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a b s t r a c t

Experimental observations have shown the size-dependent residual surface stresses on
spherical nanoparticles and their influence on the effective modulus of heterogeneous
nanostructures. Based on these experimental findings, this paper proposes a new interface
stress theory that considers the curvature effect on the interfacial energy. To investigate
this curvature-dependent interfacial energy, we use the Green elasticity theory to describe
the nonlinear constitutive relation of the interface at finite deformation, thus explicitly
demonstrating the curvature-dependent nature of the interface stress and bending
moment. By introducing a fictitious stress-free configuration, we then propose a new
energy functional for heterogeneous hyperelastic solids with interfaces. For the first time,
both the Lagrangian and Eulerian descriptions of the generalized Young–Laplace equation,
which describes the intrinsic flexural resistance of the interface, are derived from the
newly developed energy functional. This new interface stress theory is then used to
investigate the residual elastic field in a heterogeneous hyperelastic solid containing
interfaces. The present theory differs from the existing theories in that it takes fully into
account both the curvature-dependence of the interfacial energy and the interfacial
energy-induced residual elastic field in the bulk solid. Furthermore, the fundamental
equations of the interface are given in Lagrangian description, which are preferable when
considering the effects of residual interface stress, residual interface bending moment and
interface elasticity. Finally, two examples are presented to shed light on the significance of
this new interface stress theory. A more detailed analysis and applications of the new
theory will be presented in Part (II) of this paper.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Atoms at surfaces and interfaces experience a different local environment from atoms inside bulk materials, and the
physical states and equilibrium positions of such atoms will, generally, differ from those of the interior atoms. This
difference is the physical origin of the surface/interfacial energy and the surface/interface stress in solids and liquids, a topic
which has been fully studied by many researchers (e.g., Gibbs, 1906; Shuttleworth, 1950; Herring, 1953; Orowan, 1970;
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Murr, 1975; Cahn, 1978; Povstenko, 1993; Cammarata, 1994; Weissmuller and Cahn, 1997). In the Gibbsian formulation of
the thermodynamics of the surface/interface, the surface/interfacial energy represents the excess free energy due to the
existence of a surface/interface and is defined as the reversible work per unit area needed to create a new surface/interface.
When the surface/interface of a solid is deformed, the surface/interfacial energy will generally vary. The surface/interface
stress is associated with the reversible work per unit area needed to elastically stretch a pre-existing surface/interface. From
the above definitions, then it can be seen that the surface/interfacial energy and surface/interface stress have different
natures. For liquids, owing to the atomic mobility, the surface atoms increase during stretching since the interior atoms in
the liquid can flow freely to the surface of the liquid and therefore the magnitudes of the surface energy and the surface
stress (surface tension) are the same. The atomic mobility in solids, by contrast, is very low, and the total amount of the
surface atoms remains constant under elastic stretching; thus the surface stress of solids usually varies with deformation.
The relationship between the surface stress and the surface strain is given by the famous Shuttleworth–Herring equation
(Shuttleworth, 1950; Herring, 1951). As surfaces and interfaces have similar roles in continuum mechanics, we shall, for
expediency, use the word “interface” to refer to both of themwhen describing general principles and when there is no need
to differentiate two.

In recent years, tremendous progress has been made in nanotechnology owing to the promise it holds for the
engineering applications in micro-electro-mechanical systems and nano-intelligent devices. Research results have increas-
ingly shown that some important physical properties of the nano-structured materials, such as the elastic modulus, melting
temperature and yield strength, become size-dependent (Miller and Shenoy, 2000; Sun et al., 2002; Chen et al., 2006; Jing
et al., 2006; Zhang et al., 2010). Consequently, determining how to explain these interesting phenomena has been a key goal
in mechanics, material science and solid state physics. At the nanoscale, the size-dependent physical properties of materials
can be rationalized by invoking the concept of surface/interfacial energy, because the surface/interface-to-volume ratios of
the nano-structured materials are so remarkably large that the surface/interface effect must be taken into account.

Any investigation of the surface/interface effect on the heterogeneous nano-structured materials requires a compre-
hensive surface/interface theory in order to allow for understanding of the physical mechanisms of their fantastic properties
and also demonstrates how these are meaningful for engineering applications. A systematic theory describing the
mechanical behaviors of the material surfaces of solids was first established by Gurtin and Murdoch (1975, 1978) within
the framework of continuum mechanics. In their theory, the constitutive relation and equilibrium equation of the surface
are given. This work has been extended by Gurtin and his co-workers to take the thermal effects into account (Angenent and
Gurtin, 1989; Gurtin, 1988; Gurtin and Struthers, 1990). With the rapid developments in nanoscience and nanotechnology,
the Gurtin–Murdoch theory has been widely used to analyze the size-dependent elastic properties of nanomaterials and
nanostructures, including nanowires (Chen et al., 2006; Jing et al., 2006), nanofilms (Cammarata, 1994; Streitz et al., 1994a,
1994b; Dingreville et al., 2005; He et al., 2004), nanovoids (He and Li, 2006) and composites with nano-inhomogeneities
(Sharma et al., 2003; Sharma and Ganti, 2004; Duan et al., 2005a,b; Sharma and Wheeler, 2007).

A series of important studies published by Huang's group (Huang and Wang, 2006; Huang and Sun, 2007) showed that
residual interface stress induces a residual elastic field in the bulk due to the existence of interfacial energy. Therefore, there
exists a non-zero stress field in the bulk for heterogeneous materials containing interfaces even without external load.
According to Hoger's work (e.g., Hoger, 1986, 1993), the theory of residually stressed elastic solids dramatically differs from
the classical theory of elasticity in that the elastic tensors in the constitutive equations depend explicitly on the residual
stress. Based on this physical fact, Huang's group developed an interfacial energy theory for the multi-phase hyperelastic
media at finite deformation (Huang and Wang, 2013). In their theory, the Lagrangian description of the interface equilibrium
equations is preferred and the first Piola–Kirchhoff interface stress is used in order to correctly deal with the above-
mentioned residual elastic field. Their work emphasized the importance of the residual elastic field and concluded that the
residual interface stress does have a significant influence on the effective elastic properties of nano-structured materials,
something which had been neglected by most previous researchers. Recently, Mi and Kouris (2012)'s work on the interface
effects for the embedded nanoparticles demonstrated that the residual interface stress played a more important role in the
stress distribution than the interface elasticity. Their work was based on the theory of interface stress developed by Gurtin
and Murdoch (1975, 1978), thus did not account for the curvature-dependence of the interfacial energy.

It should be pointed out that the interface theories mentioned above are based on the assumption that the interfacial
energy is only relevant to the interface strain, and the residual interface stress in these theories is constant for a given
material. However, Tolman (1949) demonstrated the effect of droplet size on the surface tension by employing the Gibbs
thermodynamic theory and proposed the venerable Tolman's formula, making the Tolman length a hot area of research to
this day (Lei et al., 2005). As a matter of fact, there is an intrinsic flexural resistance of the interface since the interface region
has a few atomic layers' thickness. Inspired by the pioneering work of Tolman (1949), one can conclude that the interfacial
energy should depend not only on the interface strain but also on the interface curvature.

The curvature-dependence of the interfacial energy was studied by many researchers from the viewpoints of physics and
chemistry (Jiang et al., 2001; Lu and Jiang, 2004, 2005; Medasani et al., 2007; Das and Binder, 2011; Nanda, 2012). Their
work has shown that the interfacial energy and the interface stress of nanomaterials are generally curvature-dependent and
have important applications in physical processes at the nanoscale (Jiang and Lu, 2008). Notably, the curvature-dependence
of the surface/interfacial free energy also plays a significant role in the stability and evolution of the configurations of cell
membranes (Helfrich, 1973; Ou-Yang and Helfrich, 1987). However, most of the above-mentioned works are mainly
concerned with simple nanostructures in their initial natural states and thus use only the classical Tolman length to
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characterize the curvature-dependence of the interfacial energy and interface stress. The relationship among the curvature-
dependent interfacial energy, the interface stress and the interface deformation under external loads has not been well
studied.

Using the theory of elastic shells, Steigmann and Ogden (1999) generalized the Gurtin–Murdoch theory to take into
account the effect of flexural resistance of elastic films attached to the bounding surfaces of solids. In their theory, the effect
of interface curvature on the interfacial energy is considered. Later, Chhapadia et al. (2011) gave a simplified and linearized
version of the Steigmann–Ogden theory to study the influences of the curvature-dependent surface energy on
nanostructures. They suggested that in some cases the importance of the curvature dependence of the surface energy
should be taken seriously (Mohammadi and Sharma, 2012). However, these interface models ignored the residual elastic
field in the bulk induced by the surface/interfacial energy. As emphasized in the literature (Sun et al., 2004; Huang and Sun,
2007), the residual elastic field has a significant impact on the mechanical behaviors of nano-structured materials. This
effect has also been confirmed by Park and Klein (2008) in their study of the resonant properties of nanowires.

As the interface region has only a few atomic layers, the interface is usually idealized as a “mathematical interface” with
zero thickness in macroscopic continuum descriptions. It should be pointed out that the surface/interface stress models
reviewed above belongs to this mathematical interface model. According to the adhering conditions between two different
materials, there are also many other types of interface models in the literature to deal with the interface problems in
heterogeneous media, including the imperfect interface models such as the linear-spring model (Hashin, 1991a, b; Qu, 1993;
Zhong and Meguid, 1997, 1999; Shen et al., 2000), the free sliding model (Ghahremani, 1980; Mura and Furuhashi, 1984;
Mura et al., 1985; Huang et al., 1993), the Ramberg–Osgood model (Zhang and Huang, 2004), etc. In this paper, only the
interface stress model, in which the displacement is continuous across the interface while the stress undergoes a
discontinuity, is considered.

In summary, the curvature-dependence of the interfacial energy and the residual elastic field in the bulk induced by the
interfacial energy are two essential features of the material interface in heterogeneous solids, both of which play significant
roles in the interface stress model, and neither of which can be ignored. Nevertheless, a more general interface theory
considering both of these two effects has not been well developed.

In this study, we develop a new interface stress theory in which both of the above-mentioned effects are taken into
account. The key objectives and contributions of this paper are as follows:
1.
 To explicitly formulate the nonlinear interface constitutive relation at finite deformation based on the interfacial free
energy function, which depends on both the in-plane interfacial strain and curvature of the interface;
2.
 To elucidate in detail the concept of the interfacial energy-induced residual elastic field and its significance;

3.
 To systematically derive the generalized Young–Laplace equation in both Lagrangeian and Eulerian descriptions using the

newly developed energy functional.
Unlike the conventional surface/interface stress theory reported in the current literature, this new theory is capable of
predicting the size-dependence of the residual surface stress of spherical nanoparticles, which is in good agreement with
the Tolman's formula (Tolman, 1949) and the related calculation results (Medasani and Vasiliev, 2009). Furthermore, a set of
basic equations for determining the residual elastic field in the heterogeneous media containing interfaces is provided. The
residual elastic field in the hyperelastic media with nanovoids is studied and it is shown that the curvature-dependence of
the residual surface stress does have a significant influence on distributions of the residual stresses in the elastic body.
Finally, a new dimensionless intrinsic parameter is suggested to estimate the importance of the curvature-dependent part of
the residual surface stress.

The outline of this paper is as follows. Section 2 (next) provides a preliminary introduction to the geometry of a
deformable interface. Section 3 formulates the nonlinear constitutive relation of the interface at finite deformation. Section 4 is
dedicated to the concept of the residual elastic field induced by the interfacial energy. Section 5 shows how the generalized
Young–Laplace equation can be systematically derived. Section 6 is concerned with the determination of the residual elastic
field in the bulk. Finally, Section 7 provides two examples that illustrate the use of the newly developed theory.
2. Deformation and kinematics of the interface

In this section, we will provide some preliminary definitions and notations that are necessary for describing the
deformation of an interface. For details, the author may refer to Huang (2012) and Huang and Wang (2013).
2.1. Geometric relations at finite deformation

Consider a multi-phase hyperelastic solid containing sharp interfaces between the phases. This configuration is referred
to as the initial reference configuration, denoted by κ0, when no external load is applied. The interfaces are denoted
collectively by A0. A curvilinear coordinate system θαðα¼ 1;2Þ will be used to describe the material point Y on the surface.
The corresponding covariant base vectors at point Y in the reference configuration can be determined by Aα ¼ Y;α with A3



Fig. 1. A surface/interface before and after deformation.
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being the unit normal vector. Here and in the following, the Greek indices take values in {1, 2}, and the Latin indices take
values in {1, 2, 3}.

After deformation, the material point Y on the interface A0 in the reference configuration will move to a point y on the
interface A in the current configuration, denoted by κ. As shown in Fig. 1, the corresponding covariant base vectors at point y
on the interface A can be written as aα ¼ y;α ¼ Y;αþu;α with a3 being the unit normal vector, where u is the displacement.
If the displacement u is decomposed into a sum of u0s ¼ uα

0Aα in the tangential direction and u0n ¼ un
0A3 in the normal

direction of the interface A0, then the base vector aα can be expressed in the reference configuration, which gives

aα ¼Aαþ uβ
0Aβ

� �
;α
þ un

0A3
� �

;α
¼Aαþ uλ

0jα�un
0B

λ
α

� �
Aλþ uλ

0Bλαþun
0;α

� �
A3 ð1Þ

where “|” denotes covariant derivative and B¼ BλαA
λ � Aα is the curvature tensor of the surface A0. Therefore, the interface

deformation gradient can be written as

Fs ¼ aα � Aα ¼ FðinÞs þFðouÞs ð2Þ

where the in-plane term FðinÞs and the out-plane term FðouÞs are

FðinÞs ¼ i0þu∇0s; FðouÞs ¼A3 � D ð3Þ

In the above, i0 is the unit tensor on surface A0, u∇0s ¼ u0s∇0s�un
0B is the surface displacement gradient and

D¼ u0s UBþun
0∇0s in the reference configuration.

Similarly, the displacement u can also be decomposed as the sum of its tangential component us ¼ uαaα and normal
component un ¼ una3 on the interface A, then the base vectors Aα can be expressed in the current configuration, which gives

Aα ¼ aα�ðuβaβÞ;α�ðuna3Þ;α ¼ aα� uλjα�unbλα
� �

aλ� uλbλαþun
;α

� �
a3 ð4Þ

where b¼ bλαaλ � aα is the curvature tensor of the interface A after deformation. Thus, the inverse of the interface
deformation gradient is expressed as

F�1
s ¼Aα � aα ¼ i�u∇s�a3 � d ð5Þ

where i is the unit tensor on interface A, u∇s ¼ us∇s�unb is the surface displacement gradient and d¼ us Ubþun∇s in the
current configuration.

By using the polar decompositions of Fs, the right and left Cauchy–Green tensors of the interface can be defined as
Cs ¼U2

s ¼ FTs UFs and Bs ¼ V2
s ¼ Fs UFTs , where Us and Vs are called the right and left stretch tensors of the interface,

respectively.
2.2. Strain measures of the interface

Following the discussion of Seth (1964), the two-dimensional strain tensor can be formulated to characterize the
stretching deformation of the interface. In the reference configuration, the Lagrangian strain tensor of the interface can be
defined as

EðmÞ
s ¼ 1

2m
U2m

s � i0
� �

; ma0

Eð0Þ
s ¼ ln Us; m¼ 0 ð6Þ
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where m is a real number. In particular, when m¼ 1, we obtain the Green strain tensor of the interface

Eð1Þ
s ¼ 1

2
U2

s � i0
� �

¼ 1
2
ðCs� i0Þ ð7Þ

which furnishes the change of the metric tensor of the interface and will be used in the following section.
Following Steigmann and Ogden (1999), the relative curvature κ of the interface can be defined by

κ¼ �FTs UbUFs ð8Þ

which is the pullback of the curvature tensor b from the current configuration to the reference configuration. Considering
b¼ �a3;α � aα, Eq. (8) can be rewritten as

κ¼ FTs Uða3;α � AαÞ ¼ FTs U ða3 ~∇0sÞ ð9Þ

where ðUÞ ~∇0s ¼ ðUÞ;α � Aα that has the same meaning as the differential operator “∇” used by Gurtin et al. (1998). Similarly,
the flexural deformation of an interface is usually characterized by the change of its curvature tensor (Green and Zerna,
1960; Langhaar, 1974). Thus, the Lagrangian curvature strain of the interface can be defined as

Λ¼ ðbαβ�BαβÞAα � Aβ ¼ �κ�B ð10Þ

Generally speaking, the stretching and the flexural deformations of the interface are coupled with each other, and the
shape of the interface is usually unknown after deformation, making the deformation of an interface quite complicated;
thus, the Lagrangian strain measures based on the initial reference configuration are preferable and more convenient for
describing the deformation and kinematics of the interface.
3. The nonlinear constitutive relation of the interface

The constitutive relation of the interface describes the correlations among interfacial energy, interface stress, and
interface strain. Pioneering work in this area can be traced back to the famous Shuttleworth–Herring equation
(Shuttleworth, 1950; Herring, 1951) and was used as a foundation for advanced theories by many researchers. Gurtin and
Murdoch (1975) derived the constitutive relation of the interface within the framework of the Cauchy elasticity theory.
Recently, a comprehensive version of the nonlinear constitutive relation of the interface at finite deformation based on the
Green elasticity theory was given by Huang and Wang (2006), as well as the related linearized constitutive relation (Huang
and Sun, 2007). Steigmann and Ogden (1999) presented a component form of the constitutive relation for the hemitropic
planes and spheres based on their curvature-dependent interfacial energies and a simplified linear version was later given
by Chhapadia et al. (2011). Dingreville and Qu (2008) developed a new relationship between the interfacial excess energy
and interfacial excess stress for planar interfaces, which accounted for the transverse deformation, transverse stress and the
Poisson's effect of the real material interface. For simplicity, the transverse deformation and Poisson's effect of the interface
is not considered in the present study.

In this section, the nonlinear constitutive relation of the interface is derived based on the curvature-dependent interfacial
energy and the features of the interface stress and bending moment are investigated. Let the excess free energy of the
interface per unit area of A in the current configuration be denoted by γ, which depends not only on the position coordinates
but also on the strain and curvature of the interface. For simplicity, the dependence of γ on coordinates (θ1,θ2) will be
omitted in the following. Then the interfacial energy per unit area of A0 in the reference configuration can be written as J2γ,
where J2 ¼ det Us is the ratio between area elements dA and dA0. In the course of deformation, the variation in the
interfacial excess free energy on the area element dA is δðγdAÞ ¼ δðJ2γÞdA0, which is the reversible work needed to elastically
stretch and bend this pre-existing surface element.

δðJ2γÞdA0 ¼ TðmÞ
s : δEðmÞ

s þMs : δκ
� �

dA0; ð11Þ

where TðmÞ
s is the interface stress conjugating to the interface strain EðmÞ

s andMs is the interface bending moment conjugating
to the relative curvature κ.

To elucidate the physical meaning of Eq. (11), let us consider a bimetallic strip. If the strip is initially flat (planar),
stretching of the strip exerts an interface stress TðmÞ

s on the interface, which induce an interface strain EðmÞ
s , while the

interface remains flat. In this case, κ� 0, thus δðJ2γÞ ¼ TðmÞ
s : δEðmÞ

s . However, a pure bending of the strip will obviously exert a
bending moment Ms on the interface, which will induce κ. The applied bending moment may also exert an interface stress
TðmÞ
s if the interface microstructure is not symmetric with respect to the interface, indicating a coupling between the

stretching and flexural responses of the interface. On the other hand, if the bimetallic strip is initially curved, a stretching of
the strip will exert both TðmÞ

s and Ms, which would induce both EðmÞ
s and κ. Therefore, as thermodynamic driving forces, the

interface stress and the interface bending moment are independent. Their respective conjugates are the stretching and
the flexural deformation. However, we note that interface stress may also cause flexural deformation and vice versa if the
interface is curved.
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The derivation of the constitutive relation of the interface at finite deformation from Eq. (11) is straightforward in the
framework of Green elasticity, which gives

TðmÞ
s ¼ ∂ðJ2γÞ

∂EðmÞ
s

; Ms ¼ ∂ðJ2γÞ
∂κ

ð12Þ

where the Lagrangian description has been used and J2γ represents the interfacial energy per unit area in the reference
configuration. In particular, the Piola–Kirchhoff stresses of the first and second kinds are given by

Ss ¼ 2Fs U
∂ðJ2γÞ
∂Cs

; Tð1Þ
s ¼ ∂ðJ2γÞ

∂Eð1Þ
s

¼ 2
∂ðJ2γÞ
∂Cs

ð13Þ

In the current configuration, the Cauchy stress of the interface can be expressed as

rs ¼
1
J2
Fs UTð1Þ

s UFTs ¼
2
J2
Fs U

∂ðJ2γÞ
∂Cs

UFTs ð14Þ

and the Eulerian bending moment of the interface is defined as

ms ¼
1
J2
Fs UMs UFTs ¼ Fs U

∂γ
∂κ

UFTs ð15Þ

It is noted that the above expressions are valid for anisotropic interfaces as well.
A detailed analysis of the material symmetry of the interface (Steigmann, 2001) indicates that the interfacial energy J2γ is

generally not an isotropic scalar-valued tensor function relative to the reference configuration. Since the interfacial energy
J2γ is a rather complicated function of Cs and κ, its explicit expression should be determined by the physical properties of the
real material interfaces. In order to simplify this problem while still capturing the main physical features of the constitutive
relation, it can be assumed that the material interface is hemitropic relative to the reference configuration. Hence, the
interfacial energy J2γ can be expressed as a function of the six invariants of the right Cauchy–Green tensor Cs and relative
curvature κ (Zheng, 1993):

J2γðCs;κÞ ¼ J2γðI1; I2; I3; I4; I5; I6Þ ð16Þ
The six scalar invariants are defined as

I1 ¼ trCs; I2 ¼ detCs; I3 ¼ trκ; I4 ¼ detκ; I5 ¼ trðCs UκÞ; I6 ¼ trðCs UκUεÞ: ð17Þ
where ε denotes the permutation tensor on the surface A0. Noting that

∂I1
∂Cs

¼ i0;
∂I2
∂Cs

¼ I2Cs
�1;

∂I3
∂κ

¼ i0;
∂I4
∂κ

¼ I4κ�1;
∂J2
∂Cs

¼ 1
2
J2C

�1
s ;

∂I5
∂Cs

¼ κ;
∂I5
∂κ

¼ Cs;
∂I6
∂Cs

¼ εT Uκ¼ �εUκ;
∂I6
∂κ

¼ Cs UεT ¼ �Cs Uε ð18Þ

we obtain

Tð1Þ
s ¼ 2J2

∂γ
∂I1

i0þ I2
∂γ
∂I2

þ γ

2

� �
C�1
s þ ∂γ

∂I2
κþ 1

2
∂γ
I6

ðκUε�εUκÞ
� 	

ð19Þ

Ms ¼ J2
∂γ
∂I3

i0þ I4
∂γ
∂I4

κ�1þ ∂γ
∂I5

Csþ 1
2
∂γ
∂I6

ðεUCs�Cs UεÞ
� 	

ð20Þ

where it should be pointed out that only the symmetric parts of the stress and bending moment are retained because their
skew-symmetric parts do not contribute to the incremental interfacial energy presented in Eq. (11).

The Cauchy stress and Eulerian bending moment of the interface are

rs ¼ 2
∂γ
∂I1

Bsþ I2
∂γ
∂I2

þ γ

2

� �
i� ∂γ

∂I5
Bs UbUBsþ 1

2
∂γ
∂I6

J2ðμUbUBs�Bs UbUμÞ
� 	

ð21Þ

ms ¼ ∂γ
∂I3

Bs� I4
∂γ
∂I4

b�1þ ∂γ
∂I5

B2
s þ

1
2
∂γ
∂I6

J2ðμUBs�Bs UμÞ ð22Þ

where μ denotes the permutation tensor on the surface A. By using the Cayley–Hamilton theorem, Eq. (20) can be rewritten as

Ms ¼ J2
∂γ
∂I3

þ I3
∂γ
∂I4

� �
i0�

∂γ
∂I4

κþ ∂γ
∂I5

Csþ
1
2
∂γ
∂I6

ðεUCs�Cs UεÞ
� 	

ð23Þ

The constitutive equation above clearly shows that there exists a stretching-bending coupling due to the curvature-
dependent nature of the interfacial energy. Even when there is no in-plane stretching deformation, the residual interface
stress may still depend on the flexural deformation. Furthermore, there exists an interface bending moment that
characterizes the resistance to bending of the interface.

Unlike in the classical theory of elastic surfaces and shells, the constitutive equations above include the residual stress
and the residual bending moment in the interface. In the initial state without external load, the current and the reference
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configurations coincide, thus giving us Cs ¼ i0 ¼ i¼ Bs, B¼ �κ¼ b and ε¼ μ. The scalar invariants reduce to

J2 ¼ 1; I1 ¼ 2; I2 ¼ 1; I3 ¼ �2H0; I4 ¼ K0; I5 ¼ �2H0; I6 ¼ 0 ð24Þ

where H0 and K0 are the mean and the Gaussian curvatures of the interface A0, respectively. Hence, the residual interface
stress and the residual interface bending moment can be written as

rn

s ¼ ðγ0þ2γ1þ2γ2Þi0�2γ5Bþγ6ðεUB�BUεÞ ð25Þ

mn

s ¼ ðγ3þγ5Þi0�K0γ4B
�1 ¼ ðγ3þγ5�2γ4H0Þi0þγ4B ð26Þ

where γ0 is the initial interfacial excess free energy and γi ¼ ∂γ=∂Ii(i¼1–6) reflect the natures of the solid interfaces. All of
these parameters describe the intrinsic properties of the interfaces and are determined by the joining materials, the
adhering conditions and the initial curvature of the interface. These two residual terms rs

n
and ms

n
indicate that the interface

has the inclination to stretch and bend even though it cannot exist independently without the joining bulk materials. Unlike
the cases in the literature (Gurtin and Murdoch, 1975; Huang and Wang, 2006, 2013), the residual interface stress is not
homogeneous at the interface because it is curvature-dependent.

To understand the physical interpretations of the residual interface stress and the residual interface bending moment, it
is elucidative to imagine that an infinitesimally thin slice of material containing the interface is cut from the bulk bimaterial.
When standing alone, this thin slice would release its residual interface stress by changing its own area. In other words, the
residual interface stress is what prevented the interface to relax in its own plane when the interface is surrounded by the
bulks materials that form the interface. Furthermore, if the atomic arrangement on and near the interface is not symmetric
with respect to the interface plane, the stand-alone thin slice would also change its own curvature due to the
microstructural asymmetry with respect to the interface plane, thus completely releases its residual interface bending
moment. In other words, the residual interface bending moment is what prevented the interface to relax flexurally when
the interface is surrounded by the bulk materials that form the interface.
4. The residual elastic field induced by the interfacial energy

Recently, studies (Huang and Wang, 2006, 2013; Huang and Sun, 2007) showed that, in a multi-phase hyperelastic body,
that is free from any external load, the excess interfacial free energy and the corresponding residual interface stress are not
zero, as indicated in Section 3. Therefore, there exists a self-equilibrium stress field in the bulk body because of the existence
of residual interface stress. Thus, the elastic strain energy of the bulk body does not vanish even in the initial state. We will
call this elastic field induced by the residual interface stress the “residual” elastic field in the bulk.

As has already been demonstrated by Hoger (1986, 1993), the elastic properties of a residually stressed body are
fundamentally different from those of an initially stress-free body. The elastic tensors in the constitutive equations can
depend explicitly on the residual stress, which are different from their counterparts in the classical theory. In Hoger's work,
notably, no assumption was made about the origin of the residual stress and the interface effect in the heterogeneous body
was not considered.

Therefore, the interfacial energy-induced residual elastic field in the body is another critically important characteristic of
heterogeneous nano-structured materials. Since residual stresses are presented in heterogeneous materials where the
interface effects cannot be neglected, elasticity problems in such materials cannot be treated by simply employing the
classical theory of elasticity. Nevertheless, this fact seems to have been neglected by a number of previous researchers who
have studied the interface effect in nano-structured materials.

To facilitate the description of the deformation induced by the interfacial energy in a heterogeneous solid, one can
hypothetically split the solid into homogenous pieces along its interface, and imagine that they have been returned to their
stress-free states. It should be emphasized that in general such a process cannot be realized in practice, since it is assumed
that the atomic-level micro-structures of the surfaces, which would be obtained by splitting an interface, would have the
same micro-structures as those of their respective interior parts. Thus the above splitting process is only a thought
experiment, based on which, we can suggest a “fictitious stress-free configuration”, symbolized by κ. This imaginary
“fictitious stress-free configuration” may not exist because splitting a solid would inevitably create new surfaces, and the
new surface energy would in turn induce a new residual stress field in the bulk, but this fictitious stress-free configuration
provides useful and meaningful way to describe and calculate the residual elastic field induced by interfacial energy.

Let Fn denotes the deformation gradient from κn to κ0 and F denotes the deformation gradient from κ0 to κ. From the
above discussions, it is seen that the elastic stress field in the heterogeneous solid under external loads should depend on
the deformation gradient FUFn. Hence the potential function of the hyperelastic solid should be expressed as ψ0 ¼ ψ0ð ~CÞ,
where ~C ¼ ðFUFnÞT U ðFUFnÞ denotes the right Cauchy–Green tensor relative to κn. Therefore, the first Piola–Kirchhoff stress
relative to the reference configuration κ0 is

S0 ¼ 2ρ0FUF
n U

∂ψ0

∂ ~C
UFnT ð27Þ
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and the Cauchy stress corresponding to the current configuration κ is

r¼ 2ρFUFn U
∂ψ0

∂ ~C
UFnT UFT ð28Þ

In the above expressions, ρ0 and ρ denote the mass densities of the bulk solid in the configurations κ0 and κ, respectively.
Conservation of mass yields ρ0=ρ¼ detF.

The residual elastic stress field is the solution corresponding to the unloaded state when the current configuration
coincides with the reference configuration. Setting F¼ I in Eq. (28), the residual stress rn can be expressed as

rn ¼ 2ρ0F
n U

∂ψ0

∂ ~C






F ¼ I

� �
UFnT ð29Þ

where I is the second-order identity tensor in the three dimensional Euclidean space.

5. The equilibrium equation for the interface

Besides the constitutive relation of the interface, the second fundamental equation of the interface is the equilibrium
equation, which is usually called the generalized Young–Laplace equation. The generalized Young–Laplace equation
describes the equilibrium relationship between the interface stress and the stress in the bulk. In fact, the mathematical
structure of this equation is very similar to that of the equilibrium equation of an elastic thin shell but they have different
physical meanings and application backgrounds. The generalized Young–Laplace equation reflects the effect of interface
stress on the heterogeneous materials and is mainly applied to nanostructures. In the classical interface stress theory, this
equation is of crucial importance because many size-dependent properties of nano-structured materials are well
explained by it.

In this section, the generalized Young–Laplace equation will be derived by the principle of minimum potential energy,
which requires a new energy functional that accounts for the interfacial energy effect in heterogeneous hyperelastic solids.
This energy functional consists of three parts: first, the interfacial energy, which depends not only on the interface strain but
also on the interface curvature; second, the elastic strain energy of the body, which includes the residual elastic field
induced by the interfacial energy; and third, the potential of the external loads. Therefore, this energy functional for can be
written as

ΠðuÞ ¼
Z
A0

J2γðCs;κÞdA0þ
Z
v0
ρ0ψ0ð ~CÞdv0�

Z
v0
ρ0f Uudv0�

Z
∂v0T

0t Uuds0 ð30Þ

where u is the displacement, fis the body force per unit mass and 0t is the traction on the boundary. It should be noted that
the displacement u is calculated for the reference configuration to the current configuration. As indicated before, even in the
initial state when there is no displacement or external load, the energy functional does not vanish.

Accordingly, we have the following proposition: for any admissible displacement field u that satisfies the prescribed u0

on the boundary ∂v0u, the energy functional takes a stationary value when u is that of the equilibrium state of the system,
which is subjected to a body force f in v0 and a traction 0t on its boundary ∂v0T .

5.1. The Lagrangian description of the interface equilibrium equation

Let the displacement u be subjected to a variation δu0. This variation can be decomposed into a sum of δu0s in the
tangential direction and δun

0A3 along the normal direction in the reference configuration. Then, in the Lagrangian
description, the variation of the energy functional in Eq. (30) is

δΠðuÞ ¼
Z
A0

δðJ2γÞdA0þ
Z
v0
δðρ0ψ0Þdv0�

Z
v0
δuU ðρ0fÞdv0�

Z
∂v0T

ðδuU0tÞds0 ð31Þ

The integrand of the first term on the right side of Eq. (31) can be written as

δðJ2γÞ ¼
∂ðJ2γÞ
∂Cs

: δCsþ
∂ðJ2γÞ
∂κ

: δκ¼ 1
2
Tð1Þ
s : δCsþMs : δκ ð32Þ

In detail, the first variation term on the right side of Eq. (32) can be rewritten as

∂ðJ2γÞ
∂Cs

: δCs ¼
1
2
Tð1Þ
s : δCs ¼ Fs UTð1Þ

s

� �
: δFs ¼ Ss : δFs ð33Þ

Since Fs is expressed as a sum of the in-plane term FðinÞs and out-plane term FðouÞs , the first Piola–Kirchhoff interface stress Ss is
also a “two-point” tensor, and can be decomposed into an in-plane term SðinÞs ¼ FðinÞs UTð1Þ

s and an out-plane term
SðouÞs ¼ FðouÞs UTð1Þ

s . Therefore, in view of Eqs. (2) and (3), (33) can be further given by

Ss : δFs ¼ SðinÞs : δFðinÞs þSðouÞs : δFðouÞs

¼ δu0s US
ðinÞ
s

� �
U∇0sþ δun

0A3 US
ðouÞ
s

� �
U∇0s�δu0s U SðinÞs U∇0s�A3 US

ðouÞ
s UB

� �
�δun

0 SðinÞs : Bþ A3 US
ðouÞ
s

� �
U∇0s

� �
: ð34Þ
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Now consider a region Ω0 enclosed by an arbitrary closed smooth curve ∂Ω0 on the interface A0 in the reference
configuration. By using the Green–Stokes theorem, we haveZ

A0

ðSs : δFsÞdA0 ¼
Z
A0

δu0s U �SsðinÞ U∇0sþBU A3 USs
ðouÞ

� �h i
dA0

þ
Z
A0

δun
0 �SsðinÞ : B� A3 USs

ðouÞ
� �

U∇0s

h i
dA0

�
Z
∂Ω0

δu0s U〚SsðinÞ〛Un0dl0�
Z
∂Ω0

δun
0〚A3 USs

ðouÞ〛Un0dl0 ð35Þ

where dl0 is the differential element of the arc length on ∂Ω0, n0 ¼ l0 � A3 is the unit normal vector of the curve ∂Ω0 with l0
being the unit tangent vector of ∂Ω0 and 〚U〛 represents the discontinuities across the curve ∂Ω0. Since the interface stress
is continuous across the closed curve ∂Ω0, the boundary integrals vanish in Eq. (35).

Next, the second variation term on the right side of Eq. (32) can be rewritten as

∂ðJ2γÞ
∂κ

: δκ¼Ms : δκ¼ ða3 ~∇0sÞUMs : δFsþFs UMs : ðδa3 ~∇0sÞ ð36Þ

in which the Eq. (9) is used. By employing the Lagrangian description of normal vector a3 shown in Eq. (A.2) (see in
Appendix A), we have

a3 ~∇0s ¼ � Z
J2

� �
∇0s�

X
J2

� �
B

� 	
þA3 � X

J2

� �
∇0s�

1
J2
BUZ

� 	
ð37Þ

where Z¼ εT UFsðinÞ UεUD and X ¼ detFsðinÞ. The in-plane and out-plane terms of a3 ~∇0s are

� Z
J2

� �
∇0s�

X
J2

� �
B¼ a3∇0s; A3 � X

J2

� �
∇0s�

1
J2
BUZ

� 	
¼ a3 ~∇0s�a3∇0s ð38Þ

Then the first term on the right side of Eq. (36) can be expressed as

ða3 ~∇0sÞUMs : δFs ¼NðinÞ
s : δFsðinÞ þNðouÞ

s : δFsðouÞ ð39Þ
where NðinÞ

s ¼ a3∇0sð ÞUMs and NðouÞ
s ¼ ða3 ~∇0s�a3∇0sÞUMs, and the second term on the right side of Eq. (36) can be expressed as

Fs UMs : ðδa3 ~∇0sÞ ¼MðinÞ
s : �δ

Z
J2

� �
∇0s�δ

X
J2

� �
B

� 	
þMðouÞ

s : A3 � δ
X
J2

� �
∇0s�BUδ

Z
J2

� �� 	
ð40Þ

where MðinÞ
s ¼ FsðinÞ UMs and MðouÞ

s ¼ FsðouÞ UMs.
After some mathematical manipulations, Eq. (40) can be rewritten as

Fs UMs : ðδa3 ~∇0sÞ ¼ δ
Z
J2

� �
U MðinÞ

s U∇0s�A3 UM
ðouÞ
s UB

� �
�δ

X
J2

� �
MðinÞ

s : Bþ A3 UM
ðouÞ
s

� �
U∇0s

h i

þ �δ
Z
J2

� �
UMðinÞ

s þδ
X
J2

� �
A3 UM

ðouÞ
s

� 	
U∇0s ð41Þ

For simplicity, we denote that

T1 ¼MðinÞ
s U∇0s�A3 UM

ðouÞ
s UB; T2 ¼MðinÞ

s : Bþ A3 UM
ðouÞ
s

� �
U∇0s ð42Þ

Thereby the first two terms on the right side of Eq. (41) can be rewritten as

δ
Z
J2

� �
UT1�δ

X
J2

� �
T2 ¼ δZU

T1

J2

� �
þδJ2

�ZUT1þXT2

J22

 !
�δX

T2

J2

� �
ð43Þ

By using the related variation formulas given in Appendix B, the first term on the right of Eq. (43) reduces to

δZU
T1

J2

� �
¼ PðinÞ

s : δFsðinÞ þPðouÞ
s : δFsðouÞ ð44Þ

where

PðinÞ
s ¼ 1

J2
trðT1 � DÞi0�ðT1 � DÞT
h i

;PðouÞ
s ¼ 1

J2
ðA3 � T1ÞU trðFsðinÞÞi0�ðFsðinÞÞT

h i
ð45Þ

and the second term on the right side of Eq. (43) reduces to

δJ2
�ZUT1þXT2

J22

 !
¼ Fs ULs : δFs ¼ LðinÞs : δFsðinÞ þLðouÞs : δFsðouÞ ð46Þ

where

Ls ¼
1

J32
ð�ZUT1þXT2ÞðI1i0�CsÞ; LðinÞs ¼ FsðinÞ ULs; LðouÞs ¼ FsðouÞ ULs ð47Þ
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while the third term on the right side of Eq. (43) reduces to

�δX
T2

J2

� �
¼ 1

2
Q s : δC

ðinÞ
s ¼Q ðinÞ

s : δFðinÞs ð48Þ

where

Q s
ðinÞ ¼ � T2

J2
trðFðinÞs Þi0�ðFðinÞs ÞT
h i

ð49Þ

Substitute Eqs. (44), (46) and (48) into Eq. (43) while considering Eq. (41), and we get

Fs UMs : ðδa3 ~∇0sÞ ¼ PðinÞ
s þLðinÞs þQ ðinÞ

s

� �
: δFsðinÞ þ PðouÞ

s þLðouÞs

� �
: δFsðouÞ

þ �δ
Z
J2

� �
UMðinÞ

s þδ
X
J2

� �
A3 UM

ðouÞ
s

� 	
U∇0s ð50Þ

after which we substitute Eqs. (39) and (50) into Eq. (36), and finally obtain

Ms : δκ¼ NðinÞ
s þPðinÞ

s þLðinÞs þQ ðinÞ
s

� �
: δFsðinÞ þ NðouÞ

s þPðouÞ
s þLðouÞs

� �
: δFsðouÞ

þ �δ
Z
J2

� �
UMðinÞ

s þδ
X
J2

� �
A3 UM

ðouÞ
s

� 	
U∇0s ð51Þ

For simplicity, we denote that

SðinÞm ¼NðinÞ
s þPðinÞ

s þLðinÞs þQ ðinÞ
s ; SðouÞm ¼NðouÞ

s þPðouÞ
s þLðouÞs ð52Þ

Thus, Eq. (51) can be rewritten as

Ms : δκ¼ δu0s US
ðinÞ
m

� �
U∇0sþ δun

0A3 US
ðou
m ÞÞU∇0s�δu0s U SðinÞm U∇0s�A3 US

ðouÞ
m UB

� ��
�δun

0ðSðinÞm : BþðA3 US
ðouÞ
m ÞU∇0sÞþ �δ

Z
J2

� �
UMðinÞ

s þδ
X
J2

� �
A3 UM

ðouÞ
s

� 	
U∇0s ð53Þ

while its surface integral isZ
A0

ðMs : δκÞdA0 ¼
Z
A0

δu0s U �SðinÞm U∇0sþBU A3 US
ðouÞ
m

� �h i
dA0þ

Z
A0

δun
0 �SðinÞm : B� A3 US

ðouÞ
m

� �
U∇0s

h i
dA0

�
Z
∂Ω0

δu0s U〚SðinÞm 〛Un0dl0�
Z
∂Ω0

δun
0〚A3 US

ðouÞ
m 〛Un0dl0

þ
Z
∂Ω0

�δ
Z
J2

� �
U〚MðinÞ

s 〛þδ
X
J2

� �
〚A3 UM

ðouÞ
s 〛

� 	
Un0dl0 ð54Þ

It is noted that the last three boundary integrals on the right side of Eq. (54) vanish because the interface bending moment is
also continuous across the closed curve ∂Ω0.

Finally, we derive the variation of the second term on the right side of Eq. (31). Noting that

δðρ0ψ0Þ ¼ S0 : ðδu∇0Þ ¼ ðdetFÞr : ðδu∇Þ ð55Þ
and by the conservation of mass, we haveZ

v0
δðρ0ψ0Þdv0 ¼

Z
∂v0T

δuUðS0 U0NÞdS0�
Z
A0

δuU〚S0〛UA3dA0�
Z
v0
δuU ðS0 U∇0Þdv0 ð56Þ

where ∇0 is the gradient operator in three-dimensional Euclidean space and 0N is the unit normal vector to the boundary in
the reference configuration. 〚S0〛 represents the discontinuity of the first Piola–Kirchhoff stress across the interface
A0.

Substitute Eqs. (35), (54) and (56) into the Eq. (31), and consider the arbitrariness of δu0, it is seen that the vanishing of
the variation of the energy functional is equivalent to the following equations:
(i)
 The equilibrium equation of the body and the mechanical boundary condition

S0 U∇0þρ0 f ¼ 0 ðin v0Þ
S0 U0N ¼ 0t ðon ∂v0T Þ ð57Þ
(ii)
 The equilibrium equations of the interface

A3 U〚S0〛UA3 ¼ � SðinÞs þSðinÞm

� �
: B� A3 U Sðous ÞþSðouÞm

� �h i
U∇0s ðon A0 Þ

P0 U〚S0〛UA3 ¼ � SðinÞs þSðinÞm

� �
U∇0sþBU A3 U SðouÞs þSðouÞm

� �h i
ðon A0Þ ð58Þ
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P0 ¼ I�A3 � A3 is the projection operator introduced by Gurtin et al. (1998). It should be mentioned that
Eq. (58) can be written in a more compact form
〚S0〛UA3 ¼ �ðSsþSmÞU ~∇0s ð59Þ
where Ss ¼ SðinÞs þSðouÞs is the first Piola–Kirchhoff interface stress and Sm ¼ SðinÞm þSðouÞm is the associated interface bending
moment. If the curvature-dependence of the interfacial energy is neglected, Sm vanishes and Eq. (59) reduces to the original
form (6.9) in Gurtin and Murdoch (1975). We note that the original equation by Gurtin and Murdoch (1975) is rather
abstract in its mathematical form that makes it difficult to interpret and implement in practical applications. In contrast, our
Eq. (58) explicitly shows the in-plane and out-plane terms of the interface stress/bending moment and their roles, and
curvature-dependence of the equilibrium of the interface. Thus, it has a clearer form that can offer new insight into its
physical meanings and enables more convenient applications.

5.2. The Eulerian description of the interface equilibrium equation

Discussion of the Eulerian description can also be given similarly as follows. First, the variation of the interface
deformation gradient can be written in the form

δFs ¼ δaα � Aα ¼ ðδaα � aαÞUFs ð60Þ
and the variation of the displacement δu can also be decomposed into a sum of its tangential and normal components in the
current configuration:

δu¼ δusþδun ¼ δuαaαþδuna3 ð61Þ
By using the Weingarten formula, we have

δaα ¼ ðδuÞ;α ¼ δuβjα�δunbβα
� �

aβþ δuβbαβþδun
;α

� �
a3 ð62Þ

Therefore, we obtain

ðδaα � aαÞ ¼ ðδu∇sÞþδdαa3 � aα ð63Þ
where δu∇s ¼ δuβjαaβ � aα�δunb and δdα ¼ δuλbλαþδun

;α.
Since the variation of the first term on the right-hand side of Eq. (31) can be expressed asZ

A0

δðJ2γÞdA0 ¼
Z
A0

ðSs : δFsÞdA0þ
Z
A0

ðMs : δκÞdA0 ð64Þ

The first term on the right side of Eq. (64) can be converted into an Eulerian descriptionZ
A0

ðSs : δFsÞdA0 ¼
Z
A0

Ss : ðδaα � aαÞUFs½ �dA0

¼
Z
A

1
J2

Ss UFTs
� �

: ðδaα � aαÞdA¼
Z
A
rs : ðδu∇sÞdA ð65Þ

while the second term on the right side of Eq. (64) can also be rewritten asZ
A0

ðMs : δκÞdA0 ¼ �
Z
A
J2m

αβ
s δbαβ

� �
dA0 ¼ �

Z
A
ms : δbαβaα � aβ

� �
dA ð66Þ

Eq. (66) should be further developed. After some tedious calculations, we arrive at δbαβ ¼ a3 UðδaαÞjβ . Therefore,
�ms : δbαβaα � aβ

� �¼ �mαβ
s a3 U δaαÞjβ ¼ ðmαβ

s a3
� �

β Uδaα� mαβ
s a3 Uδaα

� �
β





 ð67Þ

where mαβ
s a3

� �
jβ Uδaα ¼mαβ

s jβa3 Uδaαþmαβ
s ða3jβÞUδaα. By considering the following two geometrical relations

a3 Uδaα ¼ bβαδuβþδun
;α ¼ δdα; ða3jβÞUδaα ¼ �bγβðδuγ jα�bγαδunÞ ð68Þ

it is seen that the first term on the right side of Eq. (67) is equivalent to

ðmαβ
s a3Þjβ Uδaα ¼mαβ

s jβδdα�mαβ
s bγβðδuγ jα�bγαδunÞ ¼ δdU ðms U∇sÞ�bUms : ðδu∇sÞ ð69Þ

where δd¼ δdα � aα, while the second term on the right side of Eq. (67) is equivalent to

�ðmαβ
s a3 UδaαÞjβ ¼ �ðmαβ

s δdαÞjβ ¼ �ðδdUmsÞU∇s ð70Þ

Consequently,Z
A0

ðMs : δκÞdA0 ¼
Z
A
δdU ðms U∇sÞ�bUms : ðδu∇sÞ�ðδdUmsÞU∇s
� �

dA ð71Þ
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Now consider a region Ω enclosed by a closed smooth curve ∂Ω on the interface A. From the Green–Stokes theorem, we
learn that Eqs. (65) and (71) can be further rewritten asZ

A0

ðSs : δFsÞdA0 ¼ �
Z
∂Ω
δus U〚rs〛Undl�

Z
A
δus Uðrs U∇sÞþδunðrs : bÞ
� �

dA ð72Þ

Z
A0

ðMs : δκÞdA0 ¼
Z
A
δus U ðbUmsÞU∇s�bU ðms U∇sÞ

� �
dAþ

Z
A
δun ðbUmsÞ : b�ðms U∇sÞU∇s
� �

dA

þ
Z
∂Ω
δus U〚2bUms〛Undl�

Z
∂Ω
δun〚ms U∇s〛Undlþ

Z
∂Ω
ðδun∇sÞU〚ms〛Undl ð73Þ

where dl is the element of the arc length on ∂Ω, n¼ l� a3, with l being the unit tangent vector of ∂Ω. Likewise, the boundary
integrals vanish in Eqs. (72) and (73) because the interface stress and the interface bending moment are continuous across
the closed curve ∇s. Therefore substitute Eqs. (72) and (73) into Eq. (64), and we getZ

A0

δðJ2γÞdA0 ¼
Z
A
δus U ½�ðrs�bUmsÞU∇s�bU ðms U∇sÞ�dA

þ
Z
A
δun �ðrs�bUmsÞ : b�ðms U∇sÞU∇s
� �

dA ð74Þ

Next, the second term on the right side of Eq. (31) can be converted into the Eulerian description as follows by using
Eq. (55)Z

v0
δðρ0ψ0Þdv0 ¼

Z
v
r : ðδu∇Þdv¼

Z
∂vT

δuUðrUNÞdS�
Z
A
δuU〚r〛Ua3dA�

Z
v
δuU ðrU∇Þdv ð75Þ

where N is the unit normal vector to the boundary in the current configuration, and 〚r〛 represents the discontinuity of
the Cauchy stress across the interface A.

Finally, the variation of the external potential energy on the right-hand side of Eq. (31) can also be converted into the
following Eulerian description

�
Z
v0
δuUðρ0fÞdv0�

Z
∂v0T

ðδuU0tÞds0 ¼ �
Z
v
δuUðρfÞdv�

Z
∂vT

ðδuUtÞds ð76Þ

If one substitutes Eqs. (74)–(76) into Eq. (31) and considers the arbitrariness of δu, the vanishing of the variation of the
energy functional generates the following equations:

rU∇þρf ¼ 0 ðin vÞ
rUN¼ t ðon ∂vT Þ ð77Þ

a3 U〚r〛Ua3 ¼ �ðrs�bUmsÞ : b�ðms U∇sÞU∇s ðon AÞ
PU〚r〛Ua3 ¼ �ðrs�bUmsÞU∇sþbU ðms U∇sÞ ðon AÞ ð78Þ

where P¼ I�a3 � a3. Obviously, Eq. (77) contains the well-known equilibrium equation and boundary condition from the
classical theory of elasticity, while Eq. (78) is the Eulerian description of the generalized Young–Laplace equation. It is
interesting to note that Eq. (78) can also be written is a compact form

〚r〛Ua3 ¼ �Σs U ~∇s ð79Þ
where Σs ¼ rs�bUmsþa3 � ðms U∇sÞ is a combination of the interface stress and bending moment. It can be shown that Σs

and Eq. (79) are equivalent to the equations (4.30) and (4.34), respectively, in Steigmann and Ogden (1999). However, in
comparison, Eq. (78) shows explicitly the equilibrium features of the interface and the roles of the interface stress and
bending moment.

It is worth noting that the explicit expressions of the generalized Young–Laplace equation under both Lagrangian and
Eulerian descriptions are obtained in a unified scheme for the first time in this paper. Notably, the Lagrangian description is
preferable when dealing with large elastic deformation of heterogeneous materials because, for such materials, the shapes
of the deformed body and interfaces are generally unknown. Moreover, nano-structured materials are residually stressed
at their initial state. It has been demonstrated in the literature (Sun et al., 2004; Huang and Sun, 2007; Gao et al., 2013)
that only by utilizing the Lagrangian description of the fundamental equations for the interface can we properly
and conveniently investigate the influence of residual interface stress/bending moment on the overall properties of
nanostructures.

6. The determination of the residual elastic field

It has been stated that the residual field rn in the bulk does not vanish in the initial state because of the existence of
interfacial energy. When the current configuration coincides with the reference configuration, the residual elastic field in



X. Gao et al. / J. Mech. Phys. Solids 66 (2014) 59–77 71
the bulk body satisfies the conventional equilibrium equations and boundary conditions:

rn U∇0 ¼ 0 ðin v0Þ
rn U0N ¼ 0 ðon ∂v0T Þ ð80Þ

Eq. (80) indicates that the residual elastic field is in a state of self-equilibrium where no external load is applied at the
boundary, regardless of the body force. Across the material interface, the residual stress field should also satisfy the
generalized Young–Laplace equation

P0 U〚rn〛UA3 ¼ � rn

s �BUmn

s

� �
U∇0sþBU mn

s U∇0s
� � ðon A0Þ ð81Þ

A3 U〚rn〛UA3 ¼ � rn

s �BUmn

s

� �
: B� mn

s U∇0s
� �

U∇0s ðon A0Þ ð82Þ
where the residual interface stress and bending moment are given in Eqs. (25) and (26). The above Eqs. (80)–(82) consist of
the set of basic equations that determines the residual elastic field in the bulk. It is obvious that the residual stress field
depends not only on the geometry of the zero traction boundaries but also on the geometry and physical properties of the
interface.

7. Examples and applications

In this part, two simple examples are illustrated to show the validity and significance of the newly developed theory.

7.1. A prediction of the size-dependence of the residual surface stress

Because of the curvature-dependence of the interfacial energy, the residual interface stress and residual interface
bending moment are also curvature-dependent. For a special case, we consider a spherical nano-inhomogeneity or a
spherical nanoparticle with radius R in a heterogeneous material where the curvature tensor of the sphere is B¼ � i0=R.
Thus the residual interface stress and the residual interface bending moment reduce to

rn

s ¼ γ0þ2γ1þ2γ2þ
2γ5
R

� �
i0 ð83Þ

mn

s ¼ γ3þγ5þ
γ4
R

� �
i0 ð84Þ

which demonstrate that the curvature-dependence has implications for size-dependence. The spherical surface has a
constant curvature thus Eqs. (83) and (84) are both isotropic. If we set γn0 ¼ γ0þ2γ1þ2γ2 and omit the unit tensor i0 in
Eq. (83), we obtain

sn

s ¼ γn0þ
2γ5
R

ð85Þ

which is different from the conventional residual surface/interface stress existing in the literature (e.g., Gurtin and Murdoch,
1975, 1978; Huang and Wang, 2013). The first term on the right side of Eq. (85) represents the constant part of the residual
surface/interface stress which is consistent with classical results. The second term on the right side of Eq. (85), however,
represents the curvature-dependent part of the residual surface/interface stress which is newly developed in this study.

Results from many theoretical, experimental and computational studies support the size-dependence of surface/
interfacial energy and surface/interface stress (e.g., Tolman, 1949; Jiang and Lu, 2008; Medasani and Vasiliev, 2009). One of
the most important findings appears in the famous Tolman's formula which describes the size effect of the residual surface
stress and gives

ss ¼ s1 1þ 2δ1
R

� ��1

ð86Þ

where ss denotes the residual surface stress of a spherical surface, s1 denotes the residual surface stress of a planar surface
and δ1 is the well-known Tolman length. If one takes a Taylor series expansion of Eq. (86) with variable R and keeps to the
first non-constant term (Schmelzer, 1986), the Tolman's formula can be approximately written as

ss ¼ s1 1� 2δ1
R

� �
þOðR�2Þ ð87Þ

This approximate formula works in the range R=δ1Z10 (Lu and Jiang, 2005).
If one compares Eq. (85) given by the present theory with the approximate Tolman's formula Eq. (87), one may then find

that these two equations coincide with each other and that the parameters have the following corresponding relations

s1 ¼ γn0; δ1 ¼ �γ5=γ
n

0 ð88Þ
which indicate that the constant part γn0 in Eq. (85) represents the residual surface stress of a planar surface and γ5 is
associated with the Tolman length.



X. Gao et al. / J. Mech. Phys. Solids 66 (2014) 59–7772
In addition, the size-dependence of residual surface stress predicted by the present theory is also in good agreement
with results for aluminum (Al) nanoparticles calculated by molecular dynamics and ab initio (Medasani and Vasiliev, 2009)
shown in Fig. 2. The colored lines denote the fitting curves by Tolman's formula and the present theory. For the Tolman's
formula in Eq. (86), the fitting parameters are s1¼2.3 N/m and δ1¼1.26�10�10 m, while for our predicting formula in
Eq. (85), the fitting parameters γn0 ¼ 2:18 N=m and γ5 ¼ �1:46� 10�10 N. Fig. 2 illustrates the facts that both the fitting
curves can well capture the size-dependence of the residual surface stress, and furthermore, that the results predicted by
Tolman's formula and the present theory are very closed to each other, thus reflecting the validity of the present theory.
7.2. The residual field in an infinite matrix with spherical voids

In this section, we discuss the effect of the curvature-dependent surface energy on the residual elastic field for
hyperelastic materials. As an example, we consider the case shown in Fig. 3 which describes a spherical void embedded in
an infinite hyperelastic matrix. Assuming the matrix is a harmonic material introduced by John (1960), its corresponding
hyperelastic potential is

ρ0ψ0 ¼ f ði1Þþc2ði2�3Þþc3ði3�1Þ; f ″ði1Þa0 ð89Þ

where f is function of its indicated argument, c2 and c3 are material constants, and i1, i2, i3 are principal invariants of the
stretch tensor ~U ¼ ~C

1=2
, that are defined as follows: i1 ¼ λ1þλ2þλ3, i2 ¼ λ1λ2þλ2λ3þλ3λ1 and i3 ¼ λ1λ2λ3.

It is usually required that restrictions be imposed on the hyperelastic potential. These restrictions are as follows: (i) in the
fictitious stress-free configuration, the hyperelastic potential and the stress field vanish; and (ii) in the case of infinitesimal
deformations, the hyperelastic potential function should reduce to the classical linear elasticity theory. According to the
above restrictions, for the harmonic material, we obtain

f ð3Þ ¼ 0; f 0ð3Þ ¼ �2c2�c3; c2þc3 ¼ �2μo0; f ″ð3Þ ¼ Kþ 4
3
μ ð90Þ

where μ is the shear modulus and K is the bulk modulus of linear elastic materials.
Fig. 2. The size-dependence of the residual surface stress of Al nanoparticles. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. The three configurations in the developed interface stress theory.
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What we are concerned with is the residual elastic field in the reference configuration κ0. As illustrated in Fig. 3, in the
fictitious stress-free configuration κn, a spherical part Ωn with radius Rn is taken out from the bulk solid. Then the atoms on
the newly created surface will move to new equilibrium positions and induce a residual elastic field in the bulk solid. For the
problem we are investigating, the deformation from κn to κ0 is spherically symmetric and can be described by r¼ rðRÞ, θ¼Θ
and ϕ¼Φ, where ðR;Θ;ΦÞ and ðr; θ;ϕÞ denote spherical polar coordinates before and after deformation, with the principal
stretches being

λ1 ¼
drðRÞ
dR

¼ r0; λ2 ¼ λ3 ¼
rðRÞ
R

ðRZRnÞ ð91Þ

The radial and hoop components of the Cauchy stress r can be expressed in terms of hyperelastic potential as follows:

sr ¼ ρ0
1
λ22

∂ψ0

∂λ1
; sθ ¼ sϕ ¼ ρ0

1
λ1λ2

∂ψ0

∂λ2
ð92Þ

Hence, the equilibrium equation in the absence of body force can be written as

d
dR

R2 ∂ψ0

∂λ1

� �
�2R

∂ψ0

∂λ2
¼ 0 ð93Þ

For the harmonic material, the solution of Eq. (93) is

rðRÞ ¼ k1Rþ
k2
R2 ð94Þ

The key to this residual field problem is how to determine the radius R0 ¼ rðRnÞ of the newly formed spherical void in the
initial reference configuration.

Considering the remote field conditions that λ1 and λ2 converge to 1 at infinity, we obtain k1¼1 and i1¼3k1¼3. Hence,
sr in Eq. (92) can be written as

sr ¼
1
λ2

� �2

f 0ð3Þþ2c2λ2þc3λ22
� �¼ 1

λ2

� �2

2c2ðλ2�1Þþc3ðλ22�1Þ� � ð95Þ

By using the generalized Young–Laplace Eqs. (81) and (82) on r¼ rðRnÞ ¼ R0 in the reference configuration and noting that
Eq. (81) is automatically satisfied, we get

sr jr ¼ rðRnÞ ¼
2
R

γn0þ
2γ5
R

� �
þ γ3þγ5þ

γ4
R

� �1
R

� 	
¼ 2

γn0
R

þ γ3þ3γ5
R2 þ γ4

R3

� �
ð96Þ

If we then substitute Eq. (95) into Eq. (96), we arrive at

c3λ3nþ2 c2�
γn0
Rn

� �
λ2
n
� 2ðγ3þ3γ5Þ

R2
n

þð2c2þc3Þ
 !

λn� 2γ4
R3
n

¼ 0 ð97Þ

where

λn ¼ rðRnÞ
Rn

¼ R0

Rn

¼ 1þ k2
R3
n

40 ð98Þ

If Rn is known in advance, Eq. (97) will determine λn and then k2 can be determined from Eq. (98). Once the deformation
relation in Eq. (94) is determined, we can immediately obtain the residual stress field in the reference configuration. It is
worth noting that Eq. (97) will reduce to the results of Huang and Wang (2006) if we neglect the residual surface bending
moment and the curvature-dependent part of the residual surface stress by setting γ3¼γ4¼γ5¼0.

For simplicity, we only consider the effect of the curvature-dependent residual surface stress. Hence, Eq. (97) reduces to a
quadratic equation

c3λ2nþ2 c2�
γn0
Rn

� �
λn� 4γ5

R2
n

þð2c2þc3Þ
 !

¼ 0 ð99Þ

Therefore, we can solve for λn:

λn ¼
� c2

c3
� γn0

c3Rn

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c3
� γn0

c3Rn

� �2
þ 1þ 2c2

c3
þ 4γ5

R2
n

� �r
if c3o0

� c2
c3
� γn0

c3Rn

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
c3
� γn0

c3Rn

� �2
þ 1þ 2c2

c3
þ 4γ5

R2
n

� �r
if c340

8>>><
>>>:

ð100Þ

In particular, if γn0=ðc3RnÞ and γ5=ðc3R2
n
Þ (as compared with unity) are first order small quantities and high-order small

quantities are neglected, then the approximate values of λn and k2 are

λn ¼ 1� 1
2μRn

γn0þ
2γ5
Rn

� �
; k2 ¼ � R2

n

2μ
γn0þ

2γ5
Rn

� �
ð101Þ
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Then the radial stress and hoop stress are obtained as

sr ¼ μHU
4k3þc3H=μ

ðk3�HÞ2
; sθ ¼ sϕ ¼ �2μHU

k3þc3H=μ

ðk3þ2HÞðk3�HÞ
ð102Þ

where

H¼ 1
2μRn

γn0þ
2γ5
Rn

� �
; k¼ R

Rn

Z1 ð103Þ

Here we note that H is a parameter that reflects the surface effect. It is obvious that two intrinsic length scales, ls ¼ γn0=μ and
ks ¼ �γ5=γ

n

0, emerge in Eq. (103), so that

H¼ ls
2Rn

U 1�2
ks
Rn

� �
ð104Þ

It is seen from Eq. (88) that ls reflects the effect of the constant part of the residual surface stress, which has been extensively
used in the classical surface stress theory, while ks is a new intrinsic length scale brought up in the present theory, which
approximately equals to the Tolman length and is associated with the curvature-dependence of the residual surface stress.
Hence, a dimensionless parameter can be introduced to estimate the importance of the curvature-dependent part of the
residual surface stress relative to its constant part:

kr ¼
ks
ls

¼ � μγ5
ðγn0Þ2

6
μδ1
γn0

ð105Þ
Fig. 4. The distribution of the radial residual stress.

Fig. 5. The distribution of the hoop residual stress.
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For the Al nanoparticle investigated in Section 7.1, the dimensionless parameter kr is about 0.82 (the shear modulus of Al is
26.56 GPa).

The distributions of the radial and hoop stresses are illustrated in Figs. 4 and 5 where it is assumed that c3¼μ and the
dimensionless surface parameters have the following values: ls=Rn ¼ 0:1 and kr ¼ 72. It is shown that the curvature-
dependence of residual surface stress does have a significant influence on the distributions of the residual elastic field in
the bulk.

8. Conclusions

In the present paper, a curvature-dependent interfacial energy-based interface stress theory is developed. This theory is
formulated within the framework of continuum mechanics and therefore valid for large elastic deformation problems of
heterogeneous nano-materials. The significance and the originality of this work are as follows:
1.
 The fundamental equations for the interface were derived in Lagrangian description, which are advantageous for
modeling the effects of residual interface stress, residual interface bending moment and interface elasticity on the
effective properties of nanomaterials.
2.
 A new nonlinear constitutive relation of the interface has been formulated based on the curvature-dependent interfacial
energy. This constitutive relation explicitly demonstrates the curvature-dependent nature of the interface stress and
bending moment, which is different from that described by the classical theories.
3.
 A new energy functional for heterogeneous hyperelastic solids with interfaces is proposed. Both the Lagrangian and Eulerian
descriptions of the generalized Young–Laplace equation have been derived firstly from this energy functional. The newly
derived generalized Young–Laplace equation can describe the intrinsic flexural resistance of the material interface.
4.
 The concept and importance of the residual elastic field induced by the interfacial energy are elucidated in this paper.
Utilizing this newly developed theory, this paper then provides a set of basic equations for determining the residual
elastic field in heterogeneous media containing interfaces.
5.
 Two examples are presented in order to shed light on the significance of the present theory. The first example shows that
our theory is capable of accounting for the size-dependence of the residual surface stress of spherical nanoparticles,
which is in agreement with the Tolman's formula and the relevant results in the literature. The second example
demonstrates that the curvature-dependence of the residual surface stress may have a significant influence on the
residual stress field in the elastic body. A new dimensionless intrinsic parameter is suggested to characterize the
importance of the curvature-dependent part of the residual surface stress.
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Appendix A. The Lagrangian description of the normal vector a3

Considering Eq. (1), we have

aα ¼ Xλ
αAλþDαA3 ðA:1Þ

where Xλ
α ¼ δλαþuλ

0jα�un
0B

λ
α and Dα ¼ uλ

0Bλαþun
0;α. Substituting (A.1) into a3 ¼ 1=2μαβaα � aβ and after simple algebra

calculations, we can finally get

a3 ¼
1
J2

XA3�εT UFsðinÞ UεUD
� �

¼ 1
J2
ðXA3�ZÞ ðA:2Þ

where X ¼ detðXλ
αÞ ¼ detFsðinÞ and

Z¼ ZγA
γ ¼ εT UFsðinÞ UεUD; Zγ ¼ εαβεμγX

μ
αDβ ðA:3Þ

Appendix B. The variation of Z, J2 and X
(i)
 Considering (A.3), we have

δZ¼ δZγA
γ ¼ εαβεμγðδXμ

αDβþXμ
αδDβÞAγ ðB:1Þ



Thus, we

It is not
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have

δZ¼ εT UδFsðinÞ UεUDþεT UFsðinÞ UεUδD ðB:2Þ

ed that εT UFsðinÞ Uε¼ ðtrFðinÞs Þi0�ðFðinÞs ÞT.
(ii)
 Considering J2 ¼
ffiffiffiffi
I2

p
and I2 ¼ 1=2ðI12�trCs

2Þ, we have

δJ2 ¼
1
2J2

δI2 ¼
1
2J2

ðI1i0�CsÞ : δCs ðB:3Þ
(iii)
 Considering X ¼ detFðinÞs ¼ 1=2½ðtrFðinÞs Þ2�trðFðinÞs Þ2�, we get

δX ¼ ½ðtrFðinÞs Þi0�ðFðinÞs ÞT� : δFðinÞs ðB:4Þ
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