IMPORTANCIA DEL USO DE ADITIVOS EN LA CALIDAD Y ESTABILIDAD DE LOS ENSILADOS DE LEGUMINOSAS

A. MARTÍNEZ-FERNÁNDEZ¹, F. VICENTE¹, B. DE LA ROZA DELGADO¹, A. SOLDADO¹, J. GARCÍA², J.M. ALONSO² Y M. PELÁEZ².

admartinez@serida.org

1Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA) 33300 Villaviciosa (Asturias), España. ²Sociedad Asturiana de Servicios Agropecuarios S. L. (ASA). 33199 Granda, Asturias (España), España.

INTRODUCCIÓN

Los cultivos anuales de **leguminosas** utilizados para ensilar son una fuente barata de **proteína y almidón** para el ganado, y pueden mejorar la eficiencia de los sistemas de producción en las explotaciones lecheras, al reducir la necesidad de concentrados y mejorar la calidad dietética de la leche.

Uno de los problemas que más preocupan a los ganaderos a la hora de introducir leguminosas en la alimentación, es la **dificultad que tienen éstas para ensilar** debido a su escaso contenido en azúcares y elevada capacidad tampón, lo que les confiere una **baja ensilabilidad**.

Para solucionar esta limitación, es preciso utilizar **aditivos estimuladores de la fermentación específicos para leguminosas.** Preferentemente formulados con bacterias lácticas y azúcares, y, a ser posible, sin enzimas para evitar la producción de efluente.

OBJETIVO

Evaluar el efecto de la utilización de un aditivo biológico sobre la calidad nutritiva, fermentativa y estabilidad aeróbica de ensilados, elaborados con forraje procedente de monocultivos de leguminosas forrajeras, para su integración en raciones unifeed destinadas a la alimentación del vacuno lechero.

Innovación Sostenible en Pastos:

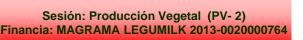
Hacia una Agricultura de Respuesta al Q

MATERIAL Y MÉTODOS

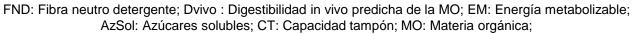
Distribución de las explotaciones lechera participantes en el proyecto Zona Costera central, Zona interior central y Zona costera Occidental

- Dosis de siembra: 150 kg de semilla por hectárea.
- Fertilización: Purines de la propia explotación.
- Momento cosecha: Principio de floración para los guisantes y vainas con grano para las habas (primavera de 2014).
- Elaboración de microensilados de laboratorio tras 24 horas de prehenificado con y sin aditivo.
- Aditivo: Biológico (LALSIL PS) a la dosis recomendada por el fabricante (10 g/t de forraje).
- Tiempo de fermentación: 60 días.

- Forraje verde: Ensilabilidad, valor nutritivo y aporte energético.
- Ensilados: Producción de efluente, parámetros nutritivos, fermentativos, aporte energético y estabilidad aeróbica.


Análisis estadístico

- Análisis de varianza (R Core Team)
- Tipo de forraje: Haba vs guisante
- Utilización de aditivo: Sí vs No



RESULTADOS 1

Valor nutritivo, digestibilidad, aporte energético y características de ensilabilidad de las leguminosas forrajeras en el momento de la cosecha.

Forraje	Proteína bruta %sms	FND %sms	Dvivo %	EM MJ/kgMS	AzSol %sms	CT megNaOH/kgMS
Haba forrajera	18,1	4,77	53,6	7,9	12,9	242
Guisante forrajero	23,4	41,3	77,9	11,1	9,5	250
Significación estadística	**	*	***	***	*	ns

%sms: datos referidos a materia seca residual; ***: p<0,001; **: p<0,01; *: p<0,05; ns: p>0,05

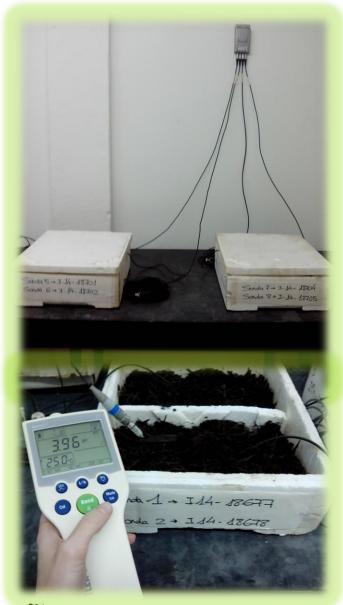
Producción de efluente, características nutritivas, fermentativas, digestibilidad y aporte energético de los microensilados de habas y guisantes en monocultivo, elaborados con y sin aditivo.

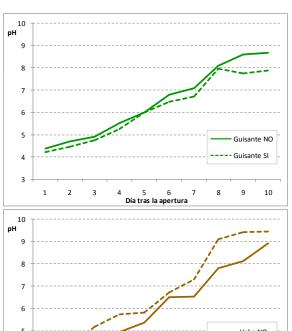
Forraje (F)	Hal	ba (H)	Guisante (G)		Significación estadística			
Aditivo (A)	Si	No	Si	No	rsd	(F)	(A)	FxA
Efluente (I/t de forraje)	20,88	14,17	20,34	21,97	40,65	ns	ns	ns
pH del jugo	3,73	3,89	4,21	4,37	0,126	**	***	ns
Materia seca (%)	22,45	21,66	25,52	25,55	5,361	ns	ns	ns
Cenizas (%sms)	9,01	8,58	10,53	10,31	0,948	***	ns	ns
Proteína bruta (%sms)	16,58	16,60	22,39	22,29	2,980	***	ns	ns
Fibra bruta (%sms)	32,26	32,59	26,71	26,46	3,691	***	ns	ns
Fibra neutro detergente (%sms)	53,50	54,18	38,30	38,23	4,061	***	ns	ns
Fibra ácido detergente (%sms)	41,16	41,98	33,99	35,18	4,268	***	ns	ns
Materia orgánica digestible (%)	67,37	67,76	55,32	53,65	2,646	***	ns	ns
Digestibilidad in vivo de la MO (%)	72,31	69,46	71,43	81,76	3,316	***	ns	ns
Energía metabolizable (MJ kg/MS)	10,52	10,16	11,66	11,74	0,491	***	ns	ns
NH ₃ (% sobre N total)	8,81	13,53	10,95	12,37	1,655	ns	**	ns
Ácido láctico (%sms)	8,87	10,83	7,53	8,46	2,107	ns	ns	ns
Ácido acético (%sms)	0,97	1,63	1,88	1,92	1,283	ns	ns	ns

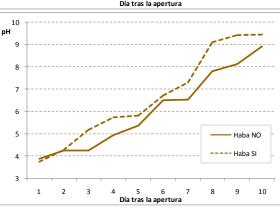
MO: Materia orgánica; %sms: datos referidos a materia seca residual; ***: p<0,001; **: p<0,01; ns: p>0,05

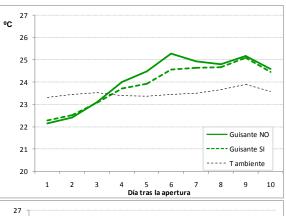
Sesión: Producción Vegetal (PV-2)

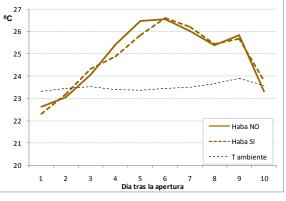
Financia: MAGRAMA LEGUMILK 2013-0020000764








RESULTADOS 2



Variación de temperatura (°C) y pH en el ensilado desde el momento de la apertura en función del tipo de forraje y de la utilización de aditivo.

CONCLUSIONES

La utilización de un aditivo biológico durante el proceso de fermentación de leguminosas forrajeras con elevado contenido en proteína, favorece el proceso fermentativo disminuyendo la amoniogénesis y controlando las fermentaciones secundarias, pero no muestra ningún efecto positivo con respecto a la estabilidad de los ensilados tras su apertura.

