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Abstract. The method of multiple timescales is widely used in engineering and
mathematical physics. In this note we draw attention to the literature on the tech-
niques and comparison of various perturbation methods. The emphasis is on au-
tonomous ODEs and ODEs with periodic coefficients. We indicate where we can
obtain an advantage from the concept of timescales and we present examples from
bifurcation theory where the anticipation of timescales is not straightforward and
multiple timing is in danger of being deficient. The paper is tutorial but new results
are presented in section 6.
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1 Introduction

Many problems in physics and engineering can be formulated as a perturbation
problem, i.e. as a small perturbation of a problem that we know how to solve.
Usually a small, positive parameter ε plays a part in the formulation; we will
assume 0 ≤ ε � 1. We start with some examples to illustrate the concept of
timescales.

Example 1 Consider the harmonic equation with a slight perturbation (detun-
ing) of the frequency 1:

ẍ+ (1 + ε)x = 0.

It is easy to solve the perturbed equation, we find the general solution

x(t) = A cos(
√

1 + εt) +B sin(
√

1 + εt)

with arbitrary constants A and B which are for instance determined by initial
conditions. Expanding with respect to ε in a Taylor series, we find

cos(
√

1 + εt) = cos t− εt

2
sin t+

ε2t

8
sin t− ε2t2

8
cos t+ ε3 . . .
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and for sin t a similar expression. The exact solution is periodic with respect
to t, but the Taylor expansion with respect to ε is not. In fact, the expan-
sion contains terms that are unbounded with time, so-called secular terms.
These secular terms assume different forms and are called time-like variables
or timescales. In this elementary problem, the timescales t, εt and ε2t play a
part, at higher order more timescales appear.

Example 2 We know the damped harmonic oscillator

ẍ+ µẋ+ x = 0, µ > 0,

and its solutions with usually µ rather small to avoid quenching the oscillation
too quickly. Suppose now that we are considering a mechanical process where,
for some reason, the damping slowly increases from (say) µ = ε to µ = 2ε. For
this oscillator, we propose the equation

ẍ+ ε(2− e−εt)ẋ+ x = 0.

Note that already in the equation a timescale, εt, is present, but maybe the
dynamics of this oscillator will produce more timescales. If t = 0, we have the
damped oscillator given above for µ = ε; if we let t tend to infinity, we have
this oscillator with µ = 2ε. What happens for the time in between? If ε = 0,
the independent variable is time t. It is natural to assume that as the damping
varies with εt, an approximation of the problem can be achieved by assuming
that two timescales, play a part: t and εt. We will show how we will handle
such a problem.

The picture of timescales as in the examples above is not always so simple.
Consider for instance an example of the classical Euler equation:

Example 3
t2ẍ− tẋ+ (1 + ε)x = 0.

The so-called Euler-index λ is obtained by substituting x(t) = tλ. This produces
the index-equation

λ2 − 2λ+ 1 + ε = 0,

with
λ = 1± i

√
ε.

So, independent solutions are t cos(
√
ε ln t) and t sin(

√
ε ln t) with timescales

t and
√
ε ln t. However, ignoring the exact solution, and putting ε = 0 in the

equation, gives the index-equation

λ2 − 2λ+ 1 = 0,

with double roots 1. The independent solutions if ε = 0 are t and t ln t which
have not much in common with the perturbed solutions.
This is a so-called bifurcation problem for the index-equation. This equation
has two coincident solutions that bifurcate to two different solutions by adding a
small parameter. Usually, problems in applications contain parameters that at
specific values produce bifurcation phenomena. As these correspond with quali-
tative changes in the solutions and also in the physical applications, bifurcation
phenomena merit special interest.
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The examples until now are all concerned with linear equations; in some
cases we have found so-called ‘natural timescales’, but sometimes we have al-
ready in a linear problem unexpected phenomena. Examples 1 and 2 will be
typical for the theory to be developed in the sequel.

2 The general formulation of perturbation problems

A rather general problem formulation is to consider ordinary differential equa-
tions (ODEs) that contain a small positive parameter ε as in

ẋ = f(t, x, ε), x ∈ Rn, (1)

depending to some order smoothly on x and t for t0 ≤ t < ∞ and ε for
0 ≤ ε ≤ ε0; the dot represents differentiation with respect to t. We assume we
can Taylor-expand:

ẋ = f0(t, x) + εf1(t, x) + ε2f2(t, x) + ε3 . . . (2)

For such a general problem, we usually cannot formulate explicit solutions of
the equation in terms of elementary functions, but we assume that the equation
can be solved, at least to some extent, if ε = 0. ‘To some extent’ may also mean
that we are able to extract certain special solutions, equilibria or periodic, if
ε = 0. By expanding in a neighbourhood of such a solution we can obtain
so-called variational equations.

In our analysis we hope for the presence of certain typical timescales like
t, εt, ε2t, . . ., which we called ‘natural’ in the Introduction, on which approx-
imate solutions depend; in some problems we have similar choices for spatial
variables. Contrasting with this approach of anticipating timescales is aver-
aging, a normal form method, where no apriori assumption on the form of
time-dependence is made. This contrasting approach also holds for the renor-
malization method. It will be clear that an apriori choice of timescales should
be linked with apriori knowledge of the nature of the solutions.

The idea of anticipating timescales was introduced in Kiev by Krylov and
Bogoliubov in 1935 [9]; the first application (as far as we are aware) was by
Kuzmak in 1959 [10]. After 1960, the idea of multiple timescales was advocated
and studied by Kevorkian [6], Cochran [4] and Nayfeh, see for instance [15].
The method, also called multiple timing, is intuitively clear and became very
popular, especially in engineering.

The Kiev school of approximation theory for nonlinear ODEs was very
influential so it is interesting to find out why they dropped the idea of multiple
timing after the work of Kuzmak. When asked for a reason, Yu.A. Mitropolsky,
a prominent member of the Kiev school, told me “because it is not a good
method” [12]. This seems somewhat exaggerated as the validity of the method
can be demonstrated in a great many cases. But it is true, as we shall see,
that for a large number of important research problems, multiple timing can
be misleading.

Apart from the literature cited above, introductions to the multiple timescale
method can be found in [2], [15], [19] and [24]. A comparison of averaging and
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multiple timing by a number of important examples can be found in [7]. There
have appeared many papers on the approximation of solutions of ODEs, we
can cite only a few of them.

The relation between multiple timing and the renormalization method was
discussed in [2], [3] and [13], however on a formal level only. In [16], Perko
established the equivalence of the averaging method and multiple timing for
standard equations like

ẋ = εf(t, x)

on intervals of time of order 1/ε. This was a major step forward. See also the
extensive discussions in [14] and [19].

Asymptotic equivalence of methods would imply that, considering a solution
x(t) of a differential equation, expressions x̄1(t) and x̄2(t) obtained by different
methods, would both represent an approximation of x(t) with error δ(ε) = o(1)
as ε → 0 on the same interval of time (for instance of size 1/ε). Such results
extend beyond the formal level.

Often, we will indicate that an approximation with error δ(ε) is valid on
an interval of size 1/ε. A more precise statement is that the error estimate is
valid for t0 ≤ εt ≤ t0 + L with t0, L constants independent of ε. It was shown
in [16] that the approximations obtained by averaging and by multiple timing
are equivalent to O(ε) on intervals of time of order 1/ε.

We will restrict ourselves to a discussion of ODEs. In [24] one can find a
discussion and references of a number of PDE problems.

3 The basic idea for two timescales

As stated above, many small ε parameter problems are studied using timescales
like t, εt, ε2t and in general εnt with n ∈ N. In the perturbation problem of eq.
(2), the form of the solution for ε = 0 plays a part.

3.1 The variational equation

Ideally, we know the solution of the equation

ẋ = f0(t, x)

explicitly, say x(t)|ε=0 = ψ(t, c) with c a constant n-vector. We transform the
solution of eq. (2) as follows. Put

x(t) = ψ(t, y),

and substitute into eq. (2) (this is Lagrange’s method of variation of contants).
We find:

ẋ =
∂ψ

∂t
+
∂ψ

∂y
ẏ = f0(t, ψ(t, y)) + εf1(t, ψ(t, y)) + ε2 . . .

Assuming that we can invert the matrix ∂ψ/∂y, we derive:

ẏ = ε

(
∂ψ

∂y

)−1

f1(t, ψ(t, y)) + ε2 . . .
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This is the so-called variational equation in standard form.
In a number of problems we have less explicit knowledge of the solutions

of the unperturbed problem. We may know an explicit solution which can be
used to start a perturbation formulation. Another possibility is the presence of
one or more integrals of motion of the unperturbed problem. These integrals
can also be used as new variables for perturbation equations.

3.2 Two-timing

A simple but typical approach for two timescales runs as follows. Consider the
variational equation in standard form

ẋ = εf(t, x) (3)

with f(t, x) T -periodic in t, the initial value x(0) is given. As we will see
below, we can also start our multiple timing process directly for eq. (2) (direct
two-timing). We will look for solutions of the form

x(t) = x0(t, τ) + εx1(t, τ) + ε2 . . . (4)

with τ = εt, the dots represent the higher order expansion terms. As the
unknown functions x0, x1, . . . are supposed to depend on two variables, we
have to transform the differential operator; we have to first order in ε:

d

dt
=

∂

∂t
+ ε

∂

∂τ
.

Using this differential operator and the expansion we find

∂x0
∂t

+ ε
∂x0
∂τ

+ ε
∂x1
∂t

+ ε2 . . . = εf(t, x0(t, τ) + εx1(t, τ) + ε2 . . .)

Suppose we can Taylor-expand the function f to a certain order, collecting then
the terms of order 1 and ε, we find the simple partial differential equations

∂x0
∂t

= 0,

∂x1
∂t

= −∂x0
∂τ

+ f(t, x0).

The first equation produces

x0(t, τ) = A(τ), A(0) = x(0),

with A(τ) still an unknown function; A will be determined at the next step.
For x1 we find by integration

x1(t, τ) =

∫ t

0

(
−∂A(τ)

∂τ
+ f(s,A(τ))

)
ds+B(τ).
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The function B(τ) is unknown and has to satisfy B(0) = 0. If we are looking
for bounded solutions of eq. (3), or even for periodic solutions, the integral∫ t

0

(
−∂A(τ)

∂τ
+ f(s,A(τ))

)
ds

has to be bounded. This is called the secularity condition. We can achieve this
by determining A(τ) such that

dA

dτ
=

1

T

∫ T

0

f(s,A(τ))ds. (5)

Assuming that f(t, x) has a Fourier expansion is a natural condition as it means
that the ‘constant’ term of the expansion vanishes. The determination of A(τ)
implies that satisfying the secularity condition corresponds with averaging the
function f(t, x) while keeping x constant. This idea can be traced to the end
of the 18th century, for instance in the writings of Lagrange (see [19]).

The condition (5) is exactly the condition for averaging. Starting with the
standard form (3), and initial condition x(0) = x0, the initial value problem

x̃ = ε
1

T

∫ T

0

f(t, x̃)dt, x̃(0) = x0,

produces an approximation x(t) = x̃(t) + O(ε) on intervals of time O(1/ε).
This establishes the equivalence of two-timing and averaging to first order in ε.

Note that both two-timing and averaging assume boundedness of the solu-
tions resulting in the secularity condition. If the solutions are unbounded it
makes no sense to apply a secularity condition.

3.3 Direct two-timing

The standard form eq. (3) was our starting point. In some cases, for instance
for the perturbed harmonic equation:

ẍ+ x = εf(t, x, ẋ),

it may be easier to transform the original equation using the differential quo-
tients with respect to time. Assuming the presence of the timescales t and εt,
we compute:

d

dt
=

∂

∂t
+ ε

∂

∂τ
, and

d2

dt2
=

∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2

∂2

∂τ2
. (6)

Substitution into the equation produces to first order in ε:

(
∂2

∂t2
+2ε

∂2

∂t∂τ
)(x0+εx1)+x0+εx1 = εf(t, x0+εx1, (

∂

∂t
+ε

∂

∂τ
)(x0+εx1))+ε2 . . . .

Collecting equal powers of ε we find to zero order

∂2x0
∂t2

+ x0 = 0,
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with general solution

x0(t, τ) = A(τ) cos t+B(τ) sin t.

To first order in ε we find:

∂2x1
∂t2

+ x1 = 2(
dA

dτ
sin t− dB

dτ
cos t) + f(t, x0,

∂x0
∂t

).

We have to apply the secularity condition to this first order equation to deter-
mine A(τ) and B(τ).

We demonstrate this for example 2.

Example 4 Consider again the problem of example 2:

ẍ+ ε(2− e−εt)ẋ+ x = 0.

Introducing τ = εt, the differential operators (6) and the expansion (4) into the
equation we find to zero order

∂2x0
∂t2

+ x0 = 0,

with general solution

x0(t, τ) = A(τ) cos t+B(τ) sin t.

The unknown functions A(τ), B(τ) will be determined at next order of ε:

∂2x1
∂t2

+ 2
∂2x0
∂t∂τ

+ (2− e−τ )
∂x0
∂t

+ x1 = 0.

Using the expression for x0 we can write this as:

∂2x1
∂t2

+ x1 = 2(
dA

dτ
sin t− dB

dτ
cos t) + (2− e−τ )(A sin t−B cos t).

The solutions of the inhomogeneous harmonic equation produces unbounded
(secular) terms unless

2
dA

dτ
+ (2− e−τ )A = 0, 2

dB

dτ
+ (2− e−τ )B = 0.

Solving the equations for A and B we find to first order for x(t):

e−τ−
1
2 e

−τ+ 1
2 (A(0) cos t+B(0) sin t).

A(0) and B(0) are determined by the initial conditions. As expected, the damp-
ing factor increases.

It is interesting to compare the two-timing result with the approximation
obtained by averaging; see [19], introductions can be found in [23] and [24].
Averaging produces in the solution the same damping factor, as expected. The
result of Perko [16] implies that the two methods both yield an O(ε) approxima-
tion, valid on an interval of time of size 1/ε. So any difference must be beyond
this interval or at higher order approximations.
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4 Algebraic timescales for bifurcations

Analytic and numerical approximation theory gives us useful details, but one
of the basic questions of engineering and mathematical physics is to obtain a
global picture of the behaviour of the dynamical system studied; this is tied
in with the study of qualitative changes when the parameters of the system
pass certain critical values. Such changes are called bifurcations, they may
entail stability changes, branching or vanishing of solutions, transitions from
periodic solutions to tori, emergence of chaos and other phenomena. As we shall
see, it is important in these problems to avoid making apriori assumptions on
timescales.

In the analysis of bifurcations, approximation theory is used, combined with
linearization and matrix calculations. A typical computation for an equation of
the form ẋ = f(x, t, ε) will be to identify an equilibrium or special solution ψ(t)
and study the behaviour of this solution as the parameters are changing; this
leads to the calculation of eigenvalues, Lyapunov exponents and characteristic
multipliers.

A typical example of a corresponding bifurcation diagram is displayed in
fig. 1 describing bifurcations in a three degrees of freedom mechanical system
with damping parameter b and self-excitation magnitude β. The curves in the
b, β-diagram correspond with bifurcations as for example Hopf (H), Chenciner
(CH), Neimark-Sacker (NS) etc. The system is studied in [1].

Fig. 1. Bifurcation diagram of a 6-dimensional system with damping b and self-
excitation β. The curves correspond with bifurcations in parameter-space, see [1].
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Bifurcation phenomena in ODEs lead by local linearization to studying
systems of the form:

ẋ = A(ε)x, (7)

where we can expand the n× n-matrix A:

A(ε) = A0 + εA1 + ε2A2 + ε3 . . .

The n × n-matrices An do not depend on ε; εn before a matrix should be
interpreted as a diagonal n × n-matrix with diagonal elements εn. If we have
started with the standard form (3), we will have A0 = 0. More in general, we
have A0 derived from the unperturbed problem, A1 is produced by perturbation
methods, by a special effort we may know A2 and we will have some knowledge
about higher order terms. An important question is then what the eigenvalues
of A0 and A0+εA1 tell us about the eigenvalues of A(ε). This question is tied in
with the structural stability of the matrices and whether eigenvalues are single
or multiple. Failure of structural stability and the appearance of multiple
eigenvalues is characteristic for bifurcation phenomena and so merit special
attention. For instance in the bifurcation diagram of fig. 1, H corresponds
with the presence of two purely imaginare eigenvalues, CH with one zero and
two imaginary eigenvalues; for an extensive description see [11].

A n×n matrix is called structurally stable if it is nonsingular and all eigen-
values have nonzero real part. If we have a zero eigenvalue or purely imaginary
eigenvalues, we can expect bifurcations. Apart from this, the presence of mul-
tiple eigenvalues affects the form of the expansions and the timescales.

Example 5 We start with an example derived from an equation in standard
form (3) where we have the expansion of A(ε) until A2:

ẋ = ε2y, x(0) = 0,

ẏ = −εx, y(0) = 1.

A0 has vanished, A1 has zero eigenvalues, εA1 + ε2A2 has eigenvalues ±ε 3
2 i.

The solution of the initial value problem is

x(t) = ε
1
2 sin(ε

3
2 t), y(t) = cos(ε

3
2 t).

As can be seen from the eigenvalues, the timescale ε
3
2 t plays a part. Expanding

the trigonometric functions on an interval of time of size 1/ε, we find that the
timescales t and εt can be used to obtain asymptotic estimates. On a longer in-
terval of time, for instance 1/ε2, we need the timescale ε

3
2 t to obtain asymptotic

estimates.

For bifurcations, local linearization leads to eigenvalue problems associated
with eq. (7), so algebraic timescales are natural phenomena. Can we predict the
form εqt with q rational of such algebraic timescales? The following questions
and results are classical.

Consider the matrix expansion obtained by a perturbation method:

A(ε) = A0 + εA1 + ε2A2 + ε3 . . .
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• Can the eigenvalues be expanded in a convergent series of the form

λ = λ0 + ελ1 + ε2 · · · ,

where λ0 is an eigenvalue of the matrix A0 ? If this is the case, we expect
timescales of the form t, εt, ε2t. . . .

• If we are in the critical case of bifurcations where λ0 is zero or purely
imaginary, how do the perturbations affect the eigenvalues and thus the
qualitative behaviour of the solutions of the differential equations?

If A0 vanishes, we extract ε and treat A1 as perturbed matrix. We refer to [24]
for references and summarize some basic results:

• If λ0 is single, we have

λ(ε) = λ0 + ελ1 + ε2 . . .

If λ0 = 0, this means we have an O(ε) size eigenvalue.
• According to Newton and Puisieux:

If λ0 is multiple, the expansion is in fractional powers of ε.

Example 6 Consider the equation ẋ = A(ε)x with for the matrix A(ε):

A(ε) =

 0 0 1
0 0 0
0 0 0

+ ε

0 0 0
1 0 0
3 0 0

+ ε2

0 0 0
0 0 0
0 −1 0

 .

The characteristic equation to O(ε) is:

λ3 − 3ελ = 0

with eigenvalues λ1 = 0, λ2,3 = ±3
√
ε. The matrix A0 + εA1 is not structurally

stable so we add the O(ε2) term. This leads to the characteristic equation:

λ3 − 3ελ+ ε3 = 0.

with Newton-Puisieux expansion for the eigenvalues

λ1 =
1

3
ε2 +

1

81
ε5 + · · · , λ2,3 = ±3

√
ε− 1

6
ε2 + · · · .

Including the O(ε2)-terms we have structural stability. Solving the equation we
have time-like variables (timescales) of the form

√
εt, ε2t, ε5t

and from the expansion also higher order timescales.
The discussion has some relevance for the analysis of the nonlinear problem

ẋ = A(ε)x+ εf(x),

where f(x) is a nonlinear vector field with an expansion starting with quadratric
terms near x = 0. The zero eigenvalue to O(ε) suggests the presence of a
center manifold associated with the corresponding eigenvector. The calculation
of eigenvalues to O(ε2) destroys this picture.
Similar problems may arise for other codimension one and two bifurcations
triggered by the matrix A(ε).
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In the sequel we will consider a number of bifurcation problems arising in
applications.

5 Application: the Mathieu-equation

Fig. 2. The gray Floquet tongues denote for which parameter values ω and ε the
trivial solution of the Mathieu equation is unstable. In our approximations we have
described the lower part of the tongue emerging from ω = 1 as in eq. (8).

We consider the Mathieu equation which plays a part in many engineering
problems:

ẍ+ (ω2(ε) + ε cos νt)x = 0,

in its fundamental 1 : 2-resonance with a slight detuning:

ẍ+ (1 + εa+ ε2b+ ε cos 2t)x = 0, (8)

a and b are free parameters independent of ε, ω2 = 1 + εa + ε2b. We apply
Lagrange variation of constants

x = y1 cos t+ y2 sin t, ẋ = −y1 sin t+ y2 cos t.

The slowly-varying equations for (y1, y2) are, after averaging, of the form ẏ =
A(ε)y; this (averaging) normal form approach produces to first order in ε:

A(ε) = +ε

(
0 1

2 (a− 1
2 )

− 1
2 (a+ 1

2 ) 0

)
+O(ε2).

The eigenvalues are

λ1,2 = ±1

2

√
1

4
− a2,
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the two approximate independent solutions for (y1, y2) can be written as

e±
1
2

√
1
4−a2 εt.

This leads to the well-known result that for a2 > 1
4 the solutions of the Mathieu

equation are stable (the approximate solutions are trigonometric) and for a2 <
1
4 they are unstable. The approximations with appropriate initial values have
error estimate O(ε) on a long time-interval O(1/ε). In this approximation, the
timescales for x(t) are t and εt. The boundary of the instability domains, the
Floquet tongues, are the bifurcation curves where the transition from unstable
to stable solutions takes place in (ω2, ε)-parameter space; see fig. 2.

5.1 What happens at the tongue boundary?

What happens at the transition values, for instance at ω2 = 1 + εa where
a = 1

2? In this case, we have for the normal form to first order:

A1 =

(
0 0
− 1

2 0

)
,

a typical degenerate matrix from bifurcation theory. Following [19] or [24] we
perform a second-order averaging normalization to find:

A2 =

(
0 1

64 + 1
2b

7
64 −

1
2b 0

)
.

We find for the eigenvalues of A(ε) to this order of approximation

λ2 = −1

4

(
b+

1

32

)
ε3 +

1

4

(
b+

1

32

)(
7

32
− b
)
ε4.

The O(ε3)-term dominates, b = − 1
32 produces a more precise location of the

Floquet tongue.
If b > − 1

32 we have stability, if b < − 3
32 we have instability.

The second order approximations of the solutions for (y1, y2) are a linear com-
bination of exp .(+λt) and exp .(−λt). With appropriate initial values they
yield approximations of the solutions of the Mathieu equation (8) with error
estimate O(ε2) on a long time-interval O(1/ε).

It is remarkable that the timescale ε
3
2 t plays a part in this problem because

near the boundary of the Floquet tongue we have that λ2 = O(ε3). The
timescales characterizing the flow near the Floquet tongue are until second
order

t, εt, ε
3
2 t, ε2t.

The presence of the timescale ε
3
2 t was noted for the Mathieu equation in [2],

using the renormalization method. It is also noted in [2] that, using multiple
timing with timescales t, εt, ε2t, this extra timescale is not discovered. It arises
from a bifurcation problem with multiplicity two eigenvalues

The tongue boundaries in fig. 2 correspond with parameter values where
the Mathieu equation has periodic solutions. They indicate the transition from
unstable to stable trivial solution, the eigenvalues on the boundaries show the
nature of the bifurcations.



Chaotic Modeling and Simulation (CMSIM) 4: 473–494, 2013 485

6 Application: resonance manifolds

Many dynamical systems, both dissipative and conservative, can be put in the
form: {

ẋ = εX(φ, x) + ε2 . . . ,

φ̇ = Ω(x) + ε . . .
(9)

x is an n-vector (amplitudes) and φ an angle-vector (think of gyroscopic systems
or in the case of Hamiltonian systems of actions and angles).
φ is time-like in domains where Ω(x) 6= 0.

In a neighbourhood of Ω(x) = 0, φ is not time-like and we have a resonance
manifold.

6.1 Simple examples

Consider as an example a one degree of freedom system:

Example 7 The equation to be studied is

ẍ+ ω2x = εf(x, ẋ),

with (positive) constant frequency ω. Putting ẋ = ωy and introducing amplitude-
angle variables x, y → r, φ by

x = r sinφ, y = r cosφ,

we find the equations

ṙ = ε
cosφ

ω
f(r sinφ, ωr cosφ),

φ̇ = ω − sinφ

ωr
f(r sinφ, ωr cosφ).

One observes that the righthand sides are 2π-periodic in φ and a perturbation
scheme can be started, for instance by averaging over φ.
Apply this for instance to the damped, Duffing equation where f(x, ẋ) = −aẋ−
bx3.

For the theory we refer to [19] and [24]. New phenomena may emerge in the
case of more degrees of freedom. We borrow some examples from [24].

Example 8 After suitable transformations in a problem, we have obtained the
system:

ẋ = εx(cosφ1 + cosφ2 + cos(2φ1 − φ2)),

φ̇1 = x,

φ̇2 = 2.
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We have one amplitude, x, two angles φ1 and φ2; in addition the combination
angle ψ = 2φ1 − φ2. We could consider the angles φ1, φ2, 2φ1 − φ2 as time-like
variables and average over them; this is also called ‘averaging over a torus’.
This would result in an average zero for the righthand side of ẋ. Is this a
correct strategy? The answer is affirmative in the cases that the three angles
are indeed time-like but not in the cases when

φ̇1 = 0, φ̇2 = 0, 2φ̇1 − φ̇2 = 0.

As 2φ̇1 − φ̇2 = 2(x − 1) we have to consider separately the cases x = 0 and
x = 1. The domains near x = 0 and x = 1 are called the resonance zones in
x-space. Outside the resonance zones, the average of ẋ over the two angles and
the combination angle vanishes, so x(t) is nearly constant there. What happens
in a resonance zone? In this example x = 0 is an exact solution, consider
instead a neighbourhood of x = 1 by rescaling:

x− 1 = δ(ε)ξ.

Here, ξ is the new, local variable; δ(ε) = o(1) as ε → 0, but we still have to
find out what the size of δ(ε) and the resonance zone is. Introducing ξ and ψ
in the equations produces:

δ(ε)ξ̇ = ε(cosφ1 + cosφ2 + cosψ) +O(εδ(ε)),

φ̇1 = 1 +O(δ(ε)),

φ̇2 = 2

ψ̇ = 2δ(ε)ξ.

To first order, φ1 and φ2 are time-like in this resonance zone, ψ is not. The
equations for ξ and ψ show the same size of terms on choosing δ(ε) =

√
ε. The

equations become with this choice:

ξ̇ =
√
ε(cosφ1 + cosφ2 + cosψ) +O(ε),

φ̇1 = 1 +O(
√
ε),

φ̇2 = 2

ψ̇ = 2
√
εξ.

We average now over the time-like variables φ1 and φ2 to find the leading
equations and terms in this resonance zone:

ξ̇ =
√
ε cosψ, ψ̇ = 2

√
εξ.

Differentiating ψ we get the pendulum equation for the combination angle:

ψ̈ − 2ε cosψ = 0.

The pendulum equation has a centre point and a saddle. It can be shown that the
stationary solutions of this resonance zone equation correspond with a stable
and an unstable periodic solution of the original system. Note that in this
example we had to localize in space to size O(

√
ε), the natural timescale in the

resonance zone is
√
εt, outside the resonance zones it is εt.
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x
φ

excentric

Fig. 3. Excentric flywheel, rotating on elastic foundation

6.2 Rotation of an excentric flywheel

An application in [24], example 12.11 (with more references there), describes a
slightly excentric flywheel, see fig. 3; the analysis is based on the thesis of Van
den Broek [22], see also [21]. The vertical displacement x of a small mass on
the flywheel and its rotation angle φ are given by{

ẍ+ x = ε(−x3 − ẋ+ φ̇2 cosφ) +O(ε2),

φ̈ = ε( 1
4 (2− φ̇) + (1− x) sinφ) +O(ε2).

(10)

To analyse the system and to put it in standard perturbation form, we intro-
duce:

x = r sinφ2, ẋ = r cosφ2, φ = φ1, φ̇1 = Ω,

with r,Ω > 0. We find to O(ε) a system with two angles, φ1, φ2, and slowly
varying variables r and Ω:

ṙ = ε cosφ2(−r3 sin3 φ2 − r cosφ2 +Ω2 cosφ1),

Ω̇ = ε(
1

4
(2−Ω) + sinφ1 − r sinφ1 sin2),

φ̇1 = Ω,

φ̇2 = 1 + ε(r2 sin4 φ2 +
1

2
sin 2φ2 −

Ω2

r
cosφ1 sinφ2).

Evaluating the trigonometric terms in the slowly varying equations for r and Ω
we find the angles φ1, φ2, 2φ2, 4φ2 and the combination angles φ1−φ2, φ1 +φ2.
The righthand sides of the equations for the angles are positive, so the only
resonance zone that can be active is when φ̇1 − φ̇2 ≈ 0. As

d

dt
(φ1 − φ2) = Ω − 1 +O(ε),
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this happens if Ω is near 1. Note that the analysis included O(ε) terms only, if
we add higher order terms, more (but smaller) resonance zones may be found.
Outside the resonance zone we average over the angles to find an approximation
from {

ṙ = − ε2r,
Ω̇ = ε

4 (2−Ω).
(11)

Although simple looking, this result is already of interest. The deflection x
of the flywheel will go exponentially fast to zero outside the resonance zone;
outside resonance, Ω(t), the rotation speed, will tend to 2, but if Ω(0) < 1,
the flywheel will pass through the resonance zone, the averaged equations 11
do not apply in this zone. What happens there? As in example 8 above, we
rescale locally in a neighbourhood of Ω = 1 and introduce the combination
angle ψ:

Ω = 1 + δ(ε)ω, ψ = φ1 − φ2.

We find

ṙ = O(ε),

δ(ε)ω̇ = ε(
1

4
+ sinφ1 −

1

2
r cosψ +

1

2
r cos(2φ1 − ψ)) + . . . ,

φ̇1 = 1 + . . . ,

ψ̇ = δ(ε)ω + . . .

The dots represent higher order terms. The equations for ω and ψ show the
same size of terms if

δ(ε) =
√
ε,

which determines the size of the resonance zone. Averaging over the remaining
angle φ1 and noting that r(t) varies O(ε) in the resonance zone, we find to
O(
√
ε) (neglecting terms of O(ε

√
ε)):

ω̇ =
√
ε(

1

4
− 1

2
r cosψ),

ψ̇ =
√
εω.

Differentiating the equation for ψ we find again a pendulum equation describing
the dynamics in the resonance zone:

ψ̈ +
1

2
εr(0) cosψ =

1

4
ε.

So it turns out that the resonance zone near Ω = 1 is of size O(
√
ε), the

timescale of the dynamics is
√
εt. The centre equilibrium of the pendulum

equation corresponds with a stable periodic solution, the saddle with an unsta-
ble one. A periodic solution that is Lyapunov stable only does not attract. By
including second order aproximations, we find that if we start at 0 < Ω(0) < 1,
there exist initial values Ω(0) so that the solution is trapped in the resonance
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zone, resulting in periodic deflections of the flywheel. To describe this be-
haviour analytically, we have to obtain a second order approximation with
respect to ε (described in [21]). This second order approximation adds neg-
ative real values O(ε2) to the purely imaginary eigenvalues. For a numerical
illustration see fig. 4.
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Fig. 4. Orbits for the excentric flywheel. Left: capture into resonance (x1 = x, x2 =
ẋ); φ1(0) − φ2(0) = 1.13, φ2(0) = 0, ε = 0.1. Right: transition through the resonance
zone, vertical f2 = φ2;φ1(0) − φ2(0) = 0.5, φ2(0) = 0.5, ε = 0.1.

It turns out that at this level of approximation, there are three open sets of
initial values of the combination angle ψ that lead the corresponding solutions
to trapping into the resonance zone. If ε = 0.01, the sets are for φ1(0) −
φ2(0) = ψ(0): [1.049, 1.232], [2.840, 3.047] and [4.763, 4.863]. In [21] this result
is established analytically and confirmed numerically.
The results are dependent on the value of ε. It is an open question how the
number of ‘channels’ leading to trapping in the resonance zone depends on the
level of approximation; narrower channels may exist at higher order.

Problems where averaging over angles (a torus) has to be used, arise in many
fields of application, for instance in gyroscopic systems, also in Hamiltonian
mechanics. Algebraic timescales of the form εqt with q a rational number, are
natural in this context; see also [24] for the general theory and more examples.

6.3 Application: resonance manifolds in Hamiltonian systems

Higher order resonance turns out to be a natural application of the asymp-
totics of resonance manifolds. For an application in two degrees-of-freedom
Hamiltonian systems, in particular the elastic pendulum, see [20].

Consider the two degrees-of-freedom Hamiltonian in local coordinates with
Taylor-expansion:

H = H2 + εH3 + ε2H4 + . . . ,

with Hk homogeneous of degree k in position and momentum (p, q). H2 takes
the standard form

H2 =
m

2
(q21 + p21) +

n

2
(q22 + p22),
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with the integers m,n positive and relative prime. The phase-flow in a neigh-
bourhood of the origin takes place on compact manifolds parametrised by the
Hamiltonian (energy) integral.

Most of the attention in the literature went to the primary resonance 1 : 2
and to the secondary resonances 1 : 1 and 1 : 3. In these resonance cases, the
dominant part of the phase-flow is characterised by the timescales t, εt, ε2t and
the time intervals of validity of approximation 1/ε and 1/ε2, see [19].

6.4 The higher order normal form

The cases where m + n ≥ 5 are called higher order resonances. Studying
these resonances requires the computation of higher order normal forms and
involves intervals of time longer than 1/ε2. In the Hamiltonian normal form,
the first resonant term, involving both actions and angles, arrives from Hm+n

at O(εm+n−2).
The first basic approach to higher order resonance was given in [17] with

applications in [18]. In [20] an improvement of the estimates has been given,
together with a number of applications, among which the elastic pendulum (a
pendulum where the suspending, inflexible string is replaced by a linear spring).
Introducing action-angle variables pi, qi → τi, φi, i = 1, 2, the normal form will
be of the form:

H = mτ1 + nτ2 + ε2P2(τ1, τ2) + . . .+ εm+n−2D(τn1 τ
m
2 )

1
2 cosχ,

with resonance combination angle χ = nφ1 − mφ2 + α. The dots represent
terms depending on τ1, τ2 only, the terms in so-called Birkhoff normal form.
A consequence from the corresponding equations of motion is that the actions
are constant until terms of order O(εm+n−2) are taken into account, for the
combination angle we have

χ̇ = ε2
(
n
∂P2

∂τ1
−m∂P2

∂τ2

)
+ ε3 . . .

6.5 The phase-flow of higher order resonance

Consider the higher order resonances defined by m+ n ≥ 5. It turns out there
are two domains in phase-space where the dynamics is very different and is
characterised by different timescales:

• The resonance domain DI , which is a neighborhood of the resonance man-
ifold M . The resonance manifold, if it exists, arises from the condition
that P2(τ1, τ2) and maybe higher order Birkhoff normal forms vanish. In
DI the variations of the actions and the combination angle may interact
significantly. In terms of singular perturbations, this is the inner boundary
layer of the Hamiltonian system. In [20] it has been shown that the size

of the resonance domain is O(ε
m+n−4

2 ), the interaction of the actions takes

place on a time interval of order O(ε−
m+n

2 )
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• The remaining part of phase-space, outside the resonance domain, is D0,
the outer domain. In the domain D0, there is, to a certain approximation,
little variation of the actions, and so hardly any exchange of energy between
the two degrees of freedom.

It is shown in [20] that for Hamiltonians derived from a potential, we have
α = 0, and that for the elastic pendulum, after the first order 2 : 1-resonance,
the higher order 4 : 1-resonance is the most prominent one with resonance
manifold of size O(ε

1
2 ) and time interval of interaction O(ε−

5
2 ); for a Poincaré

map of the 1 : 6-resonance of the elastic pendulum see fig. 5.

Fig. 5. The Poincaré map for the 1 : 6-resonance of the elastic pendulum (ε = 0.75,
large for illustration purposes). In the resonance domain, the saddles are connected
by heteroclinic cycles and inside the cycles are 6 center fixed points, see [20].

6.6 The Hénon-Heiles family

A well-known model for orbits in axi-symmetric galaxies is the family of Hénon-
Heiles potential problems

H =
m

2
(q21 + p21) +

n

2
(q22 + p22)− ε

(a1
3
q31 + a2q1q

2
2

)
. (12)

In the literature, most of the attention is on the m : n = 1 : 1- and 2 : 1-
resonances. In [20] it is noted that the m : n = 1 : 2-resonance degenerates
because of the discrete symmetry in the second degree of freedom, it is treated
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as a 2 : 4 higher order resonance. In this case the resonance manifold, for the
parameter values where it exists, has size O(ε), the timescale of interaction is
ε3t.

Is the degenerate 1 : 2-resonance the most prominent higher order reso-
nance? Other candidates are the 2 : 3- and the 4 : 1-resonances, the 3 : 2-
and 1 : 4-resonances are degenerate because of the discrete symmetry of the
potential.

If a2 = 0, the equations decouple, so we assume a2 6= 0. Assuming m+n ≥ 5
we find the normal form from [18] or [20]. As explained above, we find for the
actions τ1 = 1

2 (q21 + p21), τ2 = 1
2 (q22 + p22):

τ̇1 = O(ε3), τ̇2 = O(ε3).

For the combination angle χ = nφ1 −mφ2 we have:

χ̇ = ε2
(
−5n

12
a21 +

m

4
a1a2 +

m

30
a22

)
2τ1 + ε2

(
−n

2
a1a2 −

n

15
a22 +

29m

120
a22

)
2τ2.

(13)
For the Hénon-Heiles family, one usually puts λ = a1/3a2, producing:

χ̇ = 6a22ε
2

(
−5n

4
λ2 +

m

4
λ+

m

90

)
τ1 + 6a22ε

2

(
−n

2
λ− n

45
+

29m

360

)
τ2. (14)

The resonance manifold, if it exists, is determined by the equation(
−5n

4
λ2 +

m

4
λ+

m

90

)
τ1 +

(
−n

2
λ− n

45
+

29m

360

)
τ2 = 0. (15)

The approximate energy integral is given by

mτ1 + nτ2 = E0, 0 ≤ τ1 ≤
E0

m
, 0 ≤ τ2 ≤

E0

n
.

We will consider the prominent higher order resonances for the original Hénon-
Heiles problem [5] and the potential often used by Contopoulos, see [18]. As
mentioned, the candidates for this are the 2 : 3- and the 4 : 1-resonances. If
they exist, the size of the resonance manifolds are in these cases O(ε

1
2 ), the

interaction of the degrees of freedom in the resonance manifold takes place on
an interval of order O(ε−

5
2 ).

6.7 The Hénon-Heiles case

In this model we have a1 = 1, a2 = −1, λ = −1/3 (in the original problem we
have m = n = 1, see [5]). From eq. (15) and the approximate energy integral
we find if m+ n ≥ 5 the conditions:

−
(

5n

18
+

13m

90

)
τ1 +

(
13n

45
+

29m

180

)
τ2 = 0

and

mτ1 + nτ2 = E0, 0 ≤ τ1 ≤
E0

m
, 0 ≤ τ2 ≤

E0

n
.
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The 2 : 3-resonance
Putting m = 2, n = 3 we find that the resonance manifold exists near:

τ1 =
107

517
E0, τ2 =

101

517
E0.

The 4 : 1-resonance
Putting m = 4, n = 1 we find that this resonance manifold also exists; it is
found near:

τ1 =
84

413
E0, τ2 =

77

413
E0.

In both resonance cases we find islands with stable and unstable periodic solu-
tions. Generically, the stable and unstable manifolds of the unstable solution
will cross, producing homoclinic chaos.

6.8 The Contopoulos case

In this model we have a1 = 0, λ = 0. From eq. (15) we find the condition:

m

2
τ1 +

(
−n+

29m

8

)
τ2 = 0.

So we have for existence the requirement n > 29m/8; the 2 : 3- and the
4 : 1-resonances will not be present at this potential; also not the degenerate
1 : 2-resonance which can be seen as a 2 : 4-resonance. The higher order
resonances that exist have to satisfy the requirement and will have smaller
resonance manifolds than in the Hénon-Heiles potential. An example is the
2 : 9-resonance with resonance manifold size O(ε

7
2 ), time interval of interaction

O(ε−
11
2 ). The homoclinic chaos in the resonance zones will be smaller in size

than in the Hénon-Heiles model.
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Abstract. Although Fibonacci’s numbers play an important role in modeling phe-
nomena in a wide variety of subjects, their use as descriptors of population growth has
clearly been rather restricted after the introduction of the Verhulst logistic model and
its numerous modifications and extensions. In fact, in the very unrealistic Fibonacci
model neither population extinction nor bounded growth are possible, only quasi-
exponential unbounded population growth can result. We present a modified model
assuming that the number of direct offsprings of each ancestor is a Bernoulli random
variable, hence with positive probability of 0 count, and thus accommodating both
extinction and possible sustainable growth. We compare algebraic and numerical
treatment of equations using the fixed point method in the framework of instabilities
of numerical algorithms for finding roots of equations. On the othe hand, branching
processes are natural models for random population growth in many situations. Here
we use basic count models whose probability mass function satisfies Panjer iteration,
and investigate randomly stopped sums and collective risk when the subordinator
random variable and the summands are independent and identically distributed basic
count random variables.
Keywords: Fibonacci model, Verhulst model, Bernoulli offsprings, branching pro-
cesses, fixed point algorithm instabilities, branching processes, Panjer iteration, basic
count models.

1 Introduction

Let N(t) denote the size of some population at time t. Two main issues in
population dynamics deal with the probability of extinction and with the total
size of the progeny of an ancestor.
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Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a prob-
lem involving the growth of a population of rabbits based on idealized and
very unrealistic assumptions. As a consequence, a population with Fibonacci’s
growth pattern never dies out, while we know that the total progeny of some
ancestor is in many real circumstances finite, cf. for instance Lotka [15] ex-
ample (p. 123–136) on the extinction of surnames, using branching processes.
However, Fibonacci’s numbers are still a very active research area, since they
(mainly the initial numbers of the sequence) can approximate quite well counts
in many natural systems, and have been applied successfully in very diverse
situations and areas, namely aesthetic (the golden ratio is pervasive in all form
of plastic arts, and is even used by aesthetic surgeons in beauty improvement),
including for instance Lindenmayer grammars, cf. Prusinkiewicz and Hanan
[20], used by Pestana [18] for an initial investigation of music composition with
repetitive structures.

1.1 Fibonacci population growth model

Fibonacci (c. 1170 – c. 1250) in his Liber Abaci posed and solved a problem
involving the growth of a population of rabbits based on idealized and very un-
realistic assumptions. The solution, generation by generation, was a sequence
of numbers {Fn}n≥0 later known as Fibonacci numbers, starting with {0, 1},
such that Fn+2 = Fn + Fn+1. Using Binet’s formula

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√

5

the computation of any member of the Fibonacci sequence is straightforward.
Although the wide success of Fibonacci’s sequence as an approximate model

for the first few generations is still praised in many branches of Biology, the
very unrealistic assumption that any couple of rabbits gives birth to exactly
one couple of rabbits as offsprings, and this in each of exactly two succes-
sive mating periods, cannot accommodate important real features in popu-
lation dynamics, such as sustainable growth or even population extinction,
as studied successfully for instance by Lotka [14] using the more realistic
sustainable growth logistic model introduced by Verhulst. In fact, rewrit-
ing Fn+2 = Fn + Fn+1 = 2Fn+1 − Fn−1 =⇒ Fn+2 − Fn+1 = Fn+1 − Fn−1,

the closely associated differential equation d
dt N(t) = ∂2

∂t2 N(t) shows that Fi-
bonacci’s growth is approximately exponential. Indeed, we get an approximate

geometric growth with ratio 1+
√
5

2 . Even for moderate values such as n = 11,

say, F12 = 144 ≈ F11
1+
√
5

2 = 144.005 (recall that 1+
√
5

2 is the “golden ratio”

limit of Fn+1

Fn
).

1.2 Verhulst sustainable growth logistic model and extensions

Imposing some natural regularity conditions on N(t), namely that d
dtN(t) =

∞∑
k=0

Ak[N(t)]k, Verhulst ([27], [28], [29]) used the second order approximation
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d
dtN(t) = A1N(t)+A2[N(t)]2, with A1 > 0 and A2 < 0, which can be rewritten
as

d

dt
N(t) = r N(t)

[
1− N(t)

K

]
, (1)

(where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter, whenever modeling natural breeding populations, and K > 0
as the equilibrium limit size of the population) to develop a broadly successful
“logistic” population growth model, much more realistic to model sustainable
growth. In fact, an initial period of exponential growth if followed by moderate
approximately linear growth, with exponential steep exponential moderation
when limitation of natural resources (or success of predators or competing
species) ultimately curb down growth to sustainable values.

Moreover, and since in many species there exist periodic mating periods,
using Euler’s ideas on the interplay of differential equations and difference
equations in numerical methods, the associated difference equation

xn+1 = αxn (1− xn), (2)

(where it is convenient to deal with the assumption xn ∈ [0, 1], n = 1, 2, . . . )
made his way in modeling population dynamics.

The equilibrium xn+1 = xn leads to a simple second order algebraic equa-
tion with positive root 1 − 1/α, and to a certain extent it is surprising that
anyone would care to investigate its numerical solution using the fixed point
method, which indeed brings in many pathologies when a steep curve — i.e., for
some values of the iterates |α (1−2xn)| > 1 — is approximated by an horizontal
straight line. This numerical investigation, apparently devoid of interest, has
however been at the root of many theoretical advances when α /∈ [1, 3] (namely
Feigenbaum bifurcations and ultimate chaotic behavior), and a posteriori led to
many interesting breakthroughs in the understanding of population dynamics.
Due to its close association with the differential equation (1), whose solution
is a logistic function

N(t) =
KN0

N0 + (K −N0) e−rt
, (3)

the parabola x (1 − x) appearing in the discretization (2) is very often called
the “logistic parabola”.

Up to a multiplicative constant, the logistic parabola is the Beta(2, 2) prob-
ability density function. In Aleixo et al. [1], and in Rocha et al. [23] several ex-
tensions of population growth models tied to more general Beta(p, q)densities
have been investigated, and in Pestana et al. [17] the factor 1 − x has been
considered the linear truncation of − lnx, so obtaining differential functions
whose solution exhibits Paretian tail behaviour and ultimately extreme value
models (Gumbel, Fréchet or Weibull) solutions for the associated differential
equation d

dtN(t) = r N(t) (− ln(N(t))1+γ . Tsoularis [26] and Waliszewski and
Konarski [30] must be credited for the Gompertz (or Gumbel) solution when in
the associated differential equation γ = 0. Tsoularis [26] is a very informative
state-of-the-art on population growth models. Brilhante et al. ([3], [4]) provide
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the connection between the solution of the above extensions of the original Ver-
hulst equation to extreme value and Rachev and Resnick [21] geo-extreme value
(i.e., when the original sequence is subject to Rényi’s [22] rarefaction, equiv-
alent in its final results to Kovalenko’s [12] and Kozubowski’s [13] geometric
thinning).

1.3 Modified Fibonacci models

We shall discuss, using branching processes, several modifications of the Fi-
bonacci model, so that more realistic possibilities, such as limited growth or
even extinction, may occur:

1. A framework very similar to the original description posed by Fibonacci:
each ancestor can produce direct offsprings only in the first two consecu-
tive reproducing periods. However, instead of deterministically producing
exactly one offspring in each reproducing epoch, the number of offsprings
is a random X _ Bernoulli(p).

2. A simple modification, which has the advantage of affordable algebraic
treatment, is to consider that the progeny (it is indifferent whether we count
individuals in the case of non-sexual reproduction, or couples in the case of
sexual reproduction) is a random Y _ Geometric(p). The hypothesis that
in sexual reproduction we consider that the progeny is solely of couples, and
that each of those behaves as a faithful couple, is indeed as unrealistic as
what has been taken for granted as an assumption in the original Fibonacci
model. But the wider variability of the number of offsprings of each ancestor
at each reproducing period, with sensible choices so that the mean value
E(Y ) = (1− p)/p is rather small, can produce more realistic results.
Observe, further, that while the Bernoulli random variable is underdis-
persed, i.e. V ar(X)/E(X) < 1, the Geometric random variable is overdis-
persed, So, it can accommodate more realistic wider variability.

3. An almost similar framework as the one described in item 1 is investigated
explicitly assuming removing each progenitor from the system after two
reproduction periods, using randomly stopped sums.

Aside from presenting models allowing for extinction and limited growth,
and hence more realistic than the unlimited quasi-exponential growth of the
original Fibonacci model, our aim is to compare whenever possible algebraic
solutions to numerical solutions using the fixed point method. These indeed
exhibit instabilities whenever the function is too steep in a neighborhood of the
root we wish to calculate.

Although those instabilities are qualitatively quite different from the cele-
brated Feigenbaum bifurcations and ultimate chaos that the discretization of
the Verhulst model brought to the limelights of the structural investigation
of dynamical systems, it seems worthwhile to discuss them, since the philo-
sophical controversy whether pathologies observed in the numerical solution of
equations x = f(x) using the fixed point algorithm are an essential feature or
solely an inherent consequence of instabilities to be expected when |f ′(x)| > 1
in the vicinity of the equation root is far from being settled.
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In this first paper, we shall discuss in depth the Bernoulli randomized model
described in item 1, postponing for a second part other randomizations.

2 Modified Randomized Fibonacci Models: Bernoulli(p)
Offsprings in Each Reproduction Epoch

Let us assume that the process starts with one ancestor (single or couple,
according to the reproduction characteristics of the species). In each of the two
initial reproduction epochs each unit produces X _ Bernoulli(p) offsprings,
and is removed from the process after the the second reproduction epoch. On
the other hand, each offspring becomes an ancestor in the next step, behaving
exactly in the some fashion.

Let Z1 denote the number of units in the system in the first step of the
process, i.e. exactly when the initial ancestor is removed from the system:

Z1 =

{
0 1 2 3

(1− p)2 p(1− p)(2− p) 2p2(1− p) p3
(4)

The probability generating function is

GZ1
(t) = (1− p)2 + p(1− p)(2− p)t+ 2p2(1− p)t2 + p3t3, (5)

and hence the mean value, expressed as a function of p, is

E(Z1) = p(1− p)(2− p) + 4p2(1− p) + 3p3, (6)

which is greater than 1 for p ∈ (
√

2− 1, 1] ≈ (0.414214, 1].
If E(Z1) < 1, extinction is almost sure.
If E(Z1) > 1, defining iteratively xn = GZ1

(xn−1), with initial value x1 =
P[Z1 = 0] = (1 − p)2, xn is the probability that the process terminates at or
before the n-th generation, cf. Feller [5], Theorem p. 297.

The sequence {xn} is increasing, its limit x ≤ 1 being the solution of the
equation

x = GZ1
(x)

In the model at hand, the probability of extinction is therefore

x ≡ xp = min

{
1,

(p− 2) p2 +
√
p3 (4− 4p+ p3)

2 p3

}
, (7)

On the other hand, the total number os descendants from the initial ancestor
up to the n-th generation is Yn = 1 +Z1 +Z2 + · · ·+Zn, where Zk denotes de
number of units in the k-th generation. Following Good [7] (an argument that
inspired Feller [5], XII.5), R1(t) = tG(t) and iteratively Rn(t) = tRn−1(t), we
obtain the probability generating functions for the successive generations.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = sG(ρ(s)) and
which may be found solving t = sG(t). Each coefficient rk in the MacLaurin’s
expansion of ρ(s) is the probability that the total progeny consists of k elements,
and therefore if

∑
rk = ρ(1) < 1, this is the probability of extinction.
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Fig. 1. Extinction probability xp, in (7), as a function of p in the Bernoulli(p) off-
springs randomized Fibonacci model.

The total progeny is finite whenever the expected value µ = E(Z1) < 1.
Therefore, as E(Zn) = µn, it follows that the expected value of the total progeny
is
∑∞
n=0 µ

n = 1
1−µ .

In this randomized Bernoulli Fibonacci modified model, from solving t =
sG(t) we get

ρ(s) =
2(−p2s+ p3s)

3 p3s
−

(1− i
√

3)A(s)

322/3 p3s
(

(B(s) +
√

4A3(s) +B2(s)
)1/3−

(1 + i
√

3)

621/3 p3s

(
(B(s) +

√
4A3(s) +B2(s)

)1/3 (8)

where A(s) = −3p3s + (2p4 − p5 − p6)s2, and B(s) = 18(1 − p)p5s2 + (7p6 −
12p7 + 3p8 + 2p9)s3.

Plotting the the real part of the above function ρ(s), in (8), for s = 1,
which indeed coincides with (7), we obtain a visual grasp of the probability of
extinction as a function of p, exactly the one given in Fig. 1, using now a more
complex definition of the function to be plotted.

Observe that the equilibrium point p = ρ(p) is 0.513376. The observation
that this is approximately the proportion of male offsprings in the observed
equilibrium of human reproduction is surely circumstantial, or at least we do
not devise any bond tying that empirical observation.

On the other hand, µ < 1 for p <
√

2− 1 ≈ 0.414214. Below, in Table 1 we
register for a few values of p the expected size of the total progeny:

We now compare this analytic solution with the numerical results defining
iteratively xn = GZ1

(xn−1), the probability that extinction does occur at or
before the n-th generation, with initial value x1 = P[Z1 = 0] = (1− p)2.

The successive repeated compositions of a function with itself can be com-
puted using for instance the command “Nest” in Mathematica, and the corre-
sponding evaluation at the appropriate point can then generate a list of coor-
dinates with the command “Flatten”.

In Table 2 we illustrate the result for the choices 0.1(0.1)0.9, and also for the
extreme choices 0.01 and 0.99, and finally for the equilibrium value 0.513376
(using 200 points and 300 iterated compositions of the function with itself.
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p µ Expected size 1
1−µ

0.1 0.21 1.26582
0.2 0.44 1.78571
0.3 0.69 3.22581
0.4 0.96 25

.41421 0.99999... 99246.7

Table 1. Expected total progeny when µ < 1 in the modified Bernoulli randomized
Fibonacci model.

Table 2. Graphical representation of 300 compositions of the generating function
with itself; from left to right and top to bottom, initial 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.01, 0.99, 0.513376.
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From those graphics it is obvious that the use of the fixed point method
leads to instabilities, that seem quite different in nature from the Feigenbaum
bifurcations encountered in the discretization of the Verhulst model and its
various extensions we have mentioned. Further research is needed to interpret
those pathologies in the context of dynamical models.

3 Randomizing the Fibonaccy Population Growth
Model Via Branching Processes

Let {fn}n∈SX denote the probability mass function (pmf) of a discrete ran-
dom variable (rv) X with support SX ⊂ N. The corresponding probability

generating function (pgf) is mX(t) = E(tX) =

∞∑
n=0

fnt
n.

If N is a discrete rv, X0 = 0 and X1, X2, ... independent replicas of X, with

N and Xk independent, and we define the “compound” rv Y =

N∑
k=0

Xk, then

mY (t) =
∑
j∈SY

mj
X(t)P[N = j] = mN (mX(t)). (9)

From this, we may easily compute mean value and variance of the rv Y . An
alternative designation for the concept of compounding rv’s is the concept of
randomly stopped sums, which can have the advantage of explicitly indicating
the type of the subordinator rv.

If in particular Xk, k = 1, 2, ... are independent replicas of a count rv X
modeling the number of direct descendants of each individual (or each female)
in the population, and we define

Y0 = 1, Y1 = X1, Y2 =

Y1∑
k=0

Xk, ... Yn+1 =

Yn∑
k=0

Xk, ... (10)

we may interpret Yk as the number of direct offsprings in the k-th gener-

ation, and Zn =

n∑
j=0

Yj as the total progeny of some ancestor until the n-th

generation. Let us denote m(t) = m1(t) the pgf of Y1
d
=X, mn(t) the pgf of

Yn; then mn(t) = m(mn−1(t) = m⊗(n)(t), where m⊗(n) denotes the n-fold
composition of m with itself.

Following Good [7] (an argument that inspired Feller [5], XII.5), mZ1(t) =
tmX(t) and iteratively mZn(t) = tmZn−1

(t), we obtain the probability gener-
ating functions for the number of descendants up to each successive generation.

This is a decreasing sequence, whose limit ρ(s) satisfies ρ(s) = smX(ρ(s))
and which may be found solving t = smX(t). Each coefficient rk in the
MacLaurin’s expansion of ρ(s) is the probability that the total progeny con-
sists of k elements, and therefore if

∑
rk = ρ(1) < 1, this is the probability of

extinction.
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{Y0, Y1, ...} is usually called a Galton–Watson branching process, or a cas-
cade process. Simple examples of branching processes, and basic results on
important problems such as extinction probability and size of a population can
be found in Feller [5]. Namely, in what concerns extinction:

Theorem 1. If E(Y ) = µ ≤ 1, the process almost surely dies out, and its

expected size is
1

1− µ
when µ < 1, and infinite when µ = 1. If µ > 1, the

probability fn that the process terminates at or before the n-th generation tends
to the unique root x < 1 of the equation x = mY (x).

And, in what concerns the total progeny:

Theorem 2. Denoting ρk the probability that the total progeny has k individ-
uals,

1. the extinction probability is

∞∑
k=1

ρk.

2. The pgf ρ(s) =

∞∑
k=1

ρks
k is given by the unique positive root of t = smY (t),

and ρ(s) ≤ x.

More extensive monographies on branching processes, with deeper results,
are Harris [8], Athreya and Ney [2] or Jaegers [10]. Gnedenko and Korolev
[6] present interesting examples of random infinite divisibility and random sta-
bility using branching processes, and they establish necessary and sufficient
conditions for the convergence of randomly stopped sums, and limit theorems
for super-critical (i. e., µ = E(X) > 1) Galton–Watson processes.

The Y _ Geometric(p) model for the number of direct descendants, with
pmf {fn = p (1− p)n}n∈N, provides an algebraic simple treatment. In fact,

writing q = 1− p, mY (t) =
p

1− qt
, and

mYn(t) =


p
qn − pn − (qn−1 − pn−1) q t

q−1n− pn−1 − (qn − pn) q t
p 6= q

n− (n− 1)t

n+ 1− nt
p = q = 1

2

(11)

is easily computed.
Both the Bernoulli(p) and the Geometric(p) pmf’s satisfy the recursive

expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1 (12)
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(in the case of X _ Bernoulli(p), a =
p

p− 1
and b =

2p

1− p
, and in the case

of X _ Geometric(p), a = q and b = 0). As we shall state in the following
section, the above recursive expression is valid for the pmf of a broad class
of rv’s, known as Panjer rv’s, that play an important role on the theory of
collective risk. We investigate some consequences of using simple Panjer direct
progeny models in branching processes.

4 Basic Count Models

We shall say that X is a Panjer rv if its pmf {fn}n∈SX satisfies the recursive
expression

fn+1 =

(
a+

b

n+ 1

)
fn, ∀n ≥ k, fn = 0 for 0 ≤ n ≤ k − 1. (13)

We denote Panjer(a, b, k) the class of all pmf’s satisfying (13).
This expression has been used by several authors, with k = 0, before Panjer

[16], but it was in this seminal paper that the consequences for the iterative
computation of the density of the collective risk process have been established.

In fact, Panjer [16] considered only the case k = 0 — for which the non
degenerate types are the underdispersed binomial, the overdispersed negative
binomial, and the Poisson in between —, but immediatly Sundt and Jewell
[25] published the extension for k = 1, with the logarithmic and the extended
negative binomial solutions.

Finally Hess et al. [9] defined the general class, with the recursion starting
with k ≥ 0, the f0, ..., fk−1 being free parameters (for k = 0, f0 can be consid-
ered the starting jump of a hurdle process); it is also known as the class of basic
count distributions, or class of basic claim distributions. For more details, cf.
Rolsky et al. [24], Klugman et al. [11], and Pestana and Velosa [19].

Theorem 3. Let {fn}n∈SX be the pmf of a non degenerate count rv X.
For a, b ∈ R the statements that follow are equivalent:

(a) {fn}n∈SX is a Panjer(a, b; k) pmf.
(b) for ` ∈ N+, the pgf mX(t) =

∑∞
n=0 fnt

n satisfies the differential equations

(1− at)h(`)(t) = (`a+ b)h(`−1)(t) + fk

(
k

`

)
`! tk−1,

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.
(c) mX satisfies the differential equation

(1− at)h(k+1)(t) = ((k + 1)a+ b)h(k)(t),

t ∈ [0, 1) and h(j)(0) = 0 for j ≤ k − 1.

Further, Q = Panjer(a, b; k) =⇒ (k + 1) a + b > 0, and on the other hand
a+ b ≥ 0⇒ a < 1 and a+ b < 0⇒ a ≤ 1.

From this it is easy to conclude that the Panjer class has the following non
degenerate elements:



Chaotic Modeling and Simulation (CMSIM) 4: 495–509, 2013 505

1. The Binomial(ν, p), ν ∈ N+, p ∈ (0, 1), which is Panjer( p
p−1 ,

(ν+1) p
1−p , 0).

Its variation index I(X) =
var(X)

E(X)
= 1− p < 1, i.e., X is underdispersed.

2. The Poisson(µ), µ > 0 is Panjer(0, µ, 0). Its dispersion index is 1.

3. The overdispersed NegativeBinomial(α, p), α > 0, p ∈ (0, 1), with pmf{(
α+n−1

n

)
pn(1− p)α

}
n∈N, is Panjer(p, (α− 1) p, 0).

4. The ExtendedNegativeBinomial(α, p, k), α ∈ (−k,−k+1), p ∈ (0, 1), k ∈
N+, with pmf

fn =

(
α+ n− 1

n

)
pn

(1− p)−α −
k−1∑
j=0

(
α+ j − 1

j

)
pj

, n = k, k + 1, ..., (14)

in the support SX = {k, k + 1, . . . }, is Panjer(p, (α − 1) p, k). In the ex-

pression above the extended binomial coefficients

(
α+ n− 1

n

)
are defined

as

(
α+ n− 1

n

)
=

(
−α
n

)
=
Γ (α+ n)

Γ (α)n!
.

5. The ExtendedLogarithmic(p, k), p ∈ (0, 1), k ∈ N+, with pmf

fn =

pn(
n

m

)
∞∑
j=m

pj(
j

m

) , n = k, k + 1, ..., (15)

is Panjer(p,−kp, k).

6. If X _ Panjer(a, b, k), truncating {k, k + 1, ..., `− 1} ⊂ SX we obtain a
truncated rv X∗ _ Panjer(a, b, `).

The special “unit” cases Bernoulli(p) ≡ Binomial(1, p), Geometric(p) ≡
NegativeBinomial(1, p)), ExtendedNegativeBinomial(α, p, 1) whose pmf has

the simple form
1− (1− q t)−α

1− p−α
, t ≤ 1

q ), and Panjer(p,−p, 1) or Logarithmic(p)

(or ExtendedLogarithmic(1, p), with pgf
ln(1− pt)
ln(1− p)

), do have specially nice

properties in each of the corresponding subclasses.
In particular, NegativeBinomial(α, p) — and hence, as a special case

Geometric(p) — that result from a Gamma randomization of the Poisson(Λ),
i.e., an hierarchic model with Λ _ Gamma(α, 1) — are successfully used to
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model the descendance of populations when the distribution of direct offsprings
exhibits large variation, and both the the ExtendedNegativeBinomial(α, p, 1)
and the Logarithmic(p) distributions have been used to provide close fit to
some natural populations.

In Table 2 below we sumarize results, indicating also the pgf mQ(t):

Table 3. Panjer distributions.

X a b k mQ(t)

Binomial(m, p) p
p−1

(m+1)p
1−p 0 (1 − p+ pt)m

Poisson(µ) 0 µ 0 eµ(t−1)

NegativeBinomial(α, p) p (α− 1)p 0 ( 1−pt
1−p )−α

ExtendedNegativeBinomial(α, p, k) p (α− 1)p k
(1−pt)−α−

∑k−1
j=0 (α+j−1

j )(pt)j

(1−p)−α−
∑k−1
j=0 (α+j−1

j )pj

ExtendedLogarithmic(p, k) p −kp k
∑∞
n=k (nk)

−1
(pt)n∑∞

n=k (nk)
−1
pn

5 Randomly Stopped Sums with Panjer Subordinator

The importance of the Panjer class is a consequence of the implications that
the recursive expression (13) has on the recursive computation of the density
of randomly stopped sums subordinated by Panjer rv’s. This results from the
following theorem:

Theorem 4. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset
of the positive integers, i. e. f0 = 0. Consider the randomly stopped sum

T =

Y∑
n=inf SY

Xn, with Y and the replicas Xn of X independent.

Then the following statements are equivalent:
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1. Y _ Panjer(a, b, k);
2. For any claim number rv X and any ` ≥ 1, mT satisfies the differential

equation

(1− amX(t))h(`)(t) =
∑̀
i=1

(
`

i

)
(a+ b

i

`
)h(`−i)(t)m

(i)
X (t) + qkm

(`)
T (t),

t ∈ [0, 1), with the initial conditions h(j)(0) = 0 for j ≤ k − 1.

From this, we can compute the pmf of a compound rv T with Panjer sub-
ordinator Y and count summands independent replicas of X, as defined above,
by observing that for ` ≥ 1

(1− amX(t)) m
(`)
T (t) =

∑̀
i=1

(
`

i

) (
a+ b

i

`

)
m

(`−i)
T (t)m

(i)
X (t) + qk [mk

X(t)](`).

In fact, the main consequence of Panjer’s theory is the following result:

Theorem 5. Let {qn}n∈N be the pmf of a count distribution Y , and {fn}n∈N
denote the pmf of a claim number distribution X whose support is a subset of

the positive integers. Consider the randomly stopped sum T =
∑
n∈SY

Xn, with

Y and the replicas Xn of X independent. Then

P[T = n] = gn =


mY (mX(0)) = mT (f0) n = 0

1

1− a f0

[
n∑
i=1

(
a+ b

i

n

)
gn−ifi

]
+ qkf

∗k
n n ≥ 1

(16)

where f∗kn stands for the k-th iterated convolution of the sequence {fn} with
itself.

(There exists a simple extension for the density when the summands are abso-
lutely continuous, but it is not relevant in the context of branching processes.)

6 Discussion and Conclusions

With the exception of Poisson or of Geometric subordinator — i.e., of a
Panjer(0, µ, 0) or a Panjer(p, 0, 0), respectively, cf. Pestana and Velosa [19]
on the simplicity of these cases when compared to the complexity of others
— we couldn’t obtain any close expressions for the n-fold composition of the
pgf for any other Panjer subordinators. Aside from those two cases, the only
one for which we got more promising results has been — as predictable — the
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Logarithmic(p). Moreover, when the aim is to extend the Fibonacci sequence
using branching randomization, in case we want to remove individuals from the
population after two mating epochs, we have the extra burden of subtracting,
the two rv’s used being dependent.

Happily, compound pgf’s are amenable to compute mean values and vari-
ances, and in what concerns the mean value we have the extra facility that the
mean value of the difference is the difference of the means values, regardless
whether the random variables are dependent or independent. So, it is easy
to follow the process on average, and the relation of the sequence of expected
values to the sequence of Fibonacci numbers simple.

The quantities of interest — extinction probability and expected total size
in the supercritical case, size of the n-th generation, total size of the population
up to the n-th generation — can be dealt with computationally. When the fixed
point method is used to compute roots of some equation F (x) = x, numerical
instabilities are a rule whenever F is too steep, and the sufficient convergence
conditions are not met.
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Sullivan proposed the most used index of mortality and morbidity, a relatively simple 

and easy to apply method as an extension of the classical life table. In his study he had 

also estimated the disability free life expectancy for USA the year 1965. Although the 

estimated healthy life years lost from disability by Sullivan are only a small proportion of 

the recent estimates we further check the related estimates done in 1971 because in these 

days the disability estimates were focused mainly on the severe disability causes 

resulting in no active years of life. We have tested Sullivan’s results for USA (1965) with 

one of our hitting time models and found significant differences for the healthy age at 

birth but very good approach for the healthy age at 65 years of age. Related study was 

published for New Zealand (2006) and the results are in a very good agreement with 

ours. In the latter case we have estimated the active life expectancy for 34 countries from 

the human mortality database. The advantage of our method is that we use only 

population and death data without the use of results from health questionnaires. 

 

 

Introduction 

 
Daniel F. Sullivan introduced a remarkable method for estimating the healthy 

life expectancy based on the classical Life Table. The seminal paper on “A 

Single Index of Mortality and Morbidity” was published in 1971 in Health 

Services and Mental Health Administration (HSMHA) Health Reports. Reading 

his paper you understand the deep insight on the subject from the author leading 

to his remarkable work. Furthermore, few years ago (1966), he had done an 

extensive analysis on the definition and estimation of the population health 

status. Sanders (1964) explored the measurement of community health levels. 

Chiang (1965) work directed towards mathematical models for the health status 

and George W. Torrance (1976) proposed a unified mathematical approach to 

the health status index models including a detailed bibliographic search of the 

existing models.  

Between all models presented the Sullivan model was already a quite promising 

model from the applied point of view. Sullivan in his 1971 work already had 

estimated the loss of healthy life years for USA by using his method. This was a 
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very important point to promote his health status index. It was an index 

providing results. Not a theoretical one. 

 

The missing point when launching questionnaires is that the expected replies 

will based on people’s experience on what we call health; good health, bad 

health or death. Replies express our experience on health based on the data 

already known by individuals. These data include deaths and population and the 

inevitable decline of the known population by means people of the same or 

similar age to be in good or bad condition or dead. That we ask people is already 

included in our databases for the existing population by year of age and the 

related number of deaths at every year of age.  

However, a question arises regarding the health status or the health state of 

individuals. As we have only population and death data where is the information 

for the health state hidden? 

The reply is as simple as the replies received from people when we launch 

questionnaires. People have similar data from a closed of course environment. 

The health state estimated comes mainly as a comparison with the main event; 

death and less as a measure of disabilities. Of course people have a way to 

understand the way disabilities lead to a lower and lower health status and 

finally death. But why does not exist a mathematical model or method to 

produce similar results as the replies of people to questionnaires? As people 

make simple estimates we can search for not a very complicated model. A 

simple but yet quite important was proposed by Torrance (1976). The basis was 

a simple procedure expressing by 1 the alive and by 0 death persons. He 

considered the state of functioning of an organism by adding intermediate cases 

with levels of disability. This was a model mainly directed towards the direction 

of collecting disability data via a health system or questionnaires.  

However, the most important point of his study was the definition of the Health 

Status over time t of a population denoted by H(t). He suggests that this Health 

Status will come as a summation of the related health status h(t) of every 

individual into the population with a related weight when appropriate. 

As the health status of an individual is a stochastic process the next point should 

be the derivation of the health status of a population as the probability density 

function of the health status stochastic process from the barrier which could be 

set as zero for simplicity. However, Torrance (1976) probably was not aware for 

the developments in this direction already done in a very theoretical level from 

1971 to 1976 (for an analysis see [2, 4-15]). Even today only few researchers 

enter into the complicated world of the first exit or hitting time processes. 

Instead Torrance and mainly Sullivan preferred the leading system used by 

actuaries and demographers the last four centuries that is the Classical Life 

Tables. They thus established a quite strong and relatively easy to apply system 

which turned out to be the preferred method to estimate the health status or 

health status index in very many countries and for several time periods with a 

cost of an enormous statistical survey system all over the world. 

Two main points where missing:  
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1. The proposal of a hitting time model expressing the health status of a 

population something done by Janssen and Skiadas (1995) and the 

publications by Skiadas and Skiadas from 2007 until today (5-15). 

2. The finding of a method to estimate the health status of a population 

from death and population data only, thus providing a useful tool for 

comparisons between countries and regions avoiding the bias resulting 

from the way people with different cultures and way of living respond 

to the health questionnaires.  

 

The task of this paper is to insert a Sullivan like method to the already proposed 

Health State Life Table thus providing an extra tool for estimating the healthy 

life expectancy and the loss of healthy life years without using data from 

questionnaires.  The simplest first exit time model used was proposed by 

Skiadas and Skiadas (2010) [8, 9]. The model is expressed by the following 

formula for the hitting time probability density function g(t) at time t 

 

 

 

 

 
 

where b, l, c, k are parameters. The Health State Function is 
 

H(t)=l-(bt)
c
 

 

This is a declining function for the health state of a population as we have 

called the analogous health status of population in terms of Sullivan. The slight 

different terminology was accepted to distinguish the estimates done by using 

models and modeling from the estimates based on questionnaires. However, 

both terms will tend to express the same as both methods tend to provide similar 

results. The first attempt is presented in this paper. We use the model for the 

Health State of a population to estimate the fraction of people with disabilities 

per year of age, thus enabling the estimation of the Active Live Expectancy 

(ALE) via a Health State Life Table. This is the classical life table in which we 

have added a Sullivan like part for the healthy life expectancy estimation. Both 

abridged and complete Health State Life Tables were constructed. Due to space 

limits only the abridged table is included (see Table I).  

The proportion of the loss of healthy life years is estimated with the method 

illustrated in Figures 1 and 2. Figure 1 illustrates the case of USA females the 

year 1965. The blue curve is the estimated from the hitting time procedure 

health state function H(t) of the population. The line AB expresses the optimum 

case (no deaths) with no disabilities and other health declining phenomena 

whereas the curve ADC expresses the real situation.  

That is immediately clear is that the area ABCDA represents the total loss of 

health of the population whereas the area ADCOA expresses the Healthy region. 

As a consequence the fraction ABCDA/ABCOA provides the net loss of health 

of the population from zero to 110 years of age. This is the important 

information enabling us to estimate the Active Life Expectancy (ALE) and the 
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Loss of Active Life Years (LALY) according to the terminology used by the 

Ministry of Health and Statistics New Zealand (2008) in a published discussion 

paper [3]. For our application we use the classical Life Table expanded for the 

estimation of the Active Life Expectancy. 

 

TABLE I 

Age Mortality
Survivors

hip
Tx=S(Lx)

Life 

Expecta

ncy

Fraction of 

Loss of 

Active Life 

Years 

Survivorship 

without 

disability

Txd=S(Lxd)

Active 

Life 

Expectan

cy

Loss of 

Active Life 

Years

x qx Sx dx Lx Tx ex px_active Lxd_total Txd_total ALE LALY

0 0,0059 100000 589 99.470 7.803.206 78,0 0,000 99.470 7.488.886 74,9 3,1

1 0,0011 99411 112 397.419 7.703.736 77,5 0,000 397.419 7.389.416 74,3 3,2

5 0,0008 99299 79 496.295 7.306.317 73,6 0,000 496.294 6.991.997 70,4 3,2

10 0,0008 99219 80 495.895 6.810.022 68,6 0,000 495.885 6.495.703 65,5 3,2

15 0,0044 99139 436 494.604 6.314.127 63,7 0,000 494.555 5.999.818 60,5 3,2

20 0,0045 98703 440 492.413 5.819.523 59,0 0,000 492.246 5.505.263 55,8 3,2

25 0,0047 98262 465 490.150 5.327.110 54,2 0,001 489.702 5.013.017 51,0 3,2

30 0,0051 97798 501 487.736 4.836.960 49,5 0,002 486.714 4.523.315 46,3 3,2

35 0,0059 97297 571 485.057 4.349.224 44,7 0,004 482.978 4.036.601 41,5 3,2

40 0,0079 96726 765 481.716 3.864.167 39,9 0,008 477.851 3.553.623 36,7 3,2

45 0,0125 95961 1.198 476.810 3.382.451 35,2 0,014 470.119 3.075.773 32,1 3,2

50 0,0186 94763 1.758 469.421 2.905.641 30,7 0,023 458.520 2.605.654 27,5 3,2

55 0,0300 93005 2.792 458.046 2.436.220 26,2 0,037 441.222 2.147.133 23,1 3,1

60 0,0492 90213 4.435 439.979 1.978.174 21,9 0,056 415.364 1.705.911 18,9 3,0

65 0,0772 85778 6.620 412.341 1.538.195 17,9 0,083 378.311 1.290.548 15,0 2,9

70 0,1266 79158 10.020 370.740 1.125.854 14,2 0,118 326.830 912.237 11,5 2,7

75 0,2034 69138 14.064 310.531 755.114 10,9 0,166 258.992 585.407 8,5 2,5

80 0,3246 55074 17.874 230.685 444.583 8,1 0,228 178.145 326.415 5,9 2,1

85 1 37200 37.200 213.899 213.899 5,8 0,307 148.270 148.270 4,0 1,8

100.000

Abridged Health State Life Table (0 - 85+) for New Zealand  (males 2006)

The Abridged Life Table Including Life Expectancy and Active Life Expectancy Estimation

Life Expectancy Estimation Active Life Expectancy Estimation

100.000 populat ion 

Sx and Number of 

Deaths dx

Developed by Christos H Skiadas 19 April 2014  
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Figure 1. Health State of USA Population (females, 1965) 
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The estimates at an age level x=t provide the formula for the fraction of the loss 

of active life years px 

px=(DF)/(EF) 

 

It is clear that px=0 at zero age and 1 at the end of the life time. The resulting 

fraction of the loss of active life years during age is presented in Figure 2.  
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Figure 2. The fraction of the loss of active life years 

 

 

TABLE II 

Comparisons of our model with Sullivan’s results 

 Life Expectancy, Healthy Life Expectancy and Loss of Healthy Life 

Years at Birth (USA 1965) 

 Sullivan Model Sullivan Model Sullivan Model 

Both 70.2 70.1 64.9 66.5 5.3 3.6 

Males 66.8 66.7 61.6 62.7 5.2 4.0 

Females 73.7 73.8 68.4 70.6 5.3 3.2 

 Life Expectancy, Healthy Life Expectancy and Loss of Healthy Life 

Years at Age 65 (USA 1965) 

 Sullivan Model Sullivan Model Sullivan Model 

Both 14.6 14.6 11.3 11.4 3.3 3.2 

Males 12.9 12.8 9.4 9.5 3.5 3.3 

Females 16.2 16.3 13.1 13.3 3.1 3.0 

 

Our method is tested with the results presented in Sullivan’s paper for USA 

1965. Table II summarizes the results and Table III includes the parameter 

estimates for the model used. For the healthy life expectancy at birth our method 

underestimates Sullivan’s results, whereas the findings for both methods are 
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almost identical for the healthy life expectancy at age 65 for males, females and 

both. 

 

TABLE III 

Four Parameter Hitting Time Model 

 Model Parameters Statistics 

USA 1965 b l k c SSE R
2 

Both  0.0250 13.41 0.367 4.00 0.000654 0.944 

Males  0.0293 13.96 0.366 3.45 0.000820 0.926 

Females  0.0200 13.85 0.367 4.65 0.000494 0.965 

 

 

TABLE IV 

Comparisons of our model with New Zealand’s results 

 Life Expectancy, Healthy Life Expectancy and Loss of Healthy 

Life Years at Birth for ALE (Active Life Expectancy) 

 Life Expectancy at 

Birth (LE) 

Active Life 

Expectancy (ALE) 

Years without 

Active Life 

Males 

2006 

New 

Zealand 
Model 

New 

Zealand 
Model 

New 

Zealand 
Model 

0 78.1 78.0 74.9 74.9 3.2 3.1 

15 63.7 63.7 60.7 60.5 3.0 3.2 

25 54.2 54.2 51.3 51.0 2.9 3.2 

45 35.3 35.2 32.5 32.1 2.8 3.1 

65 18.0 17.9 15.5 15.0 2.5 2.9 

 

Females 

2006 

New 

Zealand 
Model 

New 

Zealand 
Model 

New 

Zealand 
Model 

0 82.1 82.0 78.4 78.9 3.7 3.1 

15 67.6 67.5 64.0 64.4 3.6 3.1 

25 57.8 57.7 54.4 54.6 3.4 3.1 

45 38.5 38.3 35.2 35.2 3.3 3.1 

65 20.6 20.4 17.5 17.5 3.1 2.9 

 

We had another opportunity to test our model results with relatively more recent 

findings for New Zealand for Active Life Expectancy for males and females in 

2006. The comparative study is presented in Table IV. The findings are in 

perfect agreement with the related study for New Zealand [3]. 

 

Discussion 
 

The estimation for the active life expectancy with our method provides very 

good results because the method is based on the dramatic loss of health during 

the few last years of the life span easily provided by the model. Similar results 

we have explored in several countries for 2006 (see Table V). Other 
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transformations will make possible the estimation of other disability life periods 

including of healthy life years from moderate or light disability causes. 

 

TABLE V   -   Active Life Expectancy Estimation 

Country Males 2006 Females 2006 

 LE ALE LALY LE ALE LALY 

Australia 79.1 75.7 3.4 84.1 80.4 3.7 

Austria 77.0 74.0 3.0 83.1 79.8 3.3 

Belarus 63.3 59.4 3.9 75.3 72.4 2.9 

Belgium 76.5 73.6 2.9 82.5 79.3 3.3 

Bulgaria 69.1 65.4 3.7 76.1 73.6 2.5 

Canada 78.2 74.7 3.5 83.2 79.3 3.9 

Czech Republic 73.3 70.0 3.3 79.9 77.0 2.9 

Denmark 75.8 72.2 3.6 80.8 76.7 4.1 

Estonia 67.3 63.0 4.3 78.5 75.7 2.8 

Finland 75.7 72.7 3.0 83.1 80.0 3.1 

France 77.3 74.1 3.2 84.8 81.0 3.8 

Germany 76.9 73.6 3.3 82.7 79.2 3.5 

Hungary 69.0 64.2 4.8 77.5 74.5 3.0 

Ireland 77.2 73.5 3.7 82.1 78.0 4.1 

Israel 78.4 74.1 4.3 82.3 77.8 4.5 

Italy 78.5 74.9 3.6 84.4 80.2 4.2 

Japan 78.9 75.1 3.8 86.4 82.0 4.4 

Latvia 65.6 60.8 4.8 76.3 73.8 2.5 

Lithuania 65.2 60.5 4.7 76.9 74.5 2.4 

Luxemburg 76.9 73.8 3.1 82.6 79.8 2.8 

Netherlands 77.6 74.2 3.4 82.1 79.0 3.1 

New Zealand 78.0 74.7 3.3 82.5 79.1 3.4 

Norway 78.1 75.2 2.9 83.0 80.0 3.0 

Poland 70.7 66.6 4.1 79.4 76.3 3.1 

Portugal 75.3 72.5 2.8 82.3 78.4 3.9 

Russia 60.2 56.4 3.8 73.1 70.6 2.5 

Slovakia 70.3 66.4 3.9 78.3 75.3 3.0 

Slovenia 74.2 70.8 3.4 81.7 78.2 3.5 

Spain 77.4 74.1 3.3 84.4 80.4 4.0 

Sweden 78.7 75.7 3.0 83.2 80.0 3.2 

Switzerland 79.1 75.7 3.4 84.6 80.9 3.7 

UK 77.1 73.5 3.6 81.7 77.7 4.0 

Ukraine 62.2 58.3 3.9 73.6 71.1 2.5 

USA 75.3 71.9 3.4 80.7 76.9 3.8 
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Abstract. Many data have been useful to describe the growth of marine mammals,
invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-
pertz and von Bertalanffy’s growth models. A generalized family of von Bertalanffy’s
maps, which is proportional to the right hand side of von Bertalanffy’s growth equa-
tion, is studied and its dynamical approach is proposed. The system complexity is
measured using Lyapunov exponents, which depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight.

Applications of synchronization in real world is of current interest. The behavior
of birds flocks, schools of fish and other animals is an important phenomenon char-
acterized by synchronized motion of individuals. In this work, we consider networks
having in each node a von Bertalanffy’s model and we study the synchronization in-
terval of these networks, as a function of those two biological parameters. Numerical
simulation are also presented to support our approaches.
Keywords: Von Bertalanffy’s models, synchronization, Lyapunov exponents.

1 Introduction and motivation

Several mathematical equations have been used to describe the growth of ma-
rine populations, namely fishes, seabirds, marine mammals, invertebrates, rep-
tiles and sea turtles. Among these equations, three of the most familiar are the
logistics, the Gompertz and the von Bertalanffy models, see [8] and references
therein. For a certain population, the growth of an individual, regarded as an
increase in its length or weight with increasing age, is commonly modeled by a
mathematical equation that represents the growth of an “average” individual
in the population. One of the most popular functions that have been used
to analyze the increase in average length or weight of fish is von Bertalanffy’s
model, see for example [2] and [5].

Synchronization is a fundamental nonlinear phenomenon, which can be ob-
served in many real systems, in physics, chemistry, mechanics, engineering,
secure communications or biology, see for example [1]. It can be observed in
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living beings, on the level of single cells, physiological subsystems, organisms
and even on the level of large populations. Sometimes, this phenomenon is
essential for a normal functioning of a system, e.g. for the performance of a
pacemaker, where the synchronization of many cells produce a macroscopic
rhythm that governs respiration and heart contraction. Sometimes, the syn-
chrony leads to a severe pathology, e.g. in case of the Parkinson’s disease, when
locking of many neurons leads to the tremor activity. Biological systems use
internal circadian clocks to efficiently organize physiological and behavioral ac-
tivity within the 24-hour time domain. For some species, social cues can serve
to synchronize biological rhythms. Social influences on circadian timing might
function to tightly organize the social group, thereby decreasing the chances of
predation and increasing the likelihood of mating, see [4]. Almost all seabirds
breed in colonies; colonial and synchronized breeding is hypothesized to reduce
predation risk and increases social interactions, thereby reducing the costs of
breeding . On the other hand, it is believed that synchronization may promote
extinctions of some species. Full synchronism may have a deleterious effect on
population survival because it may lead to the impossibility of a recoloniza-
tion in case of a large global disturbance, see [16]. Understand the aggregate
motions in the natural world, such as bird flocks, fish schools, animal herds,
or bee swarms, for instance, would greatly help in achieving desired collective
behaviors of artificial multi-agent systems, such as vehicles with distributed
cooperative control rules.

The layout of this paper is as follows. In Sec.2, we present a new dynamical
approach to von Bertalanffy’s growth equation, a family of unimodal maps,
designated by von Bertalanffy’s maps. In Sec.3, we present the network model
having in each node a von Bertalanffy’s model. The synchronization interval is
presented in terms of the network connection topology, expressed by its Lapla-
cian matrix and of the Lyapunov exponent of the network’s nodes. In Sec.4,
we give numerical simulations on some kinds of lattices, evaluating its synchro-
nization interval. We present some discussion on how this interval changes with
the increasing of the number of neighbors of each node, with the increasing of
the total number of nodes and with the intrinsic growth rate. We also observe
and discuss some desynchronization phenomenon.

2 Von Bertalanffy’s growth dynamics approach

An usual form of von Bertalanffy’s growth function, one of the most frequently
used to describe chick growth in marine birds and in general marine growths,
is given by

Wt = W∞

(
1− e−K3 (t−t0)

)3

, (1)

where Wt is the weight at age t, W∞ is the asymptotic weight, K is von Berta-

lanffy’s growth rate constant and t0 is the theoretical age the chick would have
at weight zero. The growth function, Eq.(1), is solution of the von Bertalanffy’s
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Fig. 1. (a) Graphics of von Bertalanffy’s maps fr(x), Eq.(4), for several values of intrinsic growth
rate r (0.5 (magenta), 1.5, 3.5, 5.5 and 6.75 (orange)); (b) Bifurcation diagram of von Bertalanffy’s
maps fr (x) in the (K,W∞) parameter plane. The blue region is the stability region. The period
doubling and chaotic regions correspond to the cycles shown on top of figure. The gray region is
the non admissible region.

growth equation,

g (Wt) =
dWt

dt
=
K

3
W

2
3
t

(
1−

(
Wt

W∞

) 1
3

)
, (2)

introduced by von Bertalanffy to model fish weight growth, see [17] and [18].

The per capita growth rate, associated to this growth model, is given by

h (Wt) =
g (Wt)

Wt
=
K

3
W
− 1

3
t

(
1−

(
Wt

W∞

) 1
3

)
. (3)

In this paper, we consider a family of unimodal maps, the von Bertalanffy
maps, which is proportional to the right hand side of von Bertalanffy’s equation,
Eq.(2), fr : [0, 1]→ [0, 1], defined by

fr (x) = r x
2
3

(
1− x 1

3

)
, (4)

with x = Wt

W∞
∈ [0, 1] the normalized weight and r = r(K,W∞) = K

3 ×W
2
3∞ > 0

an intrinsic growth rate of the individual weight, see Fig.1(a).
Remark that, the family of maps that we will study depends on two biolog-

ical parameters: von Bertalanffy’s growth rate constant K and the asymptotic
weight W∞. The following conditions are satisfied:

(A1) fr is continuous on [0, 1];
(A2) fr has an unique critical point c = (2/3)3 ∈ ]0, 1[;
(A3) f ′r(x) 6= 0,∀x ∈ ]0, 1[ \{c}, f ′r(c) = 0 and f ′′r (c) < 0;
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(A4) fr ∈ C3 (]0, 1[) and the Schwarzian derivative of fr, denoted by S (fr(x)),
verifies S (fr(x)) < 0,∀x ∈ ]0, 1[ \{c} and S (fr(c)) = −∞.
Conditions (A1)−(A4) are essential to prove the stability of the only positive

fixed point, [15]. In particular, the negative Schwarzian derivative ensures a
“good” dynamic behavior of the models. In general, the growth models studied
have negative Schwarzian derivative and the use of unimodal maps is usual, see
for example [12] and [13].

The dynamical complexity of the proposed models is displayed at (K,W∞)
parameter plane, depending on the variation of the intrinsic growth rate r. The
analysis of their bifurcations structure is done based on the bifurcation diagram,
see Fig.1(b). For these models, the extinction region and the semistability
curve have no expressive meaning. Because it is difficult to identify per capita
growth rates, Eq.(3), less than one for all densities, to the extinction case, and
per capita growth rates strictly less than one for all densities, except at one
population density, to the semistability case, except at most a set of measure
zero. We verify that, lim

x→0+
f
′

r (x) > 1 and the origin’s basin of attraction is

empty, except at most a set of measure zero. The fixed point 0 is unstable.
A behavior of stability is defined when a population persists for intermediate

initial densities and otherwise goes extinct. The per capita growth rate of the
population, Eq.(3), is greater than one for an interval of population densities.
The lower bound of these densities correspond to the positive fixed point

AK,W∞ ≡ Ar =

(
r

r + 1

)3

,

of each function fr, Eq.(4), see Fig.1(a). Furthermore, attending to (A2) and
(A3) we have that f2

r (c) > 0, then there is a linearly stable fixed point Ar ∈
]0, 1[, whose basin of attraction is ]0, 1[. For more details see [15].

The symbolic dynamics techniques prove to be a good method to determine
a numerical approximation to the stability region (in blue), see Fig.1(b). For
more details about symbolic dynamics techniques see for example [12]. In the
(K,W∞) parameter plane, this region is characterized by the critical point
iterates that are always attracted to the fixed point sufficiently near of the
super stable or super attractive point Ãr, defined by fr (c) = c. Let Ār ∈ ]0, 1[
be the fixed points sufficiently near of Ãr, then

lim
n→∞

fnr (c) = Ār, for
(

3K−1A
1
3
r

(
1−A

1
3
r

)) 3
2

< W∞(K) < Ŵ∞(K)

where Ŵ∞(K) represents the super stable curve of the cycle of order 2, given in
implicit form by f2

r (c) = c. In this parameter plane, the set of the super stable
or super attractive points Ãr defines the super stable curve of the fixed point.
In the region before reaching the super stable curve, the symbolic sequences
associated to the critical points orbits are of the type CL∞. After this super
stable curve, the symbolic sequences are of the type CR∞. In this parameter
region, the topological entropy is null, [10].

The period doubling region corresponds to the parameters values, to which
the population weight oscillates asymptotically between 2n states, with n ∈ N.
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In period-doubling cascade, the symbolic sequences correspondent to the iter-
ates of the critical points are determined by the iterations f2n

r (c) = c. Ana-
lytically, these equations define the super-stability curves of the cycle of order
2n. The period doubling region is bounded below by the curve of the intrinsic
growth rate values where the period doubling starts, Ŵ∞(K), correspondent
to the 2-period symbolic sequences (CR)∞. Usually, the upper bound of this
region is determined using values of intrinsic growth rate r, corresponding to
the first symbolic sequence with non null topological entropy. Commonly, the
symbolic sequence that identifies the beginning of chaos is

(
CRLR3

)∞
, a 6-

periodic orbit, see for example [12] and [13]. The unimodal maps in this region,
also have null topological entropy, [10].

In the chaotic region of the (K,W∞) parameter plane, the evolution of
the population size is a priori unpredictable. The maps are continuous on
the interval with positive topological entropy whence they are chaotic and
the Sharkovsky ordering is verified. The symbolic dynamics are characterized
by iterates of the functions fr that originate orbits of several types, which
already present chaotic patterns of behavior. The topological entropy is a non-
decreasing function in order to the parameter r, until reaches the maximum
value ln 2 (consequence of the negative Schwartzian derivative). In [12] and
[13] can be seen a topological order with several symbolic sequences and their
topological entropies, which confirm this result to others growth models. This
region is bounded below by the curve of the intrinsic growth rate values where
the chaos starts. The upper bound is the fullshift curve or chaotic semistability
curve, defined by fr (c) = 1. This curve characterizes the transition between
the chaotic region and the non admissible region. In the non admissible region,
the graphic of any function fr is no longer totally in the invariant set [0, 1]. The
maps under these conditions no longer belong to the studied family functions
and are not good models for populations dynamics.

The above explanations are summarized in the next result:

Lemma 1. Let fr(x) be von Bertalanffy’s maps, Eq.(4), with r ∈ R+ and
satisfying (A1)− (A4).

(i) (Stability region of the fixed point Ar) If 0 < r < 5, then there is a linearly
stable fixed point Ar ∈ ]0, 1[ whose basin of attraction is ]0, 1[;

(ii) (Period doubling and chaotic regions) If 5 < r < 33

22 , then the interval
[f2
r (c), fr(c)] is forward invariant with basin of attraction ]0, 1[;

(iii) (Chaotic semistability curve) If r = 33

22 , then [0, 1] is invariant and verifies
that ⋃

n≥0

fnr (x) = [0, 1] and lim
n→∞

1

n
|Dfnr (x)| > 0,

for Lebesgue almost every x ∈ [0, 1].

For more analytical details of the proof see [14] and [15].
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3 Synchronization and Lyapunov exponents

Consider a general network ofN identical coupled dynamical systems, described
by a connected, undirected graph, with no loops and no multiple edges. In each
node the dynamics of the system is defined by the maps fr given by Eq.(4).
The state equations of this network, in the discretized form, are

xi(k + 1) = fr(xi(k)) + c

N∑
j=1

lijxj(k), with i = 1, 2, ..., N (5)

where c is the coupling parameter and L = (lij) is the Laplacian matrix or
coupling configuration of the network. The Laplacian matrix is given by L =
D − A, where A is the adjacency matrix and D = (dij) is a diagonal matrix,
with dii = ki, being ki the degree of node i. The eigenvalues of L are all real
and non negatives and are contained in the interval [0,min {N, 2∆}], where ∆ is
the maximum degree of the vertices. The spectrum of L may be ordered, λ1 =
0 ≤ λ2 ≤ · · · ≤ λN . The network (5) achieves asymptotical synchronization if

x1(t) = x2(t) = ... = xN (t) →
t→∞

e(t),

where e(t) is a solution of an isolated node (equilibrium point, periodic orbit
or chaotic attractor), satisfying ė(t) = f(e(t)).

One of the most important properties of a chaotic system is the sensitivity
to initial conditions. A way to measure the sensitivity with respect to initial
conditions is to compute the average rate at which nearby trajectories diverge
from each other. Consider the trajectories xk and yk, starting, respectively,
at x0 and y0. If both trajectories are, until time k, always in the same linear
region, we can write

|xk − xk| = eλk|x0 − y0|, where λ =
1

k

k−1∑
j=0

ln |f ′r(xj)|.

The Lyapunov exponents of a trajectory xk is defined by

hmax = lim
k→+∞

1

k

k−1∑
j=0

ln |f ′r(xj)| (6)

whenever it exists. The computation of the Lyapunov exponent hmax gives the
average rate of divergence (if hmax > 0), or convergence (if hmax < 0) of the two
trajectories from each other, during the time interval [0, k], see for example [6].
We note that, the Lyapunov exponents depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight. See in Fig.2
the Lyapunov exponents estimate for von Bertalanffy’s maps Eq.(4).

If the coupling parameter c belongs to the synchronization interval]
1− e−hmax

λ2
,

1 + e−hmax

λN

[
(7)

then the synchronized states xi(t), (i = 1, ...N) are exponentially stable, [9].
The second eigenvalue λ2 is know as the algebraic connectivity or Fiedler value
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Fig. 2. Lypunov exponents estimates for von Bertalanffy’s maps Eq.(4), as a function of the
intrinsic growth rate r.

and plays a special role in the graph theory. As bigger is λ2, more easily the
network synchronizes. As much larger λ2 is, more difficult is to separate the
graph in disconnected parts. The graph is connected if and only if λ2 6= 0.
In fact, the multiplicity of the null eigenvalue λ1 is equal to the number of
connected components of the graph. Fixing the topology of the network, the
eigenvalues of the Laplacian λ2 and λN are fixed, so the synchronization only
depends on the Lyapunov exponent of each node, hmax, which in turn depends
on the two biological parameters: von Bertalanffy’s growth rate constant and
the asymptotic weight.

4 Numerical simulation and conclusions

To support our approaches, we consider a regular ring lattice, a graph with N
nodes, each one connected to k neighbors, k2 on each side, having in each node
the same model, the von Bertalanffy maps fr given by Eq.(4). See in Fig.3
some example of lattices. If, for instance, N = 6 and K = 4, see Fig.3c), the

1

2

34

5

6

1 2

34

a b c)))
1

2

34

5

6

Fig. 3. Lattices. In a) with N = 4 nodes and k = 2, in b) with N = 6 nodes and k = 2 and in c)
with N = 6 nodes and k = 4. From (a) to (b) the total number of vertices of the network increases
maintaining the number of neighbors of each node, and from (b) to (c) increases the number of
neighbors of each node, but the total number of vertices of the network remains the same.
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adjacency matrix A and the Laplacian matrix L are

A =


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

 and L = D −A =


4 −1 −1 0 −1 −1
−1 4 −1 −1 0 −1
−1 −1 4 −1 −1 0
0 −1 −1 4 −1 −1
−1 0 −1 −1 4 −1
−1 −1 0 −1 −1 4

 .

So, the network correspondent to the graph in Fig.3 c) is defined by the system,

ẋ1 = fr(x1) + c(4x1 − x2 − x3 − x5 − x6)
ẋ2 = fr(x2) + c(−x1 + 4x2 − x3 − x4 − x6)
ẋ3 = fr(x3) + c(−x1 − x2 + 4x3 − x4 − x5)
ẋ4 = fr(x4) + c(−x2 − x3 + 4x4 − x5 − x6)
ẋ5 = fr(x5) + c(−x1 − x3 − x4 + 4x5 − x6)
ẋ6 = fr(x6) + c(−x1 − x2 − x4 − x5 + 4x6)

.

For this lattice the eigenvalues of the Laplacian matrix are λ1 = 0, λ2 =
λ3 = λ4 = 4 and λ5 = λ6 = 6. If we consider, for instance, r = 6.60, the
Lyapunov exponent of fr(x) is 0.377, Eq.(6). Then, attending to Eq.(7), this

lattice synchronizes if 1−e−0.377

4 < c < 1+e−0.377

6 ⇔ 0.079 < c < 0.281 and the
amplitude of the synchronization interval is 0.202. For more examples see Table
1. The lattice correspondent to the Fig.3 b) has eigenvalues of the Laplacian
matrix λ1 = 0, λ2 = λ3 = 1, λ4 = λ5 = 3 and λ6 = 4. Thus, for the same
r = 6.60, the lattice synchronizes if 0.313 < c < 0.421 and the amplitude of
this interval is 0.107. Moreover, to the lattice in Fig.3 a), the eigenvalues of the
Laplacian matrix are λ1 = 0, λ2 = λ3 = 2 and λ4 = 4. For the same r = 6.60,
the lattice synchronizes if 0.157 < c < 0.421 and the amplitude of this interval
is 0.264. In Table 1 are presented more examples, where we computed the
synchronization interval for several values of the intrinsic growth rate r, for all
these lattices a), b) and c) of Fig.3. The results of Table 1 allow us to claim:

(C1) From the lattice a) to lattice b) in Fig.3, the total number of vertices of
the network increases maintaining the number of neighbors of each node.
We verify that the synchronization is worse, not only because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C2) Comparing the results for the lattices b) and c) in Fig.3, we may conclude
that maintaining the total number of vertices of the network, but increas-
ing the number of neighbors of each node, the synchronization is better,
not only because it begins to synchronize at a lower value of the coupling
parameter c, but also, because the synchronization interval is larger.

(C3) Observing the columns of Table 1, we verify that, as the intrinsic growth
rate r increases, the synchronization is worse, not just because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C4) Note that, for the intrinsic growth rate r = 6.74 and r = 6.75, for the lattice
b), the upper bound of the synchronization interval is lower than the lower
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Synchronization Interval Amplitude
r hmax

Lattice a) Lattice b) Lattice c) Lattice a) Lattice b) Lattice c)

6.50 0.297 ]0.128, 0.436[ ]0.257, 0.436[ ]0.064, 0.291[ 0.308 0.179 0.226

6.55 0.347 ]0.147, 0.427[ ]0.293, 0.427[ ]0.073, 0.285[ 0.280 0.134 0.211

6.60 0.377 ]0.157, 0.421[ ]0.313, 0.421[ ]0.079, 0.281[ 0.264 0.107 0.202

6.65 0.406 ]0.167, 0.417[ ]0.334, 0.417[ ]0.083, 0.278[ 0.250 0.083 0.194

6.70 0.463 ]0.185, 0.407[ ]0.371, 0.407[ ]0.093, 0.272[ 0.222 0.037 0.179

6.73 0.506 ]0.199, 0.401[ ]0.397, 0.401[ ]0.099, 0.267[ 0.202 0.003 0.168

6.74 0.533 ]0.207, 0.397[ (*) ]0.103, 0.265[ 0.190 (*) 0.161

6.75 0.598 ]0.225, 0.388[ (*) ]0.112, 0.258[ 0.163 (*) 0.146

Table 1. Lyapunov exponent, hmax, synchronization interval,
]

1−e−hmax

λ2
, 1+e−hmax

λN

[
, and

amplitude of this interval, 1+e−hmax

λN
− 1−e−hmax

λ2
, for several intrinsic growth rates r, for the

lattices a), b) and c) of Fig.3.(*) In this case, the desynchronization phenomenon occurs, see (C4).

bound. This means that, there is no synchronization for any value of the
coupling parameter c. This desynchronization phenomenon was expected
because the network (5) synchronizes only if hmax < ln(2R+1), where R =
λ1−λ2

λ2−λN , see [9]. In the case of lattice b), we have ln(2R+1) = 0.511, so there
is synchronization only if hmax < 0.511, which do not happens for r = 6.74
and r = 6.75. In all the other studied cases, the Lyapunov exponent verifies
hmax < ln(2R+ 1), so we have a non empty synchronization interval.
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Abstract. The Hénon map, its higher iterates and generalizations as given in [1] are
studied in this work in the sense of stability and bifurcation analysis

xn+1 = 1 + yn − ax2
n

yn+1 = bxk
n. (1)

Instances of several forms bifurcations are observed. The second iteration of the gen-
eralized Hénon map is of interest since period doubling bifurcation is a prominent
mechanism as revealed by the bifurcation map. As we proceed to higher iterations,
the position of the bifurcations remain essentially unchanged, the nature of the bifur-
cations change to include saddle node, Hopf, period doubling bifurcations[1–4]. It is
also shown that the delayed version of the Hénon map can be reduced to the logistic
map if k = 1 and bifurcation scenarios in the one dimensional logistic map, such as
period doubling are also observed in the Hénon map.
Keywords: Hénon map, Chaos, Stability, Bifurcation.

1 Introduction

Both iterated maps and flows are used as models for chaotic behavior. It is
well known that flows have the same equilibrium points with the maps to which
they are related by discretization. The classical example is the logistic map.
As a differential equation it has a simpler behavior, however when converted
to a map it indicates period doubling bifurcation.
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Bifurcation analysis for both the generalized Hénon map and its higher it-
erations involving the 2n fold iteration gives rich structures[1]. The generalized
Hénon map and the higher iterates as first studied by Skiadas et al. are taken
into consideration in this work [2,5]. The relation between the original Hénon
map and the logistic map are also studied and the results given are consistent
with the bifurcation diagrams of the original Hénon map[5,6].

In our previous work continuous and discrete versions of predator prey mod-
els were studied[7,8]. A similar analysis is done in this work for the iterated
Hénon map, its higher iterates and the generalized form and bifurcation prop-
erties with rich properties [9,10].

The Hénon map and its generalization is given by the system 1 for k ≥ 1.
In the following sections we give explicit results of stability and bifurcation
analysis for various values of k and higher iterations of this dynamical system
which defines a generalized version of the Hénon map. For the special case that
k = 1 this system is known as the original Hénon map which sets an example as
a chaotic map for given parameter values. We further generalize the y update
formula to yn+1 = bxkn+1.

2 Stability and bifurcation properties of the first and
second iterations of the original Hénon map

The first iteration of the generalized Hénon map introduced in the previous
section for k = 1 is considered as the original Hénon map given by:

xn+1 = 1 + yn − ax2n
yn+1 = bxn. (2)

The equilibrium points of this system are

(x1, y1) = (
b− 1− β

2a
,
b(b− 1− β)

2a
)

(x2, y2) = (
b− 1 + β

2a
,
b(b− 1 + β)

2a
) (3)

and the eigenvalues at these equilibrium points are

λ1,2 = {1

2
(1− b+ β ∓

√
4β + (1 + b− β)2} (4)

and

λ3,4 = {1

2
(1− b− β ∓

√
−4β + (1 + b+ β)2}. (5)

where β =
√

4a+ (b− 1)2.
The original Hénon map can be considered as a quadratic map in one di-

mension if yn+1 is updated first, i.e.:

xn+1 = bxn + 1− ax2n. (6)
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This is an implied delay of one step. A quadratic map can be reduced to the
functional form of the logistic map by a linear transformation x = cy + d for
appropriate values of the parameters.[11–13]

The Hénon map has two equilibrium points

x1,2 =
b− 1±

√
(1− b)2 + 4a

2a
, (7)

Hence these equilibrium points are real if√
(1− b)2 + 4a > 0. (8)

It can also be shown that one of these equilibrium points is stable for the
positive sign before the radical, the other one is always unstable.

The parameter values known to exhibit chaotic behavior are a = 1.4 and
b = 0.3 and the two equilibrium points of the system for these parameter
values are (−1.13135,−0.339406) and (0.631354, 0.189406). The eigenvalues at
the first equilibrium point are {2.25982,−1.09203} and the eigenvalues at the
second equilibrium point are {−2.92374,−0.844054}. Hence the first one is a
saddle point and the second one is clearly a stable equilibrium point.

Theorem 1. A quadratic map where the coefficient of the quadratic term is
negative can always be reduced to the functional form of the logistic map yn+1 =
λyn(1 − yn) by a linear transformation of the form x = cy + d, c 6= 0. It
should be noted that the linear transformation does not respect the unit interval
condition of the logistic map, however the Hénon map itself does not stay in
0 < x < 1, 0 < y < 1.

Proof. After substitution of the linear transformation x = cy+d in the system
the constant term should vanish. We have:

y2n(ac2) + yn(2acd− bc) + ad2 − bd+ cyn+1 + d− 1 = 0. (9)

The condition for vanishing constant term coincides with the condition that
gives the equilibrium points, namely:

d1,2 =
b− 1±

√
(1− b)2 + 4a

2a
. (10)

Hence yn+1 = λyn(1−yn) is obtained where λ = ±
√

(1− b)2 + 4a+1 for both
solutions of d.

This theorem is important since it shows that a quadratic map can be converted
to the logistic map provided that the logistic map variable remains in the unit
interval. Furthermore a quadratic map can also be converted to a tent map
where the codimension is incremented by one since the logistic map is reduced
to tent map for λ = 4.

An iterated map and differential equation can be converted to one another
by using a specific discretization. However the differential equation obtained by
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any discretization is invertible by the implicit function theorem while the cor-
responding map is usually non-invertible. This of course implies codimension
is decreased by one upon conversion to map[14,15].

The formula for xn+1 with yn = bxn substituted in the same way as the
step leading to xn+1 = 1 + bxn − ax2n of the first iteration can be factorized as
follows

xn − f2(xn) = (xn − f(xn))(a2x2n − abxn − axn − a+ 1) (11)

as expected where f2(xn) = f(f(xn)). Theorem 1 then guarantees that both
factors can be transformed into either the logistic map or its version with the
reversed sign xn+1 = λ(x2n − xn).

In the numerical analysis literature, one of the possible variations for suc-
cessive iteration is the commonly known Jacobi iteration, and the second one
is the Gauss-Seidel iteration. The difference lies in the fact that whether all
variables are updated at the end of an iteration or the newer values for a
variable are immediately used in later equations of the same iteration. The
two-dimensional map

xn+1 = f(xn, yn)

yn+1 = g(xn, yn) (12)

is an instance of the Jacobi variant. The Gauss-Seidel variant uses yn+1 =
g(xn+1, yn+1) for the second term.

According to the Jacobi variant the second iteration of the original Hénon
map is given by:

xn+1 = −a3x4n + 2a2x2nyn + 2a2x2n − ay2n − 2ayn − a+ bxn + 1

yn+1 = b(−ax2n + yn + 1). (13)

The system has four equilibrium points two of which are inherited from the
original Hénon map and the other equilibrium points are

(−(
b− 1

2a
)±

√
(
1

a
− 3(

b− 1

2a
)2), −b(b− 1

2a
±
√

(
1

a
− 3(

b− 1

2a
)2))). (14)

The eigenvalues that are inherited from the original Hénon map are

{±β(b− 1)±
√

2α+ 2a+ b2 − b+ 1}, (15)

and the eigenvalues of the third and fourth equilibrium points are

{±2
√
a2 − 2ab2 + 3ab− 2a+ b4 − 3b3 + 4b2 − 3b+ 1− 2a+ 2b2 − 3b+ 2}

where β =
√

4a+ (b− 1)2 and

α = ((2ab−2a+b3−2b2+2b−1)β+2a2+4ab2−6ab+4a+b4−3b3+4b2−3b+1).

We proceed by giving the detailed stability results for the original Hénon
map. We recall that the original Hénon map has two real equilibrium points

for a > − (b−1)2
4 [3,4].
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Lemma 1. For a = − (b−1)2
4 and β = 0 the original Hénon map has a unique

equilibrium point at ( −2b−1 ,
−2b
b−1 ) with the eigenvalues {1,−b} indicating saddle

node bifurcation[3,4].

Proof. By substituting a = − (b−1)2
4 and β = 0 in Equation 3 the two equilib-

rium points are found to overlap each other at ( −2b−1 ,
−2b
b−1 ). The Jacobian of

the system at the equilibrium point is(
1− b 1
b 0

)
and hence the eigenvalues are {1,−b}.

We consider the saddle node bifurcation with a numerical example. For
b = 0.3 and a = −0.1225 the equilibrium point of the system is (2.8571, 0.8571)
indicating a saddle node bifurcation with a stable and an unstable branch shown
in Figure 1. The range for a along the stable branch is between −0.1225 ≤ a ≤
0.3675.

Fig. 1. Bifurcation diagram of the original Hénon map for −0.15 ≤ a ≤ 0.4 and
b = 0.3.

For the special case that a = 3(b−1)2
4 period doubling bifurcation is ob-

served for the original Hénon map. At this period doubling point the orig-
inal Hénon map and the second iteration of the original Hénon map have
completely overlapped equilibrium points at ( 2

b−1 ,
2b
b−1 ). The eigenvalues

for the original Hénon map are {−1, b} and {±
√
9b2−14b+9−3(b−1)

2 } and the
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eigenvalues for the second iteration of the original Hénon map are {1, b2} and

{±3
√
9b2−14b+9|b−1|+9b2−16b+9

2 }.

Lemma 2. The first and second iterations of the original Hénon map show
Hopf bifurcation for a = −0.982051 and a = 2.48205 while b = −1.

Proof. For b = −1 and a = −0.982051 the equilibrium points of the original
Hénon map are (1.1546,−1.1546) and (0.88185,−0.88185) and the eigenvalues

are {1.6686, 0.5992} and {
√
3
2 ±

i
2}. The equilibrium points of the second iter-

ation of the original Hénon map are the same of those of the original Hénon

map and the eigenvalues are {0.35913, 2.7844} and { 12 ±
i
√
3

2 }.
For b = −1 and a = 2.48205 the equilibrium points of the original Hénon

map are (0.3489,−0.3489) and (−1.1547,−1.1547) and the eigenvalues are

{0.18011, 5.5519} and {−
√
3

2 ± i
2}. The equilibrium points of the second it-

eration of the original Hénon map are the same of those of the original Hénon

map and the eigenvalues are {0.03244, 30.8239} and { 12 ±
i
√
3

2 }.

Fig. 2. Bifurcation diagram of the original Hénon map for 0.2 ≤ a ≤ 1.2 and b = 0.3.

The first iteration of the original Hénon map exhibits a period doubling bifur-
cation and transition to chaos about a = 0.2 as shown in Figure 2 demon-
strating an example of stable branch.Further stability analysis for the pa-
rameter value a = 0.2 gives the two equilibrium points (1.08945, 0.326836)
and (−4.58945,−1.376836) and the eigenvalues {0.371580,−0.80736213} and
{1.986779,−0.1509981} respectively. The first equilibrium point is a stable sink
and the second equilibrium point is a saddle point. For the same parameter val-
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Fig. 3. Bifurcation diagram of the second iteration of the original Hénon map for
0.2 ≤ a ≤ 1.2 and b = 0.3 for both x and y.

ues the second iteration of the original Hénon map has four equilibrium points,
two of them are complex conjugates, i.e. (1.75±2.046338i, 0.525∓0.6139i) and
the others are inherited from the original Hénon map respectively. The eigen-
values of the complex conjugate equilibrium points are {1.7072, 0.05271}, the
eigenvalues of the third equilibrium point are {0.138072, 0.6518336} and the
eigenvalues of the fourth equilibrium point are {0.0228, 3.9472}. The complex
conjugate equilibrium points are saddles, the third equilibrium point is a stable
sink and the fourth equilibrium point is a saddle as expected and the bifurca-
tion diagram is shown in Figure 3. When a approaches 0.3675, a period-2 orbit
is observed. The equilibrium points at a = 0.3675 are (0.95238, 0.285714) and
(−2.857142,−0.857142) and the eigenvalues corresponding to these equilibrium
points are {0.3, -1} and {2.234271, -0.134271}. Hence the first equilibrium
point gives the beginning of the period doubling bifurcation and the second
equilibrium point is a saddle point[16].

In the second iteration period doubling bifurcation occurs when the equi-
librium points of the first iterate f(xn) lose their stability but the second it-
eration f2(xn) develops a pair of new stable equilibrium points xn± such that
f2(xn±) = xn± while f forms a period-2 attractor f(xn±) = xn∓. The sec-
ond iteration can not move xn± to xn∓ hence one of the branches for f(xn)
becomes invisible for f2(xn). Furthermore the special form of the Hénon map
where yn is calculated as the iterated value of xn causes xn and yn to switch
branches for f2. This fact applies for 0.3625 ≤ a ≤ 0.9125. At a = 0.9125 a
period-4 attractor occurs as shown in Figure 3.
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For a = 1 the equilibrium points are (0.70948, 0.21284) and (-1.40948, -
0.42284) and the eigenvalues are {0.186824, -1.60578} and {2.921643, -0.102681}
respectively. Both of the equilibrium points are saddle points. The bifurcation

Fig. 4. Bifurcation diagram of the first and second iterations of the original Hénon
map for −0.5 ≤ b ≤ 0.42 and a = 1.2 for x.

diagram of the first and second iterations of the original Hénon map for −0.5 ≤
b ≤ 0.419 and a = 1.2 is given in Figures 4 and 5. For a = 1.2 and b = −0.1 the
equilibrium points are (0.563137,−0.0563137) and (−1.4798, 0.14798) and the
eigenvalues are {−0.0785562,−1.2729739} and {0.0283838, 3.523146} respec-
tively. Both of the equilibrium points are saddles. About the first equilibrium
point period-2 orbit is observed. Considering the second iteration of the original
Hénon map with same conditions there are four equilibrium points of which two
are the same as the first iteration. The eigenvalues are {1.620462, 0.0061710}
and {12.41256, 0.000805}. Again both equilibrium points are saddle points.
The system hides its periodic behavior that is observed for the first iteration
and the increase in the iteration of the system makes the system a more chaotic
and complex one instead of a multiperiodic one.

3 Conclusion

In this paper we investigated the bifurcation analysis and stability structure
of the generalized Hénon map and its higher iterations[17,18]. The second
iteration of the generalized Hénon map is of interest since period doubling bi-
furcation is a prominent mechanism as revealed by the bifurcation map. The
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Fig. 5. Bifurcation diagram of the first and second iterations of the original Hénon
map for −0.5 ≤ b ≤ 0.42 and a = 1.2 for y.

second iteration can either be done on the original Hénon map or on the de-
layed version as proposed by Skiadas[2]. The two options correspond to the
Jacobi and Gauss-Seidel iterations in numerical analysis where all variables are
either updated following a complete iteration or each updated value is used
for the subsequent equations in the same iterations. As we proceed to higher
iterations, the position of the bifurcations remain essentially unchanged, the
nature of the bifurcations change to include virtually all kinds of bifurcations.
The generalization of the yn updating formula to the form x2n does not qualita-
tively change the nature. The bifurcation scenario is not sensitive to k. When
we increase the value of k, we notice that the bifurcation diagrams do not
change their general properties. The stability analysis related to these results
are also investigated. Generally magnitude of one eigenvalue is less than 1
and the other is greater than 1. Therefore we have a saddle for these kinds of
equilibrium points. On the other hand, we have stable sinks for other type of
eigenvalues. As we look generally, we do not observe any bifurcation out of the
range 0.2 ≤ a ≤ 1.875 so that we can obtain similar results according to the
Gauss-Seidel iteration.
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1.M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math.
Phys. 50:69–77, 1976.

2.C.H. Skiadas, C. Skiadas, Chaotic Modelling and Simulation Analysis of Chaotic
Models, Attractors and Forms, Taylor & Francis Group, LLC, 2009.



538 O.O. Aybar et al.

3.E. Zeraoulia, J.C. Sprott, World Scientific Series on Nonlinear Science Series A 73
(2010).

4.J.C. Sprott, High-Dimensional Dynamics in the Delayed Hénon Map, Elec J.of
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Abstract: Using the classical tools of nonlinear dynamics, we study the process of self-

organization and the appearance of the chaos in the metabolic process in a cell with the 

help of a mathematical model of the transformation of steroids by a cell Arthrobacter 

globiformis. We constructed the phase-parametric diagrams obtained under a variation of 

the dissipation of the kinetic membrane potential. The oscillatory modes obtained are 

classified as regular and strange attractors. We calculated the bifurcations, by which the 

self-organization and the chaos occur in the system, and the transitions “chaos-order”, 

“order-chaos”, “order-order,” and “chaos-chaos” arise. Feigenbaum’s scenarios and the 

intermittences are found. For some selected modes, the projections of the phase portraits 

of attractors, Poincaré sections, and Poincaré maps are constructed. The total spectra of 

Lyapunov indices for the modes under study are calculated. The structural stability of the 

attractors is demonstrated. A general scenario of the formation of regular and strange 

attractors in the given metabolic process in a cell is found. The physical nature of their 

appearance in the metabolic process is studied. 

Keywords: Mathematical model, Metabolic process, Self-organization, Phase portrait, 

Deterministic chaos, Regular attractor, Strange attractor, Bifurcation, Poincaré section, 

Poincaré map, Lyapunov indices. 

 

1. Introduction 
In the present work, we continue the study of the mathematical model of the 

metabolic process in a cell Arthrobacter globiformis. It is based on the process 

of transformation of steroids in a bioreactor, which is well investigated in 

experiments [1]. The constructed mathematical model allows us to determine 

the internal and external parameters, with which the model describes the 

stationary modes of a bioreactor. The studies within the model showed that 

autooscillations must appear in the biochemical reaction under certain 

conditions [2-17]. These autooscillations predicted as early as in 1985 [2] were 

found experimentally in [18, 19]. 
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Analogous autooscillations are observed in the processes of photosynthesis, 

glycolysis, variations of the calcium concentration in a cell, oscillations in heart 

muscle, and other biochemical systems [20-24]. 

The study of such autooscillations will allow one to investigate the internal 

dynamics of metabolic processes in cells, to find the structural-functional 

connections in a cell, by which its vital activity runs, and to clarify the evolution 

of the formation of these connections. The application of the mathematical 

apparatus of nonlinear dynamics to the study of metabolic processes will allow 

one to develop the general methods of synergetics considering the physical laws 

of self-organization in the Nature. 

 

2. The Mathematical Model 
The mathematical model of the metabolic process running in a cell Arthrobacter 

globiformis at the transformation of steroids is constructed according to the 

general scheme of this process presented in Fig. 1. The model is based on the 

results of experimental studies of the process under flowing-through conditions 

with a fermenter in porious granules with immobilized cells Arthrobacter 

globiformis [3, 4]. 

 
 

Fig. 1. General scheme of the metabolic process in a cell Arthrobacter 

globiformis. 

 

The variation of the concentration of hydrocortisone ( G ) is described by the 

equation 

 

.)()( 311
23

0 GGVEVl
GN

G

dt

dG
α

ψγ
−−

++
=                           (1) 

 

Under the action of the diffusion and the flow into pores of a macroporous 

granule to cells, hydrocortisone comes to the region of localization of the 
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enzyme 3-ketosteroid- ∆ -dehydrogenase ( 1E ) (term 
ψγ 23

0

++GN

G
) and is 

transformed by this enzyme into prednisolone (term )()( 11 GVEVl ). A part of 

hydrocortisone is taken out from the biosystem by the flow (term G3α ). 

Here and below, the function )( XV  characterizes the adsorption of the enzyme 

in the region of local binding into active complexes; ).1/()( XXXV +=  

The variation of the concentration of prednisolone ( P ): 

 

.)()()()()( 42211 PPVNVEVlGVEVl
dt

dP
α−−=                    (2) 

 

Prednisolone formed in the process (term )()( 11 GVEVl ) is transformed by the 

enzyme β20 -oxysteroid-dehydrogenase ( 2E ) to its β20 -oxyderivative (term 

)()()( 22 PVNVEVl ). Under the action of a flow (term P4α ), a part of 

prednisolone goes out into the external solution. 

The variation of the concentration of β20 -oxyderivative of prednisolone ( B ): 

 

.)()()()()( 5122 BBVVkPVNVEVl
dt

dB
αψ −−=                       (3) 

 

The increase of the concentration of B  occurs as a result of the transformation 

of prednisolone (term )()()( 22 PVNVEVl ). Its decrease is due to the use of 

β20 -oxyderivative by cells in one of the possible modifications of the Krebs 

cycle (term )()(1 BVVk ψ ), which increases the level of HNAD ⋅ . Under the 

action of a flow (term B5α ), B  is washed out into the external solution. 

The variation of the concentration of the oxidized form of 3-ketosteroid- ∆ -

dehydrogenase ( 1E ): 

 

−
++

+
−

+
= )1(

1
2

1

2

10
1

mNPN

mNP

G

G
E

dt

dE

β  
.)()()()( 111411 EQVeVlGVEVl α−+−                           (4) 

The biosynthesis of the enzyme is described by the term 

)1(
1

2
1

2

10 mNPN

mNP

G

G
E

++

+
−

+β
, which is defined by the activation by the 

substrate G  and the inhibition by the reaction products P  and N . The 

decrease of the concentration of this form of the enzyme in the process of 

transformation of hydrocortisone is given by the term )()( 11 GVEVl , and its 

increase in the process of reduction of the respiratory chain corresponds to the 
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term )()( 14 QVeVl . The inactivation of the enzyme due to the proteolysis is 

described by the term 11Eα . 

The variation of the concentration of the reduced form of 3-ketosteroid- ∆ -

dehydrogenase ( 1e ): 

 

.)()()()( 111114
1 eGVEVlQVeVl

dt

de
α−+−=                       (5) 

 

Its level decreases in the process of reduction of the respiratory chain (term 

)()( 14 QVeVl− ) and due to the inactivation (term 11eα ) and increases at the 

transformation of hydrocortisone (term )()( 11 GVEVl ). 

The variation of the level of the oxidized form of the respiratory chain ( Q ) 

 

),()()()()()()2(6 7116
)1(

2 NVQVlQVeVlVOVQlV
dt

dQ
−−−= ψ        (6) 

 

where )1/(1)( 2)1( ψψ +=V . We accept that the concentration of menaquinone 

200 =+ qQ , where q  is the reduced form of the respiratory chain. 

The respiratory chain is oxidized by oxygen (term )()()2(6 )1(
2 ψVOVQlV − ) 

and is reduced with the help of 1e  (term )()( 16 QVeVl− ) and due to the high 

level of HNAD ⋅  (term )()(7 NVQVl− ). 

The variation of the concentration of oxygen ( 2O ): 

 

.)()()2( 27
)1(

2
25

202 OVOVQlV
ON

O

dt

dO
αψ −−−

+
=           (7) 

 

Under the action of a flow (terms 
25

20

ON

O

+
 and 27Oα ), the level of aeration of 

a cell is changed. The concentration of oxygen decreases at the oxidation of the 

respiratory chain (term )()()2(
)1(

2 ψVOVQlV −− ). 

The variation of the concentration of β20 -oxysteroid-dehydrogenase ( 2E ): 

 

 

 

−
+

−
++
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2

2
2

2

20
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P
E

dt

dE

ββ  

22210 )()()( EPVNVEVl α−−                                       (8) 
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The increase of the level of the given enzyme occurs due to the biosynthesis: 

)1(
2

2
2

2

20
BN

B

N

N

P

P
E

+
−

++ ββ
. Prednisolone and HNAD ⋅  are activators of 

this process, and β20 -oxyderivative is an inhibitor. The decrease of the level of 

the given enzyme occurs as a result of the inactivation ( 22Eα− ) and the process 

of transformation of prednisolone ( )()()( 210 PVNVEVl− ). 

 

+−−= )()()()()( 722 NVQVlPVNVEVl
dt

dN

 

.)( 6
4

0

10
2 N

NN

N

K
BVk α

ψ

ψ
−

+
+

+
+                     (9) 

 

The level of the co-enzyme N  decreases in the process of transformation 

BP ⇒ , in the process of reduction of the respiratory chain ( )()(7 NVQVl− ), 

and due to a flow ( N6α− ). It increases at the use of B  by cells in the Krebs 

cycle as a substrate (
ψ

ψ

+10
2 )(

K
BVk ) and in the presence of endogenous 

substrates (
NN

N

+4

0 ) in the environment. 

The variation of the level of kinetic membrane potential (ψ ): 

 

αψ
ψ

−+= )()()()( 815 QVNVlGVEVl
dt

d
.                    (10) 

 

The kinetic membrane potential arises at the transformation of hydrocortisone 

( )()( 15 GVEVl ) and the reduction of the respiratory chain ( )()(8 QVNVl ) at a 

high level of HNAD ⋅  and decreases due to other metabolic processes ( αψ− ). 

The variation of the level of ψ  changes its regulatory role (1), (3), (6), (7), (9). 

If the potential is high, the respiratory chain is blocked and held in the reduced 

state. 

The main parameters of the system, with which we fit the relevant experimental 

data, are as follows: ;2.011 === kll  ;27.0102 == ll  6.05 =l ; ;5.0ll 64 ==  

;2.17 =l  ;4.28 =l  ;5.12 =k  ;310 =E  ;21 =β  ;03.01 =N  ;5.2=m  033.0=α ; 

;007.01 =a  0068.01 =α ; ;2.120 =E  ;01.0=β  ;12 =β  ;03.02 =N  ;02.02 =α  

;019.00 =G  ;23 =N  ;2.02 =γ  ;014.05 =α  ;001.07643 ==== αααα  

;015.020 =O  ;1.05 =N  003.00 =N ; ;14 =N  7.010 =K . 

The study of solutions of the given mathematical model was carried out with the 

help of the theory of nonlinear differential equations [25-27]. 
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In the numerical solution of this autonomous system of nonlinear differential 

equations, we used the Runge--Kutta--Merson method. The accuracy of 

calculations was set to be 810− . To attain the reliability of a solution, when the 

system passes from the initial transient phase onto the asymptotic solution with 

an attractor, the duration of calculations was taken to be 610 . For this time 

interval, the trajectory “sticks” onto the appropriate attractor. 

The various types of autooscillatory modes are studied with the help of the 

construction of exact phase-parametric diagrams. We found the scenarios of 

appearance of bifurcations at the transition of the dynamical process from one 

type of an attractor to another one. For the most characteristic modes, we 

calculated the total spectra of Lyapunov indices (Table 1). 

To construct a phase-parametric diagram, we used the method of section. In the 

phase space of trajectories of the system, we place a cutting plane with P = 0.2. 

Such choice is explained by the symmetry of oscillations relative to this point of 

this variable in multiple modes. If the trajectory P(t) crosses this plane in a 

certain direction, we mark the value of chosen variable (e.g., G) on the phase-

parametric diagram. In such way, we have the point corresponding to the section 

of a trajectory by the two-dimensional plane. If the multiple periodic limiting 

cycle appears, we obtain a number of points, which will be coincide in a period. 

If a deterministic chaos arises, the points of intersection of trajectories by the 

plane will be placed chaotically. 

In order to uniquely identify the form of an attractor for the chosen points, we 

calculated the total spectrum of Lyapunov indices and determined their sum 

∑=Λ
10

j

jλ  (see Table 1). The calculation was carried out by Benettin’s 

algorithm with orthogonalization of the vectors of perturbation by the Gram--

Schmidt method [26, 28, 29]. 

 

3. Results of Studies 
We now consider the dynamics of modes within the mathematical model (1)-

(10) under a variation of the dissipation of a kinetic membrane potential α  (10) 

[16, 17]. We found the autooscillatory and chaotic modes with various 

multiplicities. The projections of their phase portraits have a characteristic form 

shown in Fig. 2,a,b. 
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Fig. 2. Projections of the phase portraits of regular attractors: a – autoperiodic 

cycle 0214 ⋅  for 0.033=α ; b – quasiperiodic cycle 0231⋅≈  for  

0.0321375=α . 

 

Let us consider a part of the bifurcation diagram not studied earlier. In Fig. 3, 

we show the bifurcation diagram for 0.32166) (0.032159,∈α . 

 

 
Fig. 3. Bifurcation diagram of the system for 0.32166) (0.032159,∈α . 

 

For )0.03215960 ,(0.0321590∈α , the regular attractor of the 14-fold period 

0214 ⋅  is kept in the system. For 0.03215961=α  , we observe the appearance 

of the period doubling bifurcation with the generation of the regular attractor 
1214 ⋅  (Table 1). Then for 0.03215962=α , there arises the bifurcation of the 

generation of a two-dimensional torus (the Neimark bifurcation). The 

configuration of kinetic curves is instantly changed, and the quasiperiodic 
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attractor with n-fold period is established on the toroidal surface 02⋅≈ n (t) 

(Figs. 4,a and 5,a). 

 

 

a - regular attractor of the quasiperiodic cycle ≈ n*
02  on the toroidal surface 

for 0.03215962=α . 

 

b - regular attractor 0236 ⋅  for 0.032162=α . 

Fig. 4. Kinetic curve of the variable )t(e1 . 
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Fig. 5. Projections of phase portraits: a – regular attractor of the quasiperiodic 

cycle 02⋅≈ n  on the toroidal surface for 0.03215962=α ; b – strange attractor 
x27 ⋅  for 0.032164=α . 

 

As α  increases, the given attractor loses the stability, by passing periodically to 

the 14-fold limiting cycle ( 0.032160=α ), which corresponds to the gaps in 

Fig. 3,a. In addition, other various multiple modes arise. For example, for α = 

0.032161, 0.0321615, and 0.032162, the regular attractors 0229 ⋅ , 027 ⋅ , and 
0236⋅  appear, respectively (Fig. 4,b). As α  increases, we see the appearance of 

bifurcations of the limiting cycle. Moreover, the instant structural rearrangement 

of the type “order-order” occurs; i.e., as a result of the self-organization, the 

regular attractor of some form is replaced instantly by a regular attractor of 

some other form. In this case, the trajectories leave the region of attraction of 

the attractor and are drawn in the region of attraction of another regular 

attractor. 

The interesting scenario of the metabolic process is observed in the interval 

0.032164) ,(0.0321626∈α . In Fig. 6, we present a magnified part of the 

bifurcation diagram in Fig. 3. 

 

 
Fig. 6. Phase-parametric diagram of the system for 0.32164) ,(0.0321626∈α , 

where Feigenbaum’s scenario is observed. 

 

At the beginning of the interval at α = 0.0321626, the regular attractor 027 ⋅  is 

formed on the toroidal surface. For 0.03216276=jα , the bifurcation yields the 

doubling of the period, and the regular attractor 127 ⋅  arises on the toroidal 

surface. For 0.032163461 =+jα  and 0.032163612 =+jα , we see the attractors 



V. I. Grytsay and I. V. Musatenko 548 

227 ⋅  and 427 ⋅ , respectively. This sequence of bifurcations satisfies the 

relation 

4.667lim
12

1
≈

−

−

++

+

∞→
jj

jj

t αα

αα
. 

 

This number is very close to Feigenbaum’s universal constant δ = 

4.669211660910… characterizing the infinite cascade of bifurcations at the 

transition to a deterministic chaos. Thus, as the coefficient of dissipation α  

increases in this region, the period of a complicated regular attractor on the torus 

is doubled by Feigenbaum’s scenario [37-40]. 

The further increase in α  causes a deviation from the given scenario and the 

formation of the strange attractor x27 ⋅  ( 0.032164=α , Fig. 5,b) as a result of 

the intermittency. But then, for 0.032174=α , the strange attractor x214 ⋅  

appears (Fig. 7,b). In the interval 0.032174) (0.032164,∈α  as a result of the 

intermittency of these chaotic cycles, we observe the transition between them: 
x2)147( ⋅↔ . In Fig. 7,a for 0.032165=α , we show a projection of the phase 

portrait of a mutual transition of the given strange attractors. Figure 8 presents 

the kinetic curve for the variable )(1 te  for tis mode. We observe the transition 

“chaos-chaos”: x2)147( ⋅↔ . Moreover, the strange attractor x27 ⋅  on the left 

and the strange attractor x214 ⋅  on the right move toward each other. Since 

there are no other attractors of the system in this region, the trajectory is 

chaotically kept in the region of attraction of the strange attractor x214 ⋅  or the 

strange attractor x27 ⋅  Under the effect of bifurcations, the trajectory is 

aperiodically drawn in one of the regions of the given strange attractors after the 

transient process. According to the values of higher Lyapunov indices (Table 1), 

the formed limiting set is unstable by Lyapunov. 

 

 
Fig. 7. Projections of the phase portraits: a – strange attractor of the mutual 

transition x2)147( ⋅↔  for 0.032165=α ; b – strange attractor x214 ⋅  for 

0.032174=α . 
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Fig. 8. Kinetic curve of the variable )(1 te  of the mutual transition of the strange 

attractors x2)147( ⋅↔  for 0.032165=α . 

 

For the given strange attractor, we constructed a projection of the section by the 

plane P = 0.2 and the Poincaré map in Fig. 9,a,b. The choice of a cutting surface 

was made to attain the maximum number of intersections of the given 

component and the phase trajectory P(t), as the former decreases, without 

contacts. 

 

 
Fig. 9. Projection of the section by the plane P = 0.2 (a) and Poincaré map (b) of 

the strange attractor formed during the mutual transition x2)147( ⋅↔  for 

0.032165=α . 

 

The obtained points of intersections and the Poincaré maps are grouped along 

several curves that form a geometric self-similarity. On the projection, we see 

clearly the fractality of this strange attractor. In addition, these curves do not 

create a quasistrip structure. Their number increases permanently with the 

duration of numerical integration of the system. This testifies to the 

impossibility of any reduction of the given complicated mathematical model to 

some one-dimensional discrete approximation without loss of the information 

about the dynamics of the metabolic process in a cell. We note that the general 
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scheme (Fig. 2) includes only the main parts of the metabolic process running in 

any cell with substrate-enzyme reactions and in the respiratory chain. Therefore, 

the model gives a rather general qualitative representation of the dynamics of 

the internal self-organization of the metabolic process in a cell. 

 

Table 1. Total spectra of Lyapunov indices for attractors of the system under 

study ( 4λ - 10λ  are not important for our investigation). 

α  Attractor 
1λ  2λ  3λ  Λ  

0.0321590 0214 ⋅  .000056 -.000214 -.003250 -.898509 

0.0321596 0214 ⋅  .000040 -.000142 -.003306 -.898550 

0.03215961 1214 ⋅  .000078 -.000150 -.003394 -.899865 

0.03215962 )(20 tn ⋅≈  .000063 .000026 -.000274 -.905553 

0.032160 0214 ⋅  .000040 -.000146 -.003365 -.899368 

0.032161 0229 ⋅  .000051 -.000142 -.000123 -.905352 

0.0321615 027 ⋅  .000062 -.000596 -.000576 -.902277 

0.032162 0236 ⋅  .000064 -.000171 -.000155 -.905320 

0.0321626 )(27 0 t⋅  .000063 -.000097 -.001180 -.902078 

0.03216276 )(27 1 t⋅  .000062 -.000005 -.001267 -.902189 

0.03216346 )(27 2 t⋅  .000047 .000025 -.001252 -.902056 

0.03216361 )(27 3 t⋅  .000048 -.000023 -.001265 -.902267 

0.032164 x27 ⋅  .000367 .000018 -.001641 -.902164 

0.032165 x2)147( ⋅↔  .000363 -.000004 -.001598 -.904005 

0.032174 x214 ⋅  .000693 .000020 -.003534 -.901422 

 

4. Conclusions 
We have constructed a mathematical model of the metabolic process in a cell 

Arthrobacter globiformis at the transformation of steroids. With the help of the 

given model, we have found the autooscillations in agreement with experiment, 

which show the complicated internal dynamics in a cell. The model is optimized 

by the number of variables of the system required for a qualitative description of 

the metabolic process under study. The given model involves the general 

regularities characteristic of any cell consuming a substrate, on the whole. The 

autooscillations arise on the level of the substrate-enzyme interaction with 

participation of the redox process in the respiratory chain and characterize the 

times of such interactions. At the synchronization of the given processes, the 

autooscillations characterizing the self-organization of the metabolic process on 

the whole are observed. At the desynchronization of the given processes, we see 

the adaptation of the metabolic process in a cell to varying external conditions in 

the environment with conservation of its functionality. The scenario of the 
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transitions “order-chaos”, “chaos-order”, “order-order”, and “chaos-chaos” is 

studied with the help of Poincaré sections and maps. The total spectra of 

Lyapunov indices are calculated, and the structural stability of the obtained 

attractors is studied. Feigenbaum’s scenario and the Neimark bifurcation are 

found. The results will allow one to carry on the search for metabolic 

oscillations in a cell and to clarify the physical laws of self-organization. 
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Abstract. In this paper we study the evolution of the information flow associated
with a topological order in networks. The amount of information produced by a
network may be measure by the mutual information rate. This measure and the syn-
chronization interval are expressed in terms of the transversal Lyapunov exponents.
The networks are constructed by successively joining one edge, maintaining the same
number of nodes, and the topological order is described by the monotonicity of the
network topological entropy. The network topological entropy measures the complex-
ity of the network topology and it is expressed by the Perron value of the adjacency
matrix. We conclude that, as larger the network topological entropy, the larger is
the rate with which information is exchanged between nodes of such networks. To
illustrate our ideas we present numerical simulations for several networks with a topo-
logical order established.
Keywords: Mutual information rate, topological entropy, networks.

1 Introduction and motivation

Information theory is an area of mathematics and engineering, concerning the
quantification of information and it benefits of matters like mathematics, statis-
tics, computer science, physics, neurobiology and electrical engineering. Infor-
mation theory and synchronization are directly related in a network. The
entropy is a fundamental measure of information content and the topological
entropy can describe the character of complexity of a network, see for example
[10]. In [6], using the mutual information rate to measure the information flow,
we have proved that the larger the synchronization is, the larger is the rate
with which information is exchanged between nodes in the network. Although
the important growth in the field of complex networks, it is still not clear
which conditions for synchronization implies information transmission and it
is still not known which topology is suitable for the flowing of information.
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Nevertheless, we conclude with this study that, the more complex is a network,
expressed by its topological entropy, the larger is the flux of information.

In this work we study the relationship between the topological order in net-
works and the transmission of information. The topological order in networks is
described by the monotonicity of the network topological entropy. The concept
of the network topological entropy was previously introduced in [10]. However,
there are several concepts of network entropy, see [7]. We will use the one
based on symbolic dynamics. In Sec.2, we present some preliminaries concepts
to be used in the following, such as: fundamental notions of graphs theory,
conditions for complete synchronization, comunication channel and mutual in-
formation rate. Sec.3 is devoted to the study of topological order in networks,
using the definition of the network topological entropy. In Sec.4, numerical sim-
ulations are presented for several networks with a topological order established.
Finally, in Sec.5, we discuss our study and provide some relevant conclusions.

2 Preliminaries concepts

In this section, we introduce some notions and basic results on graphs and
networks theory. Mathematically, networks are described by graphs (directed
or undirected) and the theory of dynamical networks is a combination of graph
theory and nonlinear dynamics. From the point of view of dynamical systems,
we have a global dynamical system emerging from the interactions between the
local dynamics of the individual elements. The tool of graph theory allows us
to analyze the coupling structure between them.

A graph G is an ordered pair G = (V,E), where V is a nonempty set of
N vertices or nodes vi and E is a set of edges or links, eij , that connect two
vertices vi and vj . We will only consider the case of undirected graphs, that
means that the edge eij is the same as the edge eji. If the graph G is not
weighted, the adjacency matrix A = A (G) = [aij ] is defined as follows:

aij =

{
1, if vi and vj are connected
0, if vi and vj are not connected

.

The degree of a node vi is the number of edges incident on it and is denoted
by ki. For more details in graph theory see [4].

Consider a network of N identical chaotic dynamical oscillators, described
by a connected and undirected graph, with no loops and no multiple edges.
In each node the dynamics of the oscillators is defined by ẋi = f(xi), with
f : Rn → Rn and xi ∈ Rn is the state variables of the node i. The state
equations of this network are

ẋi = f(xi) + σ

N∑
j=1

lij xj , with i = 1, 2, ..., N (1)

where σ > 0 is the coupling parameter, L = [lij ] = A − D is the Laplacian
matrix or coupling configuration of the network. One of the most important
subjects under investigation is the network synchronizability. It may be studied
fixing the connection topology and varying the local dynamics or fixing the local
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dynamic and varying the connection topology [5]. In [9] it was establish that
complete synchronization can be achieved provided that all the conditional
Lyapunov exponents are negative. In Sec.4, we use this result to determine the
synchronization interval. The negativity of the conditional Lyapunov exponents
is a necessary condition for the stability of the synchronized state, [3]. It is also
a mathematical expression of the decreasing to zero of the logarithm average
of the distance of the solutions on the transverse manifold to the solutions on
the synchronization manifold.

A communication channel represents a pathway through which information
is exchanged. In this work, a communication channel is considered to be formed
by a transmitter Si and a receiver Sj , where the information about the trans-
mitter can be measured. In a network, each one of the links between them, i.e.,
each one of the edges of the corresponding graph, represents a communication
channel. In [1], it is defined IC(Si, Sj), the mutual information rate (MIR)
between one transmitter Si and one receiver Sj , by

IC(Si, Sj) =

λ‖ − λ⊥ , if λ⊥ > 0

λ‖ , if λ⊥ ≤ 0
, (2)

where λ‖ denotes the positive Lyapunov exponents associated to the synchro-
nization manifold and λ⊥ denotes the positive Lyapunov exponents associated
to the transversal manifold, between Si and Sj . λ‖ represents the information
(entropy production per time unit) produced by the synchronous trajectories
and corresponds to the amount of information transmitted. On the other hand,
λ⊥ represents the information produced by the nonsynchronous trajectories and
corresponds to the information lost in the transmission, the information that
is erroneously retrieved in the receiver. For more details and references see for
example [1] and [2]. In [6], we prove that, as the coupling parameter increases,
the mutual information rate increases to a maximum in the synchronization
interval and then decreases.

3 Topological order in networks

In this section we study a topological order in networks, which are constructed
by successively joining one edge, maintaining the same number of nodes. This
topological order is described by the monotonicity of the network topological
entropy. The introduction of the network topological entropy concept was made
in [10], which requires a strict and long construction, using tools of symbolic
dynamics and algebraic graph theory. However, we present some basic aspects
of this definition. The topological entropy htop(X) of a shift dynamical system
(X,σ) over some finite alphabet A is defined by

htop(X) = lim
n→∞

log Tr (An(X))

n

and htop(X) = 0 if X = ∅, where A(X) is the transition matrix of X, [8].
We remark that the transition matrix A(X) describes the dynamics between
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the nodes of the network, which is represented by a graph G. The Perron-
Frobenius Theorem states that, if the adjacency matrix A 6= 0 is irreducible
and λA is the Perron value of A, then htop(X) = log λA. We calculate the
topological entropy of the associated dynamical system, which is equal to the
logarithm of the growth rate of the number of admissible words, [8]. If we have
a network associated to a graph G, which determine the shift space X, we will
call network topological entropy of G the quantity htop(X), i.e.,

htop(G) = htop(X) = log λA. (3)

The following result establishes a topological order in networks.

Proposition 1. Let G1 and G2 be two undirected graphs, with the same num-
ber of vertices N , and G1 be a not complete graph. If the graph G2 is obtained
from the graph G1 by joining an edge, then htop(G2) > htop(G1).

Proof. Let A = [aij ] and B = [bij ] be the adjacency matrices of the graphs G1

and G2, respectively. If the graph G2 is obtained from the graph G1 by joining
an edge, then the adjacency matrix B is obtained from the adjacency matrix
A by replacing some entry aij = 0 by bij = 1. As the graphs G1 and G2 are
not directed, then the matrices A and B are symmetric, and bji = 1. Thus,
the matrix B is equal to the matrix A plus some matrix with non negative
entries. For any power n, we have Bn = An + C, for some matrix C whose
entries are all non negative. As Tr(C) ≥ 0 and Tr(Bn) = Tr(An) + Tr(C),

then Tr(Bn) > Tr(An). Consequently, we obtain log Tr(Bn)
n > log Tr(An)

n , for
all integers n. From the definition of network topological entropy, Eq.(3), we
have htop(G2) > htop(G1).

4 Numerical simulations

In this section we will consider, as an example, a network with N = 6 nodes,
having in each node the same skew-tent map, f : [0, 1]→ [0, 1], defined by

f(x) =


x
a , if 0 ≤ x ≤ a

1−x
1−a , if a < x ≤ 1

, (4)

with 0.5 ≤ a < 1, see [6]. See Fig.1 where we present some examples of these
networks. We start with a network of 7 edges and without the edges e12, e35,
e56, e34, e46, e25, e36, e24 and each time we add the last edge of this list,
we evaluate the eigenvalues of the Jacobian matrix, the Lyapunov exponents,
the region where all transversal Lyapunov exponents are negatives, the syn-
chronization interval and the mutual information rate for all communication
channels of these networks. In order to compare the results, as we add one
edge, we consider for all studied cases the same value a = 0.9 of the skew-tent
map parameter. For this network, the region where all transversal Lyapunov
exponents are negatives do not intersect the line a = 0.9. So, for this value of
a there is no synchronization interval, see 1) of Fig.2 and we do not evaluate
the mutual information rate in this case.
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Fig. 1. Construction of networks by successively joining one edge, with 8, 10, 14 and 15 edges
and N = 6 nodes.

We present the details for the network with 8 edges shown in 1) of Fig.1.
The adjacency matrix A and the Laplacian matrix L of this network are:

A =


0 0 1 1 1 1
0 0 1 1 0 1
1 1 0 0 0 0
1 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −3 1 1 0 1
1 1 −2 0 0 0
1 1 0 −3 1 0
1 0 0 1 −2 0
1 1 0 0 0 −2

 ,

where D is the diagonal matrix with entries dii = ki, beeing ki the degree of
each node i. This network is defined by the following system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−3x2 + x3 + x4 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 2x3)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x4 − 2x5)
ẋ6 = f(x6) + σ(x1 + x2 − 2x6)

,

where σ is the coupling parameter. The Jacobian matrix is given by,

J =


c− 4σ 0 σ σ σ σ

0 c− 3σ σ σ 0 σ
σ σ c− 2σ 0 0 0
σ σ 0 c− 3σ σ 0
σ 0 0 σ c− 2σ 0
σ σ 0 0 0 c− 2σ

 ,

being c = c(x) the slope of f , Eq.(4), given by c(x) = 1
a , if x ≤ a and c(x) =

− 1
1−a if x > a. The eigenvalues of the Jacobian are µ1 = c, µ2 = c − 4σ,

µ3 = c − 3σ, µ4 = c − 2σ, µ5 = c − 7
2σ −

√
17
2 and µ6 = c − 7

2σ −
√
17
2 . The

first eigenvector is (1, 1, 1, 1, 1, 1) and it corresponds to the parallel Lyapunov
exponent λ‖. The others eigenvectors correspond to the transversal Lyapunov
exponents λ⊥i , with i = 2, 3, 4, 5, 6. So, the parallel Lyapunov exponent is

λ‖ =

∫
ln |µ1| =

∫ a

0

ln
1

a
+

∫ 1

a

ln

∣∣∣∣ −1

1− a

∣∣∣∣ = −a ln a− (1− a) ln(1− a) (5)
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σ

a
1) 2) 3)

Fig. 2. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In the vertical axis is the coupling parameter σ and in the
horizontal axis is the tent map parameter a. In 1) is the network with 7 edges, in 2) with 8 edges,
and in 3) with 9 edges. The image in 1) shows that for a = 0.9 there is no synchronization interval
because the intersection of the regions where all transversal Lyapunov exponents are negatives
does not occur for a = 0.9.
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Fig. 3. ICi
for the network with 8 edges in 1) of Fig.1 and with 10 edges in 2) of Fig.1.

and the transversal Lyapunov exponents are

λ⊥i
= a ln

∣∣∣∣1a − νiσ
∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4, 5, 6

where ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7
2σ +

√
17
2 and ν6 = 7

2σ −
√
17
2 . In order to

have synchronization, all transversal Lyapunov exponents must be negatives,
see 2) in Fig.2. In this figure, each color corresponds to a region where one of
the transversal Lyapunov exponents is negative. For example, if a = 0.9, then
the synchronization interval is ]0.236, 0.336[, where all the transversal Lyapunov
exponents λ⊥i are negative. See also 3) in Fig.2 for the network with 9 edges.
To evaluate the mutual information rate (MIR), according to Eq.(2), for each
λ⊥i

we obtain the interval ]ai, bi[ where λ⊥i
< 0, thus

ICi
=


−a ln a− (1− a) ln(1− a)− a ln

∣∣ 1
a − νiσ

∣∣− (1− a) ln
∣∣∣− 1

1−a − νiσ
∣∣∣ ,

if σ < ai or σ > bi
−a ln a− (1− a) ln(1− a), if ai < σ < bi

with a = 0.9 and i = 2, 3, 4, 5, 6. See in 1) of Fig.3 the plots of these ICi .
The MIR attains its maximum 0.325..., in an interval of lenght 1.028 and the
network topological entropy, given by Eq.(3), is log λA = 1.02835....
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The second case that we study in detail is the network with 10 edges and
without the edges e12, e35, e56, e34, e46, see 2) of Fig.1. The adjacency matrix
A and the Laplacian matrix L are given by,

A =


0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

 and L = A−D =


−4 0 1 1 1 1
0 −4 1 1 1 1
1 1 −3 0 0 1
1 1 0 −3 1 0
1 1 0 1 −3 0
1 1 1 0 0 −3

 .

This network is defined by the system,

ẋ1 = f(x1) + σ(−4x1 + x3 + x4 + x5 + x6)
ẋ2 = f(x2) + σ(−4x2 + x3 + x4 + +x5 + x6)
ẋ3 = f(x3) + σ(x1 + x2 − 3x3 + x4)
ẋ4 = f(x4) + σ(x1 + x2 − 3x4 + x5)
ẋ5 = f(x5) + σ(x1 + x2 + x4 − 3x5)
ẋ6 = f(x6) + σ(x1 + x2 + x3 − 3x6)

,

and the Jacobian matrix is given by

J =


c− 4σ 0 σ σ σ σ

0 c− 4σ σ σ σ σ
σ σ c− 3σ σ 0 0
σ σ σ c− 3σ σ 0
σ σ 0 σ c− 3σ 0
σ σ σ 0 0 c− 3σ

 .

The eigenvalues of the Jacobian matrix are µ1 = c, µ2 = c − 6σ, µ3 = µ4 =
µ5 = c−4σ and µ5 = c−2σ. Thus, the parallel Lyapunov exponent is identical
to the previous case, Eq.(5), and the transversal Lyapunov exponents are

λ⊥i = a ln

∣∣∣∣1a − νiσ
∣∣∣∣+ (1− a) ln

∣∣∣∣− 1

1− a
− νiσ

∣∣∣∣ , with i = 2, 3, 4

where ν2 = 6, ν3 = 4 and ν4 = 2. See 1) in Fig.4 the regions where these
transversal Lyapunov exponents are negatives. For a = 0.9, this network
synchronizes if σ ∈]0.170, 0.312[. We compute the ICi like in the previous
case and we plot its graphics in 2) of Fig.3. The MIR attains its maximum
0.325..., in an interval of lenght 1.216 and the network topological entropy is
log λA = 1.21559.... Figs.4, 5 and Table 1 contain information similar to the
other cases analyzed in this topological order.

5 Conclusions and discussion

We started our simulations, considering the network with 8 edges and without
the edges e12, e35, e56, e34, e46, e25, e36 and in each step we add the last edge
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2) 3)

σ

1) 2) 3)
a

Fig. 4. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 10 edges, in 2) with 11 edges,
and in 3) with 12 edges. For the same value of a, the amplitude of the synchronization interval
increases.

2)

σ

a
1) 3)

Fig. 5. Regions where the transversal Lyapunov exponents are negatives. The synchronization
region is the intersection of these regions. In 1) is the network with 13 edges, in 2) with 14
edges and in 3) with 15 edges (complete network). For the same value of a, the amplitude of the
synchronization interval increases.

Edges µi = c− νiσ (i = 2, 3, 4, 5, 6) Sync. interv. Ampl. log λA

8 ν2 = 4, ν3 = 3, ν4 = 2, ν5 = 7+
√
17

2
, ν6 = 7−

√
17

2
]0.236,0.336[ 0.100 1.028

9 ν2 = ν3 = 4, ν4 = 3, ν5 = 7+
√
17

2
, ν6 = 7−

√
17

2
]0.236,0.336[ 0.100 1.127

10 ν2 = 6, ν3 = ν4 = ν5 = 4, ν6 = 2 ]0.170,0.312[ 0.142 1.216

11 ν2 = 6, ν3 = ν4 = 4, ν5 = 4 +
√

2, ν6 = 4−
√

2 ]0.131,0.312[ 0.181 1.312

12 ν2 = ν3 = 6, ν4 = 5, ν5 = 4, ν6 = 3 ]0.113,0.312[ 0.199 1.403

13 ν2 = ν3 = ν4 = 6 ν5 = ν6 = 4 ]0.085,0.312[ 0.227 1.475

14 ν2 = ν3 = ν4 = ν5 = 6 ν6 = 4 ]0.085,0.312[ 0.227 1.548

15 ν2 = ν3 = ν4 = ν5 = ν6 = 6 ]0.057,0.312[ 0.255 1.609

Table 1. Jacobian eigenvalues, µi, for (i = 2, 3, 4, 5, 6), which correspond to the transversal
Lyapunov exponents, synchronization interval, its amplitude, network topological entropy and the
number of edges from 8 to 15 (complete network).

of this list. In each step of this construction, we obtain the Laplacian matrix
and compute the eigenvalues µi (i = 1, 2, 3, 4, 5, 6) of the Jacobian matrix,
the parallel and transversal Lyapunov exponents, the synchronization interval,
the network topological entropy and the ICi for the networks with 8, 9, 10,
11, 12, 13, 14 and 15 edges (complete network). For all these cases µ1 = c
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Fig. 6. The network topological entropy increases as the the number of edges of the network
increases.

and this eigenvalue correspond to the synchronization manifold. The others
µi correspond to the transversal Lyapunov exponents and are presented in
Table 1. In this table is also presented the synchronization interval and the
network topological entropy, for all these cases. See in Figs.2, 4 and 5 the
synchronization regions, in terms of the skew-tent map parameter a and of
the coupling parameter σ. In Fig.6 we may see that the network topological
entropy increases as we add one edge sucessively to the network, which confirms
Proposition 1.

From the numerical simulations shown in figures and Table 1, we conclude
that, with the topological order established, the interval where the mutual
information rate attains its maximum, the synchronization interval, increases
its amplitude. Thus, we claim that:

Conjecture: As larger the network topological entropy, the larger is the
rate with which information is exchanged between nodes in the network.
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Abstract: A new modified cardiorespiratory model based on the famous DeBoer beat-to-

beat model and Zaslavsky map (which describes dynamics of the respiratory system as a 

generator of central type) was studied in details. In this case the respiratory tract was 

firstly modeled by  the self-oscillating system under the impulsive influence of heartbeat. 

The steady-state regimes of the modified model are investigated by methods of the 

dynamical system theory. The regular (periodic and quasi-periodic) and chaotic regimes 

typical for functioning of the cardiosystem are found and studied.  

Keywords: A beat-to-beat model, Cardiorespiratory system, DeBoer model, Zaslavsky 

map, Nonlinear dynamics, Chaotic regimes.  

 

1. Introduction 
The human cardiovascular system closly interacts with different organs and systems of 

organism. Realized self-oscillations in a cardiovascular system are under an activity of 

practically entire organism (see [2-5, 9-11]). Physiological rhythms are not isolated 

processes. There are numerous interactions of rhythms between itself and with an 

internal and external environment. Cardiac and respiratory rhythms form up during 

embryo development, and even the brief break of these rhythms after a birth results in 

death. 

Existence of breathing and heart rhythm synchronization effect, found experimentally in 

the cardiovascular system both for healthy people and with pathologies, is well-proven in 

work Toledo [10] in 2002. It is well known, the dynamic process of mutual 

synchronization can be realized only in a case of presence of a subsystem mechanical 

interaction. Therefore, the indicated effect display testifies the presence of both direct 

and feedback interactions between the cardiovascular and respiratory systems. 

A heart system and organism of man in general have one of major descriptions of 

activity, such as a blood pressure dynamics. His time-history, along with 

electrocardiogram (ECG), is an important information generator for research and 

diagnostics of laws and pathologies of the cardiovascular system. The task of 

mathematical model construction, describing the dynamics of arterial blood pressure, is 

far from completion. Complications of such design are related to the necessity of taking 

into account of influence on the cardiac rhythms not only the cardiovascular system but 

also other organs and systems of organism, in particular a respiratory system. 
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Fig. 1. Characteristics of  the heartbeat in DeBoer model. 

 

2. The mathematical model of a direct and reverse interactions  
The DeBoer model of a cardiovascular system is under direct action of a respiratory 

systems (what corresponds to experimental data) [3]. This model was substantially 

developed in future. The sinus node responsiveness (and other detailed factors) is taking 

into account in the work of Seidel and Herzel [9] (the so-called SH-model). In this model 

chaotic dynamics was found in dynamics of a cardiosystem. 

The models of both DeBoer and SH only considered direct respiratory influence on 

heartbeats.  The SH-model got further development [5], where an effect of heartbeat and 

the resultant changes in the baroreceptor afferent activitiy to the SH-model are added and 

the cardiorespiratory sinchronization found due to this modification. Interaction of blood 

pressure and amplitudes of breathing oscillations revealed in accordance with principles 

of optimum control in the DeBoer model is investigated in the Grinchenko-Rudnitsky 

model [2]. This model allowed, in particular, to explain appearance of a peak on the 

Meyer frequency in the spectrums of pressure oscillations and synchronization of cardiac 

and respirator rhythms. 

However, this model does not consider the reverse mechanical influence effect of the 

heartbeat changes on a breathing phase (frequency). In the present study, we add to the 

DeBoer model a self-oscillating system (which describes dynamics of the respiratory 

system as a generator of central type [4]) which is under impulsive influence of 

heartbeat. 
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Fig. 2. Interaction of the cardiovascular and respiratory system 

 
The DeBoer model describes the followings main characteristics of  the heartbeat (see 

Figure 1) system: systolic pressure S , diastolic pressure D, R-R interval I and 

arterial time constant T (in a state of rest for a healthy man S=120 mmHg, D=80 

mmHg, I=800 ms, T=1500 ms).  This mathematical model is a system of five discrete 

nonlinear maps. This model contains only a direct mechanical influence of the respirator 

system on the cardiosystem and can be written in the form: 
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′=∑  is a 

real time, A=3 mmHg is a breathing amplitude, f=0.25 Hz is a breathing frequency, 

2 0 0 0 ,c S D Iγ= − −  3 0 0 ( ),vc I S G Gβ= − +  0.016γ =  mmHg,  18Gα =  
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ms/mmHg, 9Gβ =  ms/mmHg, 9Gν =  ms/mmHg, 4,α βτ τ= =  0,vτ =  is 

equal to 0 if frequency of heartbeat is less then 75  beat/min, and vτ  is equal to 1, if 

frequency is more then 75 beat/min. 

 

 
 

Fig. 3.Largest Lyapunov exponent of the modified system 

 
We suppose that a healthy man at rest breathes periodically with a permanent frequency 

and an amplitude of motions of thorax. In that case a breathing process can be described 

as the self-oscillating system [4], which has a steady limit cicle. Thus for the 

mathematical modeling of a such system equations of the Zaslavskiy map could be used. 

Famous Zaslavsky map is the system of equations [8, 12] which describes the dynamics 

of an amplitude nr  and a phase nϕ  of the system (in which periodic self-oscillations 

with a frequency ω  are realized) which is under T-periodic impulsive action of constant 

intensity η . Te system has the following form: 

 

( )1 sin exp{ },n n nr r Tη ϕ κ+ = + −  

( )1

1 exp{ }
sin ,n n n n

T
T r

κ
ϕ ϕ ω ν η ϕ

κ+
− −

= + + +  

 

where ,κ ν  are constant parameters. 
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a) 0.22η =  

 
b) 0.23η =  

 
c) 0.24η =  

 
d) 0.25η =  

Fig. 4. Simulated systolic pressure data  (cases a, b, c and d) 

 
In our approach these equations are used to describe changes of an amplitude and phase 

of a respiratory system effect for every R-R interval with an intensity proportional to 

systolic pressure: -η(Sn – S0) 
 

( )1 0( ) sin exp{ },n n n n nr r S S Iη ϕ κ+ = − − −  

( )1 0

1 exp{ }
2 ( ) sin ,n

n n n n n n

I
fI r S S

κ
ϕ ϕ π ν η ϕ

κ+

− −
= + + − −  

 

where I   is R-R interval, 0,η > ,κ ν  are constant parameters of interaction. 

Thus, we study the dynamics of the modified model of cardiorespiratory system, which 

consists of  the DeBoer model with direct respiratory influence ( ) sin ,i iA r ϕ+  and 

with reverse influence modeled by the Zaslavskiy map system  (see Figure 2). 



Krasnopolskaya, Pechuk 568 

 
a) 0.23η =  

 
b) 0.24η =  

 

 
c) 0.25η =  

Fig. 5. Power spectra computed from systolic pressure data  (cases a, b and c) 

 

3. Numerical simulations results  
In accordance with physiology of healthy man, the followings values of variables and 

constants are used in our numerical simulations: [0] 0.53,I ′ =  [ ] 1.08,S j′ − =  

0,..., 6,j =  [0] 0,r ′ =  [0] 0,ϕ ′ =  0.001κ =  1/ms, 0.001ν =  1/msmmHg. In 

order to study steady-state regimes first of all the largest Lyapunov exponent [1, 6, 7] 

was found. The dependence of the largest Lyapunov exponent of the modified system  on 

values of the bifurcation parameter η  is shown in Figure 3. The dynamics of the system 

changes with increasing of this parameter. There is the region where Lyapunov exponent 

positive ( 0.245η > ) that means transition to chaos occurs. We emphasize that η  

describes intensity of heart influence on a respiratory system. The next Figure 4 

illustrates a behaviour of systolic pressure data in the modified model. Power spectra 

computed from these data are shown in Figure 5. The spectrum in Figure 5.a and in 

Figure 5.b have discrete peaks which are situated equidistantly with a frequency 

difference. So that, graphs indicate that there are regular regimes in the modified system. 
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Finally, for the steady-state regimes, when the largest Lyapunov exponent is positive and 

the chaotic regime is realized, the power spectrum is continuous (Figure 5.c). 

Phase portrait projections on the plane of the simulated systolic pressure and R-R interval 

data are presented in Figure 6. The phase portrait in the Figure 6.a represents a singular 

solid curve and corresponds to quasiperiodic regime. There are only several points in the 

phase portrait in Figure 6.b which means that at 0.24η =  the modified system has 

regular periodic regime. And in Figure 6.c when 0.25η =  the phase portrait has 

numerous lines (the number of which increases in time) and corresponds to chaotic 

steady-state regime.  So we have found such steady-state basic regimes as: 

1. at 0.22η = , periodic regime (Figure 4.a); 

2. at 0.23η = , quasiperiodic regime (Figure 4.b, Figure 5.a, Figure 6.a); 

3. at 0.24η = , periodic regime (Figure 4.c, Figure 5.b, Figure 6.b); 

4. at 0.25η = , chaotic regime (Figure 4.d, Figure 5.c, Figure 6.c). 

 

 
a) 0.23η =  

 
b) 0.24η =  

 

 
c) 0.25η =  

Fig. 6. The parts of phase portraits simulated systolic pressure and R-R interval 

data  (cases a, b and c) 
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4. Conclusions 
On the basis of the DeBoer model an interaction of the heartbeat and the respiratory 

system as dissipative Zaslavskiy map is studied and the modified model of cardiosystem 

is built out. This model takes into account both direct and reverse influence of  

subsystems – cardiovascular and respiratory.  

The methods of modern theory of the dynamical systems are used to study laws of the 

steady-state regimes of the modified model. Firstly the chaotic regimes were found out.  

Analysis of bifurcational curves of the largest Lyapunov exponent, projections of phase 

portraits, temporal realizations and power spectrums allowed to investigate the basic laws 

of dynamics of the model. The dynamics of heartbeat and respiratory systems are in good 

correspondence with experimental information of healthy man. Found irregularities of 

phase trajectories of the modified model depend on intensity of heart rhythm influence 

on breathing, what is well known characteristic for the dynamics of the cardiovascular 

system of healthy man. 
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Abstract: Chaos cryptography is implemented by torus automorphisms with strictly 

positive entropy production. For any given entropy production 0h >  we explicitly 

construct integer valued automorphisms with entropy ( )S ≥h h . We identify 

compatibility conditions between the values of the entropy production and the lengths of 

the messages in terms of the grid size and we propose constructive ways to encrypt 

messages of arbitrary length in terms of torus automorphisms with any given desired 

entropy production. We moreover prove that the restrictions of chaotic maps with the 

same entropy have the same period for a fixed grid size. 

Keywords: Entropy, Cryptography, Chaos, Cryptography with Chaos.  

 

1. Introduction 
Chaos cryptography was proposed by Shannon in his classic 1949 mathematical 

paper on Cryptography where used chaotic maps as models - mechanisms for 

symmetric key encryption. Of course Shannon did not employ the term Chaos 

which emerged in the 1970s. This remarkable intuition was based on the 

paradigm of the Baker’s map introduced by Hopf in 1934 as a simple 

deterministic mixing model with statistical regularity. Shannon observed that 

using chaotic maps, encryption is achieved via successive mixing of the initial 

information which is uniformly “spread” all over the available state space. In 

this way it is becoming exponentially hard to recover the initial message if the 

reverse transformation is not known. Baker’s map is the simplest example of 

chaotic Torus Automorphisms with constant Entropy production equal to one bit 

at every step. The Entropy production theory of Torus Automorphisms and 

general Chaotic maps was developed later by Kolmogorov and his group 

[Arnold and Avez, 1968; Katok ea, 1995; Lasota ea, 1994], following 

Shannon’s earlier foundation of Information Theory in 1948. Baker’s map has 

also served as a toy model for understanding the problem of Irreversibility in 

Statistical Mechanics [Prigogine, 1980]. Chaos cryptography with 2-

dimensional maps deal with image encryption [Guan D. ea, 2005; Xiao G. ea , 

2009] and text encryption [Kocarev ea, 2003; Kocarev ea, 2004; Kocarev L. and  

Lian S., 2011;Li S., 2003]. We have proposed a new implementation method for 
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Chaos Cryptography based on Chaotic torus automorphisms, applicable for both 

image and text encryption simultaneously [Makris G, Antoniou I, 2012a] and 

designed torus automorphisms with desired entropy production [Makris G, 

Antoniou I, 2012b]. Part of these results is summatized in section 1. 

As the grid discretizations of chaotic Torus automorphisms are periodic, for 

effective implementation we have to examine the conditions for reliable 

cryptography implementation. The objectives of this work are: a) to examine the 

dependence of the period on the entropy production and on the grid size 

(Section 2), b) to provide conditions for admissible grid discretizations (Section 

3) and c) to provide algorithms for the construction of integer torus 

automorphims with desired entropy production  (Appendix A) and for adapting 

the image size to the appropriate grid size (Appendix B) for customized 

implementation of chaotic cryptography).  

 

The automorphisms of the 2-torus [ ) [ )0,1 0,1Y = ×  are defined by the formula: 

( )1

1

: :  1 , 
n n

n n

x x
S Y Y A mod n

y y

+

+

   
→ = ∈   

   
N (1) 

Where
a b

A
c d

 
=  
 

is a real invertible matrix with inverse: 

1
d b1

A
c aad bc

− − 
=  − −

 

Chaotic Torus automorphisms (1) have one eigenvalue greater than 1, according 

Pesin’s 1977 Formula. 

Lemma:  

1) The class of chaotic automorphisms (1) with ad bc 1− =  consists of the 

matrices: 

a b

, , {0}, 21
d

A a b d aad

b

 
 = ∈ ∈ − > −− 
 

R  R      (2) 

 

2) The entropy production of the Chaotic automorphisms (2) is: 

( ) ( ) ( )
2 1 2

2

2

2
a d a d 4

log log log
( ) ( ) 4

2 2

tr A tr A
λ

+ + + − + −
= ==h , 

, , 2a b d a∈ ∈ > −R  R   (or ( ) 2tr A > )      (3) 

 

3) The chaotic automorphisms (2) are expressed in terms of the entropy 

production as a parameter h by the formula: 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−

−

 
 = ∈ ∈ − >⋅ + − − + −  

h h

h h
hR  R (4) 
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4) For the class of chaotic automorphisms Α with one eigenvalue greater 

than 1 and ad bc 1− = −  we have the corresponding formulas: 

a b

, , {0}, 1
d

A a b d aad

b

 
 = ∈ ∈ − > −+ 
 

R  R      (5) 

 

           
( ) ( ) ( )

2 1 2

2

2

2
a d a d 4

log log log
( ) ( ) 4

2 2

tr A tr A
λ

+ + + +
= =

+ +
=h , 

, ,a b d a∈ ∈ > −R  R   (or ( ) 0tr A > )      (6) 

 

( )
a b

 , a , {0}, 0a 2 2 a 1
2 2 a

A b

b

−

−

 
 = ∈ ∈ − >⋅ − − + − −  

h h

h h
hR  R (7) 

Formulas (2),(3),(4) are proven in [Makris G, Antoniou I, 2012b]. The 

corresponding formulas for the case ad bc 1− = − are obtained in a similar way. 

From formulas (3),(6) we see that  

Corollary 

Two Chaotic Torus Automorphisms have the same Entropy Production (are 

isomorphic), if and only if they have the same trace 

 

2. Entropy production and the period of the discretization 

restrictions of integer Torus Automorphisms 
The implementation of cryptographic algorithms requires discretization of the 

chaotic maps onto the selected N N×  grid. In order to preserve the grid 

structure we shall consider torus automorphisms with integer matrix elements. 
Given a desired entropy production value not less than h we may construct 

integer torus automorphisms with entropy production h from formulas (4),(7) 

using the algorithms presented in appendix A.  

The coordinates of pixels are elements of the NxN lattices 
N N
×Ά Ά . The 

restriction of any integer torus automorphism to 
N N
×Ά Ά (mod N): 

( ) ( )
'

mod mod
'

x x a b x
A N N

y y c d y

       
= =       

       
 (8) 

is a periodic transformation, called the NxN discretization automorphism of (1).  

The period of the discretization automorphisms (8) is the minimal number T  

which satisfies the formula: 

( ) 2

1 0
mod

0 1

T
a b

N
c d

   
= Ι =   

   
(9) 

 

Theorem 1: All discretization automorphisms (8) with the same trace have the 

same period T  which depends only on the size N of the grid.  
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Proof: 

First we shall show that the discretization automorphisms (8) of isospectral 

matrices have the same period. It is enough to show that the matrices A (9) and  

1

2

0

0

λ
λ

 
∆ =  

 
(10) 

define discretization automorphisms (8)  with the same period. 

We have: 
1A B B−= ⋅∆ ⋅  

Where B is a diagonalization transformation of A.  

If T is the period of (8), from (9) and (10) we have: 

( )1 1
T

T T
A B B B B

− −= ⋅∆ ⋅ = ⋅∆ ⋅  

and:  

( ) ( )1 1

2

1 00
mod mod

0 10

T T

T

a b
N B B N

c d

λ
λ

−
     

= =           
 

Therefore:  

( )1

2

1 00
mod

0 10

T

T
N

λ
λ

   
=   
  

 

Therefore the discretizations (8) of ∆ and A have the same period T . From the 

eigenvalue formulas (3) and (6), we see that the eigenvalues 
1 2
,λ λ  depend only 

on the trace of A. Therefore any two matrices with the same trace define 

discretizations (8) with the same period. ■ 

 

3. Entropy Production and Grid size  
 

We observe that torus automorphisms with different entropy production may 

have identical discretizations (8). For example, applying formula (6) we see that 

the torus automorphisms with matrices 1

2 1

4093 2047
A

 
=  
 

and 

2

2 1

93 47
A

 
=  
 

have entropy productions
1

11.0007h =  

and
2

5.6141h = correspondingly. However their discretizations (8) to the grid 

100 100× are identical:  

2 1 2 1
mod100 mod100

4093 2047 93 47

   
≡   

   
. 

The same is true for the grids 200 200× , 500 500× , 1000 1000× and others. 

This is an undesirable fact because only equivalent chaotic torus automorphisms 

should have identical grid discretization (8). We found that this requirement is 

true only for certain values of the entropy production h and grid size N . The 

result is the following: 
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Theorem 2: An necessary and sufficient condition for   one to one 

correspondence between torus automorphisms and their grid discretizations (8) 

is:  { }, ,max ,N a b c d> (11) 

Equivalently in terms of entropy production, using (3) and (6) we have the 

conditions: 

( )a 2 2 a 1
, ,x 2 ,ma 2

h h
N a b a

b

−

−
⋅ + − −  

> 
  

− +
h h

for det( ) 1A =  (12) 

( )a 2 2 a 1
, ,x 2 ,ma 2

h h
N a b a

b

−

−
⋅ − − +  

> 
  

− −
h h

 for det( ) 1A = −  (13) 

Prof:  

( )
( ) ( )
( ) ( )

( )

( )

mod mod
mod mod

mod mod

mod
b

c d

a N b Na b x x
N N

c N d Nc d y y

x
N

y

αυ υ

υ υ

      
= =      

      

   
=    

  

 

As the remainders  , , ,
b c dαυ υ υ υ are always not greater than a,b,c,d 

correspondingly, we have: 
b

d

c d

a b
tr a d tr

c d

α
α

υ υ
υ υ

υ υ
  

= + ≥ + =   
   

 

Therefore, from (3) and (6) we have: 
b

c d

a b
h h

c d

αυ υ
υ υ
  

≥   
   

 

b

c d

a b
h h

c d

αυ υ
υ υ
  

=   
   

 if and only if: a N< and b N< and c N< and d N< , 

from which follows the desired result. ■ 

 

The natural question now arises what are the possible values of entropy 

production for automorphisms satisfying (11) 

Without significant loss of generality we consider the simpler class of integer 

torus automorphisms with 1b = . Formulas (12) and (13) are written : 

 

( ) ( )2

2log 4 1 , 0h a N a N a N < + + + − − < <  
, det( ) 1A =  (14) 

 

( ) ( )2

2log 4 1 , 0h a N a N a N < + + + + − < <  
, det( ) 1A = −  (15) 

 

Therefore given the grid size N  we know the maximal entropy production from  

(14),(15) for automorphisms with b=1 and conversely given a desired entropy 
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production value we know the minimal grid size from (12),(13). The relation 

between entropy production and grid size is shown in figure 1. We shall call the 

discretizations (8) with grid size N N× admissible discretizations if and only if 

the conditions (12) , (13) hold. 

 

 

Entropy Production and Grid Size, 

det( ) 1A =  

Entropy Production and Grid Size, 

det( ) 1A = −  
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Figure 1: Entropy Production and Grid Size 

In case the grid N N× for  admissible discretization (8) of the constructed 

torus automorphisms is larger than the message size n m×  we may  enlarge 

and adapt the message size to the grid size using the algorithm presented in 

appendix B. 

 

5. Conclusions 
After extending our previous results [Makris G, Antoniou I, 2012b] on the 

entropy production on torus automorphisms (Lemma and Corollary), we show 

that the period of grid discretizations of chaotic automorphisms depends only on 

the entropy production and on the grid size (Theorem 1). In order to avoid the 

undesirable fact that torus automorphisms with different entropy production 

may have the same discretization, we provide a necessary and sufficient 

condition of admissible grid discretizations (Theorem 2). For customized 

implementation of chaotic cryptography, we provide algorithms for the 

construction of integer torus automorphims with desired entropy production  

(Appendix A) and for adapting the image size to the appropriate grid size 

(Appendix B). These results are necessary for implementation of chaotic 

cryptographic algorithms of desired entropy production. Based on Theorem 2 

and Appendix B we can automatically adapt the message size to admissible 

discretization for effective cryptography.  
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Appendix A: Construction of integer torus automorphisms 

with entropy production not less than any desired positive real 

number  

 
Torus automorphisms have been applied to NxN grids and the periods has been 

related to the grid size N [Vivaldi, 1989; Dyson FJ and  Falk H, 1992; Akritas 

ea, 2001;Antoniou ea, 1997; Xiao ea, 2009]. According to formula (2) we 

should have 
a 1d

b

−
∈Z for any integer values a,b,d. , ie. : ( )a   1d mod b =   

For any given entropy production 0h > we construct integer matrixes A with 

entropy ( )A ≥h h  according to the following algorithm.  

 

 

Algorithm 1. Construction of integer matrices A with ( )det 1A =   

Step 0: inputs: (0, ) , a,∈ ∞ ∈h  Z b  

Step 1: Set ( ) 2 2x tr A
− = = +    

h h
 , z    is the ceiling of z 

Step 2: Set d=x-a 

Step 3: if [ d>2-a and ( b=1 or (a )  1d mod b = ) ] goto Step 9 

Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 

Step 5: Set x=x+1 and d=x-a 

Step 6: goto Step 3 

Step 7: Set a=a+1 and d=x-a 

Step 8: goto Step 3  

Step 9: return 

a b

A 1
d

ad

b

 
 = − 
 

  

Step 10: return λ1(A)=
( ) ( )2
a d a d 4

2

+ + + −
 

Step 11: return ( ) ( )2 1
logA Aλ=h  
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Input Output 

h  a b  

a b

A 1
d

ad

b

 
 = − 
 

  λ1(A) ( )h A  

1.2 1 1  
1 1

A
1 2

 
=  
 

  2.6180 1.3885 

1.2 2 3  
2 3

A
1 2

 
=  
 

  3.7321 1.9000 

3.5 1 1 
1 1

A
10 11

 
=  
 

 11.9161 3.5748 

3.5 5 1 
5 1

A
34 7

 
=  
 

 11.9161 3.5748 

3.5 5 3 
5 3

A
13 8

 
=  
 

 11.9161 3.5748 

11 2 1 
2 1

A
4093 2047

 
=  
 

 2049 11.0007 

Table 1: Examples of Algorithm 1 

According to formula (4) we should have 
a 1d

b

+
∈Z for any integer values 

a,b,d. , ie. : ( ) ( )a 1   0 a   1d mod b d mod b b+ = ⇒ = −   

Algorithm 2. Construction of integer matrices A with ( )det 1A = −   

Step 0: inputs: (0, ) , a,∈ ∞ ∈h  Z b  

Step 1: Set ( ) 2 2x tr A
− = = −   

h h
 , z    is the ceiling of z 

Step 2: Set d=x-a 

Step 3: if [ d>-a and ( b=1 or (a )  1d mod b b= − ) ] goto Step 9 

Step 4: if [ a  0 and   0mod b b mod a≠ ≠ ] goto Step 7 

Step 5: Set x=x+1 and d=x-a 

Step 6: goto Step 3 

Step 7: Set a=a+1 and d=x-a 

Step 8: goto Step 3  

Step 9: return a b

A 1
d

a d

b

 
 = + 
 

  

Step 10: return λ1(A)= ( ) ( )2
a d a d 4

2

+ + + +  

Step 11: return ( ) ( )2 1
logA Aλ=h  
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Input Output 

h  a b  

a b

A 1
d

ad

b

 
 = + 
 

  λ1(A) ( )h A  

1.2 1 1 
1 1

A
2 1

 
=  
 

 2.4142 1.2716 

1.2 2 3 
2 3

A
1 1

 
=  
 

 3.3028 1.7237 

3.5 1 1 
1 1

A
12 11

 
=  
 

 12.0828 3.5949 

3.5 5 1 
5 1

A
36 7

 
=  
 

 12.0828 3.5949 

3.5 5 3 
5 3

A
12 7

 
=  
 

 12.0828 3.5949 

11 2 1 
2 1

A
4093 2046

 
=  
 

  2048 11.0000 

Table 2: Examples of Algorithm 2 

 

Appendix B: Algorithm to Enlarge image size from ( )n m×  to 

( )N N× : 

Step 0: inputs: ( ), ,image N c , N: new image size, c: color of new pixels   

Step 1: calculate ( ),n m =image size 

Step 2: 
h

W N n= −  

Step 3: Create an new blank image1 with size  
2

h
W

m
 × 
 

and color c to every 

pixel. 

Step 4: Create an new image2 with vertical quote of three images: 

1

2

1

image

image image

image

 
 =  
 
 

 . Image2 size= ( )N m×  

Step 5: 
w

W N m= −  

Step 6: Create a new blank image3 with size 
2

w
W

N
 × 
 

and color c to every 

pixel. 
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Step 7: Create a new_image with horizontal quote of three images : 

( )_ 3 2 3new image image image image=  . new_mage size= ( )N N×  

 

 

Image 

(342 x 454) 
Image1 

( 79 x 454) 
Image2 

(500 x 454) 
Image3 

(500 x 23) 

 

 

  

Inputs 
New_image 

(500 x 500) 
Output 

Image 

N=500 

c=white 

 

Calculations  

158
h

W N n == −  

46
w

W N m= − =   

New_image 

 

The advantage of adding pixels in an image is to keep the original information. 
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Abstract. This paper confirms the fascinating result that we can design chaotic Neural
Networks (NNs) that have a random topology and that these NNs can achieve chaotic
Pattern Recognition (PR). What we imply by this is that the NN yields a strong periodic
or more frequent signal when a pattern is recognized, and in between two consecutively
recognized patterns, none of the trained patterns are recalled. Finally, and most impor-
tantly, if an untrained pattern is presented, the system yields a chaotic signal. The basic
model that we use here is the Adachi Neural Network (AdNN), which we modify in a
random manner. The AdNN is a fascinating NN which has been shown to possess chaotic
properties, and to also demonstrate Associative Memory (AM) and PR, and some of its
variants have also been used to obtain other PR phenomena, including blurring. All these
NNs require a quadratic number of computations in the training phase. This computa-
tion was reduced to be linear in [1] by resorting to a Maximum Spanning Tree topology,
and a gradient search method. In this paper, we mainly consider the issue of how the
network topology can be modified by involving randomized connections so as to render
the new network much closer to “real” NNs. At the same time, we require that the newly
obtained network still displays PR characteristics. To achieve this, we first construct a
random network by means of the E-R model and then address the problem of computing
the weights for the new network. This is done by constraining the the modified random
connection-based NN to have approximately the same input-output characteristics using
a gradient-based algorithm. Through a detailed experimental analysis, we show that the
new random AdNN-like network possesses PR properties for appropriate settings. As far
as we know, such a random AdNN has not been reported, and our present results are
novel.
Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-like Neural
Networks, Random Networks.

1 Introduction

The goal of the field of Chaotic Pattern Recognition (PR) systems can be sum-
marized as follows: We do not intend a chaotic PR system to report the identity

*A preliminary version of this paper was presented at CHAOS’13,
the 2013 Chaotic Modeling and Simulation International Confer-
ence, Istanbul, Turkey, in June 2013.
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of a testing pattern with a “class proclamation” indicating the class to which the
pattern belongs. Rather, what we want to achieve is to have the chaotic PR sys-
tem give a strong periodic or more frequent signal when a pattern is recognized.
Furthermore, between two consecutively recognized patterns, none of the trained
patterns must be recalled. Finally, and most importantly, if an untrained pattern
is presented, the system must give a chaotic signal.

The use of Artificial Neural Networks (ANNs) is one of the four best approaches
for PR. However, one of the limitations of most ANN models is the dependency
on an external stimulation. Once an output pattern has been identified, the ANN
remains in that state until the arrival of a new external input. This is in contrast to
real biological NNs and the brain, which exhibit sequential memory characteristics.
Indeed, once a pattern is recalled from a memory location, the brain is not “stuck”
in it; it is also capable of recalling other associated memory patterns without being
prompted by any additional external inputs. This ability to “jump” from one
memory state to another in the absence of a stimulus is one of the hallmarks of
the brain, which is one phenomenon that a chaotic PR system has to emulate.

This paper deals with the Adachi Neural Network AdNN [2], which possesses
a spectrum of very interesting chaotic, AM and PR properties, as described in
[1,3–7,9–12]. The fundamental problem associated with the AdNN and its vari-
ants are their quadratic computational requirements. We shall show that by using
the E-R model and an effective gradient search strategy, this burden can be sig-
nificantly reduced, and yet be almost as effective with regard to the chaotic and
PR characteristics.

We are currently working on reducing the complexity of the AdNN and the
associated computations by invoking the so-called “small-world” model.

2 Limitations of the Current Schemes

Adachi et al and Calitoiu et al have done a lot of ground-breaking work in this
area [2–4], and we have built on these results in various avenues [3–5], including
that of designing a NN that can yield ideal chaotic PR [8]. Generally speaking, the
computational burden of the family of AdNNs is excessive, rendering it impractical.
Besides this, most of current NNs have a regular topology, e.g., a completely
connected graph or a neighbor-coupled graph. This is in contrast with “real”
NNs which usually have irregular topologies, e.g., a random graph, a small-world
graph or even a scale-free graph. The contribution of this paper is to present a
novel NN which is connected in a randomized AdNN way, which we refer to as the
“Random-AdNN”.

3 Designing the Random-AdNN

3.1 The Topology of the Random-AdNN

To present the new characteristics of the Random-AdNN, we shall first arrive at a
topology with randomly-chosen edges. Such a modified random AdNN is obtained
in two steps. Firstly, we connect the neurons by using the E-R model. The second
step involves the computation of the weights associated with this new structure,
which we will address subsequently.
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Algorithm 1 Topology Random-AdNN

Input: N , the number of neurons in the network, and a set of P patterns which the
network has to “memorize”.
Output: The topology and initial weights of the Random-AdNN.
Method:

1: Create a fully-connected graph G with N vertexes which represents the AdNN.
2: For each edge, we delete it with a fixed probability, pd.
3: Continue this process for all the

(
N
2

)
edges.

4: Compute the initial weights of the edges of G, {wij} as follows:

wij = 1
P

∑P

s=1
(2xsi − 1)(2xsj − 1), where xsi is the ith component of the sth pattern.

5: If there is no edge between vertex i and j, wij = 0;

End Algorithm Topology Random-AdNN

3.2 The Weights of the Random-AdNN: Gradient Search

Since we have removed most of the “redundant” edges from the completely-
connected graph by using the E-R model, it is clear that the NN at hand will
not adequately compare with the original AdNN. Thus, our next task is to de-
termine a new set of weights so as to force the Random-AdNN to retain some of
its PR properties, namely those corresponding to the trained patterns. We briefly
explain below (the details are omitted in the interest of space, and one can refer
to [13] for more details) the process for achieving this.

The Random-AdNN is defined by the following equations:

xRi (t+ 1) = f(ηRi (t+ 1) + ξRi (t+ 1)), (1)

ηRi (t+ 1) = kfη
R
i (t) +

∑
eij∈T

wR∗

ij x
R
j (t), (2)

ξRi (t+ 1) = krξ
R
i (t)− αxRi (t) + ai. (3)

where {wR∗

ij }, xRi , ξRi and ηRi are the weights, outputs, and state variables of the
Random-AdNN respectively, and have similar meanings to {wij}, xi, ξi and ηi of
the AdNN.

In order to find the optimal values of {wR∗

ij }, we define the square error between

the original output of the AdNN and new output at the nth step as:

Ep =
1

2

N∑
i=1

(xA,p
i − xR,p

i (n))2, (4)

where xA,p
i and xR,p

i imply the outputs of the ith neuron when the pth pattern
is presented to the AdNN network and the Random-AdNN network respectively.
The overall global error is E =

∑P
p=1Ep, where there are P training patterns.

In order to adjust wR
ij to obtain the smallest global error E, we consider the

gradient, ∆wR
ij , and move wR

ij by an amount which equals ∆wR
ij in the direction

where the error is minimized. This can be formalized as follows:

∆wR
ij = −β ∂E

∂wR
ij

= −β
∂
∑P

p=1Ep

∂wR
ij

= −β
P∑

p=1

∂Ep

∂xR,p
i (n)

· ∂x
R,p
i (n)

∂wR
ij
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= β

P∑
p=1

(xA,p
i − xR,p

i (n)) · 1

ε
· xR,p

i (n) · (1− xR,p
i (n)) · xR,p

j (n), (5)

where β is the learning rate of the gradient search. The formal algorithm which
achieves the update can be found [14].

The results of a typical numerical experiment which proceeds along the above
gradient search on the Adachi data set (shown in Fig. 5) are displayed in Fig. 1
and 3. In these, we have chosen the learning rate β to be 0.05. To clarify issues,
we catalogue our experiments for three specific cases, namely when the probability
pd for deleting an edge is 0.9, 0.5 and 0.1 respectively.

If pd is 0.9, the total error E and average values of ∆wR
ij do not converge to 0,

as shown in Fig. 1. However, as pd decreases, e.g., 0.5, then E and ∆wR
ij converge

to 0, as shown in Fig. 3 (a) and (b). If pd is even less, E and ∆wR
ij also converge to

0 but with a faster rate, as shown in Fig. 3 (c) and (d). This phenomenon can be
easily explained: The larger the value of pd, the smaller is the number of edges and
vice versa. Thus, if pd = 0, it means that the Random-AdNN is exactly the same
as the original AdNN. On the other hand, if pd = 1, it means that all the vertexes
are isolated and remain as disconnected units. Of course, the “fitting” effect that
we obtain by the approximate graph, the Random-AdNN, is more precise as the
number of edges increases.

The experimental results obtained for the LOVE data set (also shown in Fig.
5) are quite similar, and are displayed in Fig. 2 and 4.
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Fig. 1. For the Adachi data set: The figure on the left shows the variation of the average
of ∆wL

ij (averaged over all values of i and j) over the first 50 iterations of the gradient
search scheme. The average converges to a value arbitrarily close to zero after 12 time
steps. The figure on the right shows the variation of the global error over the same time
frame. Observe that this quantity does not converge to zero.

The Lyapunov analysis of the Random-AdNN is also available, but omitted
here in the interest of space. It can be found in [13].

4 Chaotic and PR Properties of the Random-AdNN

We now briefly report the PR properties of the Random-AdNN. These properties
have been discovered as a result of examining the Hamming distance between the
input pattern and the patterns that appear in the output. The experiments were
conducted using two data sets described below.
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Fig. 2. For the LOVE data set: The figure on the left shows the variation of the average
of ∆wL

ij over the first 400 iterations of the gradient search scheme. The average converges
to a value arbitrarily close to zero after 50 time steps. The figure on the right shows the
variation of the global error over the same time frame, which does not converge to zero
either.
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Fig. 3. For the Adachi data set: The figures show the variation of the average of ∆wL
ij and

the global error over the same time frame. The probability of edge deletion is pd = 0.5
(for (a) and (b)) and pd = 0.1 (for (c) and (d)) respectively.

In the ideal setting we would have preferred the Random-AdNN to be chaotic
when exposed to untrained patterns, and the output to appear periodically or more
frequently when exposed to trained patterns. Besides yielding this phenomenon,
the Random-AdNN also goes through a chaotic phase and a PR phase as some of
its parameters change.

We summarize the results for the Random-AdNN, obtained by using different
settings of pd. The others parameters are: kf = 0.2, kr = 1.02, α = 10, ε = 0.015,
β = 0.05.

From these tables we see clearly that, the Random-AdNN is able to “resonate”
the input patterns with the corresponding output patterns. Consider Table 1 (a)
as an example. If the input is P1, then the network outputs P1 accordingly, and
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(a) (b)

(c) (d)

Fig. 4. For the LOVE data set: The figures show the variation of the average of ∆wL
ij

and the global error over the same time frame. The probability is pd = 0.5 (for (a) and
(b)) and pd = 0.1 (for (c) and (d)) respectively.
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Fig. 5. The patterns used by Adachi et al (a) and Inoue et al (b). The first four
patterns in (a) and (b) are used to train the network. The fifth pattern in (a) is obtained
from the fourth pattern by including 15% noise. The sixth pattern in (a) and the fifth
pattern in (b) are the untrained patterns.

at the same time, no other trained patterns appear in the output sequence. Even
when a noisy pattern is presented to the system, e.g., P5, which is a noisy pattern
of P4 with 15% noise, the network still “resonates” P4 instead of P5 in the output
sequence. Furthermore, if the input is an untrained pattern, e.g., P6, then none
of the trained patterns will be recalled. Observe that even the input pattern P6,
will itself be retrieved only a few times, which is much less than the other diagonal
entries in the table, i.e., when the inputs are P1 – P4. The difference between
(a) – (c) is that in Table (c), the network “resonates” the input patterns more
frequently than in (a) and (b). This is because when pd = 0.1, the Random-AdNN
is almost the same as the original AdNN since the Random-AdNN has most of
the edges of the AdNN. However, in this case, the Random-AdNN also needs a
quadratic number of computations, which is computationally much more intensive
than for the case when pd = 0.9. In this regard, we comment that pd = 0.9 is
good enough for PR, which has only a very small computational burden. By a
simple computation we can see that the expected degree for each vertex of the
Random-AdNN is only N(1−pd) = 10 for the Adachi data set, which implies that
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Table 1. The frequency of the Hamming distance between the input and the output
patterns for the Random-AdNN. The probability pd is 0.9, 0.5, 0.1 for (a), (b), (c)
respectively.

Input Patterns
pd = 0.9 P1 P2 P3 P4 P5 P6

P1 151 0 0 0 0 0
P2 0 422 0 0 0 0

Retrieved P3 0 0 161 0 0 0
Patterns P4 0 0 0 106 177 0

P5 0 0 0 10 2 0
P6 0 0 0 0 0 46

Input Patterns
pd = 0.5 P1 P2 P3 P4 P5 P6

P1 202 0 0 0 0 0
P2 0 285 0 0 0 0

Retrieved P3 0 0 234 0 0 0
Patterns P4 0 0 0 211 206 0

P5 0 0 0 4 3 0
P6 0 0 0 0 0 33

(a) (b)

Input Patterns
pd = 0.1 P1 P2 P3 P4 P5 P6

P1 238 0 0 0 0 0
P2 0 331 0 0 0 0

Retrieved P3 0 0 258 0 0 0
Patterns P4 0 0 0 237 189 0

P5 0 0 0 9 20 0
P6 0 0 0 0 0 34

(c)

the computational load has been greatly reduced when compared to the original
AdNN, which has a vertex degree of 99.

5 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have only
recently been investigated, demonstrate chaotic behavior under normal conditions,
and resonate when it is presented with a pattern that it is trained with. The
network that we have investigated is the Adachi Neural Network (AdNN) [2], which
has been shown to possess chaotic properties, and to also demonstrate Associative
Memory (AM) and Pattern Recognition (PR) characteristics. In this paper we
have considered how the topology can be modified so as to render the network
much closer to “real” neural networks. To achieve this, we have changed the
network structure to be a random graph, and then computed the best weights for
the new graph by using a gradient-based algorithm. By a detailed experimental
suite, we showed that the new Random-AdNN possesses chaotic and PR properties
for different settings.

Acknowledgements: The authors are grateful for the National Natural Sci-
ence Foundation of China (grant No.61300093) and the Natural Sciences and En-
gineering Research Council of Canada.
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Abstract: The transient current through a sample of As2S3(Ag) and As2Se3(Al) glass 

substrate has been analyzed in order to study possible chaotic behavior using 

methodology similar to that in work on polymers [1,2]. Rescaled range analysis (R/S) 

shows the presence of two regimes of fractal behavior, one of which can be attributed to 

short time scale relaxation and the other can be attributed to long term chaotic behavior. 

The mutual information data indicates the necessity of noise reduction using a moving 

average. Extending the moving average window gives correspondingly large delay times 

as expected. The indicated delay time starts at 20s and grows up to 250s. The false 

nearest neighbor results also indicate a value around 10. A robust increase in the 

Lyapunov exponent stretching graphs confirm long term chaos; the result is not sensitive 

to the precise values of the delay time and embedding dimension. Possible relaxation 

mechanisms [3] in the short time range include parametrizations involving stretched 
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exponential relaxation and logarithmic relaxation, the latter suggested by a proposal of 

Trachenko [4,5].  

 

Keywords:  Chaotic Behavior, Lyapunov Exponents, Rescaled Range Analysis. 

 

 

1. Introduction 

 
The specimens under investigation were prepared as sandwiched metal-glass-

metal structures with the glass as the isolating layer. 300 nm thick aluminum 

electrodes were thermally evaporated at 10
-6

 mbar on microscope glass slides 

cleaned in a detergent solution. Subsequently, aluminum top contacts were 

evaporated. The I-V measurement was performed via a programmable 

picoammeter/voltage source (Keithley, model 487) and a temperature controller 

(Lake Shore, model 300). The picoammeter and the temperature controller were 

interfaced to a computer through an interface card that automated data taking, 

schematically presented in Fig. 1. The picoammeter model 478 used is capable 

of reading currents in the range 10 fA to 2 mA. It also serves as a DC voltage 

supply in the range up to 500V.  

 

 
Fig. 1. Schematic of the experimental setup 

 

The data of transient current against time for As2S3(Ag) and As2Se3(Al) are 

presented in Fig. 2 and Fig. 3. One horizontal unit represents 30 ms. Examining 

the graphs, we find that there is an overall relaxation in As2Se3(Al) but not in 

As2S3(Ag). However for both materials the data looks more like the behavior of 

the transient current data for polymer thin films such as PMMA [6] or PEG-

Si[2].  
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Fig. 2. The data of As2S3(Ag) 

 
Fig. 3. The data of As2Se3(Al) 

 

 

2. Time Series Analysis 
 

Time series analysis is used for analysing the data of As2S3(Ag) and As2Se3(Al) 

using TISEAN [7,8] software package.  The formulas used are part of the 

standard literature and are omitted.  We observe one dimensional signal in 

uniform time intervals, x(0), x(T), …, x(nT). In fact the signal x(T) depends on 

an unknown number of  parameters. To determine the number of  parameters 

(dimensionality of the system), we find the meaningful time delay τ and the 

meaningful embedding dimension to construct time delay vectors. We find the 

embedding dimension by using the False Nearest Neighbors (FNN) method. We 
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find the delay time by using Mutual Information (MUT) or correlation function 

(CORR). We calculate the autocorrelation function, which is the Fourier 

transform of the power spectrum and we present the results in Fig.4. 

 

 

 
Fig. 4. Correlation coefficient 

 

Another method for obtaining the delay time is to find the first minimum of the 

mutual information as presented in Fig. 5. We wish to represent a random 

variable with actual probability distribution p(x) with a code whose average 

length is H(p). In practice, because of missing information or sampling, we may 

not know the actual distribution p(x), so that we have to take the distribution to 

be q(x). In such a situation, we may need a longer code to represent the random 

variable. This difference in length, D(p(x)||q(x)) is known as the relative 

entropy. The knowledge that one random variable includes about another 

random variable is known as mutual information. We can only examine the 

information that we send to one channel in terms of information output from 

there. Let x and y be random variables with mutual distribution p(x,y). If 

variables x and y have distributions p(x) and p(y), the mutual information is the 

entropy between the mutual distribution and product distribution. If it is chosen 

to be too small, x(t) and x(t+τ) will be very close to each other and it will be 

difficult to distinguish them. If it is chosen too large, x(t) and x(t+τ) coordinates 

will be too far apart, will behave independently and cause loss of information. 

 



Chaotic Modeling and Simulation (CMSIM)  4:  591-599, 2013 595 

 

 
Fig. 5. Mutual information 

 

False nearest neighbors graph (FNN) presented in Fig. 6. is useful for 

determining the minimal embedding dimension. The purpose is to find points 

near each other in the embedded space. If the embedding dimension is too small, 

points that are close in embedded space will appear as false neighbors. If the 

embedding dimension is too large, we lose statistics and information. By 

expressing the distance in (d+1) dimensions in terms of the distance in d 

dimensions, we can calculate the number of neighbors in d and d+1 dimensions, 

Rd+1/Rd . If this ratio is above a critical value, we have false nearest neighbors.  

 
Fig. 6. False nearest neighbors 
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The largest lyapunov exponent presented in Fig.7  is usually used as an indicator 

of chaos. This is obtained by calculating the quantity  

 

 

(1) 

 

 

Sn0 is our reference point, U is a hypersphere of distance ε to this point. If  ε is 

too small, we can not find a sufficient number of points, if it is too large, a 

periodic component may be missed. For a few ε values, calculating the number 

of points in the hypersphere S(∆n), plotting it against ∆n gives the largest 

Lyapunov Exponent. A positive slope implies a positive Lyapunov Exponent. 
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Fig. 7. Largest Lyapunov exponents 

 

 

 

Thin Films 

 

Lyapunov Exponent (slope) 

 

As2S3(Ag) 

 

0.317 

 

As2Se3(Al) 

 

0.456 
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3. Hurst (R/S) Analysis 

 
The Hurst exponent is calculated using the standard approach and as presented 

in Fig. 8 it is a numerical approach to the predictability of a time series. If the 

Hurst exponent ( H ) is close to 0.5, the process is a random walk. (Brownian 

motion) A Hurst exponent ( H ) in the range 0 < H < 0.5 implies non random 

behavior in the time series. A Hurst exponent ( H ) in the range 0.5 < H < 1 

implies a time series with long range, continuous evolution.  

 

 
Fig. 8. Hurst Analysis 

 

 

4. Conclusions 

 
The complex structure of chalcogenites suggests many degrees of freedom and a 

multi-fractal structure. The transient current through the samples of As2S3(Ag) 

and As2Se3(Al) glass substrates has been analyzed in order to study possible 

chaotic behavior similar to that in our work on polymers. The conductivity 

mechanism measured by the time dependent behavior of transient current was 

analyzed by nonlinear considerations such as time series analysis, maximal 

Lyapunov exponent, Hurst (R/S) analysis. Intermediate dimensional chaos with 

positive maximal Lyapunov exponents was observed. The behaviors of the 

system with possibly two different regions, one with short range and another 

with long range correlation were seen by comparing the correlation coefficient 

and mutual information. As suggested by studies of other amorphous materials 

with irregular behavior, the use of nonlinear methods for analyzing the 

conductivity mechanisms in such materials seems crucial in modelling and show 

that the behaviors are comparable. 
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1 Sorbonne Universités, Université Pierre and Marie Curie, Paris 6, Institut Jean le
Rond d’Alembert, CNRS UMR 7190 Paris, France
(E-mail: michel@lmm.jussieu.fr)

2 Department of Architecture, Yeditepe University, Istanbul, Turkey
(E-mail: derogar@yeditepe.edu.tr)

3 Sheffield Fluid Mechanics Group, Department of Mechanical Engineering,
University of Sheffield, United Kingdom
(E-mail: f.nicolleau@sheffield.ac.uk )

Abstract. We show that the fractional Laplacian (FL) −(−∆)
α
2 is the principal

characteristic operator of harmonic systems with self-similar interparticle interac-
tions. We demonstrate that the FL can be rigorously defined by Hamilton’s varia-
tional principle as “fractional continuum limit” of a spring model with self-similar, in
some cases fractal harmonic interactions which we introduced recently (Michelitsch
et al.[5]). We generalize that approach to the multi-dimensional physical space of
dimensions n = 1, 2, 3, ... In this way we demonstrate the interlink between fractal
discrete behavior (discrete self-similar Laplacian) and its fractional continuum field
counterpart (FL) and give the latter a physical justification. The dispersion rela-
tion of the discrete model is obtained as self-similar Weierstrass-Mandelbrot fractal
function which takes in the fractional continuum limit the form of a smooth self-
similar power law. The density of states (density of normal modes) takes the form
of a characteristic scaling law which depends only on the scaling exponent of the FL
and the dimension of the physical space. The approach has a wide range of interdis-
ciplinary applications of self-similar dynamic problems such as anomalous diffusion
(Levi flights), self-similar wave propagation, and may also be useful to model self-
similar chaotic processes and dynamics in turbulence.
Keywords: Fractional Laplacian, fractional continuum limit, linear chain, Fractals,
Weierstrass-Mandelbrot function, self-similarity, scaling laws.

1 Introduction

Despite fractional calculus has a long history, recently a new increasing interest
has emerged to employ fractional operators and the so called fractional Lapla-
cian (FL) (often also referred to as Riesz fractional derivative) −(−∆)

α
2 where

α indicates a fractional in general non-integer exponent. The reason for this
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new interest is the conclusion that the fractional approach is a highly pow-
erful mathematical tool to model complex and chaotic phenomena in various
disciplines.

The goal of this note is to demonstrate that the FL is the “natural” char-
acteristic linear operator, in a sense most basic operator that can be generated
from a physical “self-similar” spring model and its generalizations. Due to its
non-local “long tail” and self-similar invariant characteristics of the FL we raise
the question what is the interlink of the FL with fractal and chaotic features
often chosen in nature.

Recently many models where developed which employ the FL in various
physical contexts, among them the description of “complex” dynamic phe-
nomena including anomalous diffusion (Lévi flights) [1–3,8,10] and see also the
numerous references therein.

This note is organized as follows: As point of departure we introduce a 1D
harmonic spring model with harmonic elastic potential energy which describes
self-similar interparticle interactions which we developed recently [5]. This
discrete model leads to fractal dynamic vibrational characteristics such as a
dispersion relation of the form of Weierstrass-Mandelbrot fractal functions.
Application of Hamilton’s variational principle defines a discrete self-similar
Laplacian with all good properties of a Laplacian: The self-similar Laplacian
is self-adjoint, elliptic, negative (semi-) definite (indicating elastic stability),
and translational invariant. We introduce a fractional continuum limit which
yields in rigorous manner the FL. In this way the FL is physically justified
being a continuum description of a self-similar spring model. The approach is
generalized to n dimensions of the physical space.

2 Linear chain model with self-similar harmonic
interactions

We consider an infinite sequence of points {hp} generated by a non-linear in-
vertible mapping h→ N(h) with (initial value h = h0)

hp = N(hp−1), p ∈ Z0 (1)

where we exclude for convenience periodic orbits and fixed points. All points
of the sequence are assumed to fulfil hp 6= hq for p 6= q (−∞ < p <∞). Define
a function Φ for a arbitrary generated by the series

Φ(h) =

∞∑
s=−∞

a−δsf(hs) (2)

where the sum is performed over the infinite sequence of points hs of (1). Φ(h)
is defined (convergent) for sufficiently good functions f . Function Φ behaves
self-similar under the (in general non-linear) transformation h → N(h) of its
argument, namely

Φ(N(h)) = aδ
∞∑

s=−∞
a−δ(s+1)f(hs+1) = aδΦ(h) (3)
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For the sake of simplicity but without loss of generality let us consider here a
sequence generated by a linear mapping

N(h) = ah, a > 1 (4)

Then we introduce the self-similar elastic potential in the form of a self-similar
function (3), namely

W(x, h) =
1

4

∞∑
s=−∞

a−δs
{

(u(x+ has)− u(x))2 + (u(x− has)− u(x))2
}

(5)

which is self-similar in the sense of (3) with respect to h. The elastic potential
describes a homogeneous mass distribution where each material point x is con-
nected with other material points x±has by a self-similar distribution of linear
springs of spring constants ∼ a−δs. In general this potential can be defined
also for nonlinear sequence hs of (1). The notion of self-similarity at a point
was coined by Peitgen et al.[9].

The total elastic energy of (5) is given by

V (h) =

∫ ∞
−∞
W(x, h) dx (6)

A self-similar Laplacian is then defined by Hamilton’s principle

∆δ,hu(x) = − δV

δu(x)
(7)

where δ(..)
δu stands for a functional derivative, and where

∆(δ,a,h)u(x) =

∞∑
s=−∞

a−δs (u(x+ has) + u(x− has)− 2u(x)) , 0 < δ < 2

(8)
fulfilling self-similarity condition ∆δ,ah = aδ∆δ,h. This Laplacian has all re-
quired good properties. The dispersion relation (negative eigenvalues) of this
Laplacian are obtained in the form of Weierstrass-Mandelbrot functions

ω2
(δ,a)(kh) = 4

∞∑
s=−∞

a−δs sin2 (
khas

2
), 0 < δ < 2 (9)

which are self-similar ω2
(δ,a)(kah) = aδω2

(δ,a)(kh) within its entire interval of

existence 0 < δ < 2. The dispersion relation (9) is within 0 < δ < 1 a nowhere
differentiable fractal function of estimated Hausdorff dimension 2 − δ [4,5].
In figures 1-3 cases of increasing fractal dimension (decreasing δ) are plotted.
Note that for 1 ≤ δ < 2 (9) is a non-fractal function of Hausdorff dimension
D = 1 (see figure 1). For increasing fractal dimension D (decreasing exponent
δ) fractal dispersion curves have increasingly erratic characteristics. For more
details we refer to our paper Michelitsch et al.[5].
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Fig. 1. Dispersion relation (9) for a fractal case.
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Fig. 3. Dispersion relation (9) for a fractal case.
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3 The FL as fractional continuum limit of the discrete
chain Laplacian and its generalization to n dimensions

Now we define the fractional continuum limit as follows [6,7]

Λa(h) = lim
a→1

∞∑
s=−∞

a−δsf(ash) ≈ hδ

ζ

∫ ∞
0

f(τ)

τ δ+1
dτ (10)

where a = 1 + ζ → 1 and 0 < ζ << 1. The fractional continuum limit of the
elastic potential (5) takes then the form

W(x, h) ≈ hδ

4ζ

∫ ∞
0

(u(x+ τ)− u(x))2 + (u(x− τ)− u(x))2

τ δ+1
dτ, 0 < δ < 2

(11)
which can be generalized to n dimensions as

W(x, h, α) ≈ hα

4ζ

∫ ∞
0

(u(x + r)− u(x))2 + (u(x− r)− u(x))2

τα+n
dnr (12)

where 0 < α < 2. Hamilton’s principle yields from (12) the fractional contin-
uum limit of the self-similar Laplacian in n dimensions

∆n,α,hu(x) =: − δV

δu(x)
=
hα

2ζ

∫ ∞
0

(u(x + r) + u(x− r)− 2u(x))

τα+n
dnr (13)

with 0 < α < 2. (13) recovers for n = 1 also the fractional continuum
limit of the self-similar Laplacian (8). The dispersion relation is obtained by
∆n,α,he

ikx = −ω2
n,α,h(kh)eikx and yields [8] a power-law of the form

ω2
n,α,h(kh) = An,αkα, 0 < α < 2 (14)

with the positive constant [8]

An,α =
hα

ζ

π
n
2

2α−1α

Γ (1− α
2 )

Γ (α+n2 )
> 0, 0 < α < 2 (15)

The positiveness of this constant is a consequence of the elastic stability.
The following observation is crucial: The fractional continuum limit Lapla-

cian (13) coincides (up to a normalization factor) with the FL which is defined,
e.g. [2,3,10]

∆n,α,h = −An,α (−∆)
α
2 (16)

where the constant (15) is consistent with the normalization factor given by in
the literature e.g. [2,3,8,10] and where (13) recovers with (16) and (15) the stan-
dard representation of the FL. Our self-similar chain model represents hence
a discrete lattice counterpart which corresponds in the fractional continuum
approximation the FL fractional approach.
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With (15) it is straight-forward to obtain the density of normal modes
(“density of states”) D(ω) where D(ω)dω measures the number of eigenmodes
of frequency ω. It is obtained as [8]

Dα,n(ω) = Bn,αω
2n
α −1, 0 < α < 2 (17)

with

Bn,α =
22−n

π
n
2 Γ (n2 )αA

n
α
n,α

(18)

We observe that the state density Dα,n(ω) scales as ∼ ω 2n
α −1 with a positive

exponent where 0 < n − 1 < 2n
α − 1 depending only on physical dimension n

and α. Because of 0 < α < 2 the scaling exponent of the self-similar density of
states (17) is always greater than the exponent n−1 of the standard Laplacian
which is asymptotically approached by (17) when α approaches the forbidden
value α→ 2.

4 Conclusions

We have demonstrated in this brief note that the fractional Laplacian can be
rigorously defined as the fractional continuum limit by a self-similar linear
spring model and its generalization to n = 1, 2, 3.. dimensions. In this way a
physical justification for the FL is introduced. The model also reveals the in-
terlink between fractal vibrational Weierstrass-Mandelbrot characteristics and
its smooth fractional continuum counterpart. The present approach allows to
develop a smooth fractional field theory of phenomena with fractal and erratic
- chaotic features [8]. Especially noteworthy is a vast potential of applications
which include dynamic processes such as anomalous diffusion (Lévi flights),
wave propagation and turbulence problems.
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Abstract: The surface of thin gas-sensitive Ag-containing polyacrylonitrile films is 

investigated by a method of atomic force microscopy. The assumption of existence in the 

studied spatial distributed system of signs of the determined chaos is confirmed with 

calculation of parameters of nonlinear dynamics. The interrelation between extent of self-

organization in films of polyacrylonitrile and their gas-sensitive properties is found. 
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1. Introduction 
Nanocomposite films of metallcontaining polyacrylonitrile (PAN), represent an 

organic matrix, which structure and properties are changed under the influence 

of various temperatures, and the particles of a modifying additive dispersed in it, 

are perspective material for gas sensors [1]. Ag-containing PAN films are 

fabricated by pyrolysis method under the influence of incoherent IR-radiation 

from film-forming solutions, undergo transition from a liquid state of substance 

to the solid-state – this stage is process of self-organization of a material. The 

structure of the disorder material is formed in nonequilibrium conditions, the 

substance when hardening changes the properties in time and is distributed non-

uniformly in space. Thus a spatial ordered structure is formed in the disorder 

environment [2]. Methods of nonlinear dynamics and theory of information are 

applied to the analysis of processes of self-organization in structure of materials: 

surface structure research of materials with various structural organization and 

revealing long-range correlations in these structures [3]. It is possible to 

investigate dynamics of system, measuring any of dynamic variables in one 

point at regular intervals. Thus the look and dimension of an attractor, number 

of degrees of freedom, correlation and fractal dimensions of a surface, 

Lyapunov exponents, average mutual information and other parameters of 

dynamics are defined. These methods which have been originally developed for 

the research of systems behavior, changing the condition in time, are adapted for 

studying of the spatial distributed systems what surfaces of the materials are. 
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2. Results and discussion 
For carrying out researches a set of samples of Ag-containing PAN films while 

using different technological regimes was fabricated. 

Sensitivity of the films was evaluated using factor of gas-sensitivity S, which is 

calculated as: 

 

S  = (Rо – Rg)/Rо, Rо > Rg, 

 

where Ro – value of resistance of a film in air, Rg – value of resistance of a film 

in the atmosphere of detected gas. 

In view of the material surface is a fractal object, general idea of fractal objects 

is used for its analysis [4]. 

The Takens method, well-known in the theory of nonlinear systems, is used to 

research the dynamics of formation of solid phase of gas-sensitive material of 

PAN films [2]. Patterns of self-organization processes at the formation of 

disordered materials, which the PAN films are, can be studied by means of the 

study of their surface, because their surface is a "snapshot" processes of 

solidification. Proceeding from this, the fractal dimension Df  of Ag-containing 

PAN films of the surface profile, obtained with scanning probe microscope 

Solver P47 Pro (NT-MDT) in tapping mode on the air in the size of areas 

5×5 mkm
2
 was measured. Step of scanning was determined by the choice of the 

linear dimensions of the scanning area. Surface scan is carried out with the help 

a fixed number of points N = 256 × 256 regardless of the scanned area. 

Distribution function of the altitude profile of the surface ρ = f(h) of studied 

film, begins on some level of h, taken as zero. Using Image Analysis package 

we processed 65536 points on the surface image of each sample for constructing 

this feature. This number of points is sufficient to identify the topology of 

attractor [2]. As a result of measurement of height profile for the samples, which 

were carried out along the surface through discrete intervals, get a three-

dimensional image of the square surface. In the course of the processing of 

three-dimensional images of square surface areas by using the Image Analysis 

program received a graph of the distribution function of the height profile. For 

data processing Grassberger-Prokaččia algorithm was used [2].  

The first Lyapunov exponent λr was calculated using Wolf’s algorithm [5]. 

Lyapunov exponents are topological invariants that characterize the spatio-

temporal evolution and stability of the system: dynamics of formation of solid-

state is determined by the spatial-temporal chaos of a small dimension. 

The calculation of the average mutual information I (AMI) was carried out by 

methods of the theory of information, described in [3]. AMI is the main 

characteristic of the correlations in nonlinear systems. AMI invariant is relative 

to the different technologies and allows you to evaluate the impact of different 

technological factors on the structure of the material. 

The studies have shown that application of different temperature and time 

regimes while forming the polymer nanocomposite films and modifying its 

transition metal with different percentage concentration lead to significant 

changes in the morphology of its surface. 
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Fig. 1 presents the image, obtained by AFM measurements of the surface 

morphology of a sample of Ag-containing PAN film. The distribution function 

of height profile h (ρ is the density of probability) (Fig.2) and the dependence of 

the correlation dimension D = f(log2r) (Fig. 3) are given too. 

 

 
 

Fig. 1. AFM-image of the surface morphology of Ag-containing PAN film 

 

 
 

Fig. 2. Distribution function of height profile of Ag-containing PAN film 

of  

Fig. 3. Dependence D = f(log2r) of Ag-containing PAN film 
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Dependence of correlation dimension D = f(log2r) allows to testify the presence 

or absence of self-organizing structures in nanocomposite materials PAN/Ag. 

The analysis showed the presence of deterministic chaos in the system. It is 

noted that the surface of the films with the best gas-sensing properties is formed 

by three levels of self-similar structures.  

The studies of the samples revealed that AMI has rather big range in values. 

AMI increases with the increase of the height of surface profile of films. The 

samples with the disordered structure represent hundredths of units in AMI 

values that correspond to theoretical calculations for the amorphous material. 

Sufficiently high AMI values are observed in the samples with small value of 

the height of the surface profile (up to 30 nm) and good gas sensitivity (S = 0,46 

÷ 0,53). High AMI values prove presence of long-range correlations in the 

system, which may be evidence of order as a result of self-organization 

processes [3]. 

The dependence of factor of gas-sensitivity on chlorine (107 ppm) and the 

dependence of AMI value on mass silver content  in PAN films fabricated at the 

same technological regimes, is resulted on fig. 4. Character of the received 

dependences is similar. The maximal AMI value corresponds the maximal value 

of factor of gas-sensitivity. 

Thus, the calculation of AMI allows to reveal correlations in disordered 

materials, which conclude a certain interrelation of electrophysical and gas-

sensing properties of PAN/Ag films with its morphology of the surface. 

 

Fig. 4. Dependence of factor of gas-sensitivity (S) and AMI values (I) from 

silver content by weight in PAN films  

 

For the investigated samples Lyapunov first spatial exponent λr which have 

appeared positive have been calculated. It means, that distribution of substance 

in space differs from equilibrium. The analysis of  Lyapunov exponent testifies, 

that stability of structure of a material depends on technological parameters of 

its formation: higher values of temperature of second stage of IR-annealing tend 

to increase Lyapunov exponent. It is necessary to note absence of correlation 



Chaotic Modeling and Simulation (CMSIM)  4:  609-614, 2013 613 

 

between values of spatial Lyapunov exponent and percentage concentration of 

the modifying additive in samples. 

The results are shown in Table 1. 

 

Table 1. Results of the research the samples of films 

The 

method of 

film 

deposition*  

The 

mass 

content 

Ag  in 

percent  

Sensitivity 

on Cl
2
 

(107 ppm)  

The 

correlation 

dimension  

The first 

Lyapunov 

exponent  

AMI  

I  0.1 0.2  1.7  0.0383  0.0898  

I  0.02 0.39 1.7 

0.9  

0.0489  0.0523  

C  0.02 0.59 1.6 0.0525  0.1173  

I  0.05 0.53 -  -  0.2265 

C  0.05 0.63 1.8  

1.3  

0.7  

0.0596  0.0601  

I  0.1 0.4 0.8  0.0459  0.1233  

I  0.5 0.27 1.4  

0.9  

0.0415  0.1105  

I  1 0.14 0.95  

0.65  

0.0537  0.0704  

C  0.05 0.22 1.1  0.0682  0.1620 

C  0.07 0.46 -- --  0.2658 

*I – the method of irrigation; С – the centrifugation method 

 

3. Conclusions 
The structure of the disorder materials is formed in strongly non-equilibrium 

conditions with violation of symmetry in the thermodynamically open, non-

linear system. These are all the properties inherent in the self-organization. As a 

result of complex researches the presence of the spatially-ordered structures in 

the disorder amorphous organic matrix of polymer is confirmed.  

During the research it has been established, that greater value of the average 

mutual information and higher degree of self-organizing answers more ordered 

structure of the material and the highest values of gas-sensitivity factor. 

Thus, on the basis of knowledge of type of dynamics management of nonlinear 

system of synthesis of a material should be carried out coordinated with internal 

dynamic processes of substance. It will allow not only to operate effectively the 

process of growth of the disorder materials, but also to program synthesis of 

materials for micro - and nanoelectronics with new unique properties. 
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Abstract. In this paper, a non-intrusive stochastic model reduction scheme is de-
veloped for polynomial chaos representation using proper orthogonal decomposition.
The main idea is to extract the optimal orthogonal basis via inexpensive calculations
on a coarse mesh and then use them for the fine discretization analysis. The devel-
oped reduced-order model is implemented to the stochastic steady-state heat diffusion
equation. The random conductivity field is approximated via the Karhunen-Loeve
(KL) expansion. Input random variables are uniformly distributed so that the Gauss-
Legendre quadrature scheme is utilized for the numerical integration. The numerical
results showed that the non-intrusive model reduction scheme is able to accurately
reproduce mean and variance fields. It is found that the computation-time of the
reduced-order model is lower than that of the full-order model.
Keywords: Uncertainty Quantification, Polynomial Chaos, Reduced-order Model.

1 Introduction

In many engineering applications, uncertainty in physical properties, input data
and model parameters result in uncertainties in the system output. A repre-
sentative practical example is design of turbomachineries where uncertainties
in flow conditions and small variations in structural parameters of compo-
nents(e.g. blade profile) can have a significant impact on the performance. For
design refinement of such complex mechanical devices, it is necessary to include
all uncertainty information in the output results using uncertainty quantifica-
tion (UQ) schemes. However, many complex applications require a fine 3D

? Corresponding Author

Received: 2 April 2013 / Accepted: 26 September 2013
c© 2013 CMSIM ISSN 2241-0503



616 Raisee, Kumar, Lacor

computational mesh, small time-step and high-dimensional space for stochas-
tic analysis. This dramatically increases the computational cost which is not
desirable for design proposes. Thus, it is necessary to employ efficient numerical
schemes for stochastic analysis of complex industrial flows. A variety of differ-
ent uncertainty quantification methods such as Monte Carlo approach, sensi-
tivity method, perturbation method, regression method and polynomial chaos
have been proposed for uncertainty quantification. All of these techniques have
positive and negative features, and no single technique is optimum for all situ-
ations. Following our previous work on UQ (Dinescu et al. [1] and Wang et al.
[7]), here we employed Polynomial Chaos (PC) approach to model uncertainty
propagation. Polynomial chaos methods have been successfully applied to solid
mechanics problems by several researches (See for example Ghanem and Spanos
[3] and Doostan et al. [2]). PC schemes have also been employed for a number
of fluid mechanics problems by a number of researchers such as: Walters and
Huyse [6], Mathelin et al. [4] and Dinescu et al. [1]. The polynomial chaos rep-
resentation can be used for different Probability Density Functions (PDFs) and
can be implemented through either intrusive or non-intrusive methods. The
intrusive approach requires the modification of the CFD codes and this may be
difficult, expensive, and time consuming for many CFD problems. Moreover,
the source codes of most commercial CFD softwares are not accessible and thus
it is impossible to implement the intrusive PC approach to such softwares. For
these reasons, here we focused on non-intrusive PC methodology with uniform
PDF for uncertainty quantification. The main shortcoming of all PC methods
is the curse of dimensionality. Developing efficient reduced-order models for
shortening the computational cost associated with the stochastic analysis is
of great interest for prediction of complex industrial flows with large number
of uncertain parameters. In recent years, several model reduction techniques
have been proposed for uncertainty quantification. Two informative examples
of such works are: Nouy [5] and Doostan et al. [2]. In Nouy [5] a Generalize
Spectral Decomposition (GSD) was proposed that gives the reduced basis in-
dependent of the stochastic discretization scheme. The GSD implementation
to a class of Stochastic Partial Differential Equations (SPDE) leads to drastic
computational saving though does not circumvent the curse of dimensionality.
Doostan et al. [2] proposed an intrusive model reduction technique for chaos
representation of a SPDE to tackle the curse of dimensionality. A 2D test case
from solid mechanics is chosen to illustrate the accuracy and convergence of
the model.
In this work, a non-intrusive reduced-order technique is developed and ap-
plied to the 2D steady-state stochastic heat diffusion equation. This paper
is organized as follows. In Section 2 we present the details of mathematical
formulation and problem under investigation. In Section 3, the model reduc-
tion methodology is described. Finally, in Section 4 the numerical results are
presented and discussed.
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2 Mathematical Formulation

To demonstrate the non-intrusive stochastic model reduction algorithm, 2D
steady-state stochastic heat conduction in a square plate of side 2a is considered
(see Figure 1). The 2D heat diffusion with random thermal conductivity is
described by the following SPDE:

∂

∂x
(k(x, y; ζ)

∂T

∂x
) +

∂

∂y
(k(x, y; ζ)

∂T

∂y
) = 0 (1)

As shown in Figure (1), the top boundary of the plate is at hot temperature

Fig. 1. Schematic of computational domain.

Th whilst the side and bottom boundaries of the plate are at cold temperature
Tc. The thermal conductivity of the plate, k(x, y; ζ), is assumed to be a two-
dimensional homogeneous random process with known mean k̄(x, y) and known
covariance function:

R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx−|y1−y2|/by (2)

where bx and by are the correlation lengths in x and y directions, respectively,
and σk is the standard deviation on the thermal conductivity.
A key ingredient here is the representation of stochastic thermal conductivity
field as a Karhunen-Loeve (KL) expansion, a type of Fourier expansion for
random functions, which amounts to a discretization in the space of random
events. According to the KL expansion, the eigenvalues and eigenfunctions are
obtained by solving the following 2D integral equation:∫

D

R(x1, y1;x2, y2)φn(x2, y2)dx2dy2 = λnφn(x1, y1) (3)

Separation of kernel (2) as R(x1, y1;x2, y2) = σk
2e−|x1−x2|/bx .e−|y1−y2|/by and

substitution in (3) leads to two identical 1D integral eigenvalue equations in
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x and y directions. Solution of the integral equations give eigenvalues (i.e.

λ
(x)
i and λ

(y)
j ) and their corresponding eigenfunctions (i.e. φ

(x)
i and φ

(y)
j ). As

described in Ghanem and Spanos [3], the complete form of KL expansion for
random process k(x, y; ζ) is:

k(x, y; ζ) = k̄(x, y) +

∞∑
i=1

∞∑
j=1

{√
λ
(x)
i λ

(y)
j ζi,j

1√
2

[φ
(x)
i (x)φ

(y)
j (y) + φ

(x)
j (x)φ

(y)
i (y)]

}
(4)

Having obtained an analytical expression for the thermal conductivity, the
SPDE (Equation (1)) is discretized using an explicit central differencing scheme
in a uniform grid (∆x = ∆y), see Figure 1. Thus, for any set of ζ ≡ {ζi}ni=1,
first thermal conductivity is calculated in the computational domain using KL
expression (Equation (4)). Then, the new temperature Tn+1 at grid node (i, j)
is obtained from old nodal temperature Tn of neighbouring nodes. The solution
is converged when the maximum error between the old and new temperature
values is sufficiently small(ε ' 10−9).

3 Model Reduction Methodology

In the classical polynomial chaos expansion, the random temperature field
T (x, y; ζ) can be decomposed into deterministic and stochastic components.
The PC representation of temperature field of order p for n random variable
ζ ≡ {ζi}ni=1 can be written as:

T (x, y; ζ)− < T (x, y) >=

P∑
i=1

Ti(x, y)ψi(ζ) (5)

where the total number of terms are P + 1 = (p+ n)!/p!n! and the mean value
of T (x, y; ζ) is expressed as:

< T (x, y) >=

∫
ω

T (x, y; ζ)f(ζ)dζ (6)

In the above equation, f is Probability Density Function (PDF). Here we as-
sumed random variables are uniformly distributed over interval [-1,1] and thus
the PDF is f = 1/2n for n random variables {ζi}ni=1. The non-intrusive method
uses spectral projection to find the PC expansion coefficients Ti(x, y) in Equa-
tion (5). Projecting Equation (5) onto the kth basis and use of orthogonality
gives:

Ti(x, y) =
1

< ψ2
i (ζ) >

∫
ω

T (x, y; ζ)ψi(ζ)f(ζ)dζ (7)

The objective of the spectral projection method is to compute the polynomial
coefficients by evaluating numerator in Equation (7) numerically, while the
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dominator can be computed analytically for multi-variant orthogonal polyno-
mials. Here we used the n-dimensional Gauss-Legendre quadrature to compute
the projection integrals in Equation (7) as:

Ti(x, y) =
1

< ψ2
i (ζ) >

q∑
i1=1

...

q∑
in=1

(wi1
1 ⊗ ...⊗ win

n )T (x, y; ζi11 , .., ζ
in
n )

ψi(ζ
i1
1 , .., ζ

in
n )f(ζi11 , .., ζ

in
n ) (8)

where (ζk,wk), k = 1, 2, .., q are the one-dimensional (1D) Gauss-Legendre
integration points and weights.
The above classical expansion dose not represent an optimal PC representation
of T (x, y, ζ). To find the optimal PC expansion one can consider the fact that
spatial discretization errors and random discretization errors may be decoupled.
Therefore, one can minimize the random discretization errors on the coarse grid
and then solve the real physical problem on a fine mesh by using limited number
of optimal random basis {zi}mi=1 (obtained in the coarse grid analysis) where m
is the number of dominated eigenvalues. The first step in the model reduction
scheme is to find optimal PC basis using POD; a well-known procedure for
extracting a basis for a model decomposition from an ensemble of realizations.
To this end, suppose in a coarse grid, expression (9) represents an optimal PC
expansion of the stochastic temperature field T (x, y, ζ);

T (x, y; ζ)− < T (x, y) >=

m∑
i=1

T i(x, y)zi(ζ) (9)

Now in the coarse grid, the covariance function C(x1, y1;x2, y2) of temperature
field can be obtained from:

C(x1, y1;x2, y2) =

P∑
i=1

Ti(x1, y1)Ti(x2, y2) < ψ2
i > (10)

The corresponding eigenvalues νi and eigenfunctions φi(x, y) are the solution
of the following eigenvalue problem:∫

D

C(x1, y1;x2, y2)φi(x2, y2)dx2dy2 = νiφi(x1, y1) (11)

The upper limit m in the Equation (9) can be found by the size of dominant
eigenspace (10) such that

∑m
i=1νi/

∑
i νi ≥ 0.99.

Having obtained Ti(x, y) from classical PC on the coarse grid and eigenfunctions
φi(x, y) from the solution of eigenvalue problem (11), the set of optimal basis
{zi}mi=1 can be now represented as a linear combination of the set of classical
polynomial chaos; {ψi}Pi=1 using the following scalar product:

zi(ζ) = [T (x, y; ζ)− < T (x, y) >,φi(x, y)] =

P∑
j=1

αijψj(ζ) (12)

The scalar product of functions v and w is defined as: [v, w] =
∫
x
v.wdx.
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where coefficient αlj are obtained via the scalar product:

αij =

∫
R

Tj(x, y)φi(x, y)d−→x d−→y (13)

One now dose the classical polynomial chaos on a fine mesh, where zi are used
instead of ψi. For 1 ≤ i ≤ m, the coefficients in expansion (9) are obtained
from:

T i(x, y) =
< T (x, y; ζ), zi >

< zi, zi >
=

1

νi

P∑
j=1

αij < T (x, y; ζ), ψj > (14)

4 Results and Discussion

We now examine the performance of the reduced-order model by analyzing the
2D steady-state heat conduction equation. It is assumed that the top wall is
at Th = 300◦C and side and bottom walls at Tc = 100◦C. First, a 2D KL
expansion is performed using the exponential kernel with a standard deviation
of σk = 1.0 W/m.K and correlation lengths of bx = by = 10.0 m. The mean
thermal conductivity is assumed to be k̄ = 5.0 W/m.K. The first six largest
terms in the KL expansions are chosen for further analysis.
Figures 2 and 3 respectively show the distributions of eigenvalues and | αij |
coefficients obtained from the coarse discretization analysis on a 5 × 5 mesh
when a second-order Legendre polynomial (p = 2) is employed. From these
figures it can be concluded that only two (m = 2) basis functions (i.e. z1 and
z2) are adequate for the fine discretization analysis. Thus, fine discretization
analysis is performed using the new z1 and z2 basis functions on a 41×41 mesh.
The computed mean and variance fields using full- and reduced-order models
are compared in Figure 4. It is visible the fine grid computations via reduced-
and full-order models resulted in identical results for the mean temperature
field. Moreover, full- and reduced-order analysis on the fine mesh produced
very similar variance fields. In Figure 4(f), regions of high absolute relative
error (about 10%) are visible in the top corners of the domain. This error can
be reduced by considering more basis functions (e.g. z3) in the PC expansion
but the reduced-order computational cost will also increase.
The ratio of computation-time for the reduced-order analysis to the time needed
for the full-order calculation using five fine meshes of 21× 21, 26× 26, 31× 31,
36 × 36 and 41 × 41 is shown in Figure 5. A coarse mesh with 10 × 10 grid
nodes is used for the coarse grid analysis. This figure shows that for the present
problem with six random variables, the reduced-order model is less expensive
than the full-order model when a 21× 21 mesh is used. By increasing the size
of the fine mesh to 26 × 26 the advantage of the reduced-order model over
the standard PC becomes more evident. It is seen that with the reduced-order
model about 20% saving in CPU-time can be obtained when a mesh with 41×41
nodes is used for the fine scale discretization. Further saving in the CPU-time
may be achieved by combination of the current reduced-order model with other
efficient numerical schemes such as for example sparse sampling schemes for the
stochastic discretization and multi-grid methods for the spatial discretization.
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Fig. 2. Computed eigenvalues using coarse discretization analysis.

Fig. 3. Computed | αij | using coarse discretization analysis.

Conclusion

In this paper, a non-intrusive model reduction technique for PC expansion is
presented and discussed. The reduced-order model is applied to the 2D steady-
state heat diffusion equation. Distributions of mean and variance obtained
from the reduced-order model are compared with those of full-order model.
The numerical results show that the developed reduced-order model is able to
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Fig. 4. Comparison of mean and variance fields.

Fig. 5. Ratio of reduced-order computation-time to the full-order computation-time.
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produce acceptable results for such statistical quantities. Computation-time of
the reduced-order model is found to be lower than that of the full-order model.
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Abstract. Necessary and sufficient conditions for existence of bounded on the entire
real axis solutions of Schrödinger equation are obtained under assumption that the
homogeneous equation admits an exponential dichotomy on the semi-axes. Bounded
analytical solutions are represented using generalized Green’s operator.

Keywords: exponential dichotomy, normally-resolvable operator, pseudoinverse Moore-Pen-
rose operator.

Numerous papers deal with problems of the existence of bounded solutions
of linear and nonlinear differential equations in Banach spaces and condition of
exponential dichotomy on both semi-axes. We note the well-known paper [1],
where such problems were considered in finite-dimensional spaces. Boundary
value problems for linear differential equations in Banach spaces which admit
exponential dichotomy on both semi-axes with bounded and unbounded op-
erators in linear part was investigated in [2], [3]. The normal solvability of a
differential operator was considered in [4]. The present paper dealt with the
derivation of necessary and sufficient conditions for the existence of generalized
bounded solutions of the Schrödinger equation in the Hilbert space.

1 Linear case

1.1 Statement of the Problem

Consider the next differential Shrödinger equation

dϕ(t)

dt
= −iH(t)ϕ(t) + f(t), t ∈ J (1)

in a Hilbert space H, where, for each t ∈ J ⊂ R, the unbounded operator H(t)
has the form H(t) = H0 + V (t) ( here H0 = H∗0 is unbounded self-adjoint
operator with domain D = D(H0) ⊂ H), the mapping t → V (t) is strongly
continuous. Define as in [5] operator-valued function

Ṽ (t) = eitH0V (t)e−itH0 .
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In this case for Ṽ (t) Dyson’s [5, p.311] representation is true and its propagator
we define as Ũ(t, s). If U(t, s) = e−itH0Ũ(t, s)eisH0 then ψs(t) = U(t, s)ψ is
a weak solution of (1) with condition ψs(s) = ψ in the sense that for any
η ∈ D(H0) function (η, ψs(t)) is differentiable and

d

dt
(η, ψs(t)) = −i(H0η, ψs(t))− i(V (t)η, ψs(t)), t ∈ J.

The present part dealt with the derivation of necessary and sufficient con-
ditions for the existence of weak (in different senses) bounded solutions of the
inhomogeneous equation (1) with f ∈ BC(J,H) = {f : J → H; the function
f is continuous and bounded }. Here the boundedness is treated in the sense
that |||f ||| = supt∈J ||f(t)|| < ∞. For simplicity we suppose that D dense in
H. The operator U(t, s) is a bounded linear operator for fixed t, s, and since
the set D is dense in H, we find that it can be extended to the entire space H
by continuity, which is assumed in forthcoming considerations. The extension
of the family of evolution operators to the entire space is denoted in the same
way.

1.2 Bounded solutions

Throughout the following, we use the notion of exponential dichotomy in the
sense of [6]. It is of special interest to analyze the exponential dichotomy on the
half-lines R−s = (−∞, s] and R+

s = [s;∞). [In this case, the projection-valued
functions defined on half-lines will be denoted by P−(t) for all t ≥ s and P+(t)
for all t < s with constants M1, α1 and M2, α2, respectively (α1, α2 - entropy
or Lyapunov coefficients on the half-lines).] Most of the results obtained below
follows directly from [3]. The main result of this section can be stated as
follows.

Theorem 1. Let {U(t, s), t ≥ s ∈ R} be the family of strongly continuous
evolution operators associated with equation (1). Suppose that the following
conditions are satisfied.

1. The operator U(t, s) admits exponential dichotomy on the half-lines R+
0

and R−0 with projection-valued operator-functions P+(t) and P−(t), respectively.

2. The operator D = P+(0)− (I − P−(0)) is generalized-invertible.

Then the following assertions hold.

1. There exist weak solutions of equation (1) bounded on the entire line if
and only if the vector function f ∈ BC(R,H) satisfies the condition∫ +∞

−∞
H(t)f(t)dt = 0, (2)

where H(t) = PN(D∗)P−(0)U(0, t).

2. Under condition (2), the weak solutions of (1) bounded on the entire line
have the form

ϕ0(t, c) = U(t, 0)P+(0)PN(D)c+ (G[f ])(t, 0)∀c ∈ H, (3)
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where

(G[f ])(t, s) =



∫ t

s
U(t, τ)P+(τ)f(τ)dτ −

∫ +∞
t

U(t, τ)(I − P+(τ))f(τ)dτ+
+U(t, s)P+(s)D+[

∫∞
s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫ s

−∞ U(s, τ)P−(τ)f(τ)dτ ], t ≥ s∫ t

−∞ U(t, τ)P−(τ)f(τ)dτ −
∫ s

t
U(t, τ)(I − P−(τ))f(τ)dτ+

+U(t, s)(I − P−(s))D+[
∫∞
s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫ s

−∞ U(s, τ)P−(τ)f(τ)dτ ], s ≥ t

is the generalized Green operator of the problem on the bounded, on the entire
line, solutions

(G[f ])(0+, 0)− (G[f ])(0−, 0) = −
∫ +∞

−∞
H(t)f(t)dt;

L(G[f ])(t, 0) = f(t), t ∈ R

and

(Lx)(t) =
dx

dt
− iH(t)x(t),

D+ is the Moore-Penrouse pseudoinverse operator to the operator D; PN(D) =
I −D+D and PN(D∗) = I −DD+ are the projections [7] onto the kernel and
cokernel of the operator D.

Remark 1. A similar theorem holds for the case in which the family of
evolution operators U(t, s) admits exponential dichotomy on the half-lines R+

s

and R−s .
Now we show that condition 2 in theorem 1 can be omitted and in the

different senses equation (1) is always resolvable. From the proof of the theorem
1 follows that equation (1) have bounded solutions if and only if the operator
equation

Dξ = g, (4)

g =

∫ 0

−∞
U(0, τ)P−(τ)f(τ)dτ +

∫ +∞

0

U(0, τ)(I − P+(τ))f(τ)dτ

is resolvable and its number depends from the dimension of N(D).
Consider next 3 cases.
1) Classical strong generalized solutions.
Consider case when the operator D is normally-resolvable (R(D) = R(D)

is the set of values of D). Then [7] g ∈ R(D) if and only if PN(D∗)g = 0
and the set of solutions of (4) can be represented in the form [7] ξ = D+g +
PN(D)c, forallc ∈ H.

2) Strong generalized solutions.
Consider the case when R(D) 6= R(D). We show that operator D may be

extended to D in such way that R(D) is closed.
Since the operator D is bounded the next representations of H in the direct

sum are true

H = N(D)⊕X,H = R(D)⊕ Y,
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with X = N(D)⊥ and Y = R(D)
⊥

. Let E = H/N(D) is quotient space of H
and P

R(D)
is orthoprojector, which projects onto R(D). Then operator

D = P
R(D)

Dj−1p : X → R(D) ⊂ R(D),

is linear, continuous and injective (here p : X → E is continuous bijection and
j : H → E is a projection. The triple (H, E, j) is a locally trivial bundle with
typical fiber PN(L)H). In this case [8, p.26,29] we can define strong generalized
solution of equation

Dξ = g, ξ ∈ X.

We complete the space X with the norm ||ξ||X = ||Dξ||F , where F = R(D) [8].
Then the extended operator

D : X → R(D), X ⊂ X

is a homeomorphism of X and R(D). Operator D := DPX : H → H is
normally-resolvable. By the construction of a strong generalized solution [8],
the equation

D ξ = g,

has a unique generalized solution, which we denote D
+
g which is called the

strong generalized solution of (4). Then the set of strong generalized solutions
of (4) has the form

ξ = D
+
g + PN(D)c, for all c ∈ H.

3) Strong pseudosolutions.
Consider an element g /∈ R(D). This condition is equivalent PN(D∗)g 6= 0.

In this case there are elements from H that minimize norm ||Dξ − g||H for

ξ ∈ H :

ξ = D
+
g + PN(D)c, for all c ∈ H.

These elements are called strong pseudosolutions by analogy of [7].
Remark 2. It should be noted that in each cases 1) - 3) the form of

bounded solutions (4) isn’t change.
Remark 3. As follows from 1) and 3) the notion of exponential dichotomy

is equivalent of existence of bounded on the entire real axis solutions of (1).

2 Main result (Nonlinear case)

In the Hilbert space H, consider the differential equation

dϕ(t)

dt
= −iH(t)ϕ(t) + εZ(ϕ, t, ε) + f(t). (5)

We seek a bounded solution ϕ(t, ε) of equation (5) that becomes one of the
solutions of the generating equation (1) for ε = 0.
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To find a necessary condition on the operator function Z(ϕ, t, ε), we impose
the joint constraints

Z(·, ·, ·) ∈ C[||ϕ− ϕ0|| ≤ q]×BC(R,H)× C[0, ε0],

where q is some positive constant.
Let us show that this problem can be solved with the use of the operator

equation for generating constants

F (c) =

∫ +∞

−∞
H(t)Z(ϕ0(t, c), t, 0) = 0. (6)

Theorem 2 (necessary condition). Let the equation (1) admits exponential
dichotomy on the half-lines R+

0 and R−0 with projection-valued operator func-
tions P+(t) and P−(t), respectively, and let the nonlinear equation (5) have
a bounded solution ϕ(·, ε) that becomes one of the solutions of the generating
equation (1) with constant c = c0, ϕ(t, 0) = ϕ0(t, c0) for ε = 0. Then this
constant should satisfy the equation for generating constants (6).

The proof of this theorem is the same as in [3, Theorem 1].
To find a sufficient condition for the existence of bounded solutions of (1),

we additionally assume that the operator function Z(ϕ, t, ε) is strongly differen-
tiable in a neighborhood of the generating solution (Z(·, t, ε) ∈ C1[||ϕ−ϕ0|| ≤
q]).

This problem can be solved with the use of the operator

B0 =

∫ +∞

−∞
H(t)A1(t)U(t, 0)P+(0)PN(D)dt : H → H,

where A1(t) = Z1(v, t, ε)|v=ϕ0,ε=0 (the Fréchet derivative).
Theorem 3 (sufficient condition). Suppose that the equation (1) admits ex-

ponential dichotomy on the half-lines R+
0 and R−0 with projection-valued func-

tions P+(t) and P−(t), respectively. In addition, let the operator B0 satisfy the
following conditions.

1. The operator B0 is Moore-Penrose pseudoinvertible.
2. PN(B∗

0 )
PN(D∗)P−(0) = 0.

Then for an arbitrary element of c = c0 ∈ H satisfying the equation for
generating constants (6), there is exists bounded solution. This solution can be
found with the use of the iterative process

yk+1(t, ε) = εG[Z(ϕ0(τ, c0 + yk, τ, ε))](t, 0),

ck = −B+
0

∫ +∞

−∞
H(τ){A1(τ)yk(τ, ε) +R(yk(τ, ε), τ, ε)}dτ,

R(yk(t, ε)) = Z(ϕ0(t, c0) + yk(t, ε), t, ε)− Z(ϕ0(t, c0), t, 0)−A1(t)yk(t, ε),

R(0, t, 0) = 0, R(1)
x (0, t, 0) = 0,

yk+1(t, ε) = U(t, 0)P+(0)PN(D)ck + yk+1(t, 0, ε),

ϕk(t, ε) = ϕ0(t, c0)+yk(t, ε), k = 0, 1, 2, ..., y0(t, ε) = 0, ϕ(t, ε) = lim
k→∞

ϕk(t, ε).



630 O. A. Pokutnyi

2.1 Relationship between necessary and sufficient conditions

First, we formulate the following assertion.
Corollary. Let a functional F (c) have the Fréchet derivative F (1)(c) for

each element c0 of the Hilbert space H satisfying the equation for generating
constants (6). If F 1(c) has a bounded inverse, then equation (5) has a unique
bounded solution on the entire line for each c0.

Remark 4. If assumptions of the corollary are satisfied, then it follows
from its proof that the operators B0 and F (1)(c0) are equal. Since the oper-
ator F (1)(c) is invertible, it follows that assumptions 1 and 2 of Theorem 3
are necessarily satisfied for the operator B0. In this case, equation (5) has a
unique bounded solution for each c0 ∈ H. Therefore, the invertibility condition
for the operator F 1(c) relates the necessary and sufficient conditions. In the
finite-dimensional case, the condition of invertibility of the operator F (1)(c)
is equivalent to the condition of simplicity of the root c0 of the equation for
generating amplitudes [7].

In such way we obtain the modification of the well-known method of Lyapunov-
Schmidt. It should be emphasized that theorem 2 and 3 give us possible con-
dition of chaotic behavior of (5) [9].
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Abstract. In this work, the generalization of Lotka-Volterra model including the ad-
dition of symmetrically coupled quintic polynomial interaction is analyzed. Stability
and bifurcation properties of this model are studied. It is also shown that the model
has a family of limit cycles bifurcating from the Hopf points by using a numerical
method.
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1 Introduction

Predator-prey problem attempts to model the relationship between the popu-
lations of two or more species in interaction. The simplest model of predator-
prey interactions, called the classical Lotka-Volterra (LV) model, is given by
the following system of differential equations [1]:

ẋ = x(a− by), ẏ = −y(c− dx), (1)

where the parameters a, b, c and d characterize the predator-prey environment,
dots denote the time derivatives, x(t) and y(t) are the prey and predator pop-
ulations, respectively. Due to its unrealistic stability characteristics, the LV
model serves as a starting point of many generalized models which should pre-
dict a single closed orbit, or perhaps finitely many, but not a continuous family
of neutrally stable cycles. Among many ways to improve stability in the LV
model, a simple approach is to add polynomial interactions. One of the general-
izations considered by Nutku has been to suggest a cubic self-interaction term,
instead of a quadratic self-interaction [2]. The Nutku generalization introduces
additional stability in a simple way; beside a further generalization involving
coupling of the form xky, where k is a positive integer and k ≤ 2, provides
a rich spectrum of equilibrium points leading to Hopf, pitchfork, saddle node
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and cusp bifurcations [3]. Moreover, the limit cycles of the Hopf bifurcation
point tend to a specific solution of an equation in [3]. Meanwhile, it is shown
that the Gause type predator-prey model with holling type III functional re-
sponse and allee effect on prey, which is another type generalization of the LV
model, topologically equivalent to the differential equations, are given by a fifth
order polynomial system in [4,5]. On the other hand, Giné and Romanovski
have obtained necessary and sufficient integrability co! nditions at the origin
for a complex generalization of the LV model where a quintic nonlinearity is
introduced [6]. By the help of this motivation, we will examine stability and
bifurcation properties of this model with the symmetrically coupled interaction
by using approximate techniques near equilibrium points.

2 The Model, Stability and Bifurcation Scenarios

The quintic Lotka-Volterra model with symmetrically coupled interaction is
given as,

ẋ = x(1−Ax4 −Bx3y − Cx2y2 −Dxy3 − Ey4)

ẏ = −y(1−Ay4 −Bxy3 − Cx2y2 −Dx3y − Ex4), (2)

where parameters A, B, C, D and E are positive. System (2) with A(−B +
3D) = E(3B−D) has an integrating factor of the form V = (xy)(−4B+2D)/(B−D)

which allows us to find the algebraic integral

(xy)
r1
r2

(
r2
r1

+
r2
2
xy(x2 + y2) +

Cr2
r3

x2y2 − Ar2
r1

(x4 + y4)

)
= constant, (3)

where r1 = −3B +D, r2 = B −D and r3 = B +D.
System (2) has 13 trivial equilibrium points, which are (0,0), (A−1/4, 0),

(−A−1/4, 0), (iA−1/4, 0), (−iA−1/4, 0), (0, A−1/4), (0,−A−1/4), (0, iA−1/4),

(0,−iA−1/4), (T
−1/4
1 , T

−1/4
1 ), (−T−1/4

1 ,−T−1/4
1 ), (iT

−1/4
1 , iT

−1/4
1 ) and

(−iT−1/4
1 ,−iT−1/4

1 ) with T1 = A+B+C+D+E; and nontrivial ones depending
on the values of the coefficients, which are summarized below.

(i) If T2 = A − B + C −D + E > 0 then (T
−1/4
2 ,−T−1/4

2 ), (−T−1/4
2 , T

−1/4
2 ),

(iT
−1/4
2 ,−iT−1/4

2 ) and (−iT−1/4
2 , iT

−1/4
2 ) are also equilibrium points.

(ii) If T2 = A − B + C − D + E < 0 then there are four complex
equilibrium points: (

√
2 (1 + i) (−T2)−1/4/2,−

√
2 (1 + i) (−T2)−1/4/2),

(
√

2 (−1 + i) (−T2)−1/4/2,
√

2 (1− i) (−T2)−1/4/2) and their complex con-
jugates.

(iii) If A = E and B = D then there are infinitely many equilibrium points.

(iv) If A 6= E, B = D and T3 = A − C + E > 0 then (T
−1/4
3 , iT

−1/4
3 ),

(−T−1/4
3 ,−iT−1/4

3 ), (iT
−1/4
3 ,−T−1/4

3 ), (−iT−1/4
3 , T

−1/4
3 ) and their complex

conjugates are also equilibrium points.
(v) If A 6= E, B = D and T3 = A − C + E < 0 then there are eight complex

equilibrium points: (
√

2 (1 + i) (−T3)−1/4/2,
√

2 (−1 + i) (−T3)−1/4/2),
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(
√

2 (1+i) (−T3)−1/4/2,
√

2 (1−i) (−T3)−1/4/2), (
√

2 (−1+i) (−T3)−1/4/2,√
2 (−1−i) (−T3)−1/4/2), (

√
2 (−1+i) (−T3)−1/4/2,

√
2 (1+i) (−T3)−1/4/2)

and their complex conjugates.

(vi) If A 6= E, B 6= D and |B −D| > 2 |A− E| then there are 4 real and 4
complex, or 2 real and 6 complex equilibrium points. One can find these
points by solving the system of the equations x = (−α±

√
α2 − 1)y, 2α =

(B −D)/(A− E), and Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.

(vii) If A 6= E, B 6= D and |B −D| < 2 |A− E| then one can find equilibrium
points by solving the system of the equations x = (−α ± i

√
1− α2)y and

Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.

On the other hand, system (2) is Lyapunov unstable for the chosen values of
the parameters, which can be very easily demonstrated using the Lyapunov
function V = (E −A)(x2 + y2) + 2Bxy which is positive definite if and only if
E > A and E −A > B. Therefore, we obtain

V̇ = 2(x2 − y2) [βA(x4 + y4) + ((A+ E)2 +B(D −B) + βC)x2y2 − β], (4)

where β = A − E < 0. Although the second factor has negative definite
dominant term, the first factor changes sign as |x| = |y|. Hence there is a regime
where the system is Lyapunov unstable so that we can limit our discussion to
local stability. At this stage, we focus on trivial equilibrium points to examine
stability. Nontrivial ones will be taken into account for a spacial case.

Linearized eigenvalues about the first real trivial equilibrium point (0, 0) are
{±1}; thus the origin is a saddle point. Eigenvalues for the points (A−1/4, 0)
and (−A−1/4, 0) are {−4, −1 +E/A}, so these points are saddle when A < E,
and stable nodes when A > E. Eigenvalues associated with points (0, A−1/4)
and (0,−A−1/4) are {4, 1 − E/A}. If A < E, these equilibrium points are
saddle, otherwise they are unstable nodes. On the other hand the eigenval-

ues for both of equilibrium points (T
−1/4
1 , T

−1/4
1 ) and (−T−1/4

1 ,−T−1/4
1 ) are

{±i
√

8[2(E −A) + (D −B)]/T1}, a pair of purely imaginary eigenvalues, if

2(E − A) + (D − B) > 0 and {±
√

8[2(A− E) + (B −D)]/T1} if 2(E − A) +
(D−B) < 0. Thus the first purely imaginary values satisfy the resonance con-
ditions and the system can be expanded into a resonant normal form, which
gives Hopf bifurcation under the condition 2(E − A) + (D − B) > 0. For the
other condition, these points are also saddle.

Let A = 1 and B = C = D = E = 2. In this special case, the real equilib-
rium points of the system are (0,0), (1,0), (-1,0), (0,1), (0,-1), A1(1/

√
3, 1/
√

3),
A2(−1/

√
3,−1/

√
3), A3(1,−1), A4(−1, 1); and there are 16 complex equilib-

rium points. Trivial equilibrium point at the origin is a saddle point with the
eigenvalues {±1}. (1,0) and (-1,0) are also saddle points with the eigenval-
ues {−4, 1}. Similarly (0,1) and (0,-1) are saddle points with the eigenval-
ues {4, −1}. On the other hand, the points A1 and A2 with the eigenvalues
{±i4/3}; and also the points A3 and A4 with the eigenvalues {±i4} are also
Hopf points. The third order normal form about the point A1 is

u̇ = 4iu(1− 14uv)/3, v̇ = −4iv(1− 14uv)/3, (5)
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where u and v refer to the variables in the near identity transformation. This
normal form indicates Hopf bifurcation. From the linearized eigenvalues of sys-
tem (5), it is clear that the normal form will be u̇ = iαuf(uv), v̇ = −iαvf(uv)
which admits the solution uv =constant. Hence the inclusion of higher order
terms in the normal form will only change the purely imaginary eigenvalues,
since the only change will be the constant value of f(uv) to the normal form
approximation. This implies that the character of the local bifurcation will
not change by including further terms. Normal form analysis for the other
equilibrium points is omitted for brevity.
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Fig. 1. Family of limit cycles of the system (2) when A is varied

The bifurcation analysis when A is varied is given in Figure 1. In this special
case, two supercritical Hopf bifurcation points, A1 and A2, and two subcritical
Hopf bifurcation points, A3 and A4, are observed. All of the limit cycles lie
between the coordinate axes and the curve in one of quadrants. They also form
a double throw-and-catch mechanism around a pitchfork bifurcation point in
the middle.
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3 Conclusion

In this work, a special case of the quintic generalization of the LV model has
been studied. The model is globally Lyapunov unstable, however local stability
indicates several instances of Hopf bifurcation to a family of bounded orbits.
It is also numerically observed that there is a discontinuous family of stable
cycles in the same way as in the cubic nonlinear intersection.
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Abstract. Proper orthogonal decomposition (POD) is a method for deriving re-
duced order models of dynamical systems. In this paper, the POD is applied to
the nonlinear Schrödinger equation (NLS). The NLS equation is discretized in space
by finite differences and is solved in time either by structure preserving symplectic
or energy preserving average vector field (AVF) integrators. Numerical results for
one dimensional NLS equation with soliton solutions show that the low-dimensional
approximations obtained by POD reproduce very well the characteristic dynamics
of the system, such as preservation of energy and phase space structure of the NLS
equation.
Keywords: Nonlinear Schrödinger equation, model order reduction, periodic solu-
tions .

1 Introduction

The nonlinear Schrödinger (NLS) equation arises as the model equation with
second order dispersion and cubic nonlinearity describing the dynamics of
slowly varying wave packets in nonlinear optics and fluid dynamics and it ap-
pears in Bose-Einstein condensate theory. We consider in this paper the NLS
equation

ψt = iψxx + iγ | ψ |2 ψ (1)

with the periodic boundary conditions ψ(x+ L, t) = ψ(x, t). Here ψ = ψ(x, t)
is a complex valued function, γ is a parameter and i2 = −1. The NLS equation
is called focusing if γ > 0 and defocusing if γ < 0; for γ = 0, it reduces to
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the linear Schrödinger equation. In last two decades various numerical meth-
ods were applied for solving NLS equation, among them are the well-known
symplectic and multisymplectic integrators, discontinuous Galerkin methods.

There is a strong need for model reduction techniques to reduce the com-
putational costs and storage requirements in large scale simulations. They
should yield low-dimensional approximations for the full high-dimensional dy-
namical system, which reproduce the characteristic dynamics of the system.
Among the model order reduction techniques the proper orthogonal decom-
position (POD) is one of the most widely used method. Surprisingly good
approximation properties are reported for POD based model order reduction
techniques in the literature. It has been successfully used in different fields
including signal analysis and pattern recognition Fukunaga[3], fluid dynamics
and coherent structures Berkooz et al.[2] and more recently in control theory
Kunisch and Volkwein[4]. The POD is applied mostly to linear and nonlin-
ear parabolic equations Kunisch and Volkwein[5]. In this paper, we apply the
POD to the NLS equation. To the best of our knowledge, there is only one
paper where POD is applied to NLS equation Schlizerman et al.[7], where the
authors use only one and two modes approximations of the NLS equation. In
this paper, the NLS equation is discretized in space and time by preserving
the symplectic structure and the energy. Then, from the snapshots of the fully
discretized dynamical system, the POD basis are computed using the singular
value decomposition (SVD). It turns out that most of the energy of the system
can be accurately approximated by using few POD modes. Numerical results
for a NLS equation with soliton solutions confirm the energy and phase space
preserving properties of the POD.

The paper is organized as follows. Section 2 and Section 3 are devoted
to reviewing the POD method and its application to semi-linear dynamical
systems. Numerical solution of the semi-discrete NLS equation and the POD
reduced form are described in Section 4. In the last section, Section 5, the
numerical results for the reduced order models of one-dimensional NLS equation
are presented.

2 The Proper Orthogonal Decomposition

Let X be a real Hilbert space endowed with inner product 〈·, ·〉X and norm
‖·‖X . For y1, . . . , yn ∈ X we set

V = span {y1, · · ·, yn} ,

and refer to V as the ensemble consisting of the snapshots {yj}nj=1. Let {ψk}dk=1

denote an orthonormal basis of V with d = dimV . Then each member of the
ensemble can be expressed as

yj =

d∑
k=1

〈yj , ψk〉X ψk, j = 1, . . . , n (2)
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The POD is constructed by choosing the orthonormal basis such that for
every l ∈ {1, . . . , d} the mean square error between the elements yj , 1 ≤ j ≤ n,
and the corresponding l − th partial sum of (2) is minimized on average:

min
{ψk}lk=1

1

n

n∑
j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk

∥∥∥∥∥
2

X

(3)

〈ψi, ψj〉X = δij , 1 ≤ i ≤ l, 1 ≤ j ≤ i

A solution {ψk}lk=1 to (3) is called a POD-basis of rank l. We introduce the
correlation matrix K = {Kij} ∈ Rn×n corresponding to the snapshots {yj}nj=1
by

Kij =
1

n
〈yj , yi〉X

The matrix K is positive semi-definite and has rank d. Let λ1 ≥ . . . ≥
λd > 0 denote the positive eigenvalues of K and v1, . . . , vd ∈ Rn the associated
eigenvectors. Then a POD basis of rank l ≤ d is given by

ψk =
1√
λk

n∑
j=1

(vk)jyj

where (vk)j is the j − th component of the eigenvector vk. Moreover, we have
the error formula

1

n

n∑
j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk

∥∥∥∥∥
2

X

=

d∑
j=l+1

λj

The choice of l is based on heuristic considerations combined with observing
the ratio of the modeled to the total energy contained in the system Y which
is expressed by

ε(l) =

∑l
i=1 λi∑d
i=1 λi

2.1 POD and SVD

There is a strong connection between POD and singular value decomposition
(SVD) for rectangular matrices.

Let Y be a real-valued m× n matrix of rank d ≤ min {m,n} with columns
yj ∈ Rm, 1 ≤ j ≤ n. In the context of POD, it will be useful to think of
the columns {Y·,j}nj=1 of Y as the spatial coordinates vectors of a dynamical

system at time tj . Similarly, we consider the rows {Yi,·}mi=1 of Y as the time
trajectories of the dynamical system evaluated at the locations xi.

SVD guarantees the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0
and orthogonal matrices U ∈ Rm×m with columns {ui}mi=1 and V ∈ Rn×n with
columns {vi}ni=1 such that
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UTY V =

(
D 0
0 0

)
:= Σ ∈ Rm×n (4)

where D = diag(σ1, σ2, . . . , σd) ∈ Rd×d and the zeros in (4) denote the matrices

of appropriate dimensions. Moreover, the vectors {ui}di=1 and {vi}di=1 satisfy

Y vi = σiui, Y Tui = σivi, i = 1, · · · , d.

One of the central issues of POD is the reduction of the data expressing
their essential information by means of a few basis vectors. Let us now inter-
pret SVD in terms of POD by the following theorem.

Theorem : (Kunisch and Volkwein[5]) Let Y = [y1, . . . , yn] ∈ Rm×n be a
given matrix with rank d ≤ min {m,n}. Further, let Y = UΣV T be the
SVD of Y , where U = [u1, . . . , um] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n are
orthogonal matrices and the matrix Σ ∈ Rm×n has the form (4). Then, for
any l ∈ {1, . . . , d} the solution to

max
ũ1,...,ũl∈Rm

l∑
i=1

n∑
j=1

∣∣〈yj , ũi〉Rm

∣∣2 , 〈ũi, ũj〉Rm = δij , 1 ≤ i, j ≤ l (5)

is given by the singular vectors {ui}li=1. A necessary optimality condition for
(5) is given by the eigenvalue problem Y Y Tui = λiui.

3 Application to Semi-linear Time Dependent Systems

We consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)), t ∈ [0, T ], y(0) = y0, (6)

where f : [0, T ] × Rm → Rm is continuous in both arguments and locally
Lipschitz-continuous with respect to the second argument. The NLS equation
(1) is a semi-linear equation, where the cubic nonlinear part is locally Lipschitz
continuous.

Suppose that we have determined a POD basis {uj}lj=1 of rank l ∈ {1, . . . ,m}
in Rm. Then we make the ansatz

yl(t) =

l∑
j=1

〈
yl(t), uj

〉︸ ︷︷ ︸
=:ylj(t)

uj , t ∈ [0, T ], (7)

where the Fourier coefficients ylj , 1 ≤ j ≤ l, are functions mapping [0, T ] into
Rm, and the inner product 〈·, ·〉 represents the Euclidean inner product 〈·, ·〉Rm

to make the notation simple. Since

y(t) =

m∑
j=1

〈y(t), uj〉uj , t ∈ [0, T ]
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holds, yl(t) is an approximation for y(t) provided l < m. Inserting (7) into (6)
yields

l∑
j=1

ẏlj(t)uj =

l∑
j=1

ylj(t)Auj + f(t, yl(t)), t ∈ [0, T ],

l∑
j=1

ylj(0)uj = y0 (8)

Note that (8) is an initial-value problem in Rm for l ≤ m coefficient functions
ylj(t), 1 ≤ j ≤ l and t ∈ [0, T ], so that the coefficients are overdetermined.
Therefore, we assume that (8) holds after projection on the l dimensional sub-

space V l = span {uj}lj=1. From (8) and 〈uj , ui〉 = δij we infer that

ẏli(t) =

l∑
j=1

ylj(t) 〈Auj , ui〉+
〈
f(t, yl(t)), ui

〉
(9)

for 1 ≤ i ≤ l and t ∈ (0, T ]. Let us introduce the matrix

B = {bij} ∈ Rl×l, bij = 〈Auj , ui〉

and the non-linearity F = (F1, · · · , Fl)T : [0, T ]× Rl → Rl by

Fi(t, y) =

〈
f(t,

l∑
j=1

yjuj), ui

〉
, t ∈ [0, T ], y = (y1, · · · , yl) ∈ Rl

Then, (9) can be expressed as

ẏl(t) = Byl(t) + F (t, yl(t)), t ∈ (0, T ] (10)

For initial condition, we derive yl(0) = y0 where

y0 = (〈y0, u1〉 , . . . , 〈y0, ul〉 )
T ∈ Rl

This system is called the POD-Galerkin projection for (6). In case of
l << m the l−dimensional system is a low-dimensional approximation for (6).
Therefore, it is the reduced-order model for (6).

4 Numerical solution of NLS equation

One dimensional NLS equation (1) can be written by decomposing ψ = p+ iq
in real and imaginary components

pt = −qxx − γ(p2 + q2)q, qt = pxx + γ(p2 + q2)p (11)

as an infinite dimensional Hamiltonian pde in the phase space u = (p, q)T

u̇ = D δH
δu

, H =

∫
1

2

(
p2x + q2x −

γ

2
(p2 + q2)2

)
dx, D =

(
0 1
−1 0

)
.
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After discretizing the Hamiltonian in space

H =
1

2∆x2

n∑
j=1

((pj+1 − pj)2 + (qj+1 − qj)2)− γ

4

n∑
j=1

(p2j + q2j )2.

we obtain the semi-discretized Hamiltonian ode’s

pt = −Aq − γq(p2 + q2), qt = Ap+ γp(p2 + q2), (12)

where A is a circulant matrix.
To solve (12) we apply the second order Strang split-step method by adapt-

ing the linear, non-linear splitting

ut = Nu+ Lu, Lu = iuxx, Nu = iγ|u|2u.

4.1 POD Basis for NLS equation

Suppose that we have determined POD bases {uj}lj=1 and {vj}lj=1 of rank

l = {1, . . . ,m} in Rm. Then we make the ansatz

pl =

l∑
j=1

αjuj(x), ql =

l∑
j=1

βjvj(x) (13)

where αj =< pl, uj >, βj =< ql, vj > and pl, ql are approximations for p
and q, respectively. Inserting (13) into (12), and using that 〈ui, uj〉 = δij and
〈vi, vj〉 = δij , i, j = 1, · · · , l, we obtain

α̇i = −
l∑

j=1

βj 〈Avj , ui〉 − γ

〈 l∑
j=1

βjvj

 l∑
j=1

αjuj

2

, ui

〉
− γ

〈 l∑
j=1

βjvj

3

, ui

〉

β̇i =

l∑
j=1

αj 〈Auj , vi〉+ γ

〈 l∑
j=1

αjuj

 l∑
j=1

βjvj

2

, vi

〉
+ γ

〈 l∑
j=1

αjuj

3

, vi

〉

As defining V = [v1, v2, · · · , vl] ∈ Rm×l, β ∈ Rl, U = [u1, u2, · · · , ul] ∈
Rm×l, α ∈ Rl, B = {bij}, bij = 〈Avj , ui〉 , BT = {cij}, cij = 〈Auj , vi〉,
we obtain

α̇ = −Bβ − γUT
(
(V β) · (Uα)2

)
− γUT

(
(V β)3

)
β̇ = BTα+ γV T

(
(Uα) · (V β)2

)
+ γV T

(
(Uα)3

)
(14)

with both the operation ’·’ and the powers are hold elementwise.
The reduced order system (14) is solved, as the unreduced one (1), with

the energy preserving AVF method and symplectic midpoint method applying
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linear-nonlinear Strang spliting Weideman and Herbst[8]. The nonlinear parts
of the equations are solved by Newton-Raphson method. For solving the linear
system of equations, we have used the Matlab toolbox smt Redivo-Zaglia and
Rodriguez[6], which is designed for solving linear systems with a structured co-
efficient matrix like the circulant and Toepltiz matrices. It reduces the number
of floating point operations for matrix factorization to O (n log n).

5 Numerical Results

For the one dimensional NLS equation we have taken the example in Celle-
doni et al.[1] with γ = 1, and the periodic boundary conditions in the in-
terval [−20, 20]. The initial conditions are given as p(x, 0) = exp(−(x −
1)2/2), q(x, 0) = exp(−x2/2). As mesh sizes in space and time we have used
dx = 40/20 and dt = 0.1, respectively.

We compare the energy error and the norm error with ROM-AVF and ROM-
MID using with and without difference quotients in Table 1. With increasing
number of POD basis l, the errors in the energy and discrete solutions of the
fully discretized NLS equation and the reduced order model decreases. The
singular values of the snapshot matrix are rapidly decaying (Figure 4) so that
the only few POD modes would be sufficient to approximate the fully discetized
NLS equation. For POD basis with l = 3 (Figure 3), hence, the energy is
well preserved as for the fully discretized form (Figure 2) and more accurate
solutions are obtained with increasing number of POD modes (Figure 4).

Table 1. L∞-errors of the energy and solutions

POD Energy Energy Solution Solution
(ROM-AVF) (ROM-MID) (ROM-AVF) (ROM-MID)

2 6.125e-002 6.107e-002 2.164e-001 2.159e-001
3 5.529e-002 5.528e-002 2.010e-001 2.011e-001
4 4.612e-002 4.609e-002 1.847e-001 1.835e-001
5 4.100e-002 4.095e-002 1.838e-001 1.817e-001
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Fig. 1. Singular values: left: mid-point, right: AVF
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Fig. 2. Energy (full discretization): left: mid-point, right: AVF
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Fig. 3. Energy (POD, l=3) : left: mid-point, right: AVF

Fig. 4. ROM solutions with 3 POD modes: left: mid-point, right: AVF
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Abstract: Reactive distillation is one of the complex processes encountered in process 

industries as a result of the integration of both reaction and separation in a single unit. 

Nowadays, the modelling of this process has become a big challenge to Process 

Engineers. The use of a reliable model that can handle complex functions is very 

necessary to represent this complex process. It has been discovered that Neural Network 

can be used to handle complex functions very well. Therefore, the modelling of the 

reactive distillation process considered in this work has been carried out with the aid of a 

dynamic neural network known as Layer-Recurrent Neural Network. The simulated 

results obtained from the developed Neural Network models were compared with the 

measured results to confirm the validities of the developed models. 

 

Keywords: Neural Network, Reactive distillation, Modelling, Simulation.  

 

1. Introduction 
In recent years, integrated reactive separation processes have attracted 

considerable attentions in both academic research and industrial applications 

(Völker et al., 2007; Giwa and Karacan, 2012a). One of these processes which is 

known as reactive distillation is potentially attractive whenever conversion is 

limited by reaction equilibrium (Balasubramhanya and Doyle III, 2000; Giwa 

and Karacan, 2012a).  

Reactive Distillation (RD) combines the benefits of equilibrium reaction 

with a traditional unit operation (in this case, distillation) to achieve a 

substantial progress in not only promoting the reaction conversion through 

constant recycling of unconverted materials and removal of products but also 

reducing the capital and operating costs in one way by reducing the number of 

equipment units (Giwa and Karacan, 2012a). Moreover, its other advantages 

include improved selectivity, lower energy consumption, scope for difficult 

separations and avoidance of azeotropes (Jana and Adari, 2009). However, due 

to the integration of reaction and separation, reactive distillation exhibits 

complex behaviours (Khaledi and Young, 2005) such as steady state 

multiplicity, process gain sign changes (bidirectionality) and strong interactions 

between process variables (Jana and Adari, 2009). These complexities have 
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made the modelling of Reactive Distillation Process extremely difficult (Giwa 

and Karacan, 2012b; Giwa and Giwa, 2012). As such, a robust tool that can 

handle complex functions very well is needed to represent this complex process. 

One of these tools has been discovered to be Neural Network model because, 

according to Beale et al. (2010), Neural Network can be trained to handle 

complex functions. 

Neural Network model can be viewed as a nonlinear empirical model that is 

especially useful in representing input-output data, in making predictions in 

time, and in classifying data (Himmelblau, 2000). Neural Network can be highly 

nonlinear, can learn easily, requires little or no a priori knowledge of model 

structure, is fault-tolerant and can handle complex problems that cannot be 

satisfactorily handled by the traditional methods (MacMurray and Himmelblau, 

2000). There are many kinds of Neural Network models available in the 

literature. For instance, a simple classification can be: Static Neural Network 

and Dynamic Neural Network. It is perceived that a dynamic network, 

especially Layer-Recurrent Network (LRN), will be better in representing this 

complex Reactive Distillation Process because of the presence of a delay 

ensuring proper dynamics in each of its layers except in the last one. 

According to the information gathered from the literature, Giwa and 

Karacan (2012a) used three different types of delayed neural network 

(Nonlinear AutoRegressive (NAR), Nonlinear AutoRegressive with eXogenous 

inputs (NARX) and Nonlinear Input-Output (IO)) models to represent a reactive 

distillation column in predicting the temperatures of the top and the bottom 

sections of the reactive distillation column used for the production of ethyl 

acetate and they were able to obtain very good results from both NAR and 

NARX models while the results given by IO models were found not to be 

satisfactory. Also, Giwa and Karacan (2012c) developed two nonlinear black-

box (treepartition and sigmoid network NARX) models for the Reactive 

Distillation Process used for the production of ethyl acetate from the 

esterification reaction between acetic acid and ethanol and found that sigmoid 

network NARX model was better than treepartition NARX model for the 

reactive distillation process studied in their work. 

In this work, Reactive Distillation Process is aimed to be modelled with the 

aid of Layer-Recurrent Neural Network using the metathesis reaction of trans-2-

pentene to trans-2-butene and trans-2-hexene as the case study. 

 

2. Procedures 
The methods used for the accomplishment of this work are as outlined 

below. 

 

2.1 Data Acquisition 
The diagram of the metathesis reactive distillation column, developed with 

the aid of Aspen HYSYS (Aspen, 2011), used for the production of trans-2-

butene (obtained in high purity at the top segment of the column) and trans-2-

hexene (obtained in high purity at the bottom segment of the column) from 

trans-2-pentene, and from which the measured data used for the neural network 
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model development were generated is as shown in Figure 1 below. As can be 

seen from the figure, the column had one feed stream and two product streams. 

The olefin metathesis reaction that occurred in the column was a reversible type 

given as shown in Equation 1. 

 
Fig. 1. Process flowsheet for metathesis reactive distillation process 

 

126841052 HCHCHC eqK
+ →←      (1) 

 

The data used for the development of the process in Aspen HYSYS 

environment are as given in Table 1. 
 

Table 1. HYSYS metathesis reactive distillation process development data 

Parameter Value 

Feed 

  Flow rate (mL/min) 35 

  Temperature (K) 298.15 

  Pressure (atm) 1.11 

  Feed Composition (Mole fraction) 

  trans-2-pentene 0.999998 

  trans-2-butene 1.00E-06 

  trans-2-hexene 1.00E-06 

      

Fluid Package UNIQUAC 
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Column 

  Type Packed 

  Packing type Raschig Rings (Ceramic) 0.25 inch 

  No. of segment 15 

  Feed segment 8 

      

Reaction 

  Type Equilibrium 

  Segment 6 - 10 and reboiler 

  Keq source Gibbs Free Energy 

  Basis Molar concentration 

  Phase Liquid 
 

In the process development, reflux ratio and reboiler duty were chosen as 

the manipulated (input) variables while top segment and bottom segment 

temperatures were selected as the process (output) variables. By using the 

random data set values of the manipulated variables built with the aid of 

Parametric Utility of Aspen HYSYS, the column was run and the top segment 

and the bottom segment temperatures were obtained as the measured values of 

the output variables. Two different data sets were generated from the Aspen 

HYSYS system of the process. One was used for the training while the other 

was used for the testing of the Layer-Recurrent Neural Network models. 

 

2.2 Modelling and Simulation 
In the modelling of the Reactive Distillation Process in MATLAB 

(Mathworks, 2012) environment, the data sets obtained from Aspen HYSYS 

system of the process were converted from concurrent types to sequential ones 

because those were the types required by the dynamic Layer-Recurrent Neural 

Network. The parameters used for the formulation of the Neural Network 

models of the process considered in this work are as given in Table 2. 
 

Table 2. Layer-Recurrent Neural Network model formulation parameters 

Parameter  Value 

Number of inputs  2 

Number of outputs  2 

Number of layers  2 

Number of neurons in hidden layer 7 

Hidden layer transfer function tansig 

Output layer transfer function purelin 

Training algorithm  Levenberg-Marquardt 
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Owing to the fact that there were two outputs, and even with two inputs, the 

structure of the neural network had two models in it – one for each process 

variable; that is, one model was for top segment temperature and the other was 

for bottom segment temperature. The structure of the developed models is 

shown below in Figure 2. 

 

( )tTtop
ˆ

( )tTbot
ˆ

 
Fig. 2. Layer-Recurrent Neural Network of metathesis RD process 

 

In order to determine the validities of the developed models, they were 

simulated and their performance values were calculated. The performance 

criteria used were fit values (indicating the percentage of the data accounted for 

by the developed models), means of absolute errors and sums of squared errors. 

 

3. Results and Discussions 
The acquired measured data sets of the input and the output variables used 

for training and testing the neural network models are given in Figures 3 and 4 

respectively for the top segment and the bottom segment temperatures. 
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Fig. 3. Top segment temperature training and testing data sets 
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As can be seen from Figures 3 and 4, there were corresponding changes in 

the responses of the two segment temperatures as a result of the changes in the 

input variables. Also noticed from the results shown in Figures 3 and 4 was that 

the lengths of the training and the testing data for both segment temperatures 

were not the same but the overall limits of the testing manipulated variables 

used were within the ones used for the generation of the training data. The 

different data length was made so in order to test the robustness of the 

developed neural network model to another data with length different from that 

of the one used for its training. 
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Fig. 4. Bottom segment temperature training and testing data sets 

 

After training the Layer-Recurrent Network Models of the process, even 

though the models could not be obtained as physical ones, they were simulated 

using the manipulated variable values used for the training and the performance 

values of the models obtained from the training simulation are as shown in 

Table 3. It was observed from the table that the fit values of the models were 

appropriately very high and the means of absolute errors and the sums of 

squared errors were low enough to say that the models were well trained. 

Further considering the fit values of the training simulations, it was discovered 

that the developed neural network models could account for approximately 99% 

of the data used for developing them. 
 

Table 3. Performance values of network training simulation 

Performance value 
Performance criterion 

Ttop Tbot 

Fit value 99.08 99.27 

Mean of absolute errors 0.04 0.04 

Sum of squared errors 0.80 1.33 
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In addition, the top and the bottom segment temperatures obtained from the 

training simulations of the developed neural network models were plotted 

together with the measured ones and their graphs are as shown in Figures 5 and 

6 respectively for the top segment temperature and the bottom segment 

temperature profiles. From Figure 5, it was observed that there was a good 

relationship between the measured and the simulated top segment temperature 

profiles because, as seen from the graph, the trends of the two plots were found 

to follow each other very well. Also, as noticed from Figure 6, good relationship 

was found to exist between the profiles of the bottom segment temperatures 

measured and those estimated with the developed model. The good relationships 

between the plots contained in Figures 5 and 6 have been discovered to be in 

support of the excellent performance values of the models (see Table 3). 
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Fig. 5. Measured and simulated top segment temperatures 

 

50 100 150 200 250 300 350

310

315

320

325

330

335

340

Run

T
b
o

t (
K

)

 

 

Measured

Simulated

 
Fig. 6. Measured and simulated bottom segment temperatures 
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Apart from simulating the developed models with the manipulated (input) 

variables used for the training, testing data set generated for the purpose of 

model testing, and which was not used for the training of the models, was also 

used to simulate the developed models and the performance values obtained 

from the testing simulations are as given in Table 4. As can be seen from the 

table, in the testing simulation also, the fit values were found to be very high. In 

addition, the means of absolute errors and the sums of squared errors for both 

the top and the bottom segment temperatures were obtained to be very low and 

appropriate enough for good models.  

 

Table 4. Performance values of network testing simulation 

Performance value 
Performance criterion 

Ttop Tbot 

Fit value 98.74 98.63 

Mean of absolute errors 0.05 0.07 

Sum of squared errors 0.95 3.15 

 

In addition, the representations of the Reactive Distillation Process of this 

work by the developed neural network models were as well investigated by 

plotting the testing simulation results of both the top and the bottom segment 

temperatures against the measured ones as shown in Figures 7 and 8, 

respectively. 
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Fig. 7. Top segment simulation results of neural network testing 
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Fig. 8. Bottom segment simulation results of neural network testing 

 

According to the results shown in Figures 7 and 8, the 45 degree lines given 

by the plots of the testing simulations of the top and the bottom segment 

temperatures against the measured ones were found to be other indications of 

the good representations of the Reactive Distillation Process by the developed 

neural network models. 

It has thus been seen that the developed neural network models for the top 

and the bottom segment temperatures of the reactive distillation column have 

been found to perform very well both in the training and in the testing 

simulations. The good performances obtained from the developed models have 

demonstrated the versatility of neural network in representing complex 

processes very well. 

 

4. Conclusions 
The very high fit values, the low means of absolute errors and the low sums 

of squared errors obtained from the training and the testing simulations of the 

Layer-Recurrent Neural Network models developed for the olefin metathesis 

Reactive Distillation Process, used for the production of trans-2-butene and 

trans-2-hexene from trans-2-pentene, have confirmed the validities of the 

developed models for the top and the bottom segment temperatures of the 

column in which the process was accomplished. Therefore, Layer-Recurrent 

Neural Network model has been revealed to be an excellent tool in representing 

the complex Reactive Distillation Process. 
 

Acknowledgement 

The authors acknowledge and appreciate the supports received from the 

Prime Ministry of The Republic of Turkey, Presidency for Turks Abroad and 

Related Communities for their programmes. 
 



A. Giwa and S.O. Giwa 656 

References 

1. A. Giwa and S. Karacan. Black-Box Modelling of Ethyl Acetate Reactive Packed 

Distillation Column, AU Journal of Technology, 15(3):172-178, 2012b. 

2. A. Giwa and S. Karacan. Modeling and Simulation of a Reactive Packed Distillation 

Column Using Delayed Neural Networks, Chaotic Modeling and Simulation, 

2(1):101-108, 2012a. 

3. A. Giwa and S. Karacan. Nonlinear Black-Box Modeling of a Reactive Distillation 

Process, International Journal of Engineering Research & Technology, 1(7):1-10, 

2012c. 

4. A. Giwa and S.O. Giwa. Optimization of Transesterification Reaction Integrated 

Distillation Column Using Design Expert and Excel Solver, International Journal 

of Advanced Scientific and Technical Research, 2(6):423-435, 2012. 

5. A.K. Jana and P.V.R.K. Adari. Nonlinear State Estimation and Control of a Batch 

Reactive Distillation. Chemical Engineering Journal, 150(2-3):516-526, 2009. 
6. Aspen. AspenONE V7.3, Aspen Technology, 2011. 

7. D. M. Himmelblau. Applications of Artificial Neural Networks in Chemical 

Engineering, Korean Journal of Chemical Engineering, 17(4):373–392, 2000. 

8. J. C. MacMurray and D. M. Himmelblau. Modeling and Control of a Packed 

Distillation Column Using Artificial Neural Networks, Computers and Chemical 

Engineering, 19(10):1077–1088, 1995. 

9. L. S. Balasubramhanya and F. J. Doyle III. Nonlinear Model-Based Control of a 

Batch Reactive Distillation Column, Journal of Process Control, 10(2-3):209-218, 

2000. 

10. M. H. Beale, M. T. Hagan and H. B. Demuth. Neural Network Toolbox 7, The 

MathWorks Inc., Apple Hill Drive, Natick MA, 2010. 

11. M. Völker, C. Sonntag and S. Engell. Control of Integrated Processes: A Case 

Study on Reactive Distillation in a Medium-Scale Pilot Plant, Control Engineering 

Practice, 15(7):863–881, 2007. 

12. Mathworks. MATLAB R2012b, The Language of Technical Computing, The 

MathWorks, Inc., Natick, 2012. 

13. R. Khaledi and B.R. Young. Modeling and model predictive control of 

composition and conversion in an ETBE reactive distillation column, Industrial & 

Engineering Chemistry Research, 44(9):3134-3145, 2005. 

 



 

 
Chaotic Modeling and Simulation (CMSIM)  4:  657-667, 2013 

 

_________________ 

Received: 30 July 2013 / Accepted:  25 September 2013 

© 2013 CMSIM                                                                                ISSN 2241-0503 

Nonlinear Dynamical Systems Theory 

and Economic Complexity 
 

Aleksander Jakimowicz 

 

University of Warmia and Mazury in Olsztyn, Faculty of Economic Sciences, 

Department of Quantitative Methods, Poland 

E-mail: aleksander.jakimowicz@uwm.edu.pl 

 
Abstract: Catastrophe theory and deterministic chaos constitute basic elements of the 

science of complexity. Elementary catastrophes were the first form of nonlinear, 

topological complexity that were seriously studied in economics. Deterministic chaos 

and other types of complexity succeeded catastrophe theory. In general, chaos means the 

seemingly random behavior of a deterministic system, which stems from high sensitivity 

to its initial conditions. Nonlinear dynamical systems theory, which unites various 

manifestations of complexity into one integrated system, is contrary to the assumptions 

that markets and economies spontaneously strive for a state of equilibrium. To the 

contrary, their complexity seems to grow due to the influence of classic economic laws. 

In my paper, I indicate that with time, model economic systems strive for a state we call 

“the edge of chaos”. I consider two cases. The first case concerns an economy based on a 

two-stage accelerator, where the economic cycle adopts the form of chaotic hysteresis. 

The second case concerns a Cournot-Puu duopoly model in which striving for the edge of 

chaos stems from profit maximization by entrepreneurs. The evolution of systems at the 

edge of chaos can be sudden, which makes it necessary to consider it in terms of 

elementary catastrophes. 

Keywords: Cusp catastrophe, Chaotic hysteresis model, Cournot-Puu duopoly model, 

Edge of chaos, System classification, Economic transformation, Rule of progressive 

complexity. 

 

1. Introduction: Foundations of catastrophe theory 
1.1. Classification Theorem 

The theory of catastrophes, also known as the theory of morphogenesis, 

appeared in science in the mid-1970s [25]. It is a general method of system 

modeling focusing on the way in which discontinuous effects can emerge from 

continuous causes. Let the dynamic system be represented by a smooth 

function: 

RRR  nkf : , (1) 

where 
k

R  is a control space representing a set of causes, whereas 
n

R  is a 

space of states (behavior) representing a set of effects. The function f is called a 

potential function. If the internal dynamics of the system consist in striving for a 
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local maximum, then the potential function can represent the probability of it 

being found. 

The basis of catastrophe theory is the classification theorem [26]. This states 

that if the co-dimension k of elementary catastrophes is bigger than 5, they 

create a finite family of discontinuous transition types. Every sudden dynamic 

change can be assigned to one of those types. The relation between the number 

of catastrophes and the co-dimension is shown in Table 1. 

 

Table 1. Elementary catastrophe classification in relation to the co-dimension k 

Co-dimension value (k) 1 2 3 4 5 6 7 … 

Number of elementary 

catastrophes 
1 2 5 7 11   

 

From an application point of view, the case k = 4 is important, since
4

R  can be 

interpreted as a physical space-time in which all events take place. There are 

seven types of singularities in this case: fold, cusp, swallowtail, butterfly, 

hyperbolic umbilic, elliptic umbilic, and parabolic umbilic [5]. 

The application of the catastrophe theory in economics is possible only when 

the law governing a given phenomenon or process has been well-defined. In 

such a case, the catastrophe theory will facilitate the choice of the easiest 

mathematical structure, which will generate a behavior closest to real. Another 

equally point is to use metaphors properly [8]. 

 

1.2. The cusp catastrophe 

The cusp catastrophe is one of the most common elementary catastrophes in 

economic applications. The potential function has the following form: 

 

RRR  12:f , (2) 

 

Thus, the control space is two-dimensional, whereas the state space is one-

dimensional. The function (2) has a simple multinomial representation: 

 

  xcxcxxccf 2
2

1
4

21
2

1

4

1
,,  , (3) 

where x stands for the state variable, whereas 1c  and 2c  are the control 

parameters [28]. The manifold of the catastrophe defining the surface area of the 

system equilibrium is dependent on the following formula: 
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df
xccM . (4) 

 

The system proceeds along this surface in a continuous way, until it comes 

across a set of singularities. There is then a sudden jump to another equilibrium 

surface and the continuous evolution continues until the next jump. 

2. Deterministic chaos 
2.1. Nonlinearity as a necessary condition for complexity 

In order to define nonlinearity it is necessary to clearly define linearity. In all 

linear systems, the binding rule is the rule of superposition. This states that the 

system’s reaction to two or more stimuli is the sum of reactions triggered 

individually by each of these stimuli. If factor A triggers reaction X, and factor B 

reacts to Y then the factor (A + B) results in (X + Y). In other words, linear 

systems are additive.  

The rule of superposition implies the linearity of the system if we supplement it 

with the condition of homogeneity. A lack of additiveness and homogeneity 

implies the nonlinearity of the system. The main causes of nonlinearity in 

economics are: 

 Limitations imposed on the economic variables [2]. 

 Technical-balance laws of production [15]. 

 Technical-organizational factors [10]. 

 Bounded rationality [24]. 

 Processes of expectation formation [4]. 

 Adaptive processes of economic-agent learning [3]. 

 The shape (protuberance) of the indifference curves. 

 Aggregation processes of some variables [27]. 

 Evolution of competition rules [3]. 

 Psychological laws [14]. 

Nonlinearity is a necessary condition, but it is not enough to trigger chaos. 

Statistical tests confirm that nonlinearity is a phenomenon that is common in 

economic time series, and part of them proves that deterministic chaos exists. 

There are strong grounds to claim that in the future, the role of nonlinearity in 

economic explorations will become more significant. 

 

2.2. The butterfly effect 

Deterministic chaos means a seemingly random behavior of the deterministic 

system, thus one which is strictly subject to specific rules. The reason for the 

stochastic behavior of some nonlinear deterministic systems is their unusually 

sensitive dependence on initial conditions, which was named ‘the butterfly 

effect’ by Lorenz [16]. A slight disturbance in the initial conditions after some 

time causes significant changes in the system behavior as trajectories begin to 

disperse exponentially. As picturesquely described Lorenz, a proverbial flap of 

butterfly wings in Brazil can cause a tornado in Texas. 
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The Lyapunov exponents are amongst the most frequently-used quantitative 

measures of the trajectory divergence. This notion has been used by Oseledec 

[20] in a well-known multiplicative ergodic theorem. The Lyapunov exponent 

for one-dimensional map is as follows: 

     
0

000

0ε
ln

1
lim

ε

ε
ln

1
limlim

xd

xfd

n

xfxf

n
W

n

n

nn

n

L





 . (5) 

Symbols 
nfff ,,, 21   stand for subsequent iterations, 0x  and 0x  are 

the initial conditions for the two trajectories. The number 0  is very small. 

With every iteration, the distance between the trajectories increases 

exponentially. This definition can also be generalized with multi-dimensional 

systems. The number of exponents has to correspond to the number of 

dimensions. If the largest exponent of a dynamical system is positive, this 

indicates a chaotic trajectory, while an exponent equal to zero indicates the 

bifurcation point, and a negative value means convergence of the trajectory with 

the constant point of attraction or a periodic attractor. 

The basic notion of nonlinear dynamical systems theory is also the notion of an 

attractor, primarily a chaotic attractor. Let F stand for a map of m-dimensional 

space into itself. The compact set A, which is situated in the m-dimensional 

space, we call the attractor for F if it meets the conditions of invariance, density, 

stability and attraction. An attractor is a chaotic attractor if it contains a chaotic 

trajectory [19]. 

 

2.3. System classification in nonlinear dynamical systems theory 

In order to compare the subjects of conventional science, the theory of 

deterministic chaos, and the theory of complexity, we can classify systems 

based on the following criteria: the number of constituents of the system N and 

the average number of links between these elements K (see [11, 12, 13]). 

Depending on the relationship between these parameters, we can distinguish 

three types of the NK systems: 

 Type I – subcritical systems. The number of links is very small, given the 

number of elements. Every element is technically independent from others, 

thus the behavior of the whole system can be treated as a simple sum of its 

parts. Because the rule of superposition is met in such a case, systems of this 

type are approximately linear. Their dominating behavior is striving for 

states of equilibrium. 

 Type II – critical systems. The average number of links is substantially 

greater than in the subcritical systems. These systems are characterized by 

more complex dynamics and can reveal emergent properties [7]. Local 

changes can be dispersed in a system so they usually do not bring about 

global consequences. These types of systems often balance on the edge of 

chaos (this is a state when the system’s ability to survive is the greatest and 

its computing power reaches maximum value). 

 Type III – supercritical systems. The ratio of the number of links to the 

number of elements approaches one. It is a state in which almost every 
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element is interlinked with all the rest. It includes deterministic systems, 

which are characterized by complex dynamics. 

The largest Lyapunov exponent for subcritical systems is negative, for critical 

systems it oscillates around zero, whereas for supercritical systems it is positive. 

Classical science deals with systems of type I, the theory of chaos explores 

systems of type III, whereas the subject of interest for the theory of complexity 

is type II and the transitions between various types of systems (see [7, 21]). 

3. Applications in economics 
3.1. The theory of economic transformation 

The first step towards elaborating a theory of transformation was taken by 

American researchers who formulated a model of chaotic hysteresis (see [22, 

23]). Two basic nonlinear dynamical systems theory methods were applied 

concurrently, i.e. elementary catastrophes and deterministic chaos. The starting 

point is a socialist economy. According to the Marxist convention, the economy 

was divided into two sectors: consumption-goods and capital-goods. The notion 

of a technological gap and the cusp catastrophe were used to describe social-

economic crises. The attractor in the form of a chaotic hysteresis that appears in 

a reformed economy is a result of a two-phase activity of a nonlinear 

accelerator.  

The dynamic system is described by a two-dimensional formula: 

ttt ZII  1 , (6) 

  1
3

11   tttt IvZZuZ , (7) 

where: tI  – total investment within the period t, tZ  – increase in the 

investment, whereas symbols u and v means respectively the values of 

accelerators in the capital-goods sector and in the consumption-goods sector. 

These formulas cannot be solved analytically, but they can be the subject of 

numerical explorations. 

An analysis of the system (6)–(7) was conducted assuming the constant value of 

the accelerator in the sector of capital goods u = 2, whereas the value of the 

parameter v was gradually decreased. For 0.01  v  0.1395 in the phase space 

of the system there is an investment cycle in the form of a chaotic attractor. 

Lowering the value of the accelerator of the consumption-goods sector means 

the metamorphosis of the attractor – eventually for the value of v = 0.00005 it 

takes on the form of chaotic hysteresis. The attractor in this form is featured in 

Figure 1. In the model, there is a trade-off between complexity (chaos) and 

instability, understood as the increase of period and amplitude of oscillation of 

investment [6]. 

The next element of the theory is the technological gap (G), which stems from 

the higher rate of capital-intensive nature of production in socialism compared 

to a capitalist economy. Paradoxically, this phenomenon is a result of pursuing 

the postulates of stability of production and full employment, which were to 

make socialism a system more bearable for people than capitalism with its 

chronic unemployment and crises. 
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Another step is to introduce the cusp catastrophe, whose space area of 

equilibrium meets condition (4). In the theory under investigation, the variable 

of this state is the probability of an introduction of market reforms )(sPx  , 

the bifurcation parameter is the dimensions of the technological gap Gc 1 , 

whereas the asymmetric parameter is the rate of growth of investment 

IZc 2 . In the Figure 2 there is a geometrical interpretation of the 

morphogenetic model of transformation. 

The space of the catastrophe equilibrium describes various scenarios of 

economic crises and the corresponding reforms that sought to answer them. For 

G = 0 we have an example market economy. The occurrence of the 

technological gap, which happens after passing through the beginning of 

catastrophe, causes a division of the equilibrium space into two layers – an 

upper and lower. They suggest the occurrence of nonlinear changes in the 

probability of transformation, whenever the rate of investment growth reaches a 

necessary value. Sudden leaps take place when the asymmetric factor crosses 

the bifurcation set of the catastrophe located in the parameter space marked by 

the following formula: 
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Figure 1. The chaotic attractor in the form of chaotic hysteresis for 

u = 2, v = 0.00005 
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1213  ccccB . (8) 

Numerical explorations of model (6)–(7) have shed new light on a certain 

macroeconomic problem which has been neglected by mainstream economics 

regarding the macroeconomic costs of the reform complexity. An intuitive 

understanding of this category of costs is known from the theory of the 

corporation [18]. The global financial crisis prompted a wider look at the 

complexity of economic processes and the accompanying problems [1]. An 

economy under transformation is vulnerable to falling victim to trade-offs 

between complexity and instability, which accounts for the fact that benefits 

stemming from reforms can, over a long period of time, consolidate below the 

costs of complexity. It is a new, quality-based position in the balance of 

transformation. Future research should focus on methods of its measurement. In 

addition, it constitutes a challenge to economic policy, which should seek to 

simplify economic life. 

 

3.2. The rule of progressive complexity 

 

Mathematical studies of standard nonlinear economic models have revealed an 

interesting regularity, which I called “the rule of progressive complexity” [9]. It 

appears that there are two active forces in economic systems. The first force is 

short term in nature, and its source stems from rational, typical endeavors of 

sP

3B Gc 1

IZc 2

 
 

Figure 2. Geometrical interpretation of a morphogenetic transformation 

model 
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business entities. One of the manifestations of this activity is profit 

maximization by producers and maximization of utility by consumers. As a 

result, these systems seek a state of short-term equilibrium. The second force is 

active over a long period of time and even though its source is identical to the 

first one, the effects are totally different. It destabilizes the short-term states of 

equilibrium and pushes market structures towards a state known as “the edge of 

chaos”. It is a transition field between a periodic behavior and chaotic behavior, 

where the computing power of systems, which means their ability to collect and 

process information, reaches its maximum. The complexity of a system, which 

can been measured by Lapunov exponents, increases in this field. 

Let us consider a duopoly model using the following equations: 

 

t
t

t y
a

y
x 1 , (9) 

t
t

t x
b

x
y 1 , (10) 

 

where: x – the production output of the first entrepreneur, y – the production 

output of the second entrepreneur, whereas a and b stand for their marginal 

costs, respectively. In the static version, these equations set the reaction 

functions. Each of them describes the choice of the production output made by 

an entrepreneur assuming that the production output of their competitor is 

known. The collision of these two functions takes place at the point known as 

the Cournot-Nash equilibrium point.  

The standard analysis of the model’s stability allows us to set two critical values 

of the marginal costs ratio: 
 

223
a

b

b

a
. (11) 

 

This is where the analytical methods give up. We do not know what happens to 

this model when the stability threshold is crossed, or how it behaves over a long 

period. 

It is best to start numerical explorations of a duopoly (9)–(10) with making a 

period plot [19]. This is a two-dimensional space of parameters in which various 

behavior of the system has been specified (with emphasis on periodic behavior). 

In order to do this, one should define the interval of changeability of both 

parameters and the initial condition of the trajectory bundle. A plot of this type 

allows us to follow the dynamics of the system depending on a simultaneous 

change in two control parameters. 

Numerical explorations of parameter space reveal the following types of 

behavior: states of short-term equilibrium, periodic dynamics, chaos and 

divergent trajectories (see Figure 3). Pairs of parameters responsible for states of 

stable equilibrium account for 82.77% of the parameter space, whereas pairs of 
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chaotic parameters account for mere 0.15% of this space. Consequently, it 

seems that stability predominates and the claims of conventional economics 

have been confirmed. However, it is a false conclusion. Entrepreneurs are 

interested not only in maximizing profit over a short time, but also in the long 

run. Maximizing profit in the long run requires introducing technical-

organizational progress and it results in lowering marginal costs. Consequently, 

every producer strives for one of the two edges of chaos (11), i.e. states with 

growing complexity [9]. 

The system displays a certain type of globally rational behavior which 

contributes to its survival. As of the moment the efficient producer achieves the 

edge of chaos, his long-term profit decreases, and the long-term profit of the 

inefficient producer begins to grow [17]. This leads to role reversal, and in the 

diagram, the market bounces off the edge of chaos. 

4. Conclusions 
Catastrophe means a violent, sudden transition of the tested system into a new 

state. What is important here is the rapidity of the changes in the behavior of an 

object as compared with the mean change in the past. Catastrophe theory merges 

two apparently contradictory and unrelated kinds of phenomena descriptions to 

form one coherent notion system: evolutionism and revolutionism, continuity 

and discontinuity. In economics, the application of catastrophe theory is of great 
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cognitive importance, particularly in issues of explanation and forecasting in 

economics. 

In transitional economies, there is a trade-off between complexity and 

instability. In the economic calculation of transformations, a new type of cost 

needs to be considered – the social costs connected with the change of the 

dynamic complexity of the systems. Numerical explorations of an archetypal 

duopoly model have proven that states of equilibrium are stable only for a short 

period. In the long run, such systems strive for the edge of chaos. 
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Some aspects of stochastic calculus and
approximation in chaotic systems analysis
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Abstract. Frequently when we refer to chaos and chaotic and complex systems to
describe the comportment of some natural phenomena, in fact we consider phenomena
of the type of a Brownian motion which is a more realistic model of such phenomena.
Thus one can talk about a passing from chaotic and complex systems to Brownian
motion. Some aspects regardind the Brownian motion and its Markovian nature will
be developed, in short, in this paper; we try also to emphasize their impact for some
practical problems.
Keywords: stochastic differential equations, stochastic calculus, Markov processes,
Brownian motion..

1 Introduction

It is known that a chaotic perpetual motion of a Brownian particle is the result
of the collisions of particle with the molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

We emphasize that L. Bachélier derived the law governing the position of
a single grain performing a 1-dimensional Brownian motion starting at a ∈ R
at time t = 0; and A. Einstein also derived the same law from statistical
mechanical considerations and applied it to the determination of molecular
diameters.

Also Paul Lévy found a construction of the Brownian motion and given
a profound description of the fine structure of the individual Brownian path.
D. Ray obtained some results in the case when the motion is strict Markov;
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and W. Feller obtained that the generator of a strict Markovian motion with
continuous paths (diffusion) can be expressed as a differential operator.

And in the last time we can speak about Markov processes from Kiyosi Itô’s
perspective (according to D.W. Stroock). The usual class of Markov processes
which we consider has many times some restrictions which do not cover many
interesting processes. This is the reason for which we try often to obtain some
extensions of this notion.

Researches in this direction are due especially to K. Itô and in this context
we shall refer below, in short, to some of them.

2 On Markov processes - an extended definition

We start with the concept of a random variable which encodes an experimental
outcome as a number, or a vector of real numbers in the multidimensional case.
When a random variable has a multidimensional state space, we emphasize that
fact by calling it a random space.

Let (E, ξ) be a measurable space and X : (Ω,K, P ) → (E, ξ) a random
variable (i.e. a measurable map).

The image µ of P under X is a probability measure on (E, ξ) called the
law of X and denoted by L(X). The events {ω |X(ω) ∈ A} for A ∈ ξ form a
sub-σ-field of K called the σ-field generated by X and denoted by σ(X).

More general, given a family Xα, α ∈ I, of random variables on (Ω,K, P )
taking values in measurable spaces (Eα, ξα), α ∈ I, respectively, the σ-field
generated by Xα, α ∈ I, denoted by σ(Xα, α ∈ I), is the smallest sub-σ-field
with respect to which they are all measurable.

They may be situations where it is preferable to view {Xα, α ∈ I} as a
single random variable taking values in the product space

∏
Eα endowed with

the product σ-field
∏
ξα.

If so, this definition reduces to the following:

Definition 21 Let (Ω,K, P ) be a probability space and let us denote by E a
subset of Rn. A ”random variable” X is a function from Ω into E.

E is referred to as the state space of the random variable.
Suppose we have n random variables X1(ω), · · · , Xn(ω) defined on a prob-

ability space.
The random variables X1, · · · , Xn are said to be independent if the fields

(σ-fields) KX1 , · · · , KXn generated by them are independent.

Definition 22 A ”stochastic process” is a family of real random variables

{Xt}t∈T

defined on a probability space (Ω,K, P ), indexed with a time parameter t and
assuming values in Rn.

The parameter space T may be the halfline [0,+∞), or it may also be an
interval [a, b], or the non-negative integers and even subsets of Rn, for n ≥ 1.
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Now, for each t ∈ T fixed, we have a random variable ω → Xt(ω), ω ∈ Ω.
A stochastic process will be denoted by X(t).
Now let S be a state space and consider a particle which moves in S. Also,

suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and we con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base. The σ-field generated by the open sets (the topological σ-field
on S) is denoted by K(S). Therefore, a Borel set A is a set in K(S) (i.e.
A ∈ K(S)).

The mean value

m = M(µ) =

∫
R

xµ(dx)

is used for the center and the scattering degree of a one-dimensional probability
measure µ having the second order moment finite, and the variance of µ is
defined by

σ2 = σ2(µ) =

∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be derived.

Remark 1. In the case when the considered probability measure has no finite
second order moment, σ becomes useless. In such a case one can introduce
the central value and the dispersion that will play similar roles as m and σ for
general 1-dimensional probability measures.

The dispersion δ is defined as follows

δ = δ(µ) = − log

∫ ∫
R2

e−|x−y|µ(dx)µ(dy).

Furthermore it is assumed that the following conditions are satisfied by the
transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S):

1 for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

2 p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);

3 pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
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4 pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
5 the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S

pt(x, dy)ps(y,A).

Remark 2. The ”transition operators” can be defined in a similar manner. Con-
sider C = C(S) to be the space of all continuous functions (it is a separable
Banach space with the supremum norm).

The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called ”transition operators”.

Remark 3. Let us consider R ∪ {∞} as the one-point compactification of R.
Then it can be observed that the conditions (1) – (5) above are satisfied for
the ”Brownian transition probabilities”. One can define

pt(x, dy) = 1
t
√
2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

We can give now the definition of a Markov process as follows:

Definition 23 A ”Markov process” is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).

It can be observed that a definition as it is given above not correspond to many
processes that are of a real interest so that it is useful to obtain an extension
of this notion. An extended notion has been proposed by K. Itô and it is given
below.

Let E be a separable Banach space with real coefficients and norm || · || and
let also L(E,E) be the space of all bounded linear operators E −→ E. It can
be observed that L(E,E) is a linear space.

Definition 24 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K,Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topological σ-algebra on S;

2) the ”time internal” T = [0,∞);
3) the ”space of paths” Ω is the space of all right continuous functions T −→ S

and K is the σ-algebra K[Xt : t ∈ T ] on Ω;
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4) the probability law of the path starting at a, Pa(H), is a probability measure
on (Ω,K) for every a ∈ S which satisfy the following conditions:
4a) Pa(H) is K(S)-measurable in a for every H ∈ K;
4b) Pa(X0 = a) = 1;
4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫

. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1
(Xtn−tn−1

∈ dan) for 0 < t1 < t2 < . . . < tn.

Remark 4. Evidently there are some differences between this definition and
Definition 23 of a Markov process. Thus

i. The space S is not necessary to be compact;
ii. it is not assumed the existence of the left limits of the path;

iii. the transition operator f −→ Gtf(·) = E.
(f(Xt)) do not necessarily carry C(S) into C(S) (C(S) being the space of
all real-valued bounded continuous functions on S).

3 The Markovian nature of the Brownian path

As we already emphasized the Brownian motion, used especially in Physics,
is of ever increasing importance not only in Probability theory but also in
classical Analysis. Its fascinating properties and its far-reaching extension of
the simplest normal limit theorems to functional limit distributions acted, and
continue to act, as a catalyst in random analysis.

It is probable the most important stochastic process.
As some authors remarks too, the Brownian motion reflects a perfection

that seems closer to a law of nature than to a human invention.
In 1828 the English botanist Robert Brown observed that pollen grauns

suspended in water perform a continual swarming motion. The chaotic motion
of such a particle is called Brownian motion and a particle performing such a
motion is called a Brownian particle.

He was not the first to mention this phenomenon and had many predeces-
sors, starting with Leeuwenhoek in the 17th century.

However, Brown’s investigation brought it to the attention of the scientific
community, hence Brownian.

Brownian motion was frequently explained as due to the fact that particles
were alive. Poincaré thought that it contradicted the second law of Thermo-
dynamics.

Today we know that this motion is due to the bombardament of the particles
by the molecules of the medium. In a liquid, under normal conditions, the order
of magnitude of the number of these impacts is of 1020 per second.

It is only in 1905 that kinetic molecular theory led Einstein to the first
mathematical model of Brownian motion. He began by deriving its possible
existence and then only learned that it had been observed.

Let us imagine a chaotic motion of a particle of colloidal size immersed
in a fluid. As we already emphasized such a chaotic motion of a particle is
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called, usually, Brownian motion and the particle which performs such a motion
is referred to as a Brownian particle. Such a chaotic perpetual motion of a
Brownian particle is the result of the collisions of particle with the molecules
of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way.

1. The considered particle is much larger than the particle of the fluid so that
the cumulated effect of the interaction between the Brownian particle and
the fluid may be taken as having a hydrodynamical character. Thus, the
first of the forces acting on the Brownian particle may be considered to
be the forces of dynamical friction. It is known that the frictional force
exerted by the fluid on a small sphere immersed in it is determined from
the Stockes’s law: the drag force per unit mass acting on a spherical particle

of radius a is given by −βv, with β =
6πaη

m
, where m is the mass of the

particle, η is the coefficient of dynamical viscosity of the fluid, and v is the
velocity of particle.

2. The other force acting on the Brownian particle is caused by the individ-
ual collisions with the particles of the fluid in which there is. This force
produces instantaneous changes in the acceleration of the particle. Fur-
thermore, this force is random both in direction and in magnitude, and one
can say that it is a fluctuating force. It will be denoted by f(t). For f(t)
the following assumptions are made:

i The function f(t) is statistically independent of v(t).

ii f(t) has variations much more frequent than the variations in v(t).

iii f(t) has the average equal to zero.

A completely different origin of mathematical Brownian motion is a game the-
oretic model for fluctuations of stock prices due to L. Bachélier from 1900.

In his doctoral thesis L. Bachélier hinted that it could apply to physical
Brownian motion.

Therein, and in his subsequent works, he used the heat equation and, pro-
ceeding by analogy with heat propagation he found, albeit formally, distribu-
tions of various functionals of mathematical Brownian motion.

Heat equations and related parabolic type equations have been used rigor-
ously by Kolmogorov, Petrovsky, Khintchine.

Bachélier, L. Théorie de la spéculation. Ann. Sci. École Norm. Sup., 17, 1900, 21-86.
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L. Bachélier derived the law governing the position of a single grain per-
forming a 1-dimensional Brownian motion starting at a ∈ R1 at time t = 0:

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)×R2, (1)

where g is the source (Green) function

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

(2)

of the problem of heat flow:

∂u

∂t
=

1

2

∂2u

∂a2
(t > 0). (3)

Bachélier also pointed out the Markovian nature of the Brownian path
expressed in

Pa[a1 ≤ x(t1) < b1, a2 ≤ x(t2) < b2, · · · , an ≤ x(tn) < bn] =

=

b1∫
a1

b2∫
a2

· · ·
bn∫
an

g(t1, a, ξ1) g(t2 − t1, ξ1, ξ2) · · ·

· · · g(tn − tn−1, ξn−1, ξn) dξ1 dξ2 · · · dξn, 0 < t1 < t2 < · · · tn (4)

and used it to establish the law of maximum displacement

P0

[
max
s≤t

x(s) ≤ b
]

= 2

b∫
0

e−
a2

2t

√
2πt

da t > 0, b ≥ 0. (5)

It is very interesting that A. Einstein, in 1905, also derived (1) from statisti-
cal mechanical considerations and applied it to the determination of molecular
diameters.

We emphasize again that a rigorous definition and study of Brownian mo-
tion requires measure theory.

But as soon as the ideas of Borel, Lebesgue and Daniell appeared, it was
possible to put the Brownian motion on a firm mathematical foundation and
this was achived in 1923 by N. Wiener.

Consider the space of continuous path w : t ∈ [0,+∞) → R with coordi-
nates x(t) = w(t) and let B be the smallest Borel algebra of subsets B of this
path space which includes all the simple events B = (w : a ≤ x(t) < b), (t ≥
0, a < b). Wiener established the existence of nonnegative Borel measures
Pa(B), (a ∈ R, B ∈ B) for which (4) holds. Among other things, this result
attaches a precise meaning to Bachélier’s statement that the Brownian path is
continuous.

As we already emphasized at the beginning, Paul Lévy found another con-
struction of the Brownian motion and gives a profound description of the fine
structure of the individual Brownian path.

The standard Brownian motion can be now defined.

A. Einstein, Investigations on the theory of the Brownian movement, New York, 1956.
N. Wiener, Differential space. J. Math. Phys. 2, 1923, 131-174.
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Definition 31 A continuous-time stochastic process {Bt | 0 ≤ t ≤ T} is called
a ”standard Brownian motion” on [0, T ) if it has the following four properties:

i B0 = 0.
ii The increments of Bt are independent; that is, for any finite set of times

0 ≤ t1 < t2 < · · · < tn < T, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent.
iii For any 0 ≤ s ≤ t < T the increment Bt −Bs has the normal distribution

with mean 0 and variance t− s.
iv For all ω in a set of probability one, Bt(ω) is a continuous function of t.

The Brownian motion can be represented as a random sum of integrals of
orthogonal functions. Such a representation satisfies the theoretician’s need to
prove the existence of a process with the four defining properties of Brownian
motion, but it also serves more concrete demands. Especially, the series re-
presentation can be used to derive almost all of the most important analytical
properties of Brownian motion. It can also give a powerful numerical method
for generating the Brownian motion paths that are required in computer sim-
ulation.

Remark 5. Let us consider R ∪ {∞}. Then one can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Let us observe that the conditions 1b) and 2-5 assumed on the transition
probabilities {pt(x,A)}t∈T,x∈S,A∈K(S), given in Section 2, are satisfied in this
case for ”Brownian transition probabilities” where R ∪ {∞} is considered as
the one-point compactification of R.

Finally we shall give an interesting result regarding to a 3-dimensional Brow-
nian motion.

Let X be a Markov process in a generalized sense as it is given in Definition
24. Let us denote by B(S) the space of all bounded real K(S)-measurable
functions and let us consider a function f ∈ B(S).

It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(6)

is bounded in a. Then, the following

Uf(a) = Ea

( ∞∫
0

f(Xt)dt

)
(7)
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is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X. Having in view that

Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this fact,
Rαf will be called the potential of order α of f .

Remark 6. It is useful to retain that Rαf ∈ B(S) for α > 0; and generally
f ∈ B(S) while R0f(= Uf) ∈ B(S) under the condition (6).

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion

Theorem 31 (K. Itô). Let X be the 3-dimensional Brownian motion. If f ∈
B(S) has compact support, then f satisfies (6) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (8)

Remark 7. Many other details, proofs and related problems can be found in
[1], [2], [3], [4], [14], [6], [13], [12], [9].

Conclusion 31 The Brownian motion can be represented as a random sum of
integrals of orthogonal functions. Such a representation satisfies the theoreti-
cian’s need to prove the existence of a process with the four defining properties
of Brownian motion, but it also serves more concrete demands, one of the most
important being the ”chaotic and complex systems analysis”.

Especially, the series representation can be used to derive almost all of the
most important analytical properties of Brownian motion.

It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.

At the same time, as we have said at the beginning, we think that when, in
various problems, we say ”chaos” or ”chaotic and complex systems” or we use
another similar expression to define the comportment of some natural phenom-
ena, in fact we imagine phenomena similarly to a Brownian motion which is
a more realistic model of such phenomena. And this opinion lie at the basis of
this paper.
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2.K. Itô, Selected Papers, Springer, 1987.
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