Space Complexity: Savitch's Theorem and PSPACECompleteness

Tuesday April 15

MEASURING SPACE COMPLEXITY

FINITE

STATE CONTROL

We measure space complexity by looking at the furthest tape cell reached during the computation

Let $\mathbf{M}=$ deterministic TM that halts on all inputs.

Definition: The space complexity of \mathbf{M} is the function $\mathrm{s}: N \rightarrow \boldsymbol{N}$, where $\mathrm{s}(\mathrm{n})$ is the furthest tape cell reached by \mathbf{M} on any input of length \boldsymbol{n}.

Let N be a non-deterministic TM that halts on all inputs in all of its possible branches.

Definition: The space complexity of \mathbf{N} is the function $\mathbf{s}: \mathbf{N} \rightarrow \boldsymbol{N}$, where $\mathrm{s}(\mathrm{n})$ is the furthest tape cell reached by \mathbf{M}, on any branch if its computation, on any input of length \mathbf{n}.

Definition: SPACE(s(n)) =
\{ L | L is a language decided by a $O(s(n))$ space deterministic Turing Machine \}

Definition: NSPACE(t(n)) =
\{ L | L is a language decided by a $O(s(n))$ space non-deterministic Turing Machine \}

$\bigcup_{\text {SPACE }\left(n^{k}\right)}$
 $k \in \mathbf{N}$
 \bigcup NSPACE($\left.n^{k}\right)$
 $k \in N$

3SAT \in SPACE(n) \subset PSPACE

$(\mathrm{x}$ v \sim \mathbf{y} v \mathbf{x}				
	($\mathrm{y}_{\mathrm{y}} \mathrm{v} \times\left.\mathrm{x}\right\|^{\mathrm{V}} \mathrm{y}$)	\# ${ }^{\text {x }}$	y	y

$(\underline{x}\|v\| \sim\|y\| v\|x\|)$		\# $\mathrm{x}\|0\| \mathrm{y} \mid 0$

	($\|\mathrm{y}\| \mathrm{v} \times \mathrm{x}\|\mathrm{v}\| \mathrm{y} \mid$)	

| $(\|x\|$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Assume a deterministic Turing machine that halts on all inputs runs in space s(n)

Question: What's an upper bound on the number of time steps for this machine?

A configuration gives a head position, state, and tape contents. Number of configurations is at most:

$$
s(n)|Q||\Gamma| s(n)=2 O(s(n))
$$

Number of Configurations

$$
s(n)|Q||\Gamma|^{s(n)}=20(s(n))
$$

MORAL:

Space S computations can be simulated in at most $\mathbf{2}^{\mathbf{0}(\mathrm{S})}$ time steps

PSPACE \subseteq EXPTIME
EXPTIME $\left.=\bigcup_{\text {TIME(2 }} \mathbf{n}^{n^{k}}\right)$ $k \in N$

MORAL:

Space S computations can be simulated in at most $\mathbf{2}^{\mathbf{2 (S)}}$ time steps

$\mathrm{L} \subset \mathbf{N L} \subset P$

Any function computable in

 log space is also in polynomial time.- S-T-Connectivity (STCONN):
- S-T-Connectivity (STCONN): given directed graph $G=(V, E)$ and nodes s, t, is there a path from s to t ?

STCONN is in NL

- NUMSTEPS = 0 (number of steps taken.)
- $\mathrm{C}=\mathrm{s}$ (current node)
- FLAG=False
- Until NUMSTES = n do
- GUESS Z from 1 to n
- Increment NUMSTEPS
- If (c, z) is an edge in G, set $c=z$
- If $c==t$ set $\mathrm{FLAG}=$ True.

I started at S

- I got drunk
- and now I am at T

I wandered,
therefore, my path from S to T exists.
9/24/2013

- NSPACE(f(n)) = languages decidable by a multi-tape NTM that touches at most $f(n)$ squares of its work tapes along any computation path, where n is the input length, and $\mathrm{f}: \mathbf{N}!\mathbf{N}$

Let C configuration graph for a space f(n) NTM on input x.

C has $c^{f(n)}=2^{k(n)}$ nodes (Exponential in $f(n)$) $f(n)=k^{\prime} \log (n) \quad$ means POLY-SIZED graph.

STCONN is NL-Hard under logspace reductions

- Proof:
- given $L \in$ NL decided by NTM M construct configuration graph for M on input x (can be done in logspace),
$-\mathrm{s}=$ starting configuration; $\mathrm{t}=\mathrm{q}_{\text {accept }}$
- Output graph as a list of edges.

Savitch's Theorem

Theorem: STCONN $\in \operatorname{SPACE}\left(\log ^{2} \mathbf{n}\right)$

- Corollary: NL \subset SPACE $\left(\log ^{2} n\right.$)

Proof of Theorem

- input: $G=(V, E)$, two nodes s and t
- recursive algorithm:

```
/* return true iff path from x to y of length at most 2i */
PATH(x, y, i)
    if i=0 return ( }x=y\mathrm{ or }(x,y)\inE)\quad/* base case */
    for z in V
        if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
    return(false);
end
```


Proof of Theorem

- answer to STCONN: PATH(s, t, log n)
- space used:
- (depth of recursion) x (size of "stack record")
- depth $=\log n$
- claim stack record: "(x, y, i)" sufficient - size $O(\log n)$
- when return from $\operatorname{PATH}(a, b, i)$ can figure out what to do next from record (a, b, i) and previous record

Savitch's Theorem

Theorem: $\operatorname{STCONN} \in \operatorname{SPACE}\left(\log ^{2} \mathbf{n}\right)$

- Corollary:
- NSPACE($\mathbf{s}(\mathrm{n})) \subseteq$ SPACE(s(n) $\left.{ }^{2}\right)$

$$
s(n) \geq \log n
$$

- NSPACE(f(n)) = languages decidable by a multi-tape NTM that touches at most $f(n)$ squares of its work tapes along any computation path, where n is the input length, and $\mathrm{f}: \mathbf{N}$! \mathbf{N}

Let C configuration graph for a space $f(n)$ NTM M on input x.
C has $c^{f(n)}=2^{k(n)}$ nodes (Exponential in $f(n)$)
M accepts x iff Start and Accept are connected in the directed graph C USe Savirch's algorithm on C

Savitch's Theorem

Theorem: $\operatorname{STCONN} \in \operatorname{SPACE}\left(\log ^{2} \mathbf{n}\right)$

- Corollary: NL \subset SPACE $\left(\log ^{2} n\right.$)
- Corollary: NPSPACE = PSPACE

Number of Configurations

$$
s(n)|Q||\Gamma|^{s(n)}=20(s(n))
$$

Theorem: For a function s where $\mathbf{s}(\mathbf{n}) \geq \mathbf{n}$

NSPACE(s(n)) \subseteq SPACE(s(n) $\left.{ }^{2}\right)$

Proof:
Let \mathbf{N} be a nondeterministic TM using $\mathbf{s}(\mathrm{n})$ space
Modify N so that when it accepts, it goes to a special state q_{s}, clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: $\mathrm{C}_{\mathrm{acc}}=\mathrm{q}_{\mathrm{s}} \square \ldots \square$
Construct a deterministic \mathbf{M} that on input w, runs CANYIELD($\mathrm{C}_{0}, \mathrm{C}_{\mathrm{acc}}, \mathbf{2}^{\mathrm{ds}((\mathrm{w}))}$
Here $\mathbf{d}>\mathbf{0}$ is chosen so that $2^{\mathrm{d} s((\mathrm{w}))}$ upper bounds the number of configurations of $\mathrm{N}(\mathrm{w})$
$=>2^{\mathrm{ds}(\mathrm{w} \mid)}$ is an upper bound on the running time of $\mathrm{N}(\mathrm{w})$.

Theorem: For a function s where $\mathbf{s}(\mathbf{n}) \geq \mathbf{n}$

NSPACE(s(n)) \subseteq SPACE(s(n) $\left.{ }^{2}\right)$

Proof:
Let N be a nondeterministic TM using $\mathrm{s}(\mathrm{n})$ space
Modify N so that when it accepts, it goes to a special state q_{s}, clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: $\mathrm{C}_{\mathrm{acc}}=\mathrm{q}_{\mathrm{s}} \square \ldots \square$
Construct a deterministic M that on input w, runs CANYIELD($\left.\mathrm{C}_{0}, \mathrm{C}_{\mathrm{acc}}, \mathbf{2}^{\mathrm{ds}(|\mathrm{w}|)}\right)$

Why does it take only $\mathrm{s}(\mathrm{n})^{\mathbf{2}}$ space?

Theorem: For a function s where $\mathbf{s}(\mathbf{n}) \geq \mathbf{n}$

NSPACE(s(n)) \subseteq SPACE(s(n) $\left.{ }^{2}\right)$

Proof:
Let \mathbf{N} be a nondeterministic TM using $\mathbf{s}(\mathrm{n})$ space
Modify N so that when it accepts, it goes to a special state q_{s}, clears its tape, and moves its head to the leftmost cell

N has a UNIQUE accepting configuration: $\mathrm{C}_{\mathrm{acc}}=\mathrm{q}_{\mathrm{s}} \square \ldots \square$
Construct a deterministic M that on input \mathbf{w}, runs CANYIELD($\left.\mathrm{C}_{0}, \mathrm{C}_{\mathrm{acc}}, \mathbf{2}^{\mathrm{ds}(|\mathrm{w}|)}\right)$

Uses $\log \left(2^{\mathrm{d} s(|\mathrm{w}|)}\right)$ recursions. Each level of recursion uses O(s(n)) extra space. Therefore uses O(s(n) ${ }^{2}$) space!

PSPACE $=\bigcup$ SPACE($\left.n^{k}\right)$ $k \in N$
 NPSPACE $=\bigcup_{\text {NSPACE }\left(n^{k}\right)}$ $k \in N$
 PSPACE = NPSPACE

$P \subseteq N P \subseteq$ PSPACE $\subseteq E X P T I M E$

P \neq EXPTIME

TIME HIERARCHY THEOREM

Recall proof for Halting Problem

inputs

Turing
Machines

$\mathrm{H}^{\prime}:$| n | Y | n | Y | Y | n | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

box (M, x): does M halt
on x ?

The existence of H which tells us yes/ no for each box allows us to construct a TM H' that cannot be in the table.

Time Hierarchy Theorem

inputs \qquad \rightarrow

Turing
Machines

$\mathrm{D}:$| n | Y | n | Y | Y | n | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

box (M, x): does M accept x in time $f(n)$?

- TM SIM tells us yes/no for each box in time $g(n)$
- rows include all of TIME (fin))
- construct TM D
running in time $g(2 n)$ that is not in table

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For every proper complexity function $\mathrm{f}(\mathrm{n}) \geq \mathrm{n}$: TIME(f(n)) (TIME(f(2n) $\left.{ }^{3}\right)$.

Proof of Time Hierarchy Theorem

- Claim: there is a TM SIM that decides
$\{<M, x>: M$ accepts x in $\leq f(|x|)$ steps $\}$ and runs in time $g(n)=f(n)^{3}$.
- Proof sketch: SIM has 4 work tapes
- contents and "virtual head" positions for M's tapes
- M's transition function and state
- $f(|x|)$ " + "s used as a clock
- scratch space

Proof of Time Hierarchy Theorem

- contents and "virtual head" positions for M's tapes
- M's transition function and state
- $f(|x|)$ "+"s used as a clock
- scratch space
- initialize tapes
- simulate step of M , advance head on tape 3; repeat.
- can check running time is as claimed.
- Important detail: need to initialize tape 3 in time $O(f(n))$

Proof of Time Hierarchy Theorem

- Proof:
- SIM is TM deciding language $\{<M, x>: M$ accepts x in $\leq f(|x|)$ steps $\}$
- Claim: SIM runs in time $g(n)=f(n)^{3}$.
- define new TM D: on input <M>
- if SIM accepts <M, M>, reject
- if SIM rejects <M, M>, accept
$-D$ runs in time $g(2 n)$

Proof of Time Hierarchy Theorem

- Proof (continued):
- suppose M in $\operatorname{TIME}(f(\mathbf{n}))$ decides $L(D)$
- $\mathrm{M}(<\mathrm{M}>)=\operatorname{SIM}(<\mathrm{M}, \mathrm{M}>) \neq \mathrm{D}(<\mathrm{M}>)$
- but $M(<M>)=D(<M>)$
- contradiction.

Proper Complexity Functions

- Definition: f is a proper complexity function if
$-f(n) \geq f(n-1)$ for all n
- there exists a TM M that outputs exactly $f(n)$ symbols on input 1^{n}, and runs in time $\mathrm{O}(\mathrm{f}(\mathrm{n})+\mathrm{n})$ and space $\mathrm{O}(\mathrm{f}(\mathrm{n}))$.

Proper Complexity Functions

- includes all reasonable functions we will work with
$-\log n, \sqrt{ } n, n^{2}, 2^{n}, n!, \ldots$
- if f and g are proper then $f+g, f g, f(g), f g, 2^{g}$ are all proper
- can mostly ignore, but be aware it is a genuine concern:
- Theorem: 9 non-proper f such that $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$.

Best Hierarchy Theorems

Theorem (Time Hierarchy Theorem): For every proper complexity function $\mathrm{f}(\mathrm{n}) \geq \mathrm{n}$:
$\operatorname{TIME}(f(n))(\operatorname{TIME}(\omega(f(n) \log (f(n)))$.

Theorem (Space Hierarchy Theorem): For every proper complexity function $f(n) \geq \log n$: $\operatorname{SPACE}(\mathrm{f}(\mathrm{n}))$ (SPACE($\omega \mathrm{f}(\mathrm{n})$).

Time and Space Classes

$$
\begin{gathered}
\mathrm{L}=\mathrm{SPACE}(\log \mathrm{n}) \\
\text { PSPACE }=\cup_{k} \operatorname{SPACE}\left(\mathrm{n}^{k}\right)
\end{gathered}
$$

$$
\begin{gathered}
P=\cup_{k} \operatorname{TIME}\left(n^{k}\right) \\
\operatorname{EXP}=\cup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
\end{gathered}
$$

I started at S

- I got drunk \leftarrow NL lucky, tiny brain
- and now I am NOT at T

How might I know that
NO PATH from S to T exists ????!

