
Space Complexity: Savitch's
Theorem and PSPACE-

Completeness
Tuesday April 15

MEASURING SPACE COMPLEXITY

We measure space complexity by looking at the
furthest tape cell reached during the computation

FINITE
STATE
CONTROL

 1 2 3 4 5 6 7 8 9 10 …

I N P U T …

Let M = deterministic TM that halts on all inputs.

Definition: The space complexity of M is the
function s : N→ N, where s(n) is the furthest tape
cell reached by M on any input of length n.

Let N be a non-deterministic TM that halts on all
inputs in all of its possible branches.

Definition: The space complexity of N is the
function s : N → N, where s(n) is the furthest
tape cell reached by M, on any branch if its
computation, on any input of length n.

{ L | L is a language decided by a O(s(n)) space
non-deterministic Turing Machine }

Definition: SPACE(s(n)) =

Definition: NSPACE(t(n)) =

{ L | L is a language decided by a O(s(n))
space deterministic Turing Machine }

PSPACE = SPACE(nk)∪
k ∈ N

NPSPACE = NSPACE(nk)∪
k ∈ N

3SAT ∈ SPACE(n) ⊂ PSPACE

x y

(x ∨ y¬ ∨ x) (y ∨ x ∨ y)

(x ∨ y¬ ∨ x) (y ∨ x ∨ y)

x 0 y 0(x ∨ y¬ ∨ x) (y ∨ x ∨ y)

x 0 y 1(x ∨ y¬ ∨ x) (y ∨ x ∨ y)

x 1 y 0(x ∨ y¬ ∨ x) (y ∨ x ∨ y)

Assume a deterministic Turing machine that
halts on all inputs runs in space s(n)

Question: What’s an upper bound on the
number of time steps for this machine?

A configuration gives a head position, state, and
tape contents. Number of configurations is at most:

s(n) |Q| |Γ|s(n) = 2O(s(n))

S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm2
O (s(n))

MORAL:
Space S computations can be

simulated in at most 2O(S) time steps

PSPACE ⊆ EXPTIME

EXPTIME = TIME(2)∪
k ∈ N

nk

MORAL:
Space S computations can be

simulated in at most 2O(S) time steps

L ⊂ NL ⊂ P
Any function computable in

log space is also in
polynomial time.

• S-T-Connectivity (STCONN):

• S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path from s to t ?

9/24/2013

STCONN is in NL

• NUMSTEPS = 0 (number of steps taken.)
• C = s (current node)
• FLAG=False

• Until NUMSTES = n do
– GUESS Z from 1 to n
– Increment NUMSTEPS
– If (c,z) is an edge in G, set c=z
– If c==t set FLAG= True.

9/24/2013

I started at S
 – I got drunk
 – and now I am at T

I wandered,
therefore, my path from S to T exists.
9/24/2013

• NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N ! N

Let C configuration graph for a space f(n)
NTM on input x.

C has cf(n) = 2kf(n) nodes (Exponential in f(n))
f(n) = k’log(n) means POLY-SIZED graph.

9/24/2013

STCONN is NL-Hard
under logspace reductions

• Proof:
– given L ∈ NL decided by NTM M construct

configuration graph for M on input x (can be
done in logspace),

– s = starting configuration; t = qaccept

– Output graph as a list of edges.

9/24/2013

Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n)

• Corollary: NL ⊂ SPACE(log2n)

9/24/2013

Proof of Theorem

– input: G = (V, E), two nodes s and t
– recursive algorithm:

/* return true iff path from x to y of length at most 2i */

PATH(x, y, i)
 if i = 0 return (x = y or (x, y) ∈ E) /* base case */
 for z in V
 if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
 return(false);
end

9/24/2013

Proof of Theorem

– answer to STCONN: PATH(s, t, log n)
– space used:

• (depth of recursion) x (size of “stack record”)
– depth = log n
– claim stack record: “(x, y, i)” sufficient

• size O(log n)
– when return from PATH(a, b, i) can figure out

what to do next from record (a, b, i) and
previous record

9/24/2013

Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n)

• Corollary:
• NSPACE(s(n)) ⊆ SPACE(s(n)2)

 s(n) ≥ log n

9/24/2013

• NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N ! N

Let C configuration graph for a space f(n)
NTM M on input x.

C has cf(n) = 2kf(n) nodes (Exponential in f(n))
M accepts x iff Start and Accept are

connected in the directed graph C
USe Savirch’s algorithm on C
space(log^2 (2kf(n))) = SPACE(f(n)^2) 9/24/2013

Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n)

• Corollary: NL ⊂ SPACE(log2n)

• Corollary: NPSPACE = PSPACE

9/24/2013

S(n)

s(n) |Q| |Γ|s(n) = 2O(s(n))
Number of Configurations

cstart

caccept

cm2
O (s(n))

Theorem: For a function s where s(n) ≥ n

NSPACE(s(n)) ⊆ SPACE(s(n)2)
Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))

Here d > 0 is chosen so that 2d s(|w|) upper bounds the
number of configurations of N(w)  
=> 2ds(|w|) is an upper bound on the running time of N(w).

N has a UNIQUE accepting configuration: Cacc = qs …

Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Why does it take only s(n)2 space?

NSPACE(s(n)) ⊆ SPACE(s(n)2)

N has a UNIQUE accepting configuration: Cacc = qs …

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))

Theorem: For a function s where s(n) ≥ n

Proof:
Let N be a nondeterministic TM using s(n) space

Modify N so that when it accepts, it goes to a special state
qs, clears its tape, and moves its head to the leftmost cell

Uses log(2d s(|w|)) recursions. Each level of recursion uses
O(s(n)) extra space. Therefore uses O(s(n)2) space!

NSPACE(s(n)) ⊆ SPACE(s(n)2)

N has a UNIQUE accepting configuration: Cacc = qs …

Construct a deterministic M that on input w,  
runs CANYIELD(C0, Cacc, 2ds(|w|))

PSPACE = SPACE(nk)∪
k ∈ N

NPSPACE = NSPACE(nk)∪
k ∈ N

PSPACE = NPSPACE

P NP PSPACE

EXPTIMEEXPTIME

NPSPACE

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

P ≠ EXPTIME

 TIME HIERARCHY THEOREM

9/12/2013 29

Recall proof for Halting Problem

Turing
Machines

inputs

Y
n

Y
n

n
Y

n

Y n Y Y nn YH’ :

box (M,
x): does
M halt
on x?

The existence of H
which tells us yes/
no for each box
allows us to
construct a TM H’
that cannot be in
the table.

9/12/2013 30

Time Hierarchy Theorem

Turing
Machines

inputs

Y
n

Y
n

n
Y

n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

9/12/2013 31

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For
every proper complexity function f(n) ≥ n:

TIME(f(n)) (TIME(f(2n)3).

9/12/2013 32

Proof of Time Hierarchy Theorem
• Claim: there is a TM SIM that decides

 {<M, x> : M accepts x in ≤ f(|x|) steps}
 and runs in time g(n) = f(n)3.
• Proof sketch: SIM has 4 work tapes

• contents and “virtual head” positions for M’s
tapes

• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

9/12/2013 33

Proof of Time Hierarchy Theorem

• contents and “virtual head” positions for M’s tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

• Important detail: need to initialize tape 3 in
time O(f(n))

9/12/2013 34

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

 { <M, x> : M accepts x in ≤ f(|x|) steps }
– Claim: SIM runs in time g(n) = f(n)3.
– define new TM D: on input <M>

• if SIM accepts <M, M>, reject
• if SIM rejects <M, M>, accept

– D runs in time g(2n)

9/12/2013 35

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, M>) ≠ D(<M>)
• but M(<M>) = D(<M>)

– contradiction.

9/12/2013 36

Proper Complexity Functions

• Definition: f is a proper complexity
function if
– f(n) ≥ f(n-1) for all n
– there exists a TM M that outputs exactly f(n)

symbols on input 1n, and runs in time
O(f(n) + n) and space O(f(n)).

9/12/2013 37

Proper Complexity Functions

• includes all reasonable functions we will
work with
– log n, √n, n2, 2n, n!, …
– if f and g are proper then f + g, fg, f(g), fg, 2g

are all proper
• can mostly ignore, but be aware it is a

genuine concern:
• Theorem: 9 non-proper f such that

TIME(f(n)) = TIME(2f(n)).

9/12/2013 38

Best Hierarchy Theorems
Theorem (Time Hierarchy Theorem): For every proper

complexity function f(n) ≥ n:
TIME(f(n)) (TIME(ω (f(n)log(f(n))).

Theorem (Space Hierarchy Theorem): For every
proper complexity function f(n) ≥ log n:

SPACE(f(n)) (SPACE(ω f(n)).

ω

9/12/2013 39

Time and Space Classes

L = SPACE(log n)
PSPACE = ∪k SPACE(nk)

P = ∪k TIME(nk)

EXP = ∪k TIME(2nk)

I started at S
 – I got drunk ! NL lucky, tiny brain
 – and now I am NOT at T

How might I know that
 NO PATH from S to T exists ???? !
9/24/2013

