGETHER.
FIRST_NUM EQU 25
SCND_NUM EQU 31
UTILITY EQU R8
FIRST_.NUM—>UTILITY.O

tine is a subprogram which occupies a single memory area
but can be called several times from various locations
through a process called subroutine linkage. A macroisa
set of lines of assembly language that are inserted at
assembly time. The macro approach eliminates all linkage
problems and is faster in execution, but probably results
in more code than the subroutine approach.

A collection of macros in a single file is called a macro
library. Effectively, a macro library extends the set of
op-code mnemonics. The capabilities of the machine as
seen by the assembly programmer can be greatly expanded
by the use of a good macro library.

ASMS recognizes macros in two locations. They may
be in the same file as the main program (though not
interspersed with it) or they may be in a special file
containing a macro library.

The Mechanics of Macro Usage

In order to allow the programmer to use macros, three
major statements have already been introduced. They are
the MACRO, ENDM and EXITM statements. The
MACRO statement instructs the assembler that the
statements that follow are part of a macro and should be
the first line of any macro. The ENDM statement tells the
assembler that the end of the macro has been reached and
should be the last line of any macro. The EXITM state-
ment tells the assembler to cease processing statements
until it encounters an ENDM statement.

The second line, immediately following the MACRO
statement must be the macro definition. The macro defi-
nition consists of the name of the macro followed by a
space and dummy list. The dummy list is a sequence of
dummies separated by commas and may have an arbitrary
number of spaces around the commas. At assembly time,
these dummies are replaced throughout the macro by the
corresponding operands of the calling statement.

. THE NUMBERS ARE DEFINED SO THEY CAN
..BE EASILY CHANGED

..REGISTER 8 WILL BE USED AS A TEMPORARY
.PUT THE FIRST NUMBER INTO THE

..LOW ORDER BYTE OF R8

.AND.O—>UTILITY.1
GOTO ADD_NUMS
DC OF8CCH,134DH
ADD_NUMS UTILITY.0+SCND_NUM—>
UTILITY.0
A.0(ANSWER)—>R7.0
A.1(ANSWER)—>R7.1
UTILITY.0—~>@R?7
IDLE
ANSWER DS 1

..CLEAR THE HIGH ORDER BYTE OF R8
..USE A SUBSTITUTE
..MAJOR STATEMENTS ARE UNCHANGED

..ADD THE SECOND NUMBER
..PUT THE ANSWER'S ADDRESS IN R7

..STORE THE ANSWER

Fig. 12 - Sample program illustrating use of D-sequence.

68 User Manual for the RCA MicroDisk Development System MS2000

<macro statement> ::= MACRO
<endm statement> ::= ENDM
<exitm statement>::= EXITM
<dummy list> ::= <dummy>
1<dummy list>,<dummy list>
<macro definition> ::= <macro name>
<dummy list>
<macro> ::= <macro line>
<macro definition line>
<line block><endm line>

Examples:
TYPE [MESS_LENG],[MESSAGE]
LOOK [REGISTER]
FIND [CHARACTER],[SUBSTITUTE], [END]
NEXT
TIME

In order to operate with dummies, the assembler must
keep a substitution list. For a particular line, the substitu-
tion list consists of dummies associated with all the macros
that the line is in, as well as the dummies associated with
the DO blocks that the line is in. The dummies are
separated by commas, and there are no spaces in the list.
The length of this substitution list should never exceed
forty-two characters.

The assembler reads each of the macros into memory
before it processes them. There is an upper limit of twelve
kilobyes on the total cumulative size of the macro source
code.

A convenience of the assembler is its index variable
symbol, [XX]. This symbol has an implicit numeric value
of 00 to 99. Whenever an [XX] is encountered, the
assembler substitutes for it the number of times that the
current macro has been called. Each time the macro is
called, it is incremented by 1. When the macro is called for
the first time, [XX] has a value of 00. This index symbol
can be used to tell a macro how many times it has been
called, or it may be appended to a generic identifier (of less
than 8 characters) to form continually changing labels.
This capability is useful when a macro must call itself
recursively. Often, when a macro calls itself, the duplica-
tion of labels creates confusion and generates error mes-
sages. If the index symbol is used and appended to a
general name then the labels are unique.

Examples:
[XX] THE INDEX ITSELF
LOOK[XX] LOOKO01, LOOKO02,
LOOKO3, ETC.
Sample Program Using Macro

Fig. 13 is a listing of a program that uses a macro to
examine a register.

Assembler (ASM8) Operating
Procedures

ASMS can have up to two inputs and three outputs. The
user must specify the input files. These input files are the
source file and an optional macro library file. The outputs
are the listing file, the error file, and the cross-reference
file. The user can direct the first two of these output files to
either the disk, teletypewriter (#TY or #SC), or line prin-
ter (#LP). The cross-reference file, however, must be a
disk file because ASMS8 uses it as an intermediate file for
creating the cross-reference table.

The command line consists of the command ASM8§
followed by a space, the source filename, and a string of
up to four filenames or devices, separated by spaces and
followed by a semicolon and string of options. The order
of names or devices is macro filename, listing destination,
cross-reference listing destination, and error listing destin-
ation.

ASM8 <source filename>{,<macro filename>]

[,<listing filename or device>]

[,<xref filename or device>]

[,<error filename or device>]

[;<options>]

The options and defaults specify which of these files or
destination devices are necessary. If no options and no
filenames are given (except for the source file name) there
is no macro file or cross-reference listing, and the listing is
sent to the disk with a filename of <source name>.LST:
<opposite of source>. The error listing goes by default to
the teletypewriter (#TY).

ASM NAME.SCR
LISTING - NAME.LST:1
ERRORS - #TY

Note: If the cross-reference listing file or the error file is
named by the user, the listing file must also be named.

The options specify which of the outputs are to be
created, but those that are created must appear in the
command line in the order of macro, listing, cross-
reference listing, and error listing.

M - Specifies that a macro file will be used.

X - Specifies that a cross-reference listing will be
created. It will have a default value of <source
name>.XRF:<opposite drive from source>

N - Specifies that a listing will not be created. If this
option is not used, the default value will be
<source name>.LST:<opposite drive from
source>

H - Specifies that the listing shall contain the hex
code only.

P - Specifies that the assembler should pause after
loading to allow the changing of disks.

6. Disk Assembler 69
M
0000 ; 0001 MACRO
0000 ; 0002 LOOK [LOOK1] .EXAMINE A REGISTER
0000 ; 0003 ..THIS MACRO ALLOWS EXAMINATION OF A REGISTER
0000 ; 0004 .REGISTER RF IS DESTROYED IN THE PROCESS
0000 ; 0005 .THE CALLING STATEMENT IS LOOK <REGISTER>
0000 ; 0006 TYPE EQU 8IAEH .THE UTILITY TYPING ROUTINE
0000 ; 0007 TYPE2 EQU 81A4H
0000 ; 0008 TEMPORARY EQU RF
0000 ; 0009 [LOOK1].1->TEMPORARY.1
0000 ; 0010 CALL TYPE .TYPE THE HI BYTE
0000 ; 0011 [LOOK1].0~>TEMPORARY.1
0000 ; 0012 CALL TYPE .TYPE THE LO BYTE
0000 ; 0013 20H—>TEMPORARY.1
0000 ; 0014 CALL TYPE2..TYPE A SPACE
0000 ; 0015 ENDM
0000 ; 0016 ..THIS PROGRAM CALLS THE LOOK MACRO TWICE
0000 ; 0017 ONEEQU1
0000 ; 0018 TWOEQU2
0000 ; 0019 REGISTER EQU R7
0000 ; 0020 INIT1 EQU 83F3H
0000 7100C083F3; 0021 DISABLE;IDLE;LBR INIT1 ..INITIALIZE FOR
0005 ; 0022 .STANDARD ALL AND RETURN
0005 FBO3A7F800B7; 0023 (ONE+TWO)—~>REGISTER.0;,0~>REGISTER.1 .PUT3
in R7
0008 ; 0024 LOOK REGISTER ..EXAMINE R7
0008 978BF ; 0024 REGISTER.1=>TEMPORARY.1
000D D481AF; 0024 CALL TYPE .TYPE THE HI BYTE
0010 878BF; 0024 REGISTER.0~>TEMPORARY.1
0012 D481AE; 0024 CALL TYPE .TYPE THE LO BYTE
0015 F820BF; 0024 20H—>TEMPORARY.1
0018 D481A4; 0024 CALL TYPE2 .TYPE A SPACE
001B F801A8F800BS; 0025 ONE—>R8.0;0—>R8.1 .PUT 1INRS8
0021 ; 0026 LOOKRS8 .EXAMINE R8
0021 98BF; 0026 R8.1—>TEMPORARY.1
0023 D481AE; 0026 CALL TYPE . TYPE THE HI BYTE
0026 88BF; 0026 R8.0—~>TEMPORARY.1
0028 D481AE; 0026 CALL TYPE .TYPE THE LO BYTE
002B F820BF: 0026 20H—>TEMPORARY.1
002E D481A4; 0026 CALL TYPE2 .TYPE A SPACE
0031 00; 0027 IDLE
0032 ;
0000

B - Specifies that the symbol table will not be initial-
ized and that the symbol table existing in

T - Specifies that the cross-reference listing should
be formatted in 80 character lines instead of the

Fig. 13 - Sample program illustrating use of macros.

memory will be used.

default 132 character lines.

Examples:
ASM8 MYPROG;P

SOURCE = MYPROG:0 MACRO = NONE

LISTING = MYPROG.LST:0
XREF LISTING = NONE
ERRORS = #TY

The assembler will pause after loading itself to allow for
changing of disks.

ASM8 MYPROG.S, MAC. M\;MH
SOURCE=MYPROG.S:0 MACRO=MACM:0
LISTING = MYPROG.HEX:1
XREF LISTING = NONE
ERRORS = #TY

The listing contains only the hex code.

ASM8 MYPROG:S, #LP, #LP, #LP;XB
SOURCE = MYPROG.S:0 MACRO = NONE
LISTING = #LP

70 User Manual for the RCA MicroDisk Development System MS2000

XREF LISTING = #LP
ERRORS = #LP

The assembler will not initialize the symbol table.

ASMS8 SM,LX,E;MXNT
SOURCE = S:0 MACRO = M:0

LISTING = L:1
XREF LISTING = X:1
ERRORS =E:1

All the listings will be in 80-character format.
Fig. 14 summarizes graphically the assembler operating
procedures, source, and destination.

.—

FULL LISTING
=T T e

\/

.
wacro
LIBRARY

ERROR LISTING

'@ETI

/’

HEX LISTING

\

b
_|
@‘

CROSS—REFERENCE LISTING

\OSC #LP FILENAME

~ (3 4]

1

92CM-34173

Fig. 14 - ASM8 data flow diagram.

Cross-Reference Listing

The assembler will upon request output the cross-
reference table. The first column in the cross-reference
listing is the symbol or identifier. Next is its address or
value. Third is the line number of the source code where
that identifier was d¢fined. The remainder of each line is a
list of the lines in the source code where that identifier was
refereniced.

The cross-reference file can often be useful in locating
spelling errors in a program. Fig. 15 is the cross-reference

SYMBOL ADDR DEF
ADD_NUMS 000A 0012
ANSWER 0017 0019
FIRST_.NUM 0019 0003
SCND_NUM 001F 0004
UTILITY 0008 U

listing from the example program, Figs. 10 and 12. The U
in the cross-reference listing indicates that UTILITY was
defined as a register and has no address or value.

Error Messages

Non-Fatal Errors

ASMS will flag simple errors and will report the cause
of each while it continues to process. Table VIII s a list of
these errors and contains suggestions to the user to aid in
determining the cause of the errors.

REFERENCES

0010

0015 0016

0006

0012

0006 0008 0012 0012 0017

Fig. 15 - Cross-reference listing.

6. Disk Assembler

n

Table VIIl - ASM8 Error Messages

1. """ ILLEGAL LABEL - 7777777772 ***
The ?'s are replaced with the label found.
Check to see if accidentially a number began
in column 1, defining itas a label. Check to see
if the label name is a valid-op-code mneomonic.

The ?'s are replaced with the label found.
Check to see if amacro with the same label in it
has been called twice. Are two similar labels
misspelled?

The ?’s are replaced with the op-code found. Is
there a misspelled op-code?

The ?’s are replaced with the symbol found.
Check for misspelling both at the line flagged
and at the definition point.

The ?'s are replaced with the last ten charac-
ters before the error detection point. Check to
see if the expression is missing anything such
as parentheses.

6. *** BR OUT OF RANGE - ?7777? ***
The ?’s are replaced with the paged address. A

short branch goes to a point on a different
page and must be changed to a long branch.

7. ***ILLEGAL CONST - 7?77 ***
The ?'s are replaced with the constant found.
Did an identifier begin witha numberorisan H
or Q on the end of a hexadecimal or octal
constant left out?

8. *** OPERAND MISSING ***
Check the op-code to see how many and what
type of operands are required for it. If it is a
macro call, check the macro definition for the
number of operands required.

9. *** IF STATEMENT ERROR ***
The expression in the IF statement did not
produce a logical true or false. A true result is
assumed.

10. *** INVALID REG - 7?7 ***
The ?'s are replaced with the number in ques-
tion. Check the spelling of the identifier and
that its value is an addressable register.
11. *** ILLEGAL OPERAND - 77?77?7777 ***

The ?’s are replaced with the operand in ques-
tion.

Fatal Errors

Under certain conditions ASM8 will no longer be able
to continue processing the source file. For such “fatal
errors,” the message

ASM ABORTED

will appear on the teletypewriter followed by the condi-
tions causing the abort. These conditions represent system
size limitations, and the remedy is a reduction in complex-
ity or size of the source file. They are

SYMBOL TABLE OVFLO
- Too many symbols were defined
WORK AREA OVFLO
- Too complex a DO LOOP was created
MACRO STORE OVFLO
- Too-many macros were defined
MACRO DEF ERROR
- There was an incomplete or erroneous macro
definition
DO LOOP ERROR

- A DO LOOP was set up incorrectly

In addition to the above, if more than 99 erors are
encountered on the first pass, ‘ASM ABORTED’ will
appear with no further explanation. In this case the user
need only to attend to the errors already reported and
then rerun his assembly.

Warnings

There may also be situations in which the output may
appear to be completely correct but probably is not. In
these cases ASM8 will issue warning messages to the
teletypewriter. These warning messages are

X-REF TABLE OVFLO
- The cross-reference listing is incomplete (more than
6144 references)
DUPLICATE MACRO NAME
- Macro expansions may be incorrect
LOC CTR ERROR
- The final values of the location counter after each
pass were different

72

7. MicroDOS User Functions

The set of MicroDOS User Functions that can be
called directly from an application program is a signifi-
cant feature of the MicroDOS Operating System. In
this chapter, the uses of the specific functions are de-
scribed. It is important, however, to have an under-
standing of two basic concepts, the I/O Control Block
and the Buffers, before the user functions can be
utilized.

I/0 Control Block and Buffers

The IOCB (I/O Control Block) is a depository of
information for the I/ O channel through which the user
is communicating. An IOCB is a software analog of the
hardware interface boards found in any computer sys-
tem. One IOCB must be set up for each channel of
communication. Thus, a standard data terminal would
have two IOCB’s associated with it; one for characters
received from the keyboard, and another for informa-
tion sent to the terminal for display. Reading a disk file
requires a single IOCB; reading from and writing to a
disk file requires a total of two.

For some user function routines such as TYPE
(which outputs characters to the terminal) the IOCB is
already set up and the user need not be concerned with
it. The appropriate IOCB for TYPE was set up pre-
viously because the MicroDOS operating system is
already in communication with the terminal. A separate
IOCB, however, will have to be set up for any disk
reading or writing that is wanted.

The second important concept is the buffer. A buffer
is simply a reserved block of RAM through which data
is passed on its way to and from the I/O devices. The
CREAD routine, for example, is structured to imput
data to the buffer as it is received from the keyboard.
Later the input characters can be examined and acted
upon by the user’s program. Similarly, the TYPE rou-
tine picks up data bytes from a specified buffer area and
outputs them to the terminal. Disk I/O is handled a
sector at a time (512 bytes) and is similarly passed
through a buffer. A part of the information in the IOCB
is the two addresses specifying the start and the termina-
tion of the sector buffer. Buffer areas must be reserved
for all I/O operations through MicroDOS. For disk
IOCB?s, the reserved area must be 512 bytes in length.

When an error occurs, the state of the IOCB is
indeterminate.

I10CB Initialization
Fig. 16 shows the structure of how an IOCB is initial-
ized. A description of each area follows.

Byte 10CcB8
[OPEN PARAMETER Incressing
1 STATUS BYTE Memory
D siie //// Addroses
3 NON-USER AREA
VI IIIIED
5 START OF SECTOR _-High byte
6 BUFFER Low byte
7 END OF SECTOR High byte
8 BUFFER Low byte
° WRITE PARAMETER
10 / NON-USERAREA” / / /
1 LOGICAL UNIT NUMBER \
12
13
14 NAME Same as
16 >Oumt from
18 SRNAM Routine
17
18
19 EXTENSION
20

DEVICE MNEMONIC

feER28IBYIRN

92Cs-31641

Fig. 16 - Diagram of Input/output Control Block (/I0CB)
Structure.

Byte 0 - Open Parameter. Any file or I/ O device can be
opened for reading or writing. The value of byte 0
specifices which operation is to be performed. For
READ the appropriate value is BIH. For WRITE the
appropriate value is 7AH. If the value 7BH is used, a
new file will be opened if one does not already exist.
Otherwise, it will open the existing file for writing.

Byte 1 - Status Byte. When a user function is called, it
places a value in byte 1 to indicate whether or not the

7. MicroDOS User Functions

73

operation requested was successful. A zero indicates
success. Non-zero numbers are coded erro-message
representations. Appendix D provides a listing of the
error-message numbers and their meanings. In addi-
tion, the value C9H will be placed in byte 1 when an
end-of-file marker has been read. The appropriate mes-
sage can be automatically written to the terminal by
calling the user function CDERR, which will be dis-
cussed later.

Bytes 2 to 4 - Non-User Area. This area, as well as bytes
10,21 to 23,25 t0 30, and 33 to 35, is not available to the
user.

Bytes 5,6 - Start of Sector Buffer. In bytes 5 and 6, the
user enters the starting (lowest value) address of the
associated buffer. The high byte is entered in 5 and the
low byte in 6.

Bytes 7,8 - End of Sector Buffer. In bytes 7 and 8, the
user enters the last (highest) address of the buffer. The
high byte is entered in 7 and the low byte in 8. For disk
IOCB’s the buffer length must be 512 bytes. For other
input devices the buffer length should be the maximum
number of data bytes to be received plus one. For other
output devices the buffer length is equal to the length of
the maximum number of bytes to be transmitted.

Byte 9 - Write Parameter. When a disk file is opened for
writing, byte 9 defines the number of clusters to be
allocated for the file (a custer = 1 sector). The standard
allocation of 27 clusters is denoted by zeros in this byte.
Any non-zero values denote the number of clusters:
1,2,3,...etc. Because additional space will be automati-
cally allocated as needed, it does not matter if the file
size is not known. An attempt to over-allocate to
accommodate the largest possible file may result in a
“DISK FULL” indication when, in actuality, the file
might fit.

Byte 11 - Unit Number. Byte 11 is set to ‘0’ for the left
disk drive or to ‘1’ for the right one. It normally should
be set to zero as the default value. If a drive is specified as
part of the file name (as in NAME.EXT:DRIVE #), the
user function SRNAM will put the drive # in this byte.
Bytes 12 to 20 - Name and Extension. The six-byte
name and the three-byte extension (stored in ASCII) is
the name associated with a disk file. Again, the
SRNAM routine can be used to fill in these bytes. For
non-disk IOCB’s bytes 11 to 20 have no meaning. Note:
This area must be initialized with the ASCII ‘space’
character (20H) each time before SRNAM is called.
Byte 24 - File Definition. Byte 24 defines the disk file
type (binary or ASCII) and attributes. MicroDOS sys-
tem files are all of the binary type; in general, user-
generated files are ASCII. Attributes occupy various bit
positions as given in Fig. 17. The attribute is enabled
when the bit is set to ‘1",

3 2 | o]

Rl DELETE svsrsu cormsuous NOT LA—
IPROTECTED PROTECTED|FILE |ALLOCATION seol""E TYPE N‘”‘“ﬂ

BITS FILE
210 TYPE
O O O | INTERLEAVED BINARY
O O | | BINARY
O | O] ASCII/ASCII—-HEX
O | | | OPERATING SYSTEM
| O O |INTERLEAVED ASCIl/
ASCI1—HEX
92CS-34178

Fig. 17 - Attitude bit positions.

Bytes 31, 32 - Device Mnemonic. Five different device
mnemonics are presently supported by MicroDOS. The
user should enter one of the pairs of characters given
below in ASCII code into these two bytes. The SRNAM
routine can be used to fill in these bytes. The default
value of DK, however, should be entered by a user
program.

DK identifies the disk for both input or output
IOCB’s

LP identifies the line printer for output

TY identifies a teletypewriter for output

KB identifies the console keyboard for input

SC identifies the console video screen for output

IOCB Changes After a File Is Opened

A file must be opened before any disk read or write
operation can take place. The routine OPEN is used for
this purpose. OPEN is described in detail in the next
section. OPEN, however, changes many values of the
initialized IOCB in order to set up various pointers.
Specifically, the following alterations are made:

Bytes 5 to 8 - Sector Buffer. OPEN will use the buffer
area indicated by these bytes and over-write any data
already there.

Byte 0 - Open Parameter. Bit 4 of this value is reset to 0
when a file is openend. Thus, for read operations the
value becomes A1H and for write it becomes 6AH. Bit 4
is set to 1 when a file is closed.

Byte 9 - Write Parameter. This value is replaced by a
pointer to the present position in the Sector Buffer.
Bytes 11 to 20 - Unit Number, Name, and Extension.
These values are replaced by pointers to the disk file.
Bytes 31, 32 - Device Mnemonic. This area becomes a
pointer to the appropriate code in the MicroDOS oper-
ating system for the device 1/ O operation.

10CB Example

As an example of a complete initialized IOCB, Fib.
18 shows one set up for reading the ASCII disk file
called TOM,CHK on drive zero. Any number of files

74 User Manual for the RCA MicroDisk Development System MS2000

can be open simultaneously, limited only by available
RAM.

[] B1 Read Of
1 00 Status OK
2 XX
3 XX
L XX
5 10
6 00 Buffer =
7 10 i 1000 - 108F
8 8F I
) 00 }
10 XX
n 00 Drive =0
12 54 T
13 4F 0
14 4D M
15 20
16 20 Spaces
17 20
18 43 c
19 48 H
20 48 K
21 XX
22 XX
23 XX
24 02 ASCII File Type
25 XX
26 XX
27 XX
28 XX
29 XX
30 XX
3 [D
32 8 K = Disk
33 XX
34 XX
35 XX
92CS-31637

Fig. 18 - Typical 10CB for reading a disk file named
TOM.CHK.

Introduction to User Function

In this section the MicroDOS functions that the user
can call directly from an application program are des-
cribed. These functions, among other things, allow the
user to read or write to and from disk files. Some of
these functions are conveniences to facilitate setting up
the IOCB. Others are called to do the actual I/ O opera-
tions in a way analogous to the UT71 READ and TYPE
routines (See next chapter, Utility Program UT71). The
MicroDOS console read and type routines themselves
use UT71 READ and TYPE to do byte I/O transfers.
MicroDOS console routines, however, are designed to
operate on buffers of data rather than a byte at a time.

The general form for calling a user function is:

CALL UCALL,<FN>[<PARMn>]

CALL EQU OD4H (The assembler will do
the translation)

where:

UCALL EQU OB453H

<FN>> is the value assigned to the function
<PARMDN> are parameters passed to the
called routine

The Standard Call and Return Technique (SCRT)
must be adhered to when these conventions are used.
The conventions are as follows:

R2=stack pointer

R3=program counter

R4=address of CALL routine ¢
R5=address of RETURN routine ¢
R6=pointer to return point

Most CPU registers are preserved during a call to a user
function (saved and then restored). Up to 52 bytes of the
stack are required for a call.

Console 1/0 Routines

1. Function:
2. Value:12H
3. Description:

CREAD is used to read a line from the console device
into a buffer.

4. Format:

CALL UCALL,CREAD,BUFFER,BYTECT
where: BUFFER is the starting address of the RAM
buffer into which the data is to be put. Its length must be
BYTECT + 1, where BYTECT is the number of charac-
ters to be input. BUFFER will contain the entered
characters plus the terminating carriage return from
low-to-high address. With the exceptionof (CR), the
following characters (RUBOUT, CANCEL, and LINE
FEED) are handled as special control functions and are
not put into the buffer.

RUBOUT (7FH): When a RUBOUT is pressed, a left
bracket “[”is printed followed by the deleted character.
When a NON-RUBOUT is pressed, a right bracket *"]”is
printed followed by the pressed character. The
RUBOUT deletes the last character in the buffer thus
providing a built-in line-editing function.

CANCEL (CTRL-C): Deletes all characters in the
buffer and awaits the next character.

LINE FEED: Displays the contents of the buffer on
the next line and awaits the next character.

CARRIAGE RETURN: Terminates input. (This
character is put into the buffer and causes a carriage
return and line feed.)

CREAD

Before typing:

Increasing addresses ———»
Buffer
After typing “ABCD(CR)™

Buffer ABCD(CR

7. MicroDOS User Functions

75

5. Example:
Input a line of up to 20 characters in a buffer starting
at location 1000H.

UCALL EQU 0B453H
CREAD EQU I2H
BUFFER EQU 1000H

CALL UCALL,CREAD,BUFFER,21

1. Function:
2. Value: 14H
3. Description:
TYPE outputs the defined text to the terminal.
4. Format:
CALL UCALL,TYPE,BUFFER
where: BUFFER contains the data to be typed.
Typing will be terminated by a null (0OH) character in
the buffer. Data will be output from low to high
addresses.
5. Example:
UCALL EQU OB453H
TYPE EQU 14H

TYPE

CALL UCALL, TYPEMSGI

MSGI1 DC ODOAH,'MICRODOS TEST PRO-
GRAM’, OOH

Disk I/0 Routines

1. Function:
2. Value: O8H
3. Description:

This routine reads a character from an opened file
and returns the character in RF.1.
4. Format:

CALL UCALL,GETCHR,IOCB

where: IOCB has previously been opened. See the
OPEN function. The status byte of the IOCB will be
updated by this routine and should be checked for an
error. If the status byte is non-zero, CDERR should be
called to print the error message.

GETCHR

5. Example:
Read a character from an opened file and check for
an end-of-file marker.
UCALL EQU OB453H
CDERR EQU 28H

¢ As described in the User Manual for the CDP1802
Microprocessor, MPM-201.

GETCHR EQU 08H
STATUS EQU 9 ..R9 contains IOCB + 1

CALL UCALL,GETCHR,IOCB
..Read byte.

LDN STATUS ..Check status byte

LBNZ ERROR ..Branch to error routine, else

GHI RF ..Get the character

XOR 13H .it is a ‘DC3?

LBZ END .If so, go to END
.If not, this is the next
..instruction

IOCB DC OB1H ..This is the first byte of the
..JOCB for the file being
..read

ERROR CALL UCALL,CDERR,IOCB
..Display error message

1. Function:
2. Value: OEH
3. Description:

This routine outputs a character to an opened file.
The character must be placed in RF.1 before the routine
is called.

4. Format

CALL UCALL,PUTCHR,IOCB

where: IOCB has been previously opened. The status
byte of the IOCB will be updated. After calling this
routine, the user should call CDERR to print any error
messages.

The last character output for most ASCII files should
be DC3 (13H), the end-of-file marker. Then, the PUT-
SEC user function must be called before the file is closed.
This call assures that the last 512 bytes will be written on
the diskette.

5. Example:
Close the disk file being writen to.
UCALL EQU OB453H
PUTCHR EQU OEH
CDERR EQU 28H
CLOSE EQU 02H
STATUS EQU 9 ..R9 contains IOCB + 1

PUTCHR

LDI 13H; PHI RF..Output end-of-file marker
CALL UCALL,PUTCHR,IOCB
LDN STATUS ..Check status byte
LBNZ ERROR

76 User Manual for the RCA MicroDisk Development System MS2000

CALL UCALL,PUTSEC,IOCB
..Write out last sector

LDN STATUS ..Check status byte
LBNZ ERROR
CALL UCALL,CLOSE,IOCB

..Close file
LDN STATUS ..Check status byte
LBNZ ERROR

ERROR CALL UCALL,CDERR,IOCB
..Display error message

I0CB DC 7AH

.. This is the first byte of the
..JOCB for the file.
1. Function: GETSEC
2. Value: 06H
3. Description:

The GETSEC routine causes one sector (512 bytes) to
be read from the opened file into the sector buffer
described by the IOCB.

4. Format:

CALL UCALL,GETSEC,IOCB

where: IOCB is associated with the opened file.

After each call to this routine, MicroDOS sets up the
IOCB so that the user can read from the next consecu-
tive sector. The status byte of the IOCB will be updated.
After calling this routine, the user should call CDERR
to print any error messages. This utility is not required
under normal conditions because consecutive calls to
GETCHR will automatically advance to the next sector
every 512 bytes. Itis included as a convenience for those
wishing to write their own special programs and keep
their own byte count. If the user wants to randomly
access a logical sector in a file, he can change bytes 19
and 20 in the IOCB so that they equal the desired logical
section before the call to the routine is made.

5. Example:
Search an opened file for the first sector containing a
NULL as the first character.
UCALL EQU OB453H
GETSEC EQU 06H
GETCHR EQU 08H
STATUS EQU 9 ..R9 contains IOCB + 1

LOOP CALL UCALL,GETSEC,IOCB

..Point to next sector
LDN STATUS,LBNZ ERROR

..Check status
CALL UCALL,GETCHR,IOCB

..Get first character
LDN STATUS;LBNZ ERROR

..Check status
GHI RF;BNZ LOOP

..Loop back if not = 00

IOCB DC OBIH .. This is the first byte of the

..JOCB for the file being read

ERROR CALL UCALL,CDERR,IOCB
..Display error message

1. Function: PUTSEC

2. Value: 10H
3. Description:

The PUTSEC routine causes one sector (512 bytes) to
be written to the opened file from the sector buffer
described by the IOCB.

4. Format:

CALL UCALL,PUTSEC,IOCB

where: IOCB is associated with the opened file.
After each call to this routine, MicroDOS sets up the
IOCB so that the user can write the next consecutive
sector. The status byte of the IOCB will be updated.
After calling this routine, the user should call CDERR
to print any error messages.

If disk transfers are being done on a character basis,
this routine should be called after the last byte (the
end-of-file marker DC3) is output to a file to make sure
that the last 512 bytes actually get written on the
diskette. See the example under PUTCHR. If the user
wants to randomly access a logical sector in afile, he can
change bytes 19 and 20 in the IOCB so that they equal
the desired logical section before the call to the routine is
made.

1. Function:
2. Value: 02H
3. Description:

The CLOSE routine performs all the necessary func-
tions after a file has been used.
4. Format:

CALL UCALL,CLOSE,IOCB

where: IOCB relates to the file that is to be closed. The
status byte of the IOCB must be checked after each
CLOSE operation by calling CDERR. The CLOSE
function does not write out any partially filled sectors
nor does it add DC3 as the last character in the file. Its
main function is to deallocate disk space no longer
required. See the example under PUTCHR.

CLOSE

1. Function:
2. Value: OOH
3. Description:

The OPEN function prepares a file for subsequent
use.

OPEN

7. MicroDOS User Functions

4. Format:
CALL UCALL,OPEN,IOCB
The IOCB must be initialized before a file is opened.
Attempting to read or write to an unopened file will
cause errors. A call to OPEN will change almost all
areas of the IOCB from their initialized values. The
status byte of the IOCB will also be updated by this
routine. After calling this routine, the user should call
CDERR to display any error messages.
Note: OPEN uses the buffer area pointed to by the
IOCB. OPEN, therefore, should be called before valid
data is accumulated in an output buffer.
5. Example:
Open a file for which the IOCB has been set up and
read the first character.
UCALL EQU OB453H
OPEN EQU OOH
GETCHR EQU O8H
STATUS EQU 9 ..R9 contains IOCB + 1

CALL UCALL,OPEN,IOCB

..Open file
LDN STATUS;LBNZ ERROR

..Check status
CALL UCALL,GETCHR,IOCB

..Get first character

IOCB DC OBIH ..This is the first byte of the

10CB

ERROR CALL UCALL,CDERR,IOCB
..Display error message

1. Function:
2. Value: 04H
3. Description:
The REWIND function positions the IOCB pointer
to the beginning for the file.
4. Format:
CALL UCALL,REWIND,IOCB
where: IOCB relates to the file that is to be “rewound”.
After this routine is called, the next character read will
be the first character of the file.

1. Function:

2. Value: 28H

3. Description:
The CDERR routine displays a pertinent error mes-

sage from the library of error messages.

4. Format:

REWIND

CDERR

CALL UCALL,CDERR,IOCB

where: IOCB is the Input Output Control Block con-
taining the error number in its status byte.

After a user function requiring an IOCB as a parame-
ter is called, that function returns in the status byte a
zero for no error or a non-zero value which identifies an
error. See Appendix D for a complete listing of Micro-
DOS error messages with their identifying humbers and
meanings. The CDERR function displays the correct
error message for the error condition.

5. Example:

Read a byte from an opened file and check for an
error condition. Register R9 will be used as a pointer to
the status byte.

UCALL EQU OB453H
GETCHR EQU O8H
CDERR EQU 28H

STATUS EQU 9 ..R9 contains IOCB + 1

CALL UCALL,GETCHR,IOCB
..Get character
LDI A.O(IOCB + 1);PLO STATUS
..Point R9 to status byte
LDI A.1(IOCB + 1);PHI STATUS
LDN STATUS; LBNZ ERROR
..Get status and check

ERROR CALL UCALL,CDERR,IOCB
..Display error message

I0CB DC OBIH

.. This is the first byte of
..the IOCB
IOCB Setup Aid Routine
1. Function SRNAM
2. Value: 24H
3. Description:

The SRNAM (Search-for-File-Name) routine
searches a specified input buffer for a file name, and
then reformats and moves the information to the
appropriate area of an IOCB. It is designed to help in
setting up an IOCB by taking file name information
from a line buffer (put there by CREAD) and relocating
it into an IOCB.

4. Format:

CALL UCALL,SRNAM,PACKET

where: PACKET is a special 4-byte pointer in which
the first two bytes point to the input buffer and the
second two bytes point to the unit number byte in an
IOCB. Fig. 19 depicts the operation of SRNAM.

78

User Manual for the RCA MicroDisk Development System MS2000

I PROG.OBJ:I(CR)J Input Line Buffer

Ll

Addtess Address PACKET g oy Add
Line Buf. 10C8 + 11 b -
1 PROG(sp) (sp) o8Bl 10CB.
-
5 . :
*
P o: g 2 §
& H S H
g a z
&
92CS - 31640

Fig. 19 - Pictorial representation of SRNAM operation.

SRNAM maintains a status word (located at B452H)
to indicate the results of its operation. A valid file name
found is indicated by 00H in this byte. The setting of the
various bits have the following meanings.

Bit 0=1; an asterisk * (wild-card) was found in the file
name.

Bit 1=1; an * was found in the extension.

Bit 2=1; a device name (LP,TY,SC,KB, or DK) was
found instead of a file name. The device mnemonic will
be placed in the proper area of the IOCB.

Bit 7=1; no file name was found.

SRNAM may be called repeatedly to pick up a series
of file names from an input buffer and place them in
various IOCB’s. The IOCB-pointer part of PACKET
must be changed each time to perform this operation,
but the input-buffer-pointer section of PACKET is
automatically positioned past each file name as it is
encountered. SRNAM makes no changes to the input
buffer. SRNAM returns to the caller after each file
name is encountered. However, it will not search past a
semicolon or carriage return.

SRNAM will not place delimiters in the file name
area, and spaces encountered before the file name will
not be used. Any characters found after the maximum
allowed for a field will be discarded. For example, if
eight characters are used for the file name, only the first
six will be placed in the output buffer. The output data is
changed only if that area was encountered in the search.
Before calling SRNAM, therefore, the IOCB should be
initialized to the desired default values by setting the
Unit Number = 00, filling the NAME and EXT areas
with 20H (ASCII space), and setting the Device Mne-
monic area to DK (ASCII).

5. Example:
By means of CREAD, two file names have been

entered into a line buffer (BUF1). Using SRNAM, put
the names into IOCBI and IOCB2.
BUF1 contains
ABI2.M, XYX.N:1 (CR)
PACKET is set up as follows:

ADDRESS OF BUF1
ADDRESS OF IOCBI + 11

IOCBI1 + 11 and IOCB2 + 11 were initialized as
follows:

[O[(sp)(sp)(sp)(sp)(sp)(sp)|(sP)(sp)(sP) |

After the first call to SRNAM, PACKET will look
like:

ADDRESS OF BUF1 + 7
ADDRESS OF I0CBI + 11

and OICBI looks like:
| O|AB12(sp)sp) M(sp)(sp) |

Next, PACKET is reinitialized to point to IOCB2
and looks like:

ADDRESS BUF1 + 7
ADDRESS OF IOCB2 +11

A second callto SRNAM makes PACKET look like:

ADDRESS OF BUF1 + 17
ADDRESS OF IOCB2 + 11

and IOCB2 looks like:
| 1[XYZ(sp)(sp)sp)|N(sp)(sp) |

Note how SRNAM updates the input address so that
the user can keep calling SRNAM to find a series of file
names.

7. MicroDOS User Functions

79

Return to MicroDOS Operating

System Routine
1. Function: CDENT
2. Value: 1IEH
3. Description:

The CDENT routine returns program control to the
MicroDOS operating system. The = prompt will be
output to the terminal.

4. Format:

CALL UCALL,CDENT

This function, rather than an LBR 9000H, should be
used to return control to the operating system. Note that
this function does not close files, update the director, or
save the CPU status.

Operating Sequence Summary

The following is a summary of the steps necessary to
do disk I/ O with MicroDOS user functions.

1. Reserve buffer areas:
512 Bytes for a disk channel
80 bytes or less for keyboard input.
4 bytes for SRNAM packet.

2. Set up as many IOCB’s as required. Set the OPEN
parameter for read or write. Fill in the sector buffer
pointers.

Set Unit #=0 (for default) or as required.

Fill file name and extension areas with 20H or
name, if fixed.

Set file definition.

Fill in device mnemonic = DK (for default) or as
required.

3. Set up PACKET pointing to input buffer and
I0CB.

4. Call CREAD to input file name, if a variable.

5. Call SRNAM to move file name to IOCB. Check
status byte at B452H.

6. Call OPEN. Check status byte of IOCB. If non-
zero, call CDERR to output the error message and
reinitialize the IOCB.

7. Call GETCHR or PUTCHR to do disk read or
write. Check status byte of IOCB. If non-zero, call
CDERR to output the error message.

8. When writing is finished, output 13H (end-of-file
marker) and call PUTSEC. Check status byte of
IOCB. If non-zero, call CDERR to output the error
message.

9. Call CLOSE. Check status byte of IOCB. If non-
zero, call CDERR to output the error message.

10. To return to the MicroDOS operating system, call
CDENT.

A sample program illustrating the use of user func-
tions is given in Appendix E.

80

8. Monitor Programs UT71

The Monitor Program UT71 enables the user to exam-
ine or alter memory, begin program execution at a given
location, do I/O from the keyboard, or transfer data
between disk and memory. In addition, it can set up
half- or full-duplex operation, load the operating sys-
tem, or perform a test on itself. These functions are
accomplished through a series of monitor commands
that are initiated by typing D, F,I, M, S, P, T,L, B, ?, !,
R, or W. The functions include memory display (D),
memory fill (F), memory insert (I), memory move (M),
memory sutstitute (S), run program (P), self test (T),
load operating system (L or B), do I/ O from keyboard (?
or !), and disk read (R) or write (W). Also included are
the standard read and type routines that provide com-
munication with the user’s terminal. Finally, the moni-
tor contains routines that communicate with the RCA
MSIM 50 3%-inch micro floppy disk drives through the
CDP18S651 disk controller.

After the system is powered up, the monitor issues an
asterisk prompt “*” indicating that it is ready to accept
monitor commands. Pressing RESET/RUN U will also
result in the same prompt.

Register Save

When the system is started from RESET/RUN U, the
contents of the CPU registers are saved in RAM at
8COOH. The contents of RO and R1 however, are de-
stroyed by the process. The contents of the saved regis-
ters can be examined by displaying memory at 8CO0H
for 20 bytes. This register-save feature can be used to
debug machine-language programs. First, insert an
IDLE instruction (00) in the program code at the
appropriate place. Next, execute the program and wait
until the IDLE is reached. Then press RESET/RUN U
and examine memory at 8COOH to determine the con-
tents of the registers at the registers at the time the IDLE
was encountered.

Self Test

The user can start the self-test function from the moni-
tor by typing a T.

The test will perform an 8-bit checksum of the UT71
PROM. The results should be zero. If not, the system
will print:

PROM BAD

Next, it will perform a read/ write test on all RAM. It
starts at 8800H and wraps around, ending at 7FFFH. If
a bad location is found, the test ends and prints:

RAM BAD, P(PAGENO)
If all the tests pass, the following will be printed:
MEMORY OK

When the self test is finished, control is returned to the
monitor.

UT71 Commands

Following is a description of the UT71 commands.
Note that all address, data, and byte counts are entered
as hexadecimal numbers. In the examples given, the
characters generated by the system are underlined. The
monitor prompt is an asterisk *.

T Command
Name: Test
Purpose: Memory self test
Format: T
Action: Tests all ROM and RAM
Example T
MEMORY OK
*
D Command
Name: Memory Display

Purpose: To allow a specified area of memory to be
displayed on the user therminal.
D(START ADDRESS)(OPTION)(CR)
The contents of memory, beginning at the
specified (START ADDRESS) will be trans-
mitted to the user terminal. (OPTION)
allows the transmission of either a specific
number of bytes preceded by a space or an
inclusive address range preceded by a
hyphen. If the option is not specified, a
default value of 1 byte results.
Examples: D42F8 §(CR)

D42F8-42FF(CR)

Both of these examples produce the same

output.

Format:
Action:

8. Monitor Programs UT71

81

| Command

Name:
Purpose:

Format:

Action:

Examples:

Memory Insert

To alter the contents of memory beginning
at the specified address.

I(START ADDR)(SPACE)
(DATA)[(CONT)}(CR)

A memory location is accessed at the speci-
fied (START ADDR). The (DATA)
required is one byte specified by two hex
digits. The (CONT) option allows data to be
continued onto the next line on the terminal
with or without changing the current
memory address. A (COMMA) will not
change the address and after the user inserts
(CR)(LF), additional data may be entered.
If a (SEMICOLON) is entered and after a
user-inserted (CR)(LF), a new address is
anticipated. The semicolon allows non-
contiguous memory to be loaded with a sin-
gle insert command. The command may be
terminated at any point by the entry of a
(CR) not preceded by a (COMMA) or
(SEMICOLON).

I42F8 7100F840BOF88CB1 (CR)

142F8 7100F840,(CR)(LF)
BOF8,(CR)(LF)
8CBI(CR)

142F8 7100F840B0;(CR)(LF)
43B6 94FBY03A0F(CR)

The first and second examples give identical
results. The second provides improved read-
ibility at the data terminal output. The third
example enters data into two memory areas,
starting at 42F8 and 43B6.

M Command

Name:
Purpose:

Format:

Action:

Examples:

Memory Move

To move a block of data from one area of
memory to another area.

M(SOURCE ADDR)(OPTION)(SPACE)
(DEST ADDR)(CR)

Data is copied from memory source loca-
tion beginning at the (SOURCE ADDR)
into locations specified by the (DEST
ADDR). (OPTION) allows the transfer of
either a specific number of bytes preceded
by a space or an inclusive address range
preceded by a hyphen. There is no restric-
tion on the direction of the move and the
areas may overlap.

M42F8 8 43F8(CR)

M42F8-42FF 43F8(CR)

M43B0-43BF 42B0(CR)
M43B0-43BF 43B2(CR)
F Command
Name: Memory Fill
Purpose: To load a defined area of memory with a

Format:

Action:

Examples:

specific constant.

F(START ADDR)(OPTION)(SPACE)
(DATA)(CR)

The specified (DATA) is loaded into
memory beginning at the (START ADDR).
(OPTION) allows the loading of either a
specified number of bytes preceded by a
space or an inclusive address range preceded
by a hyphen.

F42F8 8 00(CR)

F42F8-42FF 00(CR)

These examples fill with zeros the eight
bytes beginning at location 42F8.

S Command

Name:
Purpose:

Format:
Action:

Examples:

Memory Substitute

To display and, if desired, alter the contents
of sequential memory locations beginning
at the specified address.

S(START) ADDR)(OPTION)(CR)

A memory location is accessed at the speci-
fied (START ADDR). Its contents will not
be displayed, however, until (OPTIONS) is
entered. (OPTIONS) allows two methods of
display. If (SPACE) is entered, the current
data will be displayed on the same line fol-
lowed by a hyphen. New data may be
entered at this point. Only the last byte
entered will be written. If no data is entered,
the current data will remain unchanged. Ifa
(LF) is entered, a (CR)(LF) will result and
the current memory address will be echoed
to the terminal prior to the printing of
current data. New data may be entered as
described above. The command can be ter-
minated by a (CR) or continued by the entry
of any of the OPTIONS).

S42F8 63-71 00- OF-CO(CR)

The current data of 63 is changed to 71. The
00 datais retained, and the OF is changed to
Co

S42F8 71- 00- CO- 11-82(LF)

42FC 52-AE(LF)

42FD 00-F8 1140 23-A3(CR)

In this example, the 71, 00, and CO are
retained and the 11 is changed to 82. Each
(LF) causes the next address to be followed
by its data.

82 User Manual for the RCA MicroDisk Development System MS2000

P Command

Name: Program Run

Purpose: To allow a user program to be run beginning
at the specified address.

P[(START ADDR)](CR)

The user program will begin execution at
the specified (START ADDR) with P =0
and X = 0. If the (START ADDR) is not
specified, the default value is 0000.

L Command

Format:
Action:

Name: Load

Purpose: Loads the operating system from drive
0.

Format:. L

Action: MicroDOS gets loaded into memory from
drive 0.

Example: L
MICRODOS 0.0
=

B Command

Name: Boot

Purpose: Loads the operating system from any drive
(0-3).

Format: IL(drive No.)

Action: MicroDOS gets loaded into memory from
specified drive.

Example: B1
MICRODOS 0.0
<

R Command

Name: Read Sector

Purpose: Transfers one sector of data from disk to
memory

Format: R A =(address)(space)D= (drive)(space)T
=(track)(space)S_=(sector)(CR)

One sector (512 bytes) of data is transferred
from the specified disk, track, and sector to
memory starting at the specified address.
Drive number must be from 0 to 3, track
from 0 to 45 hex, and sector from 1 to 9. All

defaults are to 0.

Action:

W Command

Name: Write Sector

Purpose: Transfers one sector of data from memory
to disk.

Format: W A=(address)(space)D =(drive)(space)T
=(tract)(space)S=(sector)(CR).

Action: This command performs the complement of
the R command.

? Command

Name: Read 1/0 Port.

Purpose: Transfer on byte of data from input port to
screen.

Format: ? G =(group no.)(space)P =(port no.)(CR).

Action: One byte of data from group address and
port number specified is printed on the
screen.

! Command

Name: Write to 1/0 Port:

Purpose: Transfer one byte of data from keyboard to
output port.

Format: ! G_=(group no.)(space)P_=(port no.)
(space)B_=(data)(CR).

Action: One byte of data is output to the group

address and port specified.

83

9. Terminal Interfacing

UART Action

Terminal interfacing is handled by UT71 by means of a
UART. TYPE routines in UT71 test to see that the
holding register of the UART transmitter is empty and
if so, pass the byte to be typed to the UART and then
return program control to the caller. READ routines
test the Data Available signal from the UART, and
when that signal is true, a byte is picked up and returned
to the caller. The UART’s control register is initialized
by UT71 for the serial format consiting of one start bit,
eight data bits, and two stop bits, as illustrated in Fig.
20. User programs may change the control word, if
desired.

|&|u|«|ﬁ|*|*|*l&|&|*|*|

LOGIC | — —
||z|3 als & 7|s |
Logico L
— o|D|D|D|D|D|o|o Flrl--—|e]
INTELLIGENCE BITS
fe— 8 DATA BITS —

le—— COMPLETE CHARACTER

"M" (4Dig)
= ONE BIT TIME
B=START BIT D=DATA BIT
F=STOP BIT -—— =ASYNCHRONOUS TIME

BETWEEN CHARACTERS

92CS-28100

Fig. 20 - Data terminal bit serial output for the charac-
ter “M".

Refer to Appendix F for the I/ O Group 1 assignments
for the UART.

ASCII Coding

The system is designed to interface to a data terminal
via a serial ASCII code using an EIA RS232C standard
electrical interface. When a key is struck on a terminal,
the information denoting that character is converted to
its ASCII code and appears on the output terminals as a
serial data-bit stream. The serial data from the central
processor for the letter ‘M’ is shown in Fig. 20. The
character is framed by a start bit B and two stop bits FF.
By convention two stop bits are used for data transmis-

sion at 10 characters per second although 1, 1-1/2, or 2
are also acceptable outputs from various data terminals.

UT71 Routines READ, TYPE, and
OSTRNG

The UT71 READ and TYPE routines provide the
basic software mechanism for communication between
the system and the data terminal. Several different rou-
tines are available to facilitate different types of I/O
data transfers.

Register Use

All READ and TYPE routines use R3 as their pro-
gram counter and return to the caller with SEP RS.
They can be called directly from a program that can use
RS as its program counter, or they may be called
through the Standard Call and Return Technique
(SCRT)described in the User Manual for the CDP1802
Microprocessor, MPM-201 in the Section “Program-
ming Techniques” under the heading “Subroutine
Techniques.” This programming technique is the most
general and is recommended.

The upper half of register RE (RE.1) holds a control
constant. The least significant bit specifies whether or
not characters read in should be “echoed” (full-duplex)
or not echoed (half-duplex). A zero in the LSB specifies
echo, a 1 specified no echo. UT71 initializes RE.1 to
zero for full-duplex operation. If the first character read
by UT71 after its initialization is a Line Feed character,
the value in RE.1 will be changed to a ‘1’. Otherwise,
operations will proceed with RE.1 = 0.

The most significant bit of RE.1 specifies whether the
Command File Interpreter is in control. If set, UT71 will
branch to the Interpreter to spot the character. It is very
important to always restore RE.1 before doing any read
routine.

Two bytes of RAM are needed by the READ and
TYPE routines. These routines assume that R2 points
to free RAM and M(R(2)) is altered by them. In general,
the user can set R2 to any free RAM location. UT71
uses a byte in its dedicated RAM for this purpose.

RF.1is used in certain cases to pass the byte being read
or typed between the calling routine and these subrou-
tines. When READ is exited, it leaves the input byte in
RF.1. When TYPE is entered at location 81 A4, the byte
to be typed is taken from RF.1.

84 User Manual for the RCA MicroDisk Development System MS2000

All routines alter RE.O and RF.0. They also alter D,
DF, and X. The READ routine leaves the input byte in
D as well as in RF.1 if CALL and RETURN subrou-
tines of UT71 are used. But the byte in D will be des-
troyed if the Standard Call and Return Technique,
described in MPM-201, is used.

READ

When READ exits, R3 is ready for entry at
READAH (see Table IX). When TYPE exits, R3 is
ready for entry at TYPES (see same table).

The READ routine has two entry points - READ and
READAH. The former acts as described above and has
no other side effects. The latter operates just as READ
does, but with the following side effect. If the character
read in is a hex character (0-9, A-F) then the 16-bit

Table IX - UT71 Utility Routines

Entry Absolute
Name Address |Function
READ 813E Input ASCII - —>RF.1 (if non-

standard linkage)

Same as READ. If hex chara-
cter, DIGIT - —=> RD (see text)
Output ASCII Character at
M(RS). Then increment RS
Output ASCII character at
M(R6). Then increment R6
Output ASCII character in
RF.1

Output hex digit pair in RF.1
Output ASCII string at M(R6).
Data byte 00 ends typeout
RF.1(ASCII) ——> RE.O (hex)
and RD.0 (hex); DF =1 if
hex, DF =0 if not hex.

READAH | 813B
TYPES 81A0
TYPEG6 81A2
1 TYPE 81A4

| TYPE2 81AE
OSTRNG | 83F0

CKHEX | 83FC

contents of RD are shifted four bits to the left, and the
4-bit hex equivalent of the input character is entered at
the right. DF is then set to 1 on exiting. If the input
character is not a hex character, RD is not affected, but
DF is set to 0 on exiting.

TYPE

The TYPE routine has four different entry points.
Three of them simply specify different places to fetch the
character from: TYPE types from RF.1, TYPES types
from M(RS) and increments RS, and TYPES types from
M(R6) and increments R6. TYPE 2 is an entry which
results in RF.1 being typed out in hex form as two hex
digits. Each 4-bit half is converted to a ASCII hex digit
(09, A-F) and separately typed out.

Notice that the READ routines are designed to facili-
tate repeated calls to READAH, while the TYPE rou-
tines are designed for repeated calls to TYPES.

OSTRNG

Another routine, OSTRNG, can be used to output a
string of characters. OSTRNG picks up the character
string pointed to by R6 and tests each character for zero.
The characters should be already encoded in ASCII. If a
zero is found (ASCII ‘null’), the program terminates
and returns to the caller viaa SEP RS. If the character is
not zero, it is typed out to the terminal.

Tables IX and X include summaries of the functions
and calling sequences just described.

Table X - UT71 Register Usage

INITI 83F3 Initialize R2, R3, R4, RS, X, P
INIT2 83F6 Initialize R2, R4, RS, X, P
GOUT71 | 83F9 Return to UT71

LINEPR | 850E Output RF.1 to line printer port
CALLR 8364 SCRT call routine

RETR 8374 SCRT return routine

Notes

(1) All routines use R3 as program counter, exit with
SEPS, and alter registers, X, D, DF, RE, RF, and
location M(R2).

(2) READ and READAH exit with R3 pointing back
at READAH.

(3) All five TYPE routines exit with R3 pointing at
TYPES.

(4) RO, R1, and R4.1 are altered while storing registers.

Register Register

Name Number | Function and Comments

SP R2 Stack pointer. UT71 uses R2 =
8CFF

PC R3 Program counter for UT71

CALL R4 Call routine pointer

RETN RS Return routine pointer

LINK R6 Subroutine data link

ASL RD Assembled into by READAH
(input hex digits)

AUX RE RE.1 holds echo bit.
RE.O is used by all READ and
TYPE routines and by OST-
RNG and CKHEX.

CHAR RF RF.1 holdsinput/output ASCII
character.
RF.0 is used by all READ and
TYPE routines and by OSTRNG
and CKHEX.

9. Terminal Interfacing

85

Examples of READ and TYPE Usage

The following examples should help clarify how to use
the UT71 READ and TYPE subroutines. Most exam-
ples use the standard subroutine linkage which requires
that R2 point at a free RAM location.

READ Routine

This sample program will read four ASCII-hex charac-
ters into register RD translating them from ASCII to
hex in the process. Reading will terminate when a car-
riage return is entered. Entry of a non-hex digit other
than a carriage return will cause a branch to an error
routine written previously by the user. This sample
program uses the standard Subroutine Call and Return
Technique (SCRT).

READAH EQU 813BH

LOOP SEP R4; ..Call the hex

DC (READAH) ..read program

BDF LOOP ..As long as ASCII hex
..digits are entered,
..read and shift in.
..Fall through is not hex
..character.

GHI RF ..See what character was
.last entered.

XRI ODH ..Was it carriage return?

BNZ ERROR ..If not, BR to error.

..Characters entered are
..now in RD.

The READ routine (at 813EH) could be used similarly
to enter characters; however, READ only enters them
one at a time into RF.1 writing over the previous entry.
An alternative technique is to use RS as the main pro-
gram counter (since all READ and TYPE routines
terminate with a SEP RS5) and call the program with a
SEP R3 (since all READ and TYPE routines use R3 as
their program counter). The following example illus-
trates this technique.

TYPE Routines

Example 1 (TYPES). This program outputs a single
character using the TYPES routine. It uses RS as the
program counter.

LDI 81H ..Set R3 to TYPES routine
PHI R3

LDI OAOH

PLO R3

LDI OFFH ..Set R2 to free RAM location

.3JFFFH

PLO R2

LDI 3FH

PHI R2

SEP R3; ..Call type

DC‘R’ ..An “R” will be typed
YY ..Next instruction

Example 2 (TYPEG). This program outputs a charac-
ter using the TYPE6 routine. When called using the
Standard Call and Return Technique, this routine is
particularly useful for typing an immediate byte. After
typing the byte at M(R6) (which is pointing to the byte
immediately following the call) a return is made to the
caller past the typed byte.

SEP R4; ..Branch to the call routine
DC81A2H ..Address to TYPE6

DC™? ..Byte to be typed out

YY ..Next instruction

Example 3 (TYPE and TYPE2). The TYPE and
TYPE2 routines pick up the byte in RF.1 for typing.
TYPE simply outputs the character, whereas TYPE2
considers RF.1 a hex digit pair which it encodes in
ASCII before typing. This example types out the hex
digits ‘D5’ and uses Standard Call and Return
Technique.

LID OD5SH ..Load hex digits DS
PHI RF .Into RF.1

SEP R4 ..Call TYPE2

DC 81AEH

YY ..Next instruction

Note that all type routines, except TYPE2, expect the
character they pick up to be already encoded in ASCII.

Example 4 (OSTRNG). An entire message can be
typed by using the OSTRNG routine. The ASCII bytes
pointed to by R6 will be typed. When a ‘00’ byte is
detected, OSTRNG returns to the caller. This example
will output the string.

RCA COSMAC
MICROPROCESSOR

The Standard Call and Return Technique should be
used.

OSTRNG EQU 83FOH
SEP R4,
DC (OSTRNG) ..Call OSTRNG
DC ‘RCA COSMAC’ ..Ist Line
DC ODOAH ..(CR)LF)
DC ‘MICROPROCESSOR’ ..2nd Line
DC OOH ..End of Text

86

10. Additional Monitor Routines

ASCII to Hex Conversion (CKHEX)

The ASCII to hex conversion routine, CKHEX,
examines the ASCII character in RF.1. If this character
is not a hex digit, CKHEX returns to the user (via SEP
RS) with DF=0. If the character is hex, CKHEX
returns with RE.0 = hex digit, DF=1 and with the digit
shifted into the least significant 4 bits of register RD.
CKHEX uses the registers described above and, as with
the other routines, is most readily handled via the
Standard Call and Return Techniques. CKHEX is
located at 83FCH.

Initialization Routines (INIT1 and INIT2)

Two routines are provided, INIT1 and INIT2, to
initialize CPU registers for the Standard Call and
Return Technique. These routines set up registers as
follows:

R2=R(X) -pointing to 8CFFH

R3 -will become the program counter on return
R4 -pointing to the CALL routine in UT71
RS -pointing to the RETURN routine in UT71

The only difference between INIT1 and INIT2 is the
location to which they return. INIT1 returns to location
0005 with P = 3; INIT2 simply returns by setting P = 3
and assumes that the user has already set R3 pointing to
the correct return point. These programs are intended as
a convenience to free the user from generating the over-
head code required by the standard subroutine tech-
nique. They may also be used as an integral part of
custom support programs running on the MS2000.
Their absolute addresses are INIT1 EQU 83F3H and
INIT2 EQU 83F6H

The INIT routines should be used to set up R4 and RS.
Following are examples of the use of these programs:

Example 1 (INIT1): INIT1 EQU 83F3H

Address Code Mnemonics Comments

0000 71 DIS, 0 ..Disable interrupts
0001 00

0002 CO LBRINIT! ..Initialize registers
0003 83

0004 F3

0005 - (USRPGM)- ..User program starts

..here; P=3, X=2

Example 2 (INIT2): INIT2 EQU 83F6H

Address Code Mnemonics Comments

0000 71 DIS,0 ..Disable interrupts

0001 00

0002 F8 LID A.l ..Set R3 to return
(START) ..Point

0003 00

0004 B3 PHIR3

0005 F8 LDIA.0
(START)

0006 50

0007 A3 PLOR3

0008 CO0 LBRINIT2 ..Call INIT2

0009 83

000A F6

0050 - START- ..User program starts

..here; P=3, X=2
Restarting UT71 (GOUT71)

A means is provided to automatically transfer control
back to UT71 from a user program. An entry point
routine, GOUT71, is provided for this purpose. When
entered via this routine, UT71 will restart and issue a *
prompt to the terminal. A long branch to GOUT71 at
location 83F9H will cause this transfer.

Line Printer Interfacing (LINEPR)

The utility routine LINEPR located at 850EH is supp-
lied for line printer interfacing. It will output the byte in
RF.1 to a line printer port. Line feeds are suppressed,
but carriage returns are replaced with a line feed-
carriage return pair. Return is made with DF=1, unless
the character in RF.1 is an ASCII ‘DC3’ (end-of-file
marker). In that case, the DC3 is not output, and DF=0
on return. This routine should be called with the Stan-
dard Call and Return Technique.

Disk Routines

The loader is a routine that loads memory by doing
track reads. It can load the 12-kilobyte MicroDOS
operating system in approximately one second. Data is
transferred to memory by DMA starting at address
9000H to BFFFH.

10. Additional Minitor Routines

The loader resides in memory starting at 8400H. It
requires a RAM area to set up a buffer containing the
bytes to be output to the disk controller and to store the
resulting status information. In addition, a stack area is
required for operation. RAM area between 8FOOH and
8FFFH is used for this purpose.

To load the operating system, first place a diskette
containing MicroDOS into drive 0. Then type L after
the * prompt. After the operating system is loaded, it
will print a header followed by a > prompt, indicating
that it is ready to accept MicroDOS commands.

If the user wants to go back to the monitor, he can use
the U utility command and enter $U 8000. The monitor
will issued the * prompt and wait for monitor com-
mands. The user can go back to the operating system by
entering P 9000.

If the user did not initially insert a diskette in drive 0, or
if the data that was loaded into memory was not an
operating system, the following will be printed:

87
PARAMETER
BLOCK
[RFfe{ UNIT
High
PHYSICAL
~SECTOR — — — —-
NUMBER
Low
High
START INCREASING
—OF — — — — — — MEMORY
BUFFER
Low

Fig. 21 - Conditions for calling SEEK, READ, and
WRITE routines.

FOUND DRIVE DRIVE WRITE
DDM INACTIVE FAIL PROTECT

CRC TERM
ERROR

ERROR

7 6 5 4

3 2 1 0

Fig. 22 - RD.0 Status byte showing arrangement of bits after a driver function is finished.

INIT1 EQU 83F3H
SEEK EQU 87F6H
READ EQU 87F9H
WRITE EQU 87FCH
DIS ..DISABLE
INTERRUPTS
DCO
LBRINIT1 ..INITIALIZE
REGISTERS
A.l(PARM)-
—>RF.1 ..POINT AT PARA-
METER BLOCK
A.O(PARM)-
—>RF.0
START CALLSEEK .SEEK TO TRACK 0
CALL READ ..READ PSN 0 INTO
MEMORY
CALL WRITE..WRITE MEMORY
BACK TO PSN 0
LBR START ..DO IT AGAIN
ORG 1000H ..PARAMETER BLOCK
PARM DCO00H .UNIT 0
DC 0000H .PSN 0
DC 2000H ..READ/WRITE
BUFFER

Fig. 23 - Example demonstrating use of SEK, READ, and WRITE routines.

88 User Manual for the RCA MicroDisk Development System MS2000

MICRODOS NOT LOADED

and the monitor will reissue the * prompt.

The monitor also contains the routines SEEK, READ,
and WRITE. These routines perform the actual driver
functions that link the operating system with the disk
drives.

Calls to Driver Routines

The following information is for users who may want
to utilize the disk I/O routines in UT71.
The SEEK, READ, and WRITE routines must be

called in accordance with the conditions shown in Fig.
21.

After the driver function is finished, RF will remain
pointing at the unit byte. RD.0 will contain a status byte
showing the result of the operation. Fig. 22 shows the
arrangement of the status bits in RD.0.

The example in Fig. 23 demonstrates the use of the
SEEK, READ, and WRITE routines in UT71. Itis a
complete program that will continuously read from and
write to PSN 0 ondrive 0. Programs written by the user
should test the status bits in RD.0 after each call to a
disk routine to determine if that function was success-
fully performed. Recovery from failed functions should
be accomlished with retry logic.

89

Appendix A -
Diskette Organization and Structure

Each diskette has 70 tracks with 9 sectors on each track
(630 sectors per diskette). However, from MicroDOS’s
point of view, the diskette is divided up into clusters with
1 sector in each cluster.

The system diskette has two basic configurations, one
with a directory and operating system and one with a
directory only. These configurations are generated with
the SYSGEN command. Because the operating system
requires about 4 per cent of the diskette, diskettes with
directory only have more disk area for storage of the
user’s work files.

MicroDOS assumes that a file is a string of bytes.
When a file is created, a certain number of clusters is
allocated to it. If more space is needed for the data than
initially allocated, MicroDOS automatically allocates
more space. Once a file has been created by the user, the
operating system returns to the system any unused disk
cluster so that the next file to be created can use this
freed-up space. No cluster can be allocated to two dif-
ferent files.

Diskette Information Format
TRACK 0
Sector 1 = DISK ID

Bytes 0-11 Unused

Bytes 12-19 Date (8 ASCII characters)
Bytes 20 - 63 User ID (44 ASCII characters
Bytes 64-511 Unused

Sector 2 - 9 = DISK DIRECTORY

Every 16 bytes = one file directory entry
Within an entry:

Bytes 0-5 First part of filename (6 ASCII
characters)

Bytes 6-8 Filename extension (3 ASCII
characters)

Bytes 10-11 Starting Sector Number (in
hexadecimal)

Byte 12 Attribute code

TRACK 1

Sector 1 = CLUSTER ALLOCATION TABLE

The first 623 bits indicate the status of the 630 clusters
on the disk: 1 =in use, 0 = free. Each cluster has 1 sector
in it. Note that there are:

512 bytes/sector 630 clusters/disk

1 sector/cluster 630 sectors/disk

9 clusters/track 70 tracks/disk
512 bytes/cluster 322,560 bytes/disk side

NOTE: Tracks are numbered 0 - 69 (00H-45H)
Sectors are numbered 1 - 9 (01H-09H)
Bytes are numbered beginning at 0
Bit 0 is the LSB on right-most bit in a byte

Start Sector Number (SSN)

The integer portion of the quotient SSN/9 equals the
track number, while the remainder +1 indicates the
sector within the track. For example, sector 114 is
located at sector 7 on track 12.

Non-contiguous files may be broken up into 1 to 57
segments, which may be distributed throughout the
disk. A segment my contain 1 to 128 contiguous clusters
depending on how much contiguous free space there is
at that location on the disk.

The first sector of the first segment of any file is the
SSN givenin the disk directory. It is called the Retrieval
Information Block (RIB) and contains information
needed to locate all segments of the file. The file’s data
starts in the sector following the RIB.

RIB (located by the SSN given in the directory)

Each 24 bits may contain one Segment Descriptor
Word. SDW’s are of two types:

SDW: (If file takes more than 1 segment

Bits 0 - 15 = PSN where segment starts
Bits 16 -22 = number of contiguous clusters
(minus 1 allocated to this segment)
Bit 15 = 0 since more SDW’s follow in
this RIB
LAST SDW:
Bits 0 - 14 = total number of sectors actually

used in file.
Bit 15 =1 to indicate it is the last SDW.

90 User Manual for the RCA MicroDisk Development System MS2000

For binary files the RIB also contains:
Bytes 500-501 = number of bytes in the last sector
Bytes 502-503 = number of sectors to load
504-505 = starting load address in RAM
Bytes 506-507 = entry address for program
execution

CRC errors that show up during a disk write and
persist after five tries cause a deleted data mark to be
placed in the sector and that sector is passed over with-
out losing data. That sector is never used again by
MicroDOS.

Free space, however, is determined by the number of
unused clusters and does not reflect the unusable sectors
with DDM’s.

Physical Structure (Decimal PSW)

Number Letter Contents
0 I Disk ID
9 C Cluster Allocation Table
1-8 D Directory
10- 34 (o) Operating System
35 8) Unused
Hexa-
Decimal decimal
Sectors per track 9 1-9 1-9
Tracks per disk 70 0-70 0-46
Sectors per disk 630 0-629 0-275
Sectors per cluster 1 - -
Clusters per disk 630 0-629 0-275

Diskette Structure

Following is a set of diagrams that describe the disk
structure of MicroDOS.

SECTOR

123456789
0|1 DDDDDDDD
| [COOO0O0000O0

000000000 |_pg gentification Block
TOOOOOOOOU -
R[UUUUUUUyUy| D Direcory
AlUUUUUUUU C=Cluster Allocation Table
clUUUUUUUUU OfOperatmgSystem

K U=Unused

SA]
| (UUUUuuuuu

eUUUUUUUUU

Disk Identification Block

0123456789 ABCDEF
(¢ NOT USED == M M/D

0
1 [D/ Y Y~
2 N~ USER
3 NAME =l
4 [—
5 "N NOT
6 USED ==y
7 |\ —
Byte Size Contents
0-BH 12 Not used
CH- 13H 8 Creation date
14H -3FH 44 User name
40H - IFFH - Not used

Cluster Allocation Table (CAT)

0123456789 ABCDEF

0

1

2 N-ALLOCATION

3 MAB-\

4 Sl e——

5=

6 “Neeme NOT USED e

7 D —
Offset Size Contents
0-4DH 78 Cluster Allocation Table
4EH - 1FFH - Not used

Each byte of the Cluster Allocation Table (CAT) con-
tains 8 bits for 8 clusters of allocation. Byte 4DH must
have bit 0 set to “1” because no sector corresponds to
this cluster number. All unused bytes have bits set to

661”

Appendix A. Diskette Organization and Structure 91

Directory Sectors (DIR) Byte Size Contents
0-5 6 Filename
00123456789ABCDEF 6-3 3 Suffix
1 9 1 Not used
2 AH - BH 2 Physical address of
3 Pointer Block (PB)
4 CH 1 Attributes
5 DH - FH 3 Not used
6
7
% SUFFIX| PB ATR
NAME NOT NOT
USED USED

Segment Descriptor Word (SDW)

[17]16 15 14 13 12 11 IO[FEDCBA9876543210]|

T ?

(NON-TERMINATOR BIT) STARTING
PHYSICAL SECTOR
NUMBER OF NUMBER
CONTIGUOUS
CLUSTERS
MINUS ONE

[FEDCBA9876543210]

T LOGICAL SECTOR NUMBER

1 OF LOGICAL
(TERMINATOR END OF FILE
BIT)

1 SDW Can span 127 Clusters

Pointer Block

0 1 2 3 4 5 6 7 8 9 A B CDE F
SDW! | SDW2 [SDW3| | [|

L
N

h)]
U

)

NN
\

RESERVED FOR LOADABLE
MEMORY IMAGE FILES

92

User Manual for the RCA MicroDisk Development System MS2000

There can be from 1 to 57 Segment Descriptor Words
(SDW) plus a terminator SDW.

Unused SDW’s after terminator words are 0 (except
for memory image files).

File Allocation

FILE ALLOCATION

FILE DIRECTORY ENTRY

FILE NAME.....
RIB ADDRESS
= sow#0
SOW#
SOW#2 | SEGMENT O
1] _LENGTH OF FILE

REST OF SEGMENT
LOGICAL SECTOR 2 | PHYSICALLY CONT-

LOGICAL SECTOR | TIGUOUS TO THE P.B.
LOGICAL SECTOR LOGICAL SECTORO
g

]

P.B.

| SEGMENT 2
OF FILE
1
~
1-32 PHYSICALLY <
CONTIGUOUS CLUSTERS
| SEGMENT |
OF FILE

Y LosicaL secTor 3

92CS8-34336

93

Appendix B
BNF Syntax of Assembler ASM8

The following is a compilation of the full BNF
(Backus-Naur Format) description of the assembly lan-
guage, ASMS. In these descriptions, the symbol “::="
means “is defined as.” Where there is choice between
alternatives, the symbol “!” is used to separate the
choices. Angle brackets “<” and “>” are used to indi-
cate a non-terminal element, i.e., a description of some-
thing. A terminal element is written exactly as it would
appear when used.

<binary digit> ::= 0!l

<octal digit> ::= <binary digit>>!2!3!4!5!6!7
<decimal digit> ::= <octal digit>!8!9
<hexadecimal digit> ::= <decimal
digit>!A!B!C!D!E!F

<character> ::= Any printing ASCII character
<character string> ::= <character>!<character
string><character>

<break character>::=_

<alphanumeric character>::=<letter>!<decimal
digit>!<break character>

<identifier> :=<letter>!<identifier>
<alphanumeric character>

Note: An identifier may have no more than nine alpha-
numeric characters including multiple adjacent break
characters.

<space> ::= Al<space>A
Note: The symbol A represents the ASCII space
character 20H.

<literal constant> ::= !<character string>!

Note: A literal constant may not contain a quote.
Note: A literal constant is ASCII encoded.

<binary constant> ::= <binary digit>B!<binary
digit><binary constant>

<octal constant ::= <octal digit>Q!<octal digit>
<octal constant>

<decimal constant> ::= <decimal digit>!<decimal
digit>D!<decimal digit><decimal constant>

<hexadecimal string> ::= <decimal digit>
I<hexadecimal string><hexadecimal digit>

<hexadecimal constant> ::= <hexadecimal string>H

<constant>::=<binary constant>!<octal constant>
|<decimal constant>!<hexadecimal constant>

Note: A constant is truncated to the last two bytes of its
hexadecimal equivalent.

<location counter< ::= §

<dummy> ::= [<identifier>]

<least significant byte> ::= A.0(<term>)

<most significant byte> ::= A.1(<term>)

<element> ::= <identifier>!<constant>!<literal
constant>
I<location counter>!<dummy>!<least significant
byte>
I<most significant byte>)(<term>)!<element><space>
I<space><element>

<factory> ::= <element>!-<element>!+<element>
I<factor>*<factor>!
<factor>/<factor>!<factor><space>!<space>
<factor>

<term> ;1= <factor>!<term>+<term>!<term>-
<term>!<term><space>!<space><term>

<relational operator> ::=

.EQ.I.GT...LT.!.LE...GE.\.NE.

<relation> ::= <term><lrelational operator>

<term>!<relation><space>!<space>< relation>!

.NOT .<relation>!(<logical term>)!<term><logical

element> ::= <relation>!<logical element>

<space>!<logical element>.AND.<logical

element>!<space><logical element>
<logical factor> ::= <logical element>!<logical fac-

tor><space>!<space><logical factor>!<logical
factor>.XOR.<logical factor><logical term> ::=
<logical factor>!<logical term><space>!<space>
<logical term>!<logical term>.OR.<logical term>

Note: No expression (logical element, logical factor,
logical term, relation, element, factor, or term) may
contain more than twenty elements or more than twenty
operators. (+,-, *, /, A.1, A.0, RELATIONAL OPER-
ATOR, .NOT.,, .AND,, .OR., .XOR.)

<first class instruction> ::= IDL!NOP!SEQ!REQ!
SAVIMARK!RET!DIS!LDX!LDXA!STXD!IRX!
OR!XOR!AND!SHR!SHRC!SHL!SHLC!ADD!

ADCI!SD!SDB!SM!SMB!SKP!LSKP!LSZ!LSNZ
ISNF!LSQ!LSNQ!LBNQ!LSIE!LDC!GEC!
STPC!DTC!STM!SCMI1!SCM2!SPM1!SPM2!
ETQ!XIE!XID!CIE!CID!BCI!'BXI!DADD!
DADC!DSM!DSMB!DSAV

<second class instructor> ::= SEP!SEX!LDN!L
DA!STR!INC!DEC!GLO!PLO!GHI'PHI'RLXA!
RSXD!RNX!SRET

<third class instructor> ::= LDI!ORI!XRI!ANI!
ADI'ADCI!'SDI!SDBI!SMI!'SMBI!BR!NBR!BZ!
NBZ!BDF!BPZ!BGE!BNF!BM!BL!BQ!BNQ!OUT!
INP!LBR!LBZ!LBNZ!LBDF!LBNF!LBQ!LBNQ!
NLBR!DADI'DACI'DSMI!'DSBI

<fourth class instruction> ::= RLDI!SCAL!DBNZ

<register> ::= R<hexadecimal digit>!<term>!
<register><space>!<space><register><immediate
operand> ::= <term>!<literal constant><operand
string> ::= <register>!<immediate operand>!
<operand string><space>!<space><operand
string>!<operand string>>,<operand string>

Note: An operand string may not have more than 76
characters, including those inserted by the assembler.
<immediate keyword>::= IDLE!GOTO!NOGOTO!
SKIP!RETURN!DISABLE!POP!PUSH!SAVE!
GOSTATE!CALL!EXIT<branch keyword>::=0!Q
1&=0!DF'!PZ!GE!EF1!EF2!EF3!EF4!NQ!&>0!>
NDF!MINUS!LESS!NEFI!NEF2!NEF3!NEF4

<substitution> ::= IF<space><branch keyword>
<space>GOTO!<immediate keyword><load part>
= @@ @<register>!@<register>!@ " <register>
!@(<character string>)!<term>!<register>.0!
<register>.1

Note: the above character string may not contain
parentheses.

<operator>> ::= +!-1-+1+"1-"1-+"1 AND.!.OR.!.XOR.
<object> := @!@"<register>!<term>

<manipulation part> ::= <operator>
<object>!/21*21/2"1*2”

<arrow> .= —>

<storage part> ::= <arrow><register>.0!<<arrow>
<register>.1!<arrow>@<register>!<arrow>
@-'<arrow>@-"<register>!<arrow>@-<character
string>)<D-sequence statement> ::= <load
part>>!<manipulation part>!<storage part>!<load
part><manipulation part>!!<load part><storage
part>>!<manipulation part><storage part>

'<load part><manipulation part><storage part>
<level I statement> ::= <substitution>!<D-sequence
statement>

User Manual for the RCA MicroDisk Development System MS2000

ote: A level II statement may not contain more than
thirty-nine characters.

<executable statement> ::= <first class statement>
1<second class instruction><space><register>
1<third class instruction><space><immediate
operand>
1<fourth class instruction><space><register>,
<immediate operand>
1<level II statement>
1<executable statement><space>!<space><ex-
ecutable statement>
<statement set>::= <executable statement>!<state-
ment set><space>!<space><statement set>!<state-
ment set>;<statement set>
Note: A statement set may have no more than ten
executable statements.

<macro name>> ::= <identifier>
<macro call statement> ::= <macro name>
I<macro name><space><operand string>

<label> ::= <identifier>

<comment> ::= ..<character string>

<line beginning> ::= <space>!<labe><space>

<line ending>::=carriage return>!<space>>line

ending>!<comment><line ending>

<executable line> ::= <line beginning><statement

set><line ending>!<line beginning><macro call
statement><line ending>

<end statement> ::= END!END<space><labe>
<eject statement> ::= EJECT

<nolist statement> ::= NOLIST

<list statement> ::= LIST

<macro statement> ::= MACRO

<endm statement> ::= ENDM

<non-terminal major statement> ::= <eject state-
ment>!<list statement>!<nolist statement>
<non-terminal major line> ::= <line beginning>

<non-terminal major
statement>
<line ending>

<non-terminal line>::=<executable line>!<non-
terminal major line>

<equate statement> ::= <labe[><space>EQU
<space><term>!<labe><space>EQU<space>R

<hexadecimal digit>

<constant declaration> ::= <line beginning>DC
<space><operand string>

<storage declaration> ::= <label><space>DS
<space><term>

<org statement>::= <labe[><space>ORG
<space><term>

<page statement> ::= <label><space>PAGE
<minor statement> ::= <equate statement>
I<constant declaration>!<storage declaration>
1<org statement>!<page statement>

Appendix B. BNF Syntax of Assembler ASM8

<minor line> ::= <minor statement>
<line ending>

<end line> ::= <line beginning><end statement>
<line ending>

<macro line> ::= <line beginning>

<macro statement><line ending>

<endm line> ::= <line beginning>

<endm statement><line ending>

<if statement> ::= [F<space><lobical term>
<else statement> ::= ELSE

<endif statement> ::= ENDIF

<value> ::= <constant>!<value><space>
1<space><value>

Note: Value will be truncated to 1 byte

<increment list> 1= <value>,<value>,<value>

<replacement list> ::= <operand string>

<increment marker> :;= =!<space>=

<replacement marker>::= :!<space>:

<do statement> ::= DO<space><dummy>

<increment marker><increment list™>
'DO<space><dummy><replacement marker>
<replacement list>

<endd statement> ::= ENDD

<go statement> ::= GO<space><label>

<exitm statement> ::= EXITM

<if line> ::= <line beginning><if statement>

<line ending>

<else line> ::= <line beginning><else statement>

<line ending>

<endif line> ::= <line beginning>

<endif statement><line ending>

<do line> ::= <line beginning><do statement>

<line ending>

<endd line> ::= <line beginning>

<endd statement><line ending>

<go line> ::= <line beginning><go statement>

<line ending>

95

<exitm line> ::= <line beginning>
<exitm statement><line ending>

Note: No line may contain more than 80 characters

<line block> ::= <non-terminal line>!<if block>

1<do block>!<go line>!<line block><line block>

<if block> ::= <if line><else line><endif line>
1<if line><line block><else line><endif line>
1<if line><else line><line block><endif line>
1<if line><line block><else line><line block>
<endif line>

<do block> ::= <do line><line block>

<endd line>

<dummy list> ::= <dummy>!<dummy list>
<space>!<space><dummy list>
I<dummy list>,<dummy list>

<macro definition> ::= <line beginning>
<macro name><space><dummy list><line
ending>

<macro block> ::= <line block>!<exitm line>
!<macro block><macro block>

<macro> ::= <macro line><macro definition>
<macro block><endm line>

<macro library> ::= <macro>!<macro library>
<macro library>

<source code> ::= <line block>!<line block>
<macro library>
1<source code><end line>

Note: The cumulative size of all macros must not
exceed twelve kilobites.

Note: The substitution list may not exceed forty-three
characters in length.

Note: If there are more than six errors on a line, or more
than one hundred and twenty-eight errors in a
program, the assembler may not be able to con-
tinue processing.

Appendix C
MS2000 Memory Test

The MicroDOS System Diskette includes a file,
MEMTST.CM, that contains a memory test program
for the 60 kilobytes of RAM. The user can call up this
program at any time to verify that the RAM is func-
tional. It should be noted, however, that this test will
write over any program that is located in the RAM.

The memory test checks RAM from location 0000 to
7FFF and from 9000 to FFFF. In this test a “March”
pattern is executed with various combinations of the
8-bit data word. The test takes ten minutes to complete,
then auto-loads MicroDOS.

Test Procedure

The procedure for the memory test is as follows:
1. Type MEMTST (CR)

2. System will type out
MEMORY TEST STARTED

3. If no failures are encountered, after ten min-
utes the System will type out

MEMORY TEST COMPLETED
4. The program will then load MicroDOS.

5. If any failures are encountered, the System will
type out the address of the page on which the
failure occurred and then skip to the next page
of memory to continue testing. After all memory
is checked, the System will type out to the
screen

MEMORY TEST COMPLETED
and the program will then load MicroDOS.
Board Repair

For information on the repair of faulty boards,
contact:
Customer Service, Tel. 800-722-0094
RCA Corporation
New Holland Ave.
Lancaster, PA 17604

Example

Following is an example of a display resulting from
the MicroDisk memory test.

MEMORY TEST STARTED
ERROR AT ADDRESS 46XX
ERROR AT ADDRESS 46XX
ERROR AT ADDRESS 94XX
ERROR AT ADDRESS 94XX
ERROR AT ADDRESS CFXX
ERROR AT ADDRESS CFXX

MEMORY TEST COMPLETED

This example indicates that there were errors in three
pages at address locations 46XX, 94XX, and CFXX.
Note the redundant reporting as a result of repeated
testing with different patterns. If a RAM package is
completely nonfunctional, missing, purposely disabled,
or has been replaced with a ROM, there will be a long
stream of error reports. If a single bit is faulty, there will
be fewer reports, depending on how many patterns fail.

If a failure is detected, first determine which memory
board is at fault. There are two memory boards, both
types CDP18S628. They differ in their address locations
and in that one has 32 kilobytes of RAM and the other 2
kilobytes of ROM followed by 30 kilobytes of RAM.

Error Address Faulty Board
OOXX through 7FXX 32-kB RAM
88XX through FFXX ROM/RAM

To diagnose the faulty board to the chip level, refer to
MB-628, “RCA CMOS Microboard Memories,” for
details of the physical address map. The memory pack-
ages are socketed, so that replacement or swapping is
easy. Before anything else is done, however, check the
linking of the board to see that no changes have been
made. Some users may, for example, replace RAM with
ROM in order to test software that has been developed
and placed in ROM, and may fail to replace the RAMs
or to properly relink the board.

97

Appendix D

Error Messages

1. MicroDOS Error Messages
0. ERR=XX
Where XX = 00 - Tried to open an already opened or
reserved file. Make sure that the open parameter and
unit number are initialized correctly in the IOCB.
Where XX = 01 - DDM could not be written.

1. CRC ERR—X DR Y-PSN 2

X is the location in the operating system or user pro-
gram that caused the CRC error.

Y is the drive number.

Z is the physical sector number.

If the CRC happened on a WRITE, an attempt to
write five times is tried before a DELETED DATA
MARK (DDM) is written in that sector, and the data is
attempted to be written onto the next logical sector.

If the CRC happened on a READ and attempted to be
reread five times, the data will be passed back to the
program for processing.

Sectors with DDM will be skipped on a READ func-
tion. No error will be printed.

2. DIR FULL
No more room exists in the directory for a new entry.
A new diskette must be used.

3. DISK FULL

No more room exists on the disk for writing. A new
disk must be used or data deleted from the current disk.
When this error message is generated by any program
except ASM8 or EDIT, the incompleted file should be
deleted.

4. ILLEGAL DR. #
A number other than 0 or 1 was used for the logical
disk number.

5. NOT USED

6. X DOES NOT EXIST
X is a filename.

7. ILLEGAL F.N.
The filename typed is not a valid filename.

8. <FILENAME> DUP. F.N.
The filename typed is a duplicate filename.

9. NO SUCH DV

The chosen device is not part of the current system. A
command that would cause this error message is copy
SYX,#DRUM where #DRUM is not a valid system
device.

10. INVALID DV
The device chosen cannot be used in this situation.

11. COMMAND SYNTAX ERR
An error occurred in syntactically analyzing the com-
mand line. Retype the correct command.

12. NOT USED
13. OPTION CONFLICT
There was a conflict in the option selections.

14. INVALID TYPE OF OB FILE
The file to be loaded was not of the correct file type.

15. INVALID LOAD ADDRESS
The load address is out of range of the current
machine.

16. NOT USED
17. INVALID RIB

The linkage structure of the disk has been destroyed.
Generally this message means that a non-MicroDOS
diskette is assumed to be a MicroDOS diskette.

18. INVALID EXEC ADR
This message means that the address is not part of the
loaded file.

19. INVALID FILE TYPE
The type of file is not acceptable for use.

20. LOG SECT NO. OUT OF RANGE
The logical sector number was greater than the maxi-
mum value or was greater than the end of file.

21. NOT USED

22. <FILENAME> F.N. NOT FOUND
The filename was not found in the specified directory.
DIR can be used to list out the filenames.

23. <FILENAME>FILE IS DELETE PROTECTED
<FILENAME> has the delete-protected attribute set.

98 User Manual for the RCA MicroDisk Development System MS2000

If the file is to be deleted, remove the protection with the
RENAME command and re-execute the DEL function.

24. CONFLICTING FILE TYPES
The file type being read from or written to did not
conform to the use.

25. INVALID DATA TRANSFER TYPE
The file type of the file did not conform to the device it
was being dumped to.

26. FILENAME IS WRITE PROTECTED

The filename cannot be written to because it has the
write-protection attribute set. This error can be cor-
rected by using the RENAME command.

27. NOT USED

28. NO RAM AT XXXX
When a file is being loaded, the RAM area does not
exist for the load address.

29. FORMAT ERROR
The ASCII-HEX file does not conform to the correct
format.

30. DV NOT READY
The selected device is not ready to accept or send data.
This message is issued before the transfer begins.

31. XX DR INACTIVE

This message means that the disk drive is not turned
on.

32. XX DR FAIL
The disk drive does not have a diskette properly
inserted in the unit.

33. XX LOG. EOF

The program requested more information from the
disk file than the disk file had. Usually, no DC3 was
present on the input file.

34. XX FILE NOT OPENED
The file being accessed in unit XX was not properly
opened before it was used.

35. TRM ERR—DR Y-PSN 2
Termination error occurred at Y drive number and Z
physical sector number.

36. DDM ERR—DR Y-PSN 2
Could not write out a DDM at Y drive number and Z
physical sector number.

80H. Same as 1
81H. Same as 36
82H. Same as 35
COH. Same as 0

C1H. Same as 0

C8H. Same as 34

C9H. Same as 33

2. Utility Program UT71 Error Message

ERROR - This message is the result of an error in
syntax during the entry of a command to the monitor.

The following error messages are from the monitor
self-test routine.

UART BAD - Status byte read back from the UART
was not COH

PROM BAD - The contents of the monitor, after
EXCLUSIVE OR’ing every byte, did not match a refer-
ence value.

RAM BAD - Memory from 8800 to 8FFF was not able
to pass a write to and read back test.

The following error message is from the monitor oper-
ating system loader routine.

MICRODOS NOT LOADED - Results if no disk is in
drive 0, if a problem occurred during disk I/ O, or if the
data that was loaded was not MicroDOS.

3. EDIT Error Messages

Message Meaning
LINE TOO A line that EDIT is attempting to
LONG TYPE has more than 78 characters.

BAD EDIT has found an invalid command
COMMAND?? in a command string. XXX...X is

“XXX..X$” that part of the string not executed.

<BELL> Filled work space warning. Delete
part of the command before ending
the command.

MEMORY EDIT ran out of work space during an

FULL execution. XXX..X is the unproces-

“XXX..X$” sed part of the command string.

CAN'T SAVE There is not enough room in the

SAVE area.
CAN'T FIND The specified character sequence was
“text” not found between the pointer’s pre-
vious position and the end of the
buffer.
XX> IS The disk unit selected (XX) for output
WRITE is write protected. The command

PROTECTED string is aborted. No lines are written
or lost.

Appendix D. Error Messages

<XX>DR
FAIL

ITERATION
STACK
FAULT

99

The disk unit selected for output is not
ready. The command string is aborted.
No lines are written or lost.

EDIT ran out of stack space during
execution of a command string. May
indicate improperly paired brackets in
the string.

*RREQF***

DISK FULL

A line containing an end-of-file mark
(DC3) has been read. The DC3 is
stored in the buffer and further appends
from the current file are ignored.

Output disk full. Replace disk and

SET UP CON—enter continuation file name after the

TINUATION
FILE WRITE?

query WRITE?

100

Appendix E—

Sample Program lllustrating User Functions

M
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0003
0006
0007
0007
0007
0007
0007
0007
0007

0007 ;

0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007

0007 ;
0007 ;

0007
0007
0007
0008
000C

o e e me me e we e m e e e e e e we e e e e

FB802B3;
F8F3A3;
D3;

H
H
H
i
H
B
B
i
i
B
i
P
H
i
i
i
i
i
H
i
B
i
i
i
i
i
P
P
H
i
H
i
i
i
1

;
B1;

’
O0A4F;

0001
0002
0003
0004
0003
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
J021
0022
0023
0024
0025
0026
0027
o028
0029
0030
0031
0032
0033
0034
0033
0036
0037
0038
0039
0040
0041
0042
0043
0044
00495
0046
0047
0048
0049
0050
00351
0032
0033
0054
0053
0036
0057
0058
0059
0060
0061
0062
0063
0064

.. USER FUNCTION EXAMPLE - COPY A FILE TO ANDTHER FILE.
. THE FOLLOWING INFORMATION IS A DEFINITION FOR THE PROGRAM:

.. NO_ERRORS: BOOLEAN = TRUE ;.. NOT_EOF: BOOLEAN = TRUE

. BEGIN USER EXAMPLE

OPEN INPUT FILE

OPEN OUTPUT FILE

WHILE NOT_EOF AND NO_ERRORS
DO READ SECTOR
WRITE SECTOR TO FILE
REPEAT;

CLOSE INPUT_FILE ;

CLOSE OUTPUT_FILE

.. END USER EXAMPLE

.. START OF CODE

A. 1(START)->R3. 1
A. O(START)->R3. 0
SEP R3

PROGRAM EQUATES

USER FUNCTION EQUATES

CREAD EGU 012H .. CONSOLE READ
TYPE EQU 014H .. CONSOLE TYPE
SRNAM EQU O24H " SEARCH FOR A FILENAME

CDERR EGQU 028M

OPEN EQU O
GETSEC EQU &

PUTSEC EGQU O10H

CLOSE EQU 2

CDENT EGQU O1EH
UCALL EQU OB433H
SRNERR EQU OB452H

OPENPR

I0CB OFFSET EQUATES

.. PRINT ERROR MESSAGE
.OPEN A FILE

:.OET A SECTOR FROM THE OPENED FILE
..PUT A SECTOR TO THE OPENED FILE

. CLOSE THE FILE

A..RETURN TO THE OPERATING SYSTEM

.. ADDRESS FOR THE UCALL ROUTINE
.. ADDRESS FOR SRNAM ERROR BYTE

EGQU O .. OPEN PARAMETER
STATUS EQU 1 .. 10CB STATUS BYTE
STARTB EQU 3 .. START OF SECTOR BUFFER
ENDBUF EQU 7 .. END OF SECTOR BUFFER
WRITEP EQU 9 .. WRITE PARAMETER
UNITNO EQU 11 .. UNIT NUMBER
FILEDF EQU 24 .. FILE DEFINITION
DEVICE EQU 31 . DEVICE MNUMONIC

SPACE EQU 020H

10CBR

BUFFER AREAS

DC OBiH

DS

DC (INPBUF)

4

" . _BLANK CHARACTER

.. OPEN PARAMETER

.. START SECTOR BUFFER

Appendix E. Sample Program lllustrating User Functions 101

O00E O24E; 0065 DC (INPBUF+511)..END SECTOR BUFFER

0010 ; 0066 DS 27

002B 00467 10CBW1

002B 7A; 0048 DC O07AH .. OPEN PARAMETER

002C 0069 DS 4

0030 004F; 0070 DC (INPBUF) .. START OF SECTOR BUFFER

0032 024E; 0071 DC (INPBUF+511)..END SECTOR BUFFER

0034 0072 DS 27

O04F ; 0073 INPBUF DS 512 .. SECTOR BUFFER

024F ; 0074 LINEBF DS 80 .. CONSOLE INPUT BUFFER

029F ; 0073 PACKET DS 4 .. SRNAM PACKET

02A3 ; 0076 ..

02A3 ; 0077 ..

02A3 ; 0078 .. PROCGRAM VARIABLES / CONSTANTS

02A3 ; 0079 ..

02A3 0080 ..

02A3 ; 0081 NOTEOF

02A3 00; 0082 DC O0OH ..END OF FILE FLAG

02A4 0083 ERRFLG

02A4 00; 0084 DC OOOH .. ERROR FLAG

02A3 ; 0085 IEOF EQU OC9H .. END OF FILE ERROR NUMBER

02A3 ; 0086 10CBRG EQU 15 .. REGISTER USED TO POINT TO 10CB

02A3 0087 10CBPT EQU 12 .. DREGISTER USED TO POINT TO I0OCB
02A3 0088 TMPRG1 EQU 14 .. TEMPORARY REGISTER USED BY ROUTINES
02A3 0089 TMPRG2 EQU 13 .. TEMPORARY REGISTER USED BY ROUTINES
02A5 ; 0090 TMPRG3 EQU 11 .. TEMPORARY REGISTER USED BY ROUTINES
02A5 0091 INPMSG

O2A5 494ES50555420; 0092 DC ‘INPUT FILENAME TO BE READ’

O2AB 46494C454E41;
02B1 4D43520544F20;
O2B7 424520524341,

02BD 44;

O2BE 3E; 0093 DC ’>’

02BF 00; 0094 DC OOOH

02C0 0095 WRTMG!

02C0 494E50355420; 0096 DC ’‘INPUT WRITE FILENAME>’

02C6 573249544520;
02CC 446494CA34E4L;

02D2 4DAS3E;

02D5 00; 0097 DC OOOH

0206 ; 0098 RETYPE

02D6 46494C434E41; 0099 DC ‘FILENAME ERROR’

02DC 4DA4320435232;

02E2 4F32;

02E4 ODOA; 0100 DC OODOAH

O2Eé6 3524334595043; 0104 DC ‘RETYPE NAME>’

O2EC 204E414D453E;

02F2 00; 0102 DC OOOH

02F3 ; 0103 ..

02F3 ; 0104

02F3 ; 0105 ..

02F3 ; 0106 .. THIS IS THE MAIN LOOP OF THE PROGRAM
02F3 0107 ..

02F3 0108

02F3 , 0109 ..

02F3 D4BAS3 0110 START CALL UCALL

02F6 14; 0111 DC TYPE

02F7 02AS; 0112 DC (INPMSG)

02F9 DA40348; 0113 CALL OPENR

02FC DABA53; 0114 CALL UCALL

02FF 14; 0118 DC TYPE

0300 02CO0; 0116 DC (WRTMG1)

0302 D40387; 0117 CALL OPENW

0305 FBO2BE: 0118 CP10 A. 1 (NOTEOF)->TMPRG1. 1 .. TEST IF EOF FLAG OR DISK ERROR
0308 FBA3AE; 0119 A. O(NOTEDF)->TMPRGL. O

030B EE; 0120 SEX TMPRG1

030C 4EF1; 0121 @TMPRG1'. OR. @

O30E CA0332; 0122 LBNZ CP20 .. BRANCH IF EDF OR ERROR
0311 D4BAS3; 0123 CALL UCALL

0314 06:; 0124 DC GETSEC

0315 0007; 0125 DC (IOCBR)..READ ONE SECTOR

0317 D40419; 0126 CALL CKRERR

031A FBO2BE; 0127 A. 1 (NOTEOF)->TMPRG1. { .. CHECK FOR EOF OR DISK ERROR
031D FBA3AE; o128 A. O(NOTEOF)->TMPRG1. O

0320 EE; 0129 SEX TMPRG1

0321 A4EF1; 0130 @TMPRG1'!' . OR. @

0323 CA0332; 0131 LBNZ CP20 .. BRANCH IF ERROR ON READ
0326 DAB4353; 0132 CALL UCALL

0329 10; 0133 DC PUTSEC

032A 002B; 0134 DC (10CBW1)..WRITE SECTOR TO FILE #1
032C D40443; 0139 CALL CHWIER

032F C00305: 0136 LBR CP10

102 User Manual for the RCA MicroDisk Development System MS2000

0332 D4B4353, 0137 CP20 CALL UCALL

03335 02; 0138 DC CLOSE

0336 0007; 0139 DC (IOCBR)..CLOSE OUT FILES

0338 D40419; 0140 CALL CKRERR

033B D4B433; 01414 CALL UCALL

O33E 02; 0142 DC CLOSE

O33F 002B; 0143 DC (10CBW1)

0341 D40443; 0144 CALL CMWIER

0344 D4B453; 0145 CALL UCALL

0347 1E; 0146 DC CDENT

0348 0147 ..

0348 ; 0148

0348 0149 ..

0348 ; 01350 .. OPEN SUBROUTINE

0348 ; 0151 .

0348 ; o152 ..

0348 D403Cs; 0133 OPENR CALL IOCBIN

034B 0007; 0154 DC (IOCBR) .. INITIALIZE I0CB
034D D4BA33; 01353 CALL UCALL

0350 12; 0136 DC CREAD

0351 024F; 0157 DC (LINEBF)

0333 30; 0158 DC 80.. INPUT FILENAME

0354 D4B433; 0139 CALL UCALL

0357 24; 0160 DC SRNAM

0338 029F; 0161 DC (PACKET)..PUT FILENAME INTO 10CB
035A FBBA4BE; 0162 A. 1 (SRNERR)->TMPRG1. 1 .. TEBT FOR ERROR
033D FB832AE; 0163 A. O(SRNERR)->TMPRG1. O

03460 OE; 0164 @TMPRG1

0361 C2036D; 0163 LBZ OPRT13 .. BRANCH - IF NO ERROR
03464 D4B453; 0166 OPRT12 CALL UCALL

0367 14; 0167 DC TYPE

0368 02D6; 0148 DC (RETYPE)

036A C00348; 0169 LBR OPENR .. REDO NAME
034D D4BA33: 0170 OPRT15 CALL UCALL

0370 00; 0171 DC OPEN

0371 0007; 0172 DC (I10CBR).. OPEN FILENAME

0373 FBOOBF; 0173 A. 1 (IOCBR+1)->10CBRG. 1

0376 FBOBAF; 0174 A. 0(10CBR+1)->10CBRG. O

0379 OF; 0175 @10CBRG

037A C20386; 0176 LBZ OPRT30 .. BRANCH IF NO ERRORS
037D D4B433; 0177 CALL UCALL

0380 28: 0178 DC CDERR

0381 0007; 0179 DC (IOCBR).. OTHERWISE PRINT OUT MESSAGE
0383 C00364; 0180 LBR OPRT12

0386 D3 0181 OPRT30 EXIT

0387 o182 ..

0387 0183 ..

0387 ; 0184 .. WRITE OPEN SUBROUTINE

0387 0185 ..

0387 ; 0186 ..

0387 D403Céh; 0187 OPENW CALL IOCBIN

038A 002B; 0188 DC (IOCBW1) .. INITIALIZE 10CB
038C D4B4353; 0189 CALL UCALL

038F 12 0190 DC CREAD

0390 024F; 0191 DC (LINEBF)

0392 50 0192 DC 80.. INPUT FILENAME

0393 D4B4353; 0193 CALL UCALL

0396 24; 0194 DC SRNAM

0397 029F; 0195 DC (PACKET)..PUT FILENAME INTO 10CB
0399 FBB4BE; 0196 A. 1 (SRNERR)->TMPROG1. 1 .. TEST FOR ERROR
039C FB32AE; 0197 A. O(SRNERR)->TMPRG1. 0

O39F OE; 0198 @TMPRO1L

03A0 C203AC; 0199 LBZ OPWT1S .. BRANCH IF NO ERROR
03A3 D4B453; 0200 OPWT12 CALL UCALL

03A6 14; 0201 DC TYPE

03A7 02Dé; 0202 DC (RETYPE)

03A9 €00387; 0203 LBR OPENW

03AC D4BA33; 0204 OPWT15 CALL UCALL

03AF 00; 0205 DC OPEN

03BO 002B; 0206 DC (10CBW1) ..OPEN FILENAME

03B2 FBOOBF; 0207 A. 1 (10CBW1+1)->I0CBRG. 1

03B3 FB2CAF; 0208 A. O(I0CBW1+1)->10CBRG. O

03B8 OF; 0209 @I0CBRG

03B9 C203C3; 0210 LBZ OPWT30 .. BRANCH IF NO ERRORS
O3BC D4B433; o211 CALL UCALL

O3BF 28; o212 DC CDERR

03CO 002B; 0213 DC (10CBW1)..ELSE PRINT OUT MESSAGE
03C2 CO03A3: 0214 LBR OPWT12

03C5 DS; 0215 OPWT30 EXIT

03Cé6 o216 ..

03Cé6 0217

03Cs ; o218

Appendix E. Sample Program lllustrating User Functions 103

03C6 o219 .. I0OCB INITIALIZE ROUTINE

03Cé6 ; 0220 ..

03C6 0221 .

03C6 446BC) 0222 10CBIN @R6!->IOCBPT. 1 .. POINT RF @ 10CB

03C8 46AC; 0223 @R6!->10CBPT. O

03CA BCFCO9AE; o224 IOCBPT. O+WRITEP->TMPRG1. O .. ADVANCE POINTER TO WRITE PARM.
O3CE 9C7COOBE; 0225 I0CBPT. 1+"0->TMPRO1. 1)
03D2 FB8003E; 0226 0->@TMPRO1 .. INIT. WRITE PARAMETER
03D% 1E; 0227 INC TMPRG1

03Dé 3E; 0228 ->@TMPRG1

03D7 1E; 0229 INC TMPRG1 .. POINT T1 @ UNIT NO.
0308 SE; 0230 ->@TMPRO1 .. DEFAULT OF 0

03D9 1E; 0231 INC TMPRG1

03DA FB09AD; 0232 9->TMPRG2. 0

03DD FB203E; 0233 LOOPIW SPACE->@TMPRO! .. BLANK OUT FILENAME & EXTENSION
O3EO0 1E; 0234 INC TMPRO1

O3E1 2D; 023% DEC TMPRG2

03E2 8D 0236 TMPRG2. O

O3E3 CAO3DD; 0237 LBNZ LOOPIW

03E6 BEFCO3AE; 0238 TMPRG1. 0+3->TMPRG1. 0 .. POINT T1 @ FILE DEF.
03EA 9E7COOBE; 0239 TMPRG1. 1+"0->TMPRG1. 1

O3EE FBOR3E; 0240 2->@TMPRG1 .. INIT TO ASCII FILE
O3F1 BEFCO7AE; 0241 TMPRG1. 0+7->TMPRGL. O .. POINT T1 @ DEV. MNUMONIC
O3F5 9E7COOBE; 0242 TMPRG1. 1+"0->TMPRG1. |

O3F9 FB445E; 0243 ‘D’->@TMPRG! .. SET DEVICE TO DISK
O3FC 1E; 0244 INC TMPRG1

O3FD FB4BSE; 0243 ‘K ’->@TMPRG1 .. 10CB INITIALIZED

0400 FBO2BD; 0246 A. 1 (PACKET)->TMPRG2. 1 .. SETUP SRNAM PACKET
0403 FB9FAD; 0247 A. O(PACKET)->TMPRG2. O

0406 FB025D; 0248 A. 1 (LINEBF)->@TMPRG2 .. SETUP INPUT PARAMETER
0409 1D; 0249 INC TMPRG2

040A FB4FSD; 0250 A. O(LINEBF)->@TMPRG2

040D 1D; 0231 INC TMPRGR

040E 1D; 0232 INC TMPRG2

040F BEFF13593D; 0253 TMPRG1. 0-21->@TMPRGR2 .. SETUP OUTPUT POINTER
0413 2D; 0234 DEC TMPRG2

0414 9E7FO0SD; 0253 TMPRG1. 1 -"0->@TMPRG2

0418 DS3; 0256 EXIT .. RETURN FROM ROUTINE
0419 ; 0257 ..

0419 ; 0258

0419 ; 0259 ..

0419 ; 0260 .. THESE ROUTINES CHECK FOR DISK ERRORS AND TAKE THE
0419 0261 .. APPROPRIATE ACTION.

0419 ; 0262 .

0419 ; 0263

0419 ; 0264 ..

0419 FBOOBE; 0265 CKRERR A. 1 (IOCBR+1)->TMPR@1.1 .. POINT Ti1 TO READ STATUS
041C FBOBAE; 0266 A. O(IOCBR+1)->TMPRG1. O

041F OEFBC9; 0267 @TMPR@1. XOR. IEOF .. TESBT FOR END OF FILE
0422 C20439; 0268 LBZ CKR10 .. BRANCH IF EOF

0425 OE; o269 @TMPRG1 .. TEST FOR ERROR

0426 C20442; 0270 LBZ CKR20 .. BRANCH NO ERROR

0429 FBO2BE; 0271 A. 1 (ERRFLG)-DTMPRG1. 1

042C FBAAAE; 0272 A. O(ERRFLG)->TMPRG1. O

042F FB015E; 0273 1->@TMPRG1 .. SET ERROR FLAG

0432 D4B4353; 0274 CALL UCALL

0435 28; 0275 DC CDERR

0436 0007; 0276 DC (IOCBR)

0438 DS3; o277 EXIT

0439 FBO2BE; 0278 CKR10 A. 1(NOTEOF)->TMPRG1. 1 .. SET NOT EOF FLAQ

043C FBA3AE; 0279 A. O(NOTEOF)->TMPR@1. O

043F FB013E; 0280 1->@TMPRG1

0442 D3; 0281 CKR20 EXIT

0443 ; o282 ..

0443 0283

0443 ; o284 ..

0443 ; o285 .. CHECK WRITE ERROR FOR FILE #1

0443 o286 ..

0443 ; 0287

0443 ; o288 ..

0443 FBOOBE; 0289 CKWIER A. 1(IOCBW1+1)->TMPRG1.1 ..POINT T1 @ STATUS
0446 FBRCAE; 0290 A. O(I0CBW1+1)->TMPRGL. O

0449 OE; 0291 @TMPROG1

044A C2045C; 0292 LBZ CKW110 .. BRANCH IF NO ERROR
044D FBO2BE; 0293 A. 1 (ERRFLG)->TMPROG1. 1

0450 FBA4AE; 0294 A. O(ERRFLG)->TMPRG1. O

0453 FB015E; 0295 1->@TMPRG1 .. SET ERROR FLAG

04546 D4B453; 0296 CALL UCALL

0459 28; 0297 DC CDERR

045A 002B; 0298 DC (10CBW1)

043C DS; 0299 CKW110 EXIT

043D ; V300

104 User Manual for the RCA MicroDisk Development System MS2000

043D ; 0301 END BEGIN
0000
$U0000

CROSS REFERENCE LISTINGEG

SYMBOL ADDR DEF REFERENCES

BEGIN 0000 v 0301

CDENT O01E 0040 0146

CDERR 0028 0035 0178 0212 0275 0297

CKR10 0439 0278 0268

CKR20 0442 0281 0270

CKRERR 0419 02635 0126 0140

CKW110 043C 0299 o292

CKWIER 0443 0289 0135 0144

CLOSE 0002 0039 0138 0142

CP10 0305 0118 0136

CP20 0332 0137 0122 0131

CREAD 0012 0032 0136 0190

DEVICE O01F 00353

ENDBUF 0007 0051

ERRFLG 02A4 0083 0271 0272 0293 0294

FILEDF 0018 0054

GETSEC 0006 0037 0124

1EOF 00C9 0083 0267

*INPBUF 004F 0073 0064 0065 0070 0071

INPMSQ O2A3 0091 0112

IOCBIN 03Cé6 0222 0153 0187

I0CBPT 000C 0087 0222 0223 0224 0225

I0CBR 0007 0061 0123 0139 0154 0172 0173 0174 0179 0265
0266 0276

I1I0CBRG O0OF 0086 0173 0174 0175 0207 0208 0209

10CBW1 002B 0067 0134 0143 0188 0206 0207 0208 0213 0289
0290 0298

LINEBF 024F 0074 0157 0191 0248 0250

LOOPIW 03DD 0233 0237

NOTEOF 02A3 0081 0118 0119 0127 0128 0278 0279

OPEN 0000 0036 0171 02095

OPENPR 0000 0048

OPENR 0348 0153 0113 0169

OPENW 0387 0187 0117 0203

OPRT12 0364 0166 0180

OPRT13 036D 0170 0165

OPRT30 0386 0181 0176

OPWT12 03A3 0200 o214

OPWT13 03AC 0204 0199

OPWT30 03C3 0213 0210

PACKET OR29F 0073 0161 0195 0246 0247

PUTSEC 0010 0038 0133

RETYPE o2Dhé 0098 0168 0202

SPACE 0020 0036 0233

SRNAM 0024 0034 0160 0194

SRNERR B432 0042 0162 01463 0196 0197

START 02F3 0110 0023 0024

STARTB 0005 0050

STATUS 0001 0049

TMPRO1 O00E 0088 0118 0119 0120 0121 0127 0128 0129

0130 0162 0163 0164 0196 0197 0198 0224
0225 0226 0227 0228 0229 0230 0231 0233
0234 0238 0238 0239 0239 0240 0241 0241
0242 0242 0243 0244 0245 0253 0255 0265
0266 0267 0269 0271 0272 0273 0278 0279
0280 0289 0290 0291 0293 0294 0295
TMPRO2 000D 0089 0232 0235 02356 0246 0247 0248 0249

0230 0251 02352 0233 0234 0253

TMPRG3 000B 0090
TYPE 0014 0033 0111 0115 0167 0201
UCALL B4353 0041 0110 0114 0123 0132 0137 0141 0145

0155 01359 0166 0170 0177 0189 0193 0200
0204 0211 0274 0296

UNITNO 000B 0033

WRITEP 0009 0052 0224

WRTMG1 02C0 0093 0116

105

Appendix F
I/0 Group Assignments

The I/O group number is transmitted by the OUT1
instruction. The transmitted group number remains in
force until the next OUTI. Interim I/O instructions
OUT2 through OUT7 and INP 2 through INP7 will be
recognized only by those devices assigned to the current

group number.

External flags EF1, EF2, EF3, and EF4 are condi-
tioned by the group number, and change their meanings
as that number changes.

GROUP 1 - (0000 0001)5 - Terminal, Disk Printer

OouT2

OuUT3

OouTé6

INP2

INP3

EF1
EF4

Load data-terminal UART transmit-
ter-holding register

Load data-terminal UART control
register

RESERVED - Printer data out
(parallel interface)

Read data-terminal UART receiver-
holding register

Read data-terminal status register

Reserved for Printer
Data-terminal serial data in

GROUP 2 - (0000 0010)5 - Reserved for MOPS

OouT2

OouT3
INP2

INP3

Load MOPS UART transmitter-hold-
ing register
Load MOPS UART control register
Read MOPS UART receiver-hold-
ing register
Read MOPS UART status register

GROUP 4 - (0000 0100), - Reserved for PROM

Program

ouT2
ouT3
OouT4
OUTS
OouTé6
INP4

EF1

Low-order address bits to PROM
High-order address bits to PROM
Data to PROM

Control to PROM

Control to PROM

Read data from PROM

Switch S1 or PROM Programmer

Group 8 - (0000 1000) - Disk Controller

OouT4
OUTS
ouT?
INP4
INPS

EF3

Control byte to disk controller
Control byte to disk controller
DMA count to disk controller
Disk-controller status byte
Disk-controller results register

Disk-controller interrupt-identifier
flag

106

'M
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000

e e me e we e e e e e e Me e e e M e we e e M e e e e e e e e e S e S e S e e e e Ge e e W W e e e e S e S e e S S e e S

Appendix G

Utility Program (UT71) Listing

0001
0002
0003
0004

o T 3 3 3636 3 I 36 3 I 3 I I 3 I I 3T I 3 3 3 3 3 3 I I 3 34 TE I 3 I 36 36 I I I I I I I I I I I I I IR

. . NAME:
. . DATE:

0005 ..
0006 .

0007 ..
0008 . .
0009 ..
0010 ..
0011 ..
0012 ..
0013 ..
0014 ..
0015 ..
0016 .

0017 ..
0018 ..
0019 ..
0020 . .
0021 ..
o022 ..

0023 .

0024

0025 ..

0026

ooz28 . .

0029
0030
0031

0032 ..

0033
0034
0033
0036
0037
0038
0039
0040
0041
0042
0043
0044
00435
0046
0047
0048
0049
0050
0051
0052
0053

0054 ..

0055
0056
0057
0058
0039

0060

UT71, VER 0.0
8/2/83 CHANGED HLT FROM 76 TO 60 MSEC, FIXED WRITA 10/24/8

UT71 IS A MONITOR PROGRAM DESIGNED TO EXAMINE OR ALTER MEMORY,

TO BEGIN PROGRAM EXECUTION AT A GIVEN LOCATION, TO PROVIDE DISK,
TERMINAL, AND PRINTER INTERFACE ROUTINES., AND TO PROVIDE MEANS FOR
COMMUNICATING FROM TERMINAL TO DISK AND SYSTEM I/0. THE MONITOR
COMMANDS ARE INITIATED BY TYPING D, F, I, M, S, P, T, L, B, W, R,
'» OR ?. THE FUNCTIONS INCLUDE MEMORY DISPLAY <D>, FILL <F>,
INSERT <I>, MOVE <M>, AND SUBSTITUTE <S>, RUN PROGRAM <P>, SELF
TEST <T>, LOAD OPERATING SYSTEM FROM DRIVE O <L> OR ANY DRIVE <BD,
WRITE <W> OR READ <R> A SECTOR, AND WRITE <!> OR READ <?> AN I1/0
PORT. ALSO INCLUDED ARE THE STANDARD READ AND TYPE ROUTINES FOR
COMMUNICATION WITH THE USERS TERMINAL, AND A PARALLEL PRINTER
OUTPUT ROUTINE.

UPON STARTING UT71, THE CONTENTS OF ALL CPU REQISTERS EXCEPT RO
AND R1 ARE SAVED IN RAM AT #8CO0O0.

UT71 RESIDES IN ROM AT BOOO-87FF, AND MUST HAVE RAM AT B8800-8FFF
(BCOO-B8CFF IF DISK ROUTINES NOT USED.) *
UT71 PROVIDES MEANS FOR FORCING KEYBOARD READS TO GO TO A COMMAND
FILE INTERPETER INSTEAD.

oo BN I 33 3 6 3 T3 3 U 3 I3 T3 3 I I I I3 I 3 I I I I I 3 I I I IR RY

SYSTEM EQUATES, CONSTANTS & OFFSETS

oo RT3 3 b 36 b b3 3 33 30 3 33 T 3 I I I I NI I T I T I I I I A I I I I I I I I I I A
0027 ..

CFREAD EGU BFFDH

SP EQU OO2H

PC EQU 003H
CALL EQU 004H
RETN EQU OOSH
LINK EQU 00&H
TMPRG1 EQU 007H
TMPRG2 EGQU 008H
TMPRG3 EQU OOSH
ADRPTR EQU 0O0O8H
CNT EQU O0AH
SRC EQU OOBH
TPTR EQU OOBH
DELAY EQU OOCH
PTER EQU OOCH
PTR EQU OOCH
ASL EQU OODH
DEST EQU OODH
AUX EQU OOEH
CHAR EQU OOFH

UT71 EQU 08000H

TOPSTK EQU OBCFFH

WRAM EQU OBC1FH

COMMAND FILE INTERPETER START ADDRESS (SEE READ ROUTINE)

REGISTER ASSIGNMENTS — GEN. & UTILITIES

.. BSTACK POINTER

.. PROGRAM COUNTER

.. CALL ROUTINE REGISTER

.. RETURN ROUTINE REGISTER

.. SUBROUTINE.DATA LINK

.. TEMPORARY REGISTER

.. TEMPORARY REGISTER

.. TEMPORARY REGISTER

.. HOLDS ADDR DURING STORE FROM TP

.. BYTE COUNT

.. SOURCE REGISTER

.. TABLE POINTER
. DELAY ROUTINE COUNTER

.. 10CB PTR

.. 10CB PTR

.. HEX INPUT REGISTER

.. DESTINATION REGISTER

.. AUX. 1 HOLDS BIT TIME CONSTANT
. STORES ASCI11 1/0

RAM / ROM ALLOCATIONS

ASCII CONTROL CHARACTERS

Appendix G. Utility Program (UT71) Listing

107

0000 0061

0000 0062 NULL EQU OOOH .. NULL

0000 0063 COMMA EQU 2CH . . COMMA

0000 0064 SEMCOL EQU 3BH .. SEMICOLON

0000 0065 BS EQU 008H .. BACK SPACE

0000 0066 LF EQU 00AH .. LINE FEED

0000 0067 CR EQU OODH .. CARRIAGE RETURN

0000 0068 EOF EGQU O13H .. END OF FILE

0000 0069 SPACE EQU 020H .. SPACE

0000 0070 CRLF EQU OODOAH .CR LF

0000 0071

0000 0072 .. CONSTANTS

0000 0073 BDSEL EQU OO01H ..PORT FOR TWO LEVEL 1/0 SELECT

0000 0074 LNECNT EQU OOFH ..#% OF BYTES PER LINE IN DISPLAY ROUTINE

0000 0079 LINES EGQU 014H .. NUMBER OF LINES PER SCREEN LOAD

0000 0076 PGMSRT EQU OO00SH .. START ADDRESS FOR INIT1

0000 0077 PROMPT EGQU O2AH .. PROMPT CHARACTER

0000 0078 ROWLEN EQU 028H ..#% OF CHARACTERS IN A ROW

0000 0079 TRMINL EQU OO1H .. SELECTS THE TERMINAL

0000 0080 VUARTBD EQU OO1H .. SELECTS THE UART

0000 0081 URTCTL EQU 0O03H .. WRITE TO UART CONTROL REGISTER

0000 0082 CTLWRD EQU O1DH .. UART CONTROL WORD

0000 0083 CHARAC EQU 002H .. PORT FOR VUART WORD OUT

0000 0084 STATUS EQU OO3H . PORT TO READ UART STATUS

0000 0085

0000 OQOBE . . HI23 33403004 3830 3098 303 4 08 3050 3 343635363 38 30300 303698 31038 90 30 3 30 3030 30000 38 9000 300630003 3690 3 30 304 340 000 304 00 00 30 00 30 0 S B 0
0000 0087 ORG VUT71

8000 0088

8000 71; 0089 DIS;

8001 00; 0090 DC O . . DISABLE

8002 FB8B80BO; 0091 LDI A. 1(UT71) ;PHI RO.. ESTABLISH PROGRAM COUNTER AT

8005 0092 .. 8000 HEX

8005 0093

8005 QOFPE . . S0 0830 0000 3050303030 30 3030 T30 33 3 ST 03 00 30 00 30 303643 3 30 30 300 0000 T 30 00 00 00 00 000 30 00 00 00 30 00 3 00 00 00 30 4 00 00 0 0 S S
8005 0095 .. REGISTER SAVE

8003 0096 .. SAVES CONTENTS OF THE CPU REGISTERS @#8C00.

8005 0097 .. CLOBBERS RO AND Ri (LEAVES 0‘S AS A REMINDER)

8009 QOB . . HHIA T2 I35 34 30010 38 35 3036 30 3635 333364 35 36303830 363 38 00 33 3 33000 300 3 000308 003000 3020 30 1300 S AU 340 2 003 0 S S
8005 0099

8005 FB88CB1; 0100 A. 1 (WRAM)-DR1. 1 .. TOP OF SAVE AREA

8008 FBiFA1L; 0101 A. O(WRAM)->R1.0

B800B E1: 0102 SEX R1

800C 21 0103 LOOP DEC R1 .. POINT BELOW WHERE SAVED R IS TO @O
800D FB8DO073; 0104 ODOH->@- .. LOAD SEP RO INSTRUCTION FOR RETURN
8010 B81F6CF; 0103 R1. 0/2; LSDF .. FOR EVEN VALUES OF R1

8013 F910; 0106 ORI 10H .. MAKE 9X INSTRUCTION

8013 FC81; 0107 ADI 81H .. OTHERWISE 8X INSTRUCTION

8017 31.: 0108 ->@R1 .. STORE FOR EXECUTION

8018 F33AR6; 0109 XOR; BNZ UT71A .. LEAVE IF NO RAM THERE

801B D1; 0110 SEP R1 .. G0 EXECUTE

801C 73; o111 ->e- .. AND STORE RESULT

801D B81FFO33A0C: 0112 R1. 0-3; BNZ LOOP ..LOOP FOR REGISTERS F - 2

8022 73737351 0113 ->e-, @-, @, @R1 .FILL LOCATIONS FOR O AND 1 WITH O
8026 CO8381; 0114 UT71A LBR INIT

8029 01195 .

8029 0116 ORG UT71+002CH . PRESERVE START ADDRESS

802C 0117 .

802C DABOFE:; 0118 START CALL TIMALC

B02F 9EFAO1: 0119 AUX. 1; ANI O1H .. ECHO SET ?

8032 3241; 0120 BZ SCAN1 .. BRANCH IF YES

8034 0121 :

8034 O122 . . S350 33 A2 304536353005 0098 3 36 3 3 3 3 3330 3 303036353636 3620 90 3 33 3 3 33 S04 030 3630 00 06 3600 00 00 30 O SO0 A 0 S R R
8034 0123 .. OUTPUT THE UTILITY PROMPT

8034 O124 . | 3BT 0003003300630 00 36 3 3 33 303306 3030 30 3040 30 3 33030 340 3 S0 3 0 30 30 30 330 30 3 S 3 0 S S 0 S
8034 0125

8034 0126

8034 DA4B83ES:; 0127 PRMPT CALL TPOFF .. SEL GROUP 1

8037 DA483FO; 0128 CALL OSTRNG .. TYPE SCAN MODE ‘%’ PROMPT

803A ODOA; 0129 DC (CRLF)

803C 2A; 0130 DC PROMPT

803D 00; 0131 DC O

BO3E 0132

B803E (o} Rcic IR T2 T T T Y FEFFF PP re I YIS T2 S ST TS T2 22T P I IR T T2 AT LT I AT A2 22222 S22 L LS L L g
B803E 0134 .. MONITOR COMMAND INTERPRETER

B803E 0133 .. FETCHES THE ADDRESS FROM THE COMMAND TABLE AND SETS

B03E 0136 .. THE PROGRAM COUNTER TO IT

BO3E 0137 .. REG USED: PTR, CHAR, SP, ASBL

108

B03E
803E
803E
B803E
B03F
8041
8041
8043
8046
8048
B04A
804D
B04E
8050
8032
8056
8058
8038
803A
805A

-805C
805D
805D
805D
803D
803D
803D
B0SE
8060
8061
8063
8064
8066
8067
8069
B06A
B806C
804D
BO&F
8070
8072
8073
8075
8076
8078
8079
807VB
807C
807E
B07F
8081
8082
8084

3

J

i

D4;
B813E;

|

9F32;
FB835BAB;
93BB:
1B1B;
4B32835;
F3i
3A48;
BDAD:;
D4B1A220:;
2222;

i

4BBé;

’
4BAb;
DS;

5

- - e -

44;
82BD;
49;
83A7;
4D
82F7;
46;
8240;
33;
8099,
350;
829F;
54;
874E;
4C;
8405;
42;
8400;
57;
B8b67A;
52
8467C;
21;
B6E2;
3F;
8707;
00;

8083

8085
8085
8083
80835
8083
8085
8085
8085
8083
8088
808B
808C
B0BE
8090
80995
8096
8099
8099
8099
8099
8099
8099
8099

- e e m e

i

FBFFA2;
F88CB2;

Da;

83F0;

ODOA;
43552524F 52;
00;

COB2AD;

»

L

0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
01350
0131
0132
0133
0134
0153
01596
0137
0158
0159
0160

0161 .

0162
0163
0164
0169
0166
0167
0168
0169
0170
0171

0172
0173
0174
017%
0176
0177
0178
0179
0180
0181

0182
0183
0184
0185
0186
0187
0188
0189
0190
0191

0192

0193 .

0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209

0210 .

0211
o212

o213 ..
o214 ..

User Manual for the RCA MicroDisk Development System MS2000

oo TR 3E A b I I I I IS I I I I I I I A I A I B I I BN I B IR R

SCNLTR SEP CALL;

DC (READ)
SCAN1 CHAR. 1->@SP
A. O(TAB2-2)->TPTR. 0
PC. 1->TPTR. 1
INC TPTR; INC TPTR
LDA TPTR: BZ ERROR
XOR
BNZ SCAN
=>ASL. 1; =>ASL. O
CALL TYPE&;DC ‘
DEC SPiDEC SP

SCAN

LDA TPTR; PHI LINK

LDA TPTR; PLO LINK
SEP RS

. READ COMMAND (LEAVES CHAR.

.. GET INPUT,
. INITIALIZE TABLE POINTER

IND)

STORE FOR COMPARE

..PT TO NEXT (FIRST) ENTRY
.. ERROR IF END OF TABLE

.. LOOK FOR MATCH

..LOOP IF NOT

.. ZERO CHARACTER REGISTER
.. SPACE STARTS COMMAND
..FAKE 1T FOR THE RETURN
..PICK UP COMMAND ADDRESS
.. AND TRANSFER TO THE

.. SUBROUTINE BY EXECUTING
. A RETURN INSTRUCTION
..P=3, X=2, R4 ; SEP CALL;,,R3 i RETURN, R2=#8CFF

oo BRI G At A I I I I I I I I I I3 I I I AT A I I e I I I I I I I B I A IS I Y

COMMAND TABLES

R AL I 2L I ISRt LRSI LIRS ISl Sttty

TAB2 DC ‘D’
DC (DISPLY)
DC ‘I’
DC (INSERT)
DC ‘M’
DC (MOVE)
DC ‘F’
DC (FILL)
DC ‘S’
DC (SUBST)
DC ‘P’
DC (RUN)
DC ‘T’
DC (TEST)
DC ‘L’
DC (LOAD)
DC ‘B’
DC (BOOT)
DC ‘W’
DC (WDISK)
DC ‘R’
DC (RDISK)
DC ‘'’
DC (OUTPORT)
DC ‘7’
DC (INPORT)
DC O

.. MEMORY DISPLAY

. INSERT INTO MEMORY

.MOVE A BLOCK OF MEMORY
.FILL A BLOCK OF MEMORY

. BYTE SUBSTITUTION

.RUN A USER PROGRAM

.RUN MONITOR SELF TEST

. LOAD OPERATING SYSTEM FROM DRIVE O
. LOAD SAME FROM ANY DRIVE
.UTILITY DISK WRITE
.UTILITY DISK READ
.UTILITY OUTPUT TO PORT

.UTILITY INPUT FROM PORT

R X2 XTI RIS IR eIt S I IS S eI I it L)

.. REG USED: CHAR

UTILITY ERROR MESSAGE
NOTE: ENTRY HERE RESETS STACK TO TOP

AR LISt SIS S Sl sttt sl

ORG UT71+0085H
ERROR LDI A. O(TOPSTK);PLO SP
LDI A. 1(TOPSTK);PHI SP
SEP CALL;
DC (OSTRNG)
DC (CRLF)
DC ‘ERROR’
DC O

PRMPT1 LBR RENTER

AR LTI LRI IS SR AL Il e Sl s s i il st d]

START OF SUBROUTINES

e L2 2T ITITILLLI IS LS LA L s iRl I Lt ISRl s sl

MONITOR SUBSTITUTE FUNCTION
DISPLAYS THE FIRST BYE FROM THE ADDRESS GIVEN FOLLOWED

Appendix G. Utility Program (UT71) Listing 109

8099 o219 .. BY A HYPHEN. IF A HEX PAIR IS ENTERED FOLLOWED BY A SPACE,
8099 o216 .. IT 1S SUBSTITUTED FOR THE BYTE DISPLAYED., IF A SPACE IS
8099 o217 .. ENTERED THERE IS NO CHANGE. IN EITHER CASE THE DATA BYTE FROM
8099 o218 .. THE NEXT ADDRESS WILL THEN BE DISPLAYED. THE ROUTINE 1S ENDED
8099 0219 .. BY ENTERING A RETURN.

8099 0220 ..REG USED: ASL., SRC, CHAR

8099 [o-7-3WNNR T 2 T TEFFFF T e YT I IR T T IS TSI SIS ST I A IS L2 I I 223222 2 2 L)
8099 0222

8099 DA4; 0223 SUBST SEP CALL;

809A B82FO; 0224 DC (READHX) .. INPUT ADDRESS

809C 9DBB; 02235 GHI ASL:PHI SRC .. SAVE START ADDRESS

B809E BDAB:; 0226 GLO ASL;PLO SRC

B80A0 o227

B80A0 9FFBOA; 0228 DECODE GHI CHAR; XRI LF .. FIRST NON-HEX MUST BE

B80A3 32AF; 0229 BZ ADDOUT .. A LINEFEED OR

B80AS FBO7: 0230 XRI OO7H . TERMINATION OR

B0A7 3296: 0231 BZ PRMPT1

80A9 FB2D; 0232 XRI O2DH . A SPACE

B0AB 32B7; 0233 BZ OLDDTA

B80AD 3083; 0234 BR ERROR . ELSE ERROR

BOAF 0235

BOAF D4; 02346 ADDOUT SEP CALL;

80B0 83F0; 0237 DC (OSTRNG);

80B2 OD; 0238 DC CR

80B3 00; 0239 DC O

80B4 D4; 0240 SEP CALL;

80B5 80CD:; 0241 DC (OUT1)

80B7 0242

80B7 DC; 0243 OLDDTA SEP DELAY;

80B8 17; 0244 DC O17H .. WAIT TO FINISH READ

B80B9 OBBF; 0245 LDN SRC; PHI CHAR . STAY ON SAME LINE

80BB D4; 0246 SEP CALL;

80BC B1AE; 0247 DC (TYPE2) . HEX OUTPUT

B80BE DA&; 0248 SEP CALL:;

80BF B3FO0; 0249 DC (DSTRNG) . OUTPUT A HYPHEN

80C1 2D; 0250 DC ‘-'

80c2 00; 0251 DC O

80C3 OBAD; 0252 LDN SRC; PLO ASL . COPY DATA FROM CELL INTO ASL
80CS 0253

80CS5 D4: 0254 GETDTA SEP CALL;

80C6 B82FO; 02335 DC (READHX) .. GET ANY CHANGE

80C8 B8D3B; o236 GLO ASL; STR SRC .. RESTORE THE DATA INTO THE CELL
80CA 1B; o237 INC SRC .. OPEN THE NEXT CELL

80CB 30A0: o238 BR DECODE . EXAMINE INPUT

80CD 02359

80CD DC: 0260 0UT1 SEP DELAY:;

80CE 17; 0261 DC O17H

B80CF 9BBF; 0262 GHI SRC; PHI CHAR .ROUTINE TO OUTPUT A HEX PAIR
80Dt D4; 0263 SEP CALL:;

80D2 B1AE; 0264 DC (TYPE2) . AND A SPACE

80D4 BBBF: 0265 GLO SRC; PHI CHAR

80D4& D4; 066 SEP CALL;

80D7 B1AE; 0267 DC (TYPE2)

80D9 DA4; 0268 SEP CALL;

80DA 83FO0; 0269 DC (OSTRNG);

80Lc 20; 0270 DC SPACE

80DD 00; 0271 DC O

B80DE D3; 0272 SEP RS

B80DF 0273

B80DF [oF7Z BRE T T LTI TFTFTT T T T FE T P A A2 2L ST LTS L S AL SRS L I IS AT AL A L2 A AL 2L L0
80DF 0275 .. USER CALLABLE ROUTINE TO GENERATE A DELAY. THE DELAY
B80DF 0276 .. CONSTANT IS PASSED AS AN INLINE PARAMETER. THE CALL
B80DF 0277 .. 1S MADE BY DOING A SEP RC

B80DF 0278 ..REG USED: DELAY, PC

80DF 0279 . . RIS 333 53T 3 633 T I I T I I 63 I TSI T I 02U I3 T 338 I I 60O I
80DF 0280

B8ODF o281 ORG UT71+00EEH

B0EE o282

B80EE D3i; 0283 DEXIT SEP PC

80EF 0284

B0EF 43 0285 DELAY!1 LDA PC

80FO0 o286

80F0 FFO1; 0287 DELAY2 GSMI 1

B0OF2 32EE: 0288 BZ DEXIT

80F4 30FO0; 0289 BR DELAY2

B80F6 0290

110

80F6
B0F6
BOF&
B0F6
B0F &
B80F&
BOF&
80FE
B0FE
8100
8102
8103
8104
8103
B106
8107
8108
8109
8109
810C
B810F
8119
811B
811D
811F
8120
8121
8124
8127
8129
812A
812D
B812E
B812E
B812E
812E
B812E
B812E
B812E
B812E
812E
812E
B12F
B812F
8131
8133
8133
8137
8137
8139
8139
813A
813B
813B
B13E
813E
B13F
8140
8140
8142
8145
8145
8147
8149
8144
814D
B14F
8151
8153
8155
8157
8159
8154
815B
B15B
815B
815C

}
}
i
}
H
i
H

]
93BC,
FBEF;
AC;

E3;

61;

01;

&3

i1D;

ERi

J
FBOOBE;
D483FO0;
ODOAS553543731;
2056435522030;
2E30;
ODOA:
2A;

00;
D4B813E;
9FFBOA;
322A;
D3
FBO1BE;
DS;

B

FCO7:
3337;
FCOA;
3369;

i

FCO0O0:

i

9F;

D3;

i
F80038;
93;

AF)

J

9EFE)
C38FFD;
J

6BF6;
3BAS;
bA;
FA7FBF;
3245,
SEF&;
335B;
6BFE;
3B33;
9F 32;
b2;

22;

i
8F;
3A39;

o291 ..
o292 ..
0293 ..
o294 . .

0293
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311

0312
0313
0314
03195
0316
0317
0318
0319
0320
0321
0322

0323 .
0324 ..
0325 ..
0326 ..
0327 .
o328 .

0329
0330
0331
0332
0333
0334
033%
0336
0337
0338
0339
0340
0341
0342
0343
0344
0343
0346
0347
0348
0349
03350
0351

0332
03353
0354
03355
0336
0357
0358
0339
0360
0361

0362
0363
0364
0365

User Manual for the RCA MicroDisk Development System MS2000

EXT T YX TR TR T I IS AL LR SRR AR I R e S R e AL I T
SETS UP POINTER TO THE DELAY ROUTINE, SET8& UP THE UART,
AND SETS UP ECHO (AUX. 1=0) OR NO ECHO (AUX. i=1).

FEIE U A 000U 0006 00 00 0000 00 00 00 00 0030 00000 0030 T 3000 30 00 00303000 T A 00 000 000001 0040 00 00 0000 00 00 0000 00 200 00 0 B0 0 B R 0

ORG UT71+00FEH

TIMALC GHI PC;PHI DELAY .. DELAY SUBROUTINE ADDRESS

LDI A. O(DELAY1)

PLO DELAY

SEX PC

OUT BDSEL.;

DC UARTBD .. SELECT GROUP 1
OUT URTCTL;

DC CTLWRD .. SET UP UART
SEX SP

ECHOTST 0->AUX. 1 .. DEFAULT TO ECHO (FULL DUPLEX)

CALL OSTRNG
DC CR,LF, ‘UT71 VER 0.0’ .. PRINT UT71 VERSION NUMBER

DC CR,LF
DC PROMPT .. TYPE INITIAL ‘#’ PROMPT
DC O
CALL READ ..WAIT FOR RESPONSE
CHAR. 1) XRI LF .. CHECK FOR LF
BZ NOECHO .. BRANCH IF YES
EXIT

NOECHO 1->AUX. 1 .. 8ET NO ECHO (HALF DUPLEX)
EXIT

R AL L2 IR I LI S i e I I ot et ettt 2 sl 2 sl]l

READS ONE BYTE INTO CHAR. 1. WHEN ENTERED
VIA READAH., ANY HEX INPUT IS ASSEMBLED
INTO ASL AND DF =1, ELSE DF = O ON RETURN.

.REG USED: CHAR & ASL (AUX.1 HOLDS ECHO AND READ SOURCE FLAGS)
R T2 T N R R R RS R R R R R R R S e ST R SRR R e Y S Y YT

ORG UT71+012FH

CKDEC ADI 7 ..CHECK FOR ASCII DECIMAL
BDF NFND .. OUT OF RANGE
ADI OO0AH .. BUBTRACT NET 30
BDF FND
NFND ADI O ..SET DF = O
REXIT GHI CHAR .. PUT INPUT INTO D
SEP RS .. & RETURN
READAH LDI O; SKP ..SKIP TO READ1 WITH D=0
READ GHI PC .. CONSTANT > ©
PLO CHAR .. SAVE ENTRY POINT
AUX. 142 .. IF COMMAND FILE I8 IN CONTROL.,
LBDF CFREAD ..G0 TO 1T, SKIP KEYBOARD READ
READ1 INP BTATUS; /2
BNF READ1
INP CHARAC .. READ CHARACTER
ANI O7FH; =>DCHAR. 1
BZ READ1 .. IGNORE IF ITS’'S A NULL
CFRET AUX.1;/2 .. COMMAND FILE RETURN POINT
BDF NEXT
RDWAIT INP BSTATUS; #2 ..ECHO IF ECHO BIT SET
BNF RDWAIT
CHAR. 1->@SP
OUT CHARAC
DEC SP
NEXT GLD CHAR .. CHECK ENTRY

BNZ REXIT .. ENTERED VIA READ

Appendix G. Utility Program (UT71) Listing 111

815E 0366

B8135E 9FFF41; 0367 CKHXE GHI CHAR; SMI 041iH ..CHECK FOR ASCII HEX
8161 3B2F; 0348 BNF CKDEC ..CHECK FOR ASCII DECIMAL
8163 FFO06; 0369 SM1 6 ..A THRU F

81465 3337; 0370 BDF NFND .. NO

8167 FC10; 0371 ADI O10H .. SUBTRACT NET 37
8169 0372

8169 FAOF73; 0373 FND . AND. OFH->@- .. SAVE TEMPORARILY
816C 9D; 0374 GHI ASL .. SHIFT DATA INTO ASL
816D FEFEFEFEY2; 0373 SHL; SHL; SHL; SHL; STR SP .. SHL 4X

8172 8D; 0376 GLO ASL

B173 F&F6F&F6; 0377 SHR; SHR; SHR; SHR

8177 FiBD; 0378 OR; PHI ASL

8179 8D; 0379 GLO ASL

B817A FEFEFEFE; 0380 SHL; SHL; SHL; SHL

817E 12; 0381 INC SP

817F F1AD; 0382 OR; PLO ASL

8181 FFO0O; 0383 SMI O ..8ET DF = 1

8183 3039: 0384 BR REXIT

8185 0385

8189 [o3c - TR 2 X T T TP T F ey ey T T2 LI T LT F T TT TS AL T LA AL LT LTI AL IR ALLL I LL L L]
8183 0387 .. TYPES ONE BYTE FROM CHAR. 1 AS AN ASCII

81893 0388 .. CHARACTER OR AS TWO HEX DIQGITS. LINE FEEDS
8183 0389 .. ARE FOLLOWED BY SIX NULLS. USES REGISTER
8185 0390 .. CHAR AND A STACK LOCATION.

8189 0391 .. @SP-1 HOLDS OUTPUT CHARACTER.

81895 0392 .. CHAR. O HOLDS THE NUMBER OF BITS (11) IN

8189 0393 .. ITS LOWER DIGIT AND THE FOLLOWING CODE IN
81895 0394 .. ITS UPPER DIGIT:

8183 0395 .. 0 - BYTE OUTPUT

81895 0396 .. 1 - FIRST HEX OUTPUT

8189 0397 .. 2 - LAST NULL OUTPUT

8185 0398 .. 8 - LF OUTPUT

818% 0399 ..

8189 0400 .. REG USED: CHAR (AUX.1 HOLDS ECHO AND READ SOURCE FLAGS)
8189 [0Y 1o} BENENE T3 ¥ T Y TP TRy T2 I T I T YT L AT LIS XA T AT LT AL T TL AT L AL AL L L 2L L L L
8185 0402

8189 0403 ORG UT71+40198H

8198 0404

8198 30A4; 0405 TYPED BR TYPE

8194 0406 ORG UT71+019CH

819C 0407

819C 30A0; 0408 TYPESD BR TYPES

B19E 0409

B19E 0410 ORG UT71+019FH

B819F 0411

819F D9; 0412 TEXIT SEP R3S

B81A0 0413

81A0 45; 0414 TYPES LDA RS .. PICK UP DATA

81A1 38; 0415 SKP

81A2 0416

81A2 46; 0417 TYPE6 LDA Ré& .. PICK UP DATA

81A3 38; 0418 SKUP

81A4 0419

81A4 9F73; 0420 TYPE GHI CHAR; ->@- .. KEEP A COPY

81A&6 FBOA; 0421 XRI LF .. 18 IT A LINE-FEED ?
81A8 3ACO; 0422 BNZ TY2

81AA F880; 0423 LDI O8OH ..#% BITS ADI # NULLS
B1AC 30C2; 0424 BR TY3

B1AE 9FF&F&F6F6; 0425 TYPER2 GHI CHAR; SHR; SHR; SHR; SHR

81B3 FCFé6; 0426 ADI OF6H .. CONVERT TO HEX

81B3 3BBY9:; 0427 BNF TY1 ..1IF A OR > ADD 37
81B7 FCO7; 0428 ADI 7

B81B9 0429

81B9 FFC&73; 0430 TY1 SMI OCéH; ->@- .. ELSE ADD 30

81BC FB810; 0431 LDI O10OH ..10 ADI NO. OF BITS
81BE 30C2; 0432 BR TY3

81CO 0433

81C0O FB800; 0434 TY2 LDI O ..NO OF BITS

81C2 0435

B81C2 AF; 0436 TY3 PLO CHAR

81C3 04357

81C3 6BFE:; 0438 BEGIN INP STATUE; #2

81CS 3BC3: 0439 BNF BEGIN

81C7 12 0440 INC SP ..PT BACK TO CHARACTER
81C8 62; 0441 OUT CHARAC

81C9 22; 0442 DEC SP

112

User Manual for the RCA MicroDisk Development System MS2000

81CA 0443

B81CA BFFCFOAF; 0444 NXCHAR GLO CHAR;: ADI OFOH; PLO CHA

B1CE 3B9F; 04453 BNF TEXIT .. SEP RS IF NO MORE
81D0 FF10; 0446 SMI O10H .. TEST FOR ALTERNATIVES
81D2 329F; 0447 BZ TEXIT .. TYPED LAST NULL

81D4 3BDA; 0448 BNF HEX1 .. TYPED FIRST HEX

81D6 FB00; 0449 LDI O . TYPED LF OR NULL

81Dp8 30ES: 0430 BR HEX3

81iDA 04351

81DA 9FFAOF; 0432 HEX1 GHI CHAR; ANI OOFH . GET 2ND HEX DIGIT
81DD FCFé6; 0433 ADI OF6&6H .. CONVERT TO HEX

81DF 3BESI; 0434 BNF HEX2 .. IF A OR MORE,

81E1 FCO7; 0435 ADI 7 . ADD NET 37

81E3 04356

B81E3 FFCé; 0437 HEX2 SMI OC6H .. ELSE ADD NET 30

B81ES5 0458

B1ES 73; 0459 HEX3 ->e- . AND SAVE

B81E6 30C3; 0460 BR BEGIN

B1EB 0461

81E8 0462

B1E8 [oY Y3 HENE 2 2 2 T TY FEFFRTT Y Ty P2 I T2 L I 22T RTIS LS I 2T 2SS AT IF I AT IS AT L LAY T
81E8 0464 . . INPUT OPTION

B1EB 0445 . . ALLOWS ENTRY OF EITHER STARTING AND ENDING
B1EB 0466 . . ADDRESSES OR BYTE COUNT. SEP R9S WITH THE
B1ES 04467 . . STARTING ADDRESS IN REG SRC AND THE BYTE

B81EB 0448 . . COUNT IN REG CNT. RETURNS WITH DF =1

81E8 0469 . . IF SYNTAX ERROR EXISTS.

B1EB 0470 . . REG USED: ASL., SRC, CHAR, CNT

B1ESB (7 VAR T T T YR rrwmrr e e TR I P T AT LT TS T E TR AT RT R T TP IL LS AL L L AT TR YT
B1EB 0472

B1ES 0473 ORG UT71+0200H

8200 0474

8200 D4; 0475 OPTION SEP CALL;

8201 B82FO0; 0476 DC (READHX) .. @ET THE STARTING ADDRESS
8203 9DBB; 0477 GHI ASL; PHI SRC . AND SAVE 1IT

8205 B8DAB: 0478 GLO ASL;PLO SRC

8207 FBOOADBD; 0479 LDI O;PLO ASL;PHI ASL . CLEAR THE INPUT REG.
820B 9FFB20; 0480 GHI CHAR; XRI SPACE . FIRST NONSMI HEX MUST
B20E 3231; 0481 BZ CNTIN ..BE A SPACE OR

8210 FBOD:;: 0482 XR1 OODH .. A HYPHEN

8212 3A44; 0483 BNZ PRMPT2 . ELSE SYNTAX ERROR
8214 D4; 0484 SEP CALL;

8215 B2FO0; 0485 DC (READHX) . EXPECT ENDING ADDRESS
8217 0486

8217 8B32; 0487 BYTCNT 6GLO SRC;STR SP . CALCULATE THE BYTE COUNT
8219 BDF7AA; 0488 GLO ASL; SM; PLO CNT

821C 9BS52; 0489 GHI SRC; STR SP

B821E 9D77BA; 0490 GHI ASL; SMB; PHI CNT

8221 333F; 0491 BDF EXITOK .CHECK FOR SRC < ASL
8223 0492

8223 8D52; 0493 INVERT 6GLO ASL: STR SP .. ELSE EXCHANGE THE CONTENTS OF
822% B8BAD:; 0494 GLO SRC; PLO ABL . BRC AND ASL

8227 02AB:; 0495 LDN SP; PLO SRC

8229 9D52; 0496 OGHI ASL; STR SP

8228 9BBD; 0497 GHI SRC; PHI ASL

822D O2BB:; 0498 LDN SP; PHI SRC

822F 3017; 0499 BR BYTCNT . RECALCULATE

8231 0500

8231 0501

8231 DA4; 0502 CNTIN SEP CALL;

8232 82FO0; 03503 DC (READHX) . INPUT THE BYTE COUNT
8234 8DFFO1AA; 03504 GLO ASL; SMI 1;PLO CNT

8238 9D7FOOBA; 03035 GHI ASL; SMBI 0; PHI CNT

B823C 333F; 0506 BDF EXITOK

B23E 1A; 0507 INC CNT

823F DY; 0308 EXITOK SEP RS .. RETURN WHEN DONE

8240 0509

8240 OB 10 . . S0 500300230 350363 3000 30363035 38 36 3 30 06363630 30 36 263630 63 3090 F 30030300000 000000 300 T4 00000 00 5030 3000 00 T 0000 0000 000 00 0 B A
8240 0311 .. FILL ROUTINE

8240 0312 .. LOADS MEMORY BEGINNING AT ADDRESS CONTAINED
8240 0313 .. IN SRC WITH DATA CONTAINED IN ASL. O FOR

8240 0514 . . THE NUMBER OF BYTES SPECIFIED BY CNT.

8240 03513 .. USER CALLABLE @ USRFIL.

8240 0516 .. REG USED: ASL., SRC, CNT ,CHAR

8240 OB17 . . HEREREIII TN T T T3 000063363000 3003030 3030 0 00 36 36 3630 300 3000 30 00 03 3000 000030 30 00 30 00 00 00 300000 30 00 000 3000 S 0 B4
8240 o518

8240 DA4; 03919 FILL SEP CALL;

Appendix G. Utility Program (UT71) Listing

113

. G0TO UT71 AND PROMPT
.POINT TO NEXT CELL

.. LOAD THE DATA; USER ENTRY PT.
"LOOP UNTIL COUNT = 0

AR LTI LIS SIS S S e st SRt R It ad S L il s sl s

.:**i**il&i}*&*l*!ll*i******{*i**{*i*i*{*{*i*ll{{&*’*i{i**{}}i’&”ii*.*li’.’&l
.. TEST THE RELATIVE POSITION
. OF SOURCE & DESTINATION

. RETURN IF THEY ARE EQUAL

.. ELSE TEST FOR UP OR DOWN
.DIRECTION OF THE MOVE

. DO THE MOVE DOWN AND

.. ADJUUST THE POINTERS
.REDUCE THE BYTE COUNT

.SET THE POINTERS TO THE

.EXIT DF=1 IF OVERFLOW

ADJUST THE POINTERS

SET DF=0 IF ACFFFF

o TR I It 3 I 3 3 3 3 9 3 3 3 I I 33 I I T 36 TSI I I T I B I I I IIEIF 3 I T I I I I I I I %

oL IR e I 3698 3 I 36 36 3 I A 3 6 3 3638 336 3 33 3 536 34 35 336 3 3¢ 4 36 I3 I3 I b I I 3036 I I I I I 3 3 I I I I

8241 8303; 0520 DC (READAD) . GET THE ADDRESSES
8243 D4; 0521 SEP CALL;

8244 B824B; 0522 DC (USRFIL) . CALL THE MOVE
8246 0523

8246 COB2AD: 0524 PRMPT2 LBR RENTER

8249 0525

8249 1B; 0526 NXTCEL INC SRC .

824A 2A; o527 DEC CNT . REDUCE BYTE COUNT
824B 8D5B; 0528 USRFIL ©GLO ASL; STR SRC

824D BA; 0529 GLO CNT

B24E 3A49; 0530 BNZ NXTCEL

8250 9A; 0531 GHI CNT

8251 3A49; 0532 BNZ NXTCEL

8253 DS: 0533 SEP RS .. EXIT THE CALL
8254 0534

8254 ; 0535

8254 0536 .. MOVE ROUTINE

8254 ; 0537 .. COPIES A BLOCK OF MEMORY FORM ONE CONTINUOUS AREA
8254 0538 .. TO ANOTHER CONTINUOUS AREA IN MEMORY. THERE IS NO
8254 0539 .. RESTRICTION AS TO THE DIRECTION OF THE MOVE AND THE
8254 ; 0540 .. AREAS MAY OVERLAP.

8254 0541 . REG USED: SRC, DEST., CHAR, & CNT

8254 0542

8254 ; 0543

8254 E2; 0544 USRMOV SEX SP

8255 8B52; 0545 GLD SRC; STR SP

8257 8DF7; 0546 GLO DEST; SM .

8259 3Ab61; 0547 BNZ DIRECT . NOT EQUAL!

8258 9B52; 0548 GHI SRC; STR SP

825D 9D77; 0549 GHI DEST; SMB

825F 329D; 0550 BZ USRBYE .EXIT TO CALLER
8261 0551

8261 8B52; 0552 DIRECT GLO SRC; STR SP

8263 B8DF7; 0553 GLO DEST; SM

8265 9BS52; 0554 GHI SRC; STR SP

8267 9D77; 0555 GHI DEST; SMB

8269 3378 0556 BDF MOVUP

824B OBSD; 0357 MOVDN LDN SRC; STR DEST .

826D BA; 0558 GLO CNT . AND CHECK IF DONE
B24E 3A73; 0559 BNZ MOVDN1

8270 9A; 0560 GHI CNT

8271 329D; 0961 BZ USRBYE .EXIT TO CALLER
8273 ; 0562

8273 1B1D; 0563 MOVDN1 INC SRC; INC DEST

8275 2A; 0564 DEC CNT .

82764 306B; 0965 BR MOVDN . FINISHED

8278 0566

8278 B8A52; 0567 MOVUP GLO CNT; STR SP .

827A BBF4AB; 0568 GLO SRC; ADD; PLO SRC . TOP OF MOVE AREAS
827D 9A52; 0569 GHI CNT; STR SP

827F 9B74BB; 0570 GHI SRC; ADC; PHI SRC

8282 B8A32; 0571 GLO CNT; STR SP

8284 8DFAAD; 0572 GLO DEST; ADD; PLO DEST

8287 9A52; 0573 GHI CNT;STR SP

8289 9D74BD; 0574 GHI DEST: ADC; PHI DEST

828C 3B90; 0575 BNF UP

828E 0576

828E 309E; 0577 ERRGO BR USRBYE+1

8290 0578

8290 OBSD:; 0579 UP LDN SRC; STR DEST .. DO THE MOVE UP
8292 BA; 0580 GLO CNT . AND CHECK IF DONE
8293 3A98; 0581 BNZ UP1

8295 9A; 0582 GHI CNT

8296 329D; 0583 BZ USRBYE .EXIT TO CALLER
8298 ; 0584

8298 2B2D2A; 0585 UP1 DEC SRC; DEC DEST:DEC CNT..

8298 3090; 0586 BR UP

829D 0587

829D Fé&; 0588 USRBYE SHR .

829E DS: 0589 SEP R5 ..EXIT TO CALLER
B29F 0590

829F 0591

829F 0592 .. STARTS A USER PROGRAM WITH SPECIFIED ADDRESS
B829F 0593 .. IN REGISTER O AND X=0.

829F 0594 ..REG USED: CHAR, ASL, RO

B829F 0595

829F 0596

114

829F
82A0
82A2
B82A4
B2A7
B82A7
B82A9
82AB
82AC
B82AD
82AD
82AD
B82AD
B82AD
82AD
82B0
82B3
B82B4
82B7
B82BA

B82BD

82BD
82BD
82BD
82BD
82BD
82BD
82BD
82BD
82BD
B82BE
82C0
82c2
82CS
82C3
82C6
82c8
82c9
82CA
B82CB
82¢CD

82CD

82¢CD
B2CE
8200
8201
82p2
8202
8204
8205
8207
8208
82DA
82DB
820D
82pD
B2DE
82E1
82E3
B2E4
B2ES
82E7
B2EB
82E9
82EB
82EB
B2EC
82EE
B82F0
82F0
82F0
82F0
82F0
B2F0
82F1
82F3
82F5

User Manual for the RCA MicroDisk Development System MS2000

D4;
B82F0;
FBOD:;
CAB08S5;

’
SDBO:;
8DAO;
EO;
DO

5

5

5

’
FB8BAAO;
FB882B0;
DO:
FB834A3;
FB8B80B3;
COB36F;

)
i
i
i
i
,
i

]
D4;
8200;
FBOD;
CABO8Y;
i

D4;
83F0;
0A;

00;

Da&;
80CD;
D4a;
83F0;
20;

00;

i
4BBF;
D4&;
81AE;
B8A;
3ADD:;
9A;
3246;

»

2A;
B8BFAOF;
3AEB;
D4;
83F0;
3B;

oD;

00;
30CS;

’

Fé6:
33D2;
30CD;

b

P

Da;
813B:;
33F0;
D3;

0597
0398
03599
0600
0601
0602
0603
0604
0605
0606
0607

0608 ..

0609
0610
0611
0612
0613
0614
0615
0616
0617
0618

0619 ..
0620 ..
0621 ..

0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
06335
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
06352
06353
0654
0655
0656
0657
0658
0659
0660
0641
0662
0663
0664
0665
0666

0667 ..

0668
0669
0670
0671
0672
0673

RUN SEP CALL;
DC (READHX) ..LOOK FOR STARTING ADDRESS
XRI CR .. FIRST NON-HEX MUST BE A
LBNZ ERROR .. CR, ELSE SYNTAX ERROR
RUN1 GHI ASL; PHI RO . GET THE ADDRESS
CLO ASL;PLO RO
SEX RO
SEP RO . AND GO!

BRI 2T X YR YT Ry Ry g R R R T R T Y I Ty
GENERAL REENTER ROUTINE
R 22 2 r 2 R T e e L Rl e e L e e e e Y]

RENTER LDI A. OCRENTR1):PLO RO
LDI A. 1(RENTR1);PHI RO
SEP RO

RENTR1 LDI A. O(PRMPT);PLO PC
LDI A. 1(PRMPT);PHI PC
LBR ENTER2

.. CAN BE ENTERED WITH X AND P
.. SET TO ANYTHING AND RESETS
.. ALL THE SCRT REGISTERS

B 22T TR YT I TR Y R R S R 2R I S e R S R S e i e
OUTPUT

FORMATS AND OQUTPUTS MEMORY DATA BEGINNING

AT THE ADDRESS IN REG SRC FOR THE NUMBER

OF BYTES SPECIFIED IN REG CNT

..REG USED: SRC, CNT, CHAR
R 2 22T R AT TR AL IR AR A A R e R e e e el e]
DISPLY SEP CALL;
DC (OPTION) .. GET STARTING ADDRESS
XRI CR .. TERMINATE WITH CR
LBNZ ERROR
OUTPUT SEP CALL;
DC (OSTRNG):
DC LF
DC O . START ON A NEW LINE
SEP CALL;
DC (0OUT1) .. OUTPUT THE ADDRESS OF THE
. CURRENTLY OPENED CELL
SPCOUT SEP CALL:
DC (OSTRNG)
DC SPACE
DC O
DATOUT LDA SRC; PHI CHAR .RETRIEVE THE CELL DATA
SEP CALL;
DC (TYPE2) .. AND OUTPUT 1IT
GLO CNT .. DETERMINE IF THE
BNZ NOTDON .. REQUESTED NO. OF BYTES
GHI CNT .. HAVE BEEN SENT
BZ PRMPT2 .GET A NEW COMMAND
NOTDON DEC CNT .DEC THE BYTE COUNT
GLO SRCi ANI LNECNT
BNZ SAMELN .END OF CURRENT LINE?
SEP CALL;
DC (OSTRNG)
DC ;'
DC CR
DC O
BR OQUTPUT
SAMELN SHR
BDF DATOUT .. WITHIN PAIR
BR SPCOUT . ELSE BETWEEN PAIRS

AR L 22 T R R AR R R R R S S S R I I R R e e R e S IR R R e e e e e Y
FILLS ASL AS LONG AS HEX DIGITS ARE ENTERED

R 2 L2 TR R R R TR R L e e e e S IR R R I I 2 L s]
READHX SEP CALL;
DC (READAH)
BDF READHX
SEP RS

Appendix G. Utility Program (UT71) Listing 115

82F6
82F6
82F6
82F6
82F6
82F&
82F6
82F7
82F7
82F8
B2FA
82FB
82FD
8300
8303
8303
8303
8303
8303
8303
8304
8306
8308
B830A
830C
830D
830F
8311
8313
8314
8314
8314
8314
8314
8314
8315
8317
8319
831B
831C
831C
831C
831c
831C
831C
831F
8322
8322
8324
8326
8327
8329
8328
8328
832¢C
832¢
832Cc
832c
832C
832c
832
832C
832¢C
832¢
832F
8331
8334
8336
8334
833c
833E
8341
8343
8346
8348
834B
834C

L R Y

D4&;
8303;
D4;
82%4;
C38085;
C08246;

FBEFAC;
F880BC;

’
46BF;
322B;
D4;
8198;
3022;

DS;

e e e e e e e e

’
9FFBOA;
3248;
9FFB13;
324C;
9FFBFF52;
349A;
6622;
9FFBOD;
3A48;
FBOABF;
3036;
FBO1F6;
DS;

Fé;

0674

(o T-yA-BE 2 2 22 T S R R R R ey e e R R e R R YR
0676 MOVE COMMAND

0677 CALLS USRMOV AND REQUESTS SRC&DEST ADDR'S

0678 . . NI I TSI AT I T3 ST I3 ST AT I T I T T I T BT BT 0N
0679

0680 DRG UT71+02F7H

0681

0682 MOVE SEP CALL;

0683 DC (READAD) .. GET SRCADEST ADDR’S

0684 SEP CALL;

0685 DC (USRMOV) .. DO THE MOVE

0686 LBDF ERROR .. ERROR IF OVER FFFF ON MOVE

0687 LBR PRMPT2 .. IF OK,GOTO UT71 PROMPT

0688

[o7-3-ANNNE 2 2 2 X S R X s R Y e e e I e e I e el
0690 SUBROUTINE TO GET THE ADDRESSES FOR OTHER ROUTINES

OOF L . | I I35 I35 3T I3 3516 I 3T 3T 3660 I I T3 T3 30T 36T 0036303030 36 06 3696 33033 S 36 30 3518 36 30 06 30 0