Suppose (2™, y*) is fixed point, linearized system is
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where u = r — 2™, v =y — y*. Jacobian matrix.

If fixed point for linearized system is not one of borderline cases,
linearized system give a qualitatively correct picture near (x*, y™).

Borderline cases can be altered by small nonlinear terms.
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B Example 6.3.1

» Consider

i=—1+a, §=—2.

» 3 fixed points: (0,0) (stable node), (1,0),(—1,0) (saddles)
by analyzing linearized system.

» Not borderline cases. Fixed points for nonlinear system
is similar to linearized system.




B Example 6.3.2

» Consider

&= —y+az(z® + y°), y =1z +ay(z® +y°).
» Linearized system predicts: (0,0) is a center for all a.
» In polar coordinates

7'“2&7“3, f=1.

» In fact, (0,0) is a spiral (stable if a < 0, unstable if @ > 0).

» Stars and degenerate nodes can be altered by small nonlinearities,
but their stability doesn’t change.
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B Hyperbolic Fixed Points and Structural Stability

» If only interested in stability

e Robust Cases:
Repellers (sources): Re(\), Re(Ao)> 0.
Attractors (sinks): Re(A1), Re(A9)< 0.
Saddles: A\ > 0, Ay < 0.

e Marginal Cases:
Centers: both eigenvalues are pure imaginary.
Higher-order and Non-isolated fixed points: at least one
eigenvalues 1s zero.

» If Re(\) # 0 for both eigenvalues, fixed point is hyperbolic.

» Hartman-Grobman Theorem: Local phase portrait near a
hyperbolic fixed point is topologically equivalent to phase portrait
of its linearized system.

» A phase portrait is structurally stable if its topology cannot
be changed by an arbitrarily small perturbation to the vector field.



B Lotka-Volterra Model of Competition
» Consider Rabbit (x) vs Sheep (y)

T =1z(3—1x—2y), y=y2—y—ux)
» Find fixed points: (0,0),(0,2),(3,0),(1,1).

» Compute Jacobian matrix and classify fixed points:
(0,0) (unstable node), (0,2),(3,0) (stable nodes), (1, 1) (saddle).

» Draw phase portrait. Basic of attraction for fixed points.

» Principle of competitive exclusion.
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