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MEASURING SPACE COMPLEXITY

We measure space complexity by looking at the 
furthest tape cell reached during the computation
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Let M = deterministic TM that halts on all inputs.  

Definition: The space complexity of M is the 
function s :  N→ N, where s(n) is the furthest tape 
cell reached by M on any input of length n.

Let N be a non-deterministic TM that halts on all 
inputs in all of its possible branches. 

Definition: The space complexity of N is the 
function s : N → N, where s(n) is the furthest 
tape cell reached by M, on any branch if its 
computation, on any input of length n.



              
{ L | L is a language decided by a O(s(n)) space 
non-deterministic Turing Machine }

Definition: SPACE(s(n)) =

Definition: NSPACE(t(n)) =

           
{ L | L is a language decided by a O(s(n)) 
space deterministic Turing Machine }



PSPACE =        SPACE(nk)∪
k ∈ N

NPSPACE =        NSPACE(nk)∪
k ∈ N



3SAT ∈ SPACE(n) ⊂ PSPACE    

#  x      y

( x ∨ y¬ ∨ x ) ( y ∨ x ∨ y )

( x ∨ y¬ ∨ x ) ( y ∨ x ∨ y )

#  x  0  y  0( x ∨ y¬ ∨ x ) ( y ∨ x ∨ y )

#  x  0  y  1( x ∨ y¬ ∨ x ) ( y ∨ x ∨ y )

#  x  1  y  0( x ∨ y¬ ∨ x ) ( y ∨ x ∨ y )



Assume a deterministic Turing machine that 
halts on all inputs runs in space s(n)

Question: What’s an upper bound on the 
number of time steps for this machine?

A configuration gives a head position, state, and  
tape contents. Number of configurations is at most:

s(n) |Q| |Γ|s(n) = 2O(s(n))



S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm2
O (s(n))



MORAL:  
Space S computations can be  

simulated in at most 2O(S) time steps

PSPACE ⊆ EXPTIME

EXPTIME =        TIME(2   )∪
k ∈ N

nk



MORAL:  
Space S computations can be  

simulated in at most 2O(S) time steps

L ⊂ NL ⊂ P 
Any function computable in 

log space is also in 
polynomial time.



• S-T-Connectivity (STCONN):

• S-T-Connectivity (STCONN): given 
directed graph G = (V, E) and nodes s, t, is 
there a path from s to t ? 
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STCONN is in NL

• NUMSTEPS = 0 (number of steps taken.) 
• C = s (current node) 
• FLAG=False 

• Until NUMSTES = n do 
– GUESS Z from 1 to n 
– Increment NUMSTEPS 
– If (c,z) is an edge in G, set c=z  
– If c==t set FLAG= True.
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I started at S 
 – I got drunk  
  – and now I am at T 

I wandered,  
therefore, my path from S to T exists. 
9/24/2013



• NSPACE(f(n)) = languages decidable by a 
multi-tape NTM that touches at most f(n) 
squares of its work tapes along any 
computation path, where n is the input 
length, and f :N ! N

Let C configuration graph for a space f(n) 
NTM on input x. 

C has cf(n)  = 2kf(n) nodes (Exponential in f(n)) 
f(n) = k’log(n)     means POLY-SIZED graph.

9/24/2013



STCONN is NL-Hard 
under logspace reductions

• Proof: 
– given L ∈ NL decided by NTM M construct 

configuration graph for M on input x (can be 
done in logspace),  

– s = starting configuration; t = qaccept 

– Output graph as a list of edges.
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Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n) 

• Corollary: NL ⊂ SPACE(log2n)
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Proof of Theorem

– input: G = (V, E), two nodes s and t 
– recursive algorithm:

/* return true iff path from x to y of length at most 2i */ 

PATH(x, y, i) 
 if i = 0 return ( x = y or (x, y) ∈ E )  /* base case */ 
 for z in V 
     if PATH(x, z, i-1) and PATH(z, y, i-1) return(true); 
 return(false); 
end
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Proof of Theorem

– answer to STCONN: PATH(s, t, log n) 
– space used:  

• (depth of recursion) x (size of “stack record”) 
– depth = log n 
– claim stack record: “(x, y, i)” sufficient 

• size O(log n) 
– when return from PATH(a, b, i) can figure out 

what to do next from record (a, b, i) and 
previous record
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Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n) 

• Corollary:  
• NSPACE(s(n)) ⊆ SPACE(s(n)2) 

                           s(n) ≥ log n

9/24/2013



• NSPACE(f(n)) = languages decidable by a 
multi-tape NTM that touches at most f(n) 
squares of its work tapes along any 
computation path, where n is the input 
length, and f :N ! N

Let C configuration graph for a space f(n) 
NTM M on input x. 

C has cf(n)  = 2kf(n) nodes (Exponential in f(n)) 
M accepts x iff Start and Accept are 

connected in the directed graph C 
USe Savirch’s algorithm on C 
space(log^2 (2kf(n)))    = SPACE(f(n)^2) 9/24/2013



Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n) 

• Corollary: NL ⊂ SPACE(log2n) 

• Corollary: NPSPACE = PSPACE

9/24/2013



S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm2
O (s(n))



Theorem: For a function s where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2) 
Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))

Here d > 0 is chosen so that 2d s(|w|) upper bounds the 
number of configurations of N(w)  
=> 2ds(|w|)  is an upper bound on the running time of N(w).

N has a UNIQUE accepting configuration: Cacc = qs …



Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell

Why does it take only s(n)2 space?

NSPACE(s(n)) ⊆ SPACE(s(n)2) 

N has a UNIQUE accepting configuration: Cacc = qs …

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))



Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state 
qs, clears its tape, and moves its head to the leftmost cell

Uses log(2d s(|w|)) recursions. Each level of recursion uses 
O(s(n)) extra space. Therefore uses O(s(n)2) space!

NSPACE(s(n)) ⊆ SPACE(s(n)2) 

N has a UNIQUE accepting configuration: Cacc = qs …

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))



PSPACE =        SPACE(nk)∪
k ∈ N

NPSPACE =        NSPACE(nk)∪
k ∈ N

PSPACE = NPSPACE



P NP PSPACE

EXPTIMEEXPTIME

NPSPACE



P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

P ≠ EXPTIME

 TIME HIERARCHY THEOREM
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Recall proof for Halting Problem

Turing 
Machines 

inputs 

Y
n

Y
n

n
Y

n

Y n Y Y nn YH’ :

box   (M, 
x): does 
M halt 
on x? 

The existence of H 
which tells us yes/
no for each box 
allows us to 
construct a TM H’ 
that cannot be in 
the table.
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Time Hierarchy Theorem

Turing 
Machines 

inputs 

Y
n

Y
n

n
Y

n

Y n Y Y nn YD :

box   (M, x): does M 
accept x in time f(n)? 

• TM SIM tells us 
yes/no for each box 
in time g(n) 
• rows include all of 
TIME(f(n))  
• construct TM D 
running in time g(2n) 
that is not in table
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Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For 
every proper complexity function f(n) ≥ n: 

TIME(f(n)) ( TIME(f(2n)3). 



9/12/2013 32

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides  

 {<M, x> : M accepts x in ≤ f(|x|) steps} 
 and runs in time g(n) = f(n)3. 
• Proof sketch: SIM has 4 work tapes 

• contents and “virtual head” positions for M’s 
tapes  

• M’s transition function and state 
• f(|x|) “+”s used as a clock 
• scratch space
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Proof of Time Hierarchy Theorem

• contents and “virtual head” positions for M’s tapes  
• M’s transition function and state 
• f(|x|) “+”s used as a clock 
• scratch space 

– initialize tapes 
– simulate step of M, advance head on tape 3; 

repeat. 
– can check running time is as claimed.  

• Important detail: need to initialize tape 3 in 
time O(f(n))
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Proof of Time Hierarchy Theorem

• Proof:  
– SIM is TM deciding language 

 { <M, x> : M accepts x in ≤ f(|x|) steps } 
– Claim: SIM runs in time g(n) = f(n)3. 
– define new TM D: on input <M> 

• if SIM accepts <M, M>, reject 
• if SIM rejects <M, M>, accept 

– D runs in time g(2n) 
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Proof of Time Hierarchy Theorem

• Proof (continued): 
– suppose M in TIME(f(n)) decides L(D)  

• M(<M>) = SIM(<M, M>) ≠ D(<M>) 
• but M(<M>) = D(<M>) 

– contradiction.
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Proper Complexity Functions

• Definition: f is a proper complexity 
function if 
– f(n) ≥ f(n-1) for all n 
– there exists a TM M that outputs exactly f(n) 

symbols on input 1n, and runs in time        
O(f(n) + n) and space O(f(n)).
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Proper Complexity Functions

• includes all reasonable functions we will 
work with 
– log n, √n, n2, 2n, n!, … 
– if f and g are proper then f + g, fg, f(g), fg, 2g 

are all proper 
• can mostly ignore, but be aware it is a 

genuine concern: 
• Theorem: 9 non-proper f such that 

TIME(f(n)) = TIME(2f(n)).
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Best Hierarchy Theorems
Theorem (Time Hierarchy Theorem): For every proper 

complexity function f(n) ≥ n: 
TIME(f(n)) ( TIME(ω (f(n)log(f(n))). 

Theorem (Space Hierarchy Theorem): For every 
proper complexity function f(n) ≥ log n: 

SPACE(f(n)) ( SPACE(ω f(n)). 

ω
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Time and Space Classes

L = SPACE(log n) 
PSPACE = ∪k SPACE(nk) 

P = ∪k TIME(nk)  

EXP = ∪k TIME(2nk) 



I started at S 
 – I got drunk !  NL lucky, tiny brain  
  – and now I am NOT at T 

How might I know that  
 NO PATH from S to T exists ???? ! 
9/24/2013


