Space Complexity: Savitch's
Theorem and PSPACE-
Completeness

Tuesday April 15

MEASURING SPACE COMPLEXITY

FINITE
STATE

CONTROL

3 4 5 6

We measure space complexity by Iookmg at the
furthest tape cell reached during the computation

Let M = deterministic TM that halts on all inputs.

Definition: The space complexity of M is the
function s : N— N, where s(n) is the furthest tape
cell reached by M on any input of length n.

Let N be a non-deterministic TM that halts on all
inputs in all of its possible branches.

Definition: The space complexity of N is the
function s : N — N, where s(n) is the furthest

tape cell reached by M, on any branch if its
computation, on any input of length n.

Definition: SPACE(s(n)) =
{L|Lis alanguage decided by a O(s(n))
space deterministic Turing Machine }

Definition: NSPACE(t(n)) =
{L|Lis alanguage decided by a O(s(n)) space
non-deterministic Turing Machine }

PSPACE = U SPACE(nk)
k&N

NPSPACE = U NSPACE(nk)
k&N

3SAT € SPACE(n) C PSPACE

(Y DTy eV DT T T

(I DT Iy e[y DT f#lx] [y

(Pl DTy [By D[B lx o]y

(KM Ty IXDT Iy KIvIyD T [EIx[oly

(P Iy DTy TV Iy DT i1y

Assume a deterministic Turing machine that
halts on all inputs runs in space s(n)

Question: What’s an upper bound on the
number of time steps for this machine?

A configuration gives a head position, state, and
tape contents. Number of configurations is at most:

s(n) |Q] |F|S(")= 20(s(n))

Number of Configurations

s(n) |Q] [[[s(m = 20(s(n))

MORAL.:
Space S computations can be
simulated in at most 2°90) time steps

PSPACE C EXPTIME

EXPTIME = U TIME(2™)
k&EN

MORAL.:
Space S computations can be
simulated in at most 2°90) time steps

LCNLCP

Any function computable in
log space is also In
polvnomial time.

« S-T-Connectivity (STCONN):

» S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path fromstot ?

9/24/2013

STCONN is in NL

* NUMSTEPS = 0 (number of steps taken.)
 C =s (current node)
 FLAG=False

o Until NUMSTES =ndo
— GUESS Zfrom 1ton
— Increment NUMSTEPS
—If (c,z) is an edge in G, set c=z
— If c==t set FLAG= True.

9/24/2013

| started at S
— | got drunk
—andnowlamatT

| wandered,
therefore, my path from S to T exists.

9/24/2013

 NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input

length, and f :N I N

Let C configuration graph for a space f(n)
NTM on input x.

C has cf(n = 2kin) nodes (Exponential in f(n))
f(n) = K’log(n) means POLY-SIZED graph.

9/24/2013

STCONN is NL-Hard
under logspace reductions

* Proof:

—given L € NL decided by NTM M construct

configuration graph for M on input x (can be

done in logspace),
— s = starting configuration; t = q, .o

— Output graph as a list of edges.

9/24/2013

Savitch’'s Theorem

Theorem: STCONN & SPACE(log? n)

 Corollary: NL C SPACE(log?n)

9/24/2013

Proof of Theorem

—input: G = (V, E), two nodes s and t
— recursive algorithm:

[* return true iff path from x to y of length at most 2! */

PATH(X, v, i)
fi=0return (x=yor(x,y)€E) /* base case */
forzinV

if PATH(X, z, i-1) and PATH(z, v, i-1) return(true);
return(false);
end

9/24/2013

Proof of Theorem

—answer to STCONN: PATH(s, t, log n)
— space used:
* (depth of recursion) x (size of “stack record”)
—depth =log n
— claim stack record: “(x, vy, i)” sufficient
* size O(log n)
— when return from PATH(a, b, i) can figure out

what to do next from record (a, b, i) and
previous record

9/24/2013

Savitch’'s Theorem

Theorem: STCONN & SPACE(log? n)

« Corollary:
« NSPACE(s(n)) C SPACE(s(n)?)

s(n)2logn

9/24/2013

 NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N I N

Let C configuration graph for a space f(n)
NTM M on input x.

C has cf(n) = 2ki(n) hodes (Exponential in f(n))

M accepts x iff Start and Accept are
connected in the directed graph C

USe Savirch’s algorithm on C
gzﬁgbe“ogl\z (2kf(n))) = SPACE(f(n)*2)

Savitch’'s Theorem

Theorem: STCONN & SPACE(log? n)
 Corollary: NL C SPACE(log?n)

» Corollary: NPSPACE = PSPACE

9/24/2013

Number of Configurations

s(n) |Q] [[[s(m = 20(s(n))

Theorem: For a function s where s(n) = n

NSPACE(s(n)) € SPACE(s(n)?)

Proof:

Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
d., clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: C__..=q.,0...O

S

Construct a deterministic M that on input w,
runs CANYIELD(C,, C,__, 29s(lw])

acc’

Here d > 0 is chosen so that 29s(wl) ypper bounds the
number of configurations of N(w)
=> 2ds(lwl) js an upper bound on the running time of N(w).

Theorem: For a function s where s(n) = n

NSPACE(s(n)) € SPACE(s(n)?)
Proof:

Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
d., clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: C__..=q,O...O

S

Construct a deterministic M that on input w,
runs CANYIELD(C,, C,__, 29s(lw])

acc’

Why does it take only s(n)2space?

Theorem: For a function s where s(n) = n

NSPACE(s(n)) € SPACE(s(n)?)

Proof:

Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
d., clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: C__..=q,O...O

S

Construct a deterministic M that on input w,
runs CANYIELD(C,, C,__, 29s(lw])

acc’

Uses log(29s(wD)) recursions. Each level of recursion uses
O(s(n)) extra space. Therefore uses O(s(n)?) space!

PSPACE = U SPACE(nk)
k&N

NPSPACE = U NSPACE(nk)
k&EN

PSPACE = NPSPACE

NP PSPACE

NPSPACE

EXPTIME

P C NP C PSPACE C EXPTIME
P # EXPTIME

TIME HIERARCHY THEOREM

Recall proof for Halting Problem
box (M,

iInputs

Y M halt
Turing 4 — _

Machines

n The existence of H
n which tells us yes/
Y no for each box
allows us to
constructa TM H’
H: InlY In IYIY In Y that cannot be In
the table.

9/12/2013 29

Time Hierarchy Theorem
box (M, x): does M

nputs accept x in time f(n)?
Y -
Turing .
Machines | o « TM SIM tells us
Y yes/no for each box
n in time g(n)

n * rows include all of
Y TIME(f(n))

e construct TM D
running in time g(2n)
D: In|Y |n |Y |Y |n |Y | [thatis not In table

9/12/2013 30

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For
every proper complexity function f(n) 2 n:

TIME(f(n)) (TIME(f(2n)3).

9/12/2013 31

Proof of Time Hierarchy Theorem

* Claim: there is a TM SIM that decides
{<M, x> : M accepts x in < f(|x|) steps}
and runs in time g(n) = f(n)3.
* Proof sketch: SIM has 4 work tapes

 contents and “virtual head” positions for M’s
tapes

 M’s transition function and state
« f(|x|) “+”s used as a clock
* scratch space

9/12/2013 32

Proof of Time Hierarchy Theorem

» contents and “virtual head” positions for M’s tapes
« M’s transition function and state

* f(|x|) “+"s used as a clock

 scratch space

— Initialize tapes

— simulate step of M, advance head on tape 3;
repeat.

— can check running time is as claimed.

* Important detail: need to initialize tape 3 In
time O(f(n))

9/12/2013 33

Proof of Time Hierarchy Theorem

* Proof:
— SIM is TM deciding language
{ <M, x> : M accepts x in < f(|x|) steps }

— Claim: SIM runs in time g(n) = f(n)3.
— define new TM D: on input <M>

* if SIM accepts <M, M>, reject

o if SIM rejects <M, M>, accept
— D runs in time g(2n)

9/12/2013 34

Proof of Time Hierarchy Theorem

* Proof (continued):
— suppose M in TIME(f(n)) decides L(D)
 M(<M>) = SIM(<M, M>) # D(<M>)
* but M(<M>) = D(<M>)
— contradiction.

9/12/2013

35

Proper Complexity Functions

» Definition: f is a proper complexity
function if
—f(n) 2 f(n-1) for all n
— there exists a TM M that outputs exactly f(n)

symbols on input 1", and runs in time
O(f(n) + n) and space O(f(n)).

9/12/2013

36

Proper Complexity Functions

 includes all reasonable functions we will
work with
—log n, ¥n, n2, 2", nl, ...
—if f and g are proper then f + g, fg, f(g), 9, 29
are all proper

* can mostly ignore, but be aware it is a
genuine concern:.

* Theorem: 9 non-proper f such that
TIME(f(n)) = TIME(2f(n).

9/12/2013

37

Best Hierarchy Theorems

Theorem (Time Hierarchy Theorem): For every proper
complexity function f(n) = n:

TIME(f(n)) (TIME(w (f(n)log(f(n))).

Theorem (Space Hierarchy Theorem): For every
proper complexity function f(n) 2 log n:

SPACE(f(n)) (SPACE(« f(n)).

9/12/2013 38

9/12/2013

Time and Space Classes

L = SPACE(log n)
PSPACE = U, SPACE(nk)

P = U, TIME(n)
EXP = U, TIME(2"")

39

—— —

pr—— p— g -—;.-— .——k—
F : - :

/ e
s

| started at S
— | got drunk € NL lucky, tiny brain
—and nowlam NOT atT

How might | know that
NO PATH from S to T exists ?777? |

9/24/2013

