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Abstract

Mistuning or blade to blade variation in jet-engine bladed-disks can lead to large changes
in engine performance. Even the small random mistuning associated with manufacturing
tolerances can significantly change both stability boundaries and forced response. This thesis
addresses two questions. Analysis: given any mistuning (random or intentional), what is the
resulting change in performance? And passive control: can intentional mistuning be used to
improve stability and forced response in a robust manner?

A general framework based on symmetry arguments and eigenvalue/vector perturbations
is presented to answer both questions. Symmetry constrains all facets of mistuning behaviour
and provides simplifications for both the analysis and control problems. This is combined
with the eigenvalue/vector perturbation which captures the nonlinear mistuning dependence
and solves the analysis problem. It is shown that intentional mistuning can provide robust
damping and so guarantee improved stability and forced response under fixed manufactur-
ing tolerances. Results are demonstrated on a high-fidelity low-order model derived from

computational-fluid-dynamic data.
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Chapter 1 Introduction

The gas turbine power plants used in todays airplanes, helicopters, ships and power gen-
erators are complex, high-performance devices whose development dates back as far as a
patent issued to J. Barber in 1791 [Bat84, Pot72]. Although jet-engines have been built and
operated successfully for the last four decades, their inherent complexity still gives rise to
unexpected behaviour. Figure 1.1 shows a typical aircraft jet-engine. It contains complex

moving parts which interact with high-speed high-pressure airflow. The result is a host of

complex behaviours and potential instabilities. Some of these are shown in Figure 1.2 and

Examples of bladed-disks

Fans Compressors Turbines

Figure 1.1: Pratt & Whitney JT8D jet-engine.

interested readers are referred to [Gre81] for a general overview of turbomachinery instabili-

ties. In particular, the interaction of spinning rotors with fast flowing compressed fluid and
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Figure 1.2: Turbomachinery instabilities. (Figure courtesy J. Paduano)

its associated wakes (shed from upstream stationary objects such as stators and inlet guide
vanes) may create severe instabilities and unacceptable forced response in bladed disks. If
caught within the design cycle, such unexpected behaviour creates time-delays and addi-
tional costs. When instabilities and performance drops are first noticed in operation, they
can increase operating costs, require engine recalls and at worst cause loss of life. Qur con-
cern is with the behaviour of bladed-disks; specifically we focus on the dynamics of fans and
compressors found in jet-engines (see Figure 1.1). We address two issues: flutter instabilities
and forced response.

Flutter refers to unstable blade vibrations caused by coupling between aerodynamics and
blade mechanics. Such vibrations can cause blade failure and so engines must be designed
to operate away from flutter boundaries. Unfortunately, flutter is encountered in many
regimes of engine operation (see Figure 1.3) and hence drastically limits engine performance.
Consequently, the ability to eliminate or reduce the severity of flutter can lead to increased
safety, higher efficiency and significant cost and weight savings in future engine designs.

Forced response refers to stable blade vibration caused by aeromechanical disturbances.
For instance, the rotating disk spins past stationary objects such as struts and inlet guide
vanes. These objects provide a stationary aerodynamic disturbance, either via a flow dis-
tortion or through shed wakes. Mechanical forcing may also be created by small shaft
imbalances. Blade forced response vibrations cause high-cycle metal fatigue (basically crack
growth) which can ultimately lead to blade failure. Large vibration amplitudes speed crack
growth, reduce blade life and increase operating and maintenance costs. Moreover, in the

case of unexpectedly large vibrations, cracks initially below the detection limit may prop-
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Figure 1.3: Compressor map showing typical flutter boundaries [Ben86].

agate faster then predicted and cause catastrophic failure between assigned blade checks.
Hence it is crucial to predict correct (or conservative) forced response amplitudes under
manufacturing and wear uncertainties.

The high-cycle fatigue (HCF) caused by forced-response in (titanium) engine parts has
been identified as the dominant unexpected engine failure mode from 1989 to 1994 [Dav95]
and as the predominant cause of several hundred accidents over the past three decades
[SAB92]. These incidents have ranged from Class A mishaps down to maintenance actions.
(Class A mishaps involve either: (a) property damage in excess of one million dollars, (b)
Air Force aircraft damaged beyond economical repair, or (¢) human fatality or a permanent
and total disability.) Moreover, HCF problems are typically difficult to identify prior to
failure even though the root cause may have been present for some time. As a result, it is
very difficult to guard against HCF in the field. Such data forces an obvious question: what
causes these surprise HCF failures?

One contributing factor is blade asymmetry caused by manufacturing tolerances or wear
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and tear, which can lead to large asymmetric forced response with resulting HCF. Ideally,
fans or compressors are tuned (meaning all blades are identical). In reality, manufacturing
along with engine wear creates mistuning (blades differ from one another). It is well known
that even a small amount of mistuning can induce a large asymmetric forced response known
as mode-localization [DH69, MM88]|. However, only certain mistuning patterns lead to an
unacceptable response. Since the majority of engines remain operational the probability of
these patterns occurring must be small. Still, the same probability may be unacceptably large
by safety standards (we show such an example in Section 5.2.2). HCF failure due to mistuning
displays all the symptoms cited above: failure due to an unacceptable mistuning pattern is
unexpected (of low probability and probably not seen or predicted by any experiment or
analysis) and it is dormant (root cause present for considerable time before failure).

Not only does mistuning dramatically affect forced response (and associated HCF) but
it can also significantly change the performance limiting flutter boundaries of Figure 1.3.
Figure 1.4 shows data from the NASA F100 full-scale engine research program [Chi84]. At
the end of Phase I testing, 12 blades were fitted with new strain-gages and substituted back
into the first-stage fan rotor in order to begin Phase III testing. The average blade frequency
increased from 1098 Hz to 1107 Hz, a small but generally stabilizing change. However, the
flutter boundaries decreased dramatically for both inlet pressures (13.8 and 17.2N/cm2).
Here the engine operates along the “normal operating line” of Figure 1.4; as the throttle is
opened one moves left along this line. The flutter boundaries shown denote when stability is
lost along this operating line. The above change in flutter boundaries corresponds to a 7%
drop in corrected airflow. Blade mistuning was the most plausible suspect for this dramatic
decrease in stability (this is contrary to most cases cited in the literature where stiffness
mistuning is typically stabilizing).

Although random mistuning may lead to HCF and/or flutter, intentional mistuning can
provide benefits. For example, it can push back flutter margins to allow increased perfor-
mance (as noted in [Ben84, CH85, KK82, Whi64, Sha98]). Since this increase in stability
is typically accompanied by a larger forced response with resulting HCF, intentional mis-
tuning has been viewed as a tradeoff between a benefit in stability versus a detriment in

forced response. It is true that introduction of any mistuning typically creates a larger
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Figure 1.4: Large stability drop (apparently) caused by blade mistuning,.

forced response (mistuning always creates additional resonance behaviour). However, there
will always be some mistuning present (due to uncertainty, tolerances and wear) so we must
compare the probable or worst case behaviour under uncertainty at the tuned point versus
the probable or worst case behaviour under uncertainty at an intentionally mistuned point.
If the intentional mistuning is chosen intelligently, it may lead to improved robust behaviour.
In Section 5.2.2 we show a case where the tuned system is not robust: small manufacturing
tolerances can lead to disastrous forced response and even instability. Upon introduction of
intentional mistuning, the system becomes robust: now acceptable forced response and sta-
bility are guaranteed under the same manufacturing tolerances. Clearly, the latter situation
is preferable to the former. Consequently, intentional mistuning (if done properly) might
answer the challenge posed by the Air Force Scientific Advisory Board (AFSAB) [SAB92] to
prevent fatigue failure through better management of vibratory stresses. It is the opinion of
the AFSAB that this task cannot be accomplished through improving resistance of materials
to vibratory stresses (except perhaps through composites) or by improved non destructive

evaluations. We feel that intentional mistuning is one of the more practical alternatives—
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it makes use of existing technology and does not require new materials or manufacturing
techniques.

To this end, we must understand the effect of mistuning on stability and forced response.
It is impossible to do so experimentally as even with just two different blade types the number
of combinations grows as 2" where r is the number of blades. Consequently, our approach
must be analytic. Moreover, it must not only predict behaviour for a given mistuning, but
it should reveal underlying design tradeoffs to facilitate improved engine design. Figure 1.5
shows our analysis goal. At the top of the figure we find a first cut approach: take an engine
model & = f(x,z,1) and plug in mistuning z to find response X and stability extension s.
Such an approach is not useful for two reasons: a) it is computationally intractable (to
map out the mistuning space we have to run the possibly complex model f on the order
of 2" times) and b) it provides no insight. By comparison, the approach at the bottom of
Figure 1.5 takes model & = f(x, z,t) as its input and generates the functionals X(z) and s(z)
as output. Now we have an (ideally simple) expression for stability and forced response as
a function of mistuning z. From expressions X(z) and s(z) we can learn sensitivities and
design tradeoffs. Instead of iterating on mistuning, we can iterate on models. Computation
complexity has been vanquished and since the method is model independent we can gain
invaluable understanding on how sensitivity to mistuning varies with parameters and between
models. This thesis presents the analysis arrow and achieves the analysis goal at the bottom
of Figure 1.5, providing simple accurate functionals X(z) and s(z) that reveal underlying
design tradeoffs. This is done by perturbing eigenvalues and eigenvectors about the tuned
point to provide the functional approximation, exploiting system symmetry at every step.

By comparison, previous work [KK82, PM92] varies between the top and middle of Fig-
ure 1.5. It is not difficult to justify this statement: there are a number of problems consid-
ered intractable in the literature which are straightforward in our framework. For example,
the combinatoric optimization problem of arranging mistuned blades to maximize stability is
claimed intractable in the literature [Wat93] but is solved closed form in Section 5.1.2 (albeit
in a practical special case). Robustness guarantees under manufacturing tolerances cannot
be achieved using current methods in the literature but are given here in Section 5.2.2. In

[WP90], Monte Carlo simulations are performed on a specific model to check probability of
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Figure 1.5: Developing a method valid for any model.

unacceptable forced response (precisely the top approach of Figure 1.5). This approach is jus-
tified by the claim that all analytic methods (such as [Sin86]) fail when the system is lightly
damped. This is not so. At worst, Monte Carlo simulation can be performed orders of mag-
nitude more efficiently on our functional relation X (z) of equations (4.92), (4.94) and (4.69).
At best, these equations will be amenable to analytic estimates of probabilities—certainly
we can guarantee a zero probability in some cases by the bounds of Section 5.2.2.

Both the analysis and optimization of mistuning has been addressed in past research,
with focus on issues of stability and forced response. Dugundi and Bundas [DB84] use
Whitehead’s aerodynamic coeflicients [Whi60] to predict the stability increase for alternate
blade mistuning. Bloemhof [Blo87] considers stability increases due to single, double and
triple blade alternate mistuning along with aperiodic or random mistuning. Most work on
the “side effects” of mistuning has focused on forced response. Papers in this area include
[DB84, KK82, PD87, PM92, Whi66]. Work on related “side effects” such as decreased
operating range can be found in Srinivasan and Frye [SF76]. In terms of optimization,

efficient solutions to the stability optimization issue do not exist in the literature because
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there are no efficient solutions of the analysis problem for arbitrary mistuning. Crawley, Hall
[CH85] and Nissim, Haftka [NH85] tackle an optimization problem where they minimize
the size of mistuning (implicitly assuming that resulting “side effects” are also minimized)
subject to a required stability increase. Even though this is a reasonable approach, we note
that in both papers only local optimums are found and both methods are restricted to small
problems (less then 14 blades) by lengthy computation times. For the same reason there are
no forced response optimization results (solving the stability problem is a prerequisite for a
forced response solution). As a result, robustness questions for stability and forced response
are beyond the scope of tools found in the literature.

In addition, even though mistuning is concerned primarily with symmetry and symmetry
breaking, previous mistuning work has not made use of symmetry arguments to aid in the
analysis. Yet it has been recognized in the dynamics literature that symmetry tools can
provide valuable information about system behaviour. This dynamics literature includes an
analysis of bifurcation behaviour [GS80], and periodic orbit dynamics [GL97], under sym-
metry and symmetry breaking. The large scope and depth of symmetry breaking research is
discussed in some broad review articles and books; [Lau96], [GSS88] and [Chi91]. Since the
subject of nonlinear dynamics, periodic orbits and bifurcations is inherently highly math-
ematical; the results presented are technically intricate and there remain many important
open questions. In this thesis we focus on a linear problem (linear in the state vector,
not in the mistuning), hence the results derived by symmetry arguments are much stronger
and provide a great deal of information about mistuning behaviour not available in current
mistuning literature.

Moreover, various perturbation schemes found in the mistuning literature have severe
drawbacks. The work in [PM92] treats both blade coupling € and the mistuning vector z as
perturbation parameters. At ¢ = 0,z = 0 all eigenvalues collapse to the single blade modes.
From this the authors conclude that the eigenvalue motion will be discontinuous (which is
false since the eigenvalues are simple) and so a perturbation about z = 0 is not used. Instead,
the authors perturb about € = 0,z # 0 which is clearly undesirable—it is not possible to see
past the z = 0 singularity. Meanwhile, Sinha [Sin86] and others use a series expansion to

invert almost singular matrices. Their method fails as conditions approach lightly-damped
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resonance—the case of interest. In contrast, the work of Mignolet and Hu [MH97] is valid
over a wide range of mistuning z because it matches a series perturbation valid for very small
mistuning with a coupling € perturbation valid over large mistuning. However, this work only
provides statistical information (what are the probabilities of instability and unacceptable
forced response) and is not useful for intentional mistuning design.

There do exist some careful experimental results [KP97, LWS93, MMS88, SF76, SC85].
Unfortunately, because of the explosive growth of pattern combinations with the number
of blades, these experiments provide high-fidelity but limited information. By providing a
unified mistuning framework, this thesis circumvents the pitfalls mentioned above. General
tools are derived for mistuning analysis and optimization. There are two basic threads in
this thesis; 1) symmetry arguments and 2) an approximation via eigenvalue/vector pertur-
bation. It is shown in Chapter 3 that symmetry greatly constrains the allowable mistuning
behaviour. Hence symmetry results are derived for all aspects of the mistuning problem
including initial model formulation, equilibrium points, eigenvalues and eigenvectors. The
symmetry arguments presented also allow for simplification of the optimization problem; as
in Chapter 5. The eigenvalue/vector perturbation scheme is discussed in Chapter 4. By
approximating eigenvalues and eigenvectors (while exploiting symmetry) we can capture the
strong nonlinear mistuning dependence for lightly-damped bladed-disks. This perturbation
method also allows the phrasing of tractable optimization problems; as in Chapter 5. Finally,
results are demonstrated for a high-fidelity low-order model derived from computational fluid
dynamic (CFD) data; see Chapter 6. Most importantly, the tools in this thesis provide an
intuitive understanding of the mistuning problem: its sensitivities, tradeoffs and possible

solutions.
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Selected Nomenclature

o* = beneficial mistuning crossover, defined in (5.4) and Figure 5.1.
a = linear stability coefficient, see (4.16), (4.17) and (4.38).

A = A(z) =[iwl — M(z)], used in (4.5).

b = diagonal quadratic stability coefficient, see (4.16), (4.17) and (4.39).
¢; = ith off-diagonal quadratic stability coefficient, see (4.16), (4.17) and (4.40).
B, = [(th forcing vector, see (3.18).

B = [(z), first m elements or first block of By(z), see (4.66).

f = (fi,fey--- . J;) cascade model (3.1), f; dynamics of jth blade.
f = f(z,z) unforced system in (4.1).

= fl(z,z,1) forced dynamics, see (4.1).

k- = r/2 when r even, (r — 1)/2 when r odd, see (4.79).

¢ = spatial mode index in fixed frame, see (3.18).

L = {modr the tuned response mode, see (4.70).

A2 = X¥(z) an eigenvalue of M(z), indexing of Theorem 3.4.1.

A = A(z) diagonal matrix of eigenvalues of M(z), see (4.60).

m = number of states per blade.

M = M(z) linearization of f about z*, see (3.12).

M = M(0) tuned circulant matrix with blocks M;, see (3.15).

pd = pl(z) an eigenvalue of A™'(2), indexing of Theorem 3.4.1.

n = rm, total number of states.

w = [ forcing frequency for f/th mode, defined below (3.18).

= cascade angular velocity, Figure 3.1.
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Pid, ;/Jf"d, quadratic eigenvalue perturbation coefficients of (4.78).

®; 4, quadratic eigenvalue perturbation matrix, defined above (4.79).
€™/ jth phase coefficient, see Theorem 3.4.1.

M + p; My + prg + -+ p;_lM,,, gth block in Theorem 3.4.1.

number of blades.

0.4, linear eigenvalue perturbation coefficient of (4.78).

s(z) stability extension, defined in (4.10).

stability extension matrix, see (4.17).

T(z), T~'(z) matrix of right, left eigenvectors of M(z), see (4.60).

time.

27 /r§) system symmetry time lag, equation (3.5).

loading.

u;l(z), first m elements or block of UJd(z), see (4.66).

U?(z) left (row) eigenvector of M(z), in indexing of Theorem 3.4.1.
v?(z), first m elements or block of de(z), see (4.66).

V#(z) right (column) eigenvector of M(z), in indexing of Theorem 3.4.1.
rotation operator, defined in (3.4).

(x1,9,...,x,) system state, z; € IR™ states for jth blade.

z*(z) equilibrium point of unforced system f, see (4.1).

X(z) forced response in frequency domain (4.5), X7 for jth blade, gth mode.
£(Z,s,2,t) solutions of cascade model (3.1); for initial condition & at time t = s
with mistuning z.

(z1,22,... ,2) mistuning vector, z; € IR mistuning of jth blade.

((0) disturbance in stationary frame, Figure 3.1.
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Chapter 2 Description of Flutter and Forced

Response

Flutter is the generic name given to a wide range of instabilities caused by the coupling
between aerodynamic and structural forces. Examples include vibration of Venetian blinds
in breezy rooms, instabilities in power lines due to shed vorticity, divergence in aircraft
wings at high speeds, instabilities in helicopter blades as they impact preceding wakes,
and vibration of blades in turbomachines. These instabilities may take the form of growing
oscillations (such as seen in blades or power lines), or they may take the form of a more violent
breakaway behaviour (as can be encountered in airplane wings which can twist back and
snap at sufficiently large airspeeds). In both divergent and oscillatory cases, flutter creates
severe performance limitations. For airplanes, helicopters and turbomachines, divergent
behaviour is clearly disastrous. Similarily, the vibrations caused by oscillatory flutter can
create unacceptable structural forces which also lead to failure. As a result, these engineering
devices must operate away from flutter boundaries (as in Figure 1.3).

Since flutter behaviour is created by aeromechanical coupling, its modeling requires both
structural mechanics and aerodynamics. In the case of aircraft and turbomachines, the aero-
dynamic modeling is more problematic than the structural mechanics portion. In part, this
is because aircraft and turbomachines operate at high Reynolds numbers and so the aero-
dynamic behaviour is complex and typically handled by large aerodynamic codes, while the
structural mechanics (although also dealing with complex geometries) can be solved numeri-
cally and projected onto a small number of known mode shapes to provide tractable models.
Mostly, the difficulty in aerodynamics stems from a better understanding of structural me-
chanics as compared to aerodynamics (with turbulence acting as the classic demonstration
of insufficient understanding in aerodynamics).

Due to the difficulty in modeling aerodynamics and also because the primary concern has

been with finding allowable operating regimes, flutter analysis has traditionally dealt with
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predicting flutter boundaries. The standard linear problem is given by

[M]i + [ + [K]z = F (2.1)

where M, (, K are the structural mass, damping and stiffness matrices, x is the structural
state and F' denotes the aerodynamic forces. The fundamental observation here is that on
the flutter boundary the free motion is purely periodic corresponding to an eigenvalue pair on
the imaginary axis. The special case of incipient divergent behaviour implies an eigenvalue
at the origin, or a period of size zero. Imposing this purely periodic motion of frequency w

(z(t) = ge™') leads to the eigenvalue problem

(—w’[M] +iw[C] + [K])g = f(U,w) (2.2)

where U is the applied aerodynamic loading. Hence one needs to know the aerodynamic
response to pure periodic motion at frequency w with aerodynamic loading U, or f(U,w)
above. This cannot be found in general. However, for various flow conditions it can be
attained analytically (say two-dimensional aerodynamic strip theory), computationally (by
computational fluid dynamic codes) or experimentally (by imposing periodic motion and
measuring the resulting aerodynamic forces at various frequencies) at a given set of loadings
U and frequencies w. To find the flutter boundaries one searches for U and w which provide
solutions of equation (2.2). The minimum solution U provides the flutter boundary with
associated frequency of instability w. (At this minimum U, we first find an eigenvalue
A = 1w on the imaginary axis.) An overview of cascade flutter analysis can be found in
[For94].

This type of flutter boundary analysis is not sufficient for our aims. First, the model (2.2)
only holds at the frequencies where f(U,w) has been evaluated. As we mistune the cascade,
we find that eigenvalues are moving substantially through the complex plane, including off
the imaginary axis, and the knowledge at a given frequency (or discrete set of frequencies)
on the imaginary axis is no longer sufficient. Moreover, the standard assumption of constant

inter-blade-phase-angle (all blades vibrate with equal amplitude separated by a constant
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phase) is no longer true in the mistuned case. Second, for forced response calculations it
is crucial to have the correct (typically small non-zero) damping, yet equation (2.2) only
holds at zero system damping. Third, model (2.2) has the form: y = A(w)y where the linear
dynamics depend on the state y through its frequency w. As such, this model is not amenable
to standard linear dynamics and control tools (stability, robustness, eigenvalue/vector motion
with parameters). Hence there is a need for models that do not impose periodic motion.

A simple dynamical flutter model with no imposed motion is shown in Figure 2.1. Here

Structural Model

U

Figure 2.1: Simplest cascade flutter model.

the jth blade displacement is given by z;. The structural model is given by a simple mass-

spring system
m:L‘] + k‘:l?]' = O[U:tj + /QUQ[LE]'_H — .Ij_l] (23)

and the aerodynamic force is taken to be F; = aUz; + BU?*[zj11 — zj_1]. The al/z; term
corresponds to steady aerodynamic damping due to blade velocity z;. The blade coupling

BU?*[x ;41 — x;_1] captures the physical intuition that blade j must turn the quantity of air
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between blades 7 + 1 and 7 — 1. This intuition is surprisingly accurate; when model (2.3)
is compared against the quasi-steady model of Section 4.6, it is found that F; captures the
leading order (quasi-steady) dynamics. This is one of the simplest cascade models that will
display instability as loading U increases.

Of course, the usefulness of a simple model such as (2.3) is limited. One can construct
more advanced models by including more phenomenological effects. As more effects are in-
cluded the model complexity and cost of computation increases. An alternate approach is
to take high-fidelity computational fluid dynamic (CFD) models (such as Fuler or Navier
Stokes solvers) and to reduce the dynamics to provide a tractable low-order model. This
is the approach taken by Willcox et al. [WPP99]. They perform principle orthogonal de-
composition on data from a CFD code to provide low-order aerodynamic models valid for
any motion and amenable to mistuning analysis. Mistuning results using their model are
presented in Chapter 6.

Issues in forced response are essentially the same. The extension required is the addition
of outside excitation (typically aerodynamic, but possibly mechanical as in a shaft imbalance)

in equation (2.1). This yields the linear problem
[M]i + ()% + [K]z = F + Ge™! (2.4)

where Ge®s! is the external periodic forcing. Once again the difficulty is in analyzing the
aerodynamics (find F and G in terms of structural states z). Choice one is to assume
z(t) = qe™rt and find F = F(U,w),G = G(U,wy) for a discrete set of loadings U and
forcing frequencies wy. This is the classical approach which provides limited information;
one must search over prohibitively many U, wy pairs to provide a complete model. For
example, it is not sufficient to search along the flutter boundary of equation (2.1) because
the F's found in that case correspond to a system with zero damping and this system will
exhibit infinite amplitude when forced at resonance. The second choice is to develop a finite

approximation for F' and GG in terms of aerodynamic states y to yield the closed set of
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equations

(M) 4 [+ [Kle = F(Uyy) + G(U,y)e™ (25)
gy = A(U)y+ B(u)z + C(U)e™s", (2.6)

This is the approach in [WPP99] and it allows the inclusion of forced response.

To get an understanding of how mistuning affects flutter boundaries, it is possible to
proceed quite a distance without writing down any specific flutter model. The mathematics
in this thesis is aimed at that goal, we only write down models when they become necessary.
There exist many intuitive explanations of mistuning to match the mathematics. On the most
general level, bladed disks operate in high-energy environments (large aerodynamic loads,
fast rotation speeds, high Mach numbers) and so instabilities can be created or destroyed
by even a small change in how much energy is being transfered between the structure and
the fluid. It is also true that flutter typically manifests as traveling waves rotating around
the disk. A small nonuniform change in blade properties serves to interrupt the progress of
the instability around the disk. Equivalently, different disk modes have different dampings.
One of these modes goes unstable first. Mistuning couples the modes together and can delay
the instability of the least stable mode by mixing it with higher damped modes. From a
rigorous mathematical standpoint, we find that mistuning flutter sensitivity can be caused
by small blade coupling which creates nearby eigenvalues and causes fast eigenvalue motion,
or by a slow change in minimum damping with loading U/’ which means even a small change
in eigenvalues results in a big change in operating range.

Forced response sensitivity is caused by the breaking of eigenvector symmetry. When the
system is tuned, all the eigenvectors (tuned mode shapes) are symmetric. This means that a
mode three forcing will only excite the third tuned mode shape. Once mistuning occurs the
eigenvectors lose symmetry and so a third nodal diameter forcing can excite all modes. Hence
mistuning creates additional resonances. The amount of additional response depends on the
forcing frequency (the distance from resonance) and the damping (this is why it is crucial
to have models that correctly predict damping). Since bladed-disks are typically lightly-

damped, the resonance caused by mistuning is severe. Intentional mistuning can be used to
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provide robust damping—as in the flutter case mistuning can shift eigenvalues to the left
significantly. As a result, the tuned, lightly-damped, sensitive case (small random mistuning
creates large response) can be replaced by the robust, significantly-damped, mistuned case

(additional small random mistuning does not destroy the increased damping and response

remains acceptable).
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Chapter 3 Application of Symmetry Tools

Mistuning is fundamentally concerned with symmetry and symmetry breaking. As a result,
the symmetry arguments presented in this section are the natural tools of analysis. Basically,

these arguments formalize the obvious statement

Given a tuned system, mistuning blade one and observing blade two is the same

as mistuning blade three and observing blade four.

Being natural, these arguments provide both powerful and general results.

In terms of generality, symmetry arguments apply to any bladed disc model. In our
formulation these arguments are applied to any dynamic discrete blade cascade model of
the form & = f(x,z,t). As a special case, they hold for imposed sinusoidal motion models
where the dynamics are restricted to x(t) = 7 + z'e™? (these models are widely seen in the
aerodynamics literature [Whi66, KK82, Blo87, Chi85, CS85]). Extensions to other types of
dynamic models (such as the actuator disc model found in Gysling and Myers [GM96]) are
clear. Moreover, conclusions achieved by symmetry considerations apply even when f(z, z, 1)
cannot be written explicitly as is the case in commonly used computational-fluid-dynamic
(CFD) models.

In terms of power, the scope of symmetry arguments is demonstrated below. Still, it is
revealing to mention one result before embarking on our analysis. Mistuning has a reputation
as a difficult problem primarily due to computational complexity. Even if we have only two
blade types, the number of mistuning patterns grows as 2" where r is the number of blades.
This has led to the notion that it is not possible to find global optimals for combinatoric
mistuning optimization problems. For example, the combinatoric optimization problem of
arranging a given set of mistuned blades to maximize stability is claimed intractable in the
literature [Wat93]. However, in Section 5.1.2 we show how a practical special case may be
solved analytically by symmetry exploitation. Hence symmetry arguments can be used to

dramatically reduce problem difficulty.
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Our mistuning problem has two components. Component one deals with system stability
and performance range extension (Section 4.2), component two deals with forced response
and resulting high-cycle-fatigue (Section 4.3). In terms of symmetry arguments, component
one (stability) turns out to be a special case of component two (forced response). As a result,
we start with symmetry arguments for the time-varying system (3.1) below, which is aimed
at forced response, and then specialize our discussion to time-invariant unforced systems

(3.10), aimed towards stability, at a later point.

3.1 Discrete Blade Model Symmetry

Suppose our fan or compressor has r blades. Consider any discrete blade model of the form

&= f(z,z,1) (3.1)

where © = (21, 22,...,2,) € R™ is the state vector with x; € IR™ corresponding to aero-
dynamic and structural states for the :th blade. For example, x; could contain the first
blade position and velocity, along with all aerodynamic states associated with blade one.
Mistuning is represented by the vector z € IR". An element z; € IR denotes mistuning for
the 7th blade. For example, if we mistune the stiffness of individual blades then define the
ith blade stiffness k; = ko(1 + z;) where kg is the nominal or tuned stiffness. As in this
example, z = 0 will always denote the tuned case. Finally, ¢ represents time since we allow
time dependent forcing.

Consider now the dynamics of the first blade

.1'71 = fl(J?l,J?Q,. e s ey B15 2250 ,Zr,t) (32)

which correspond to the first “block row” (the first m rows) of the vector field f in model (3.1).
Clearly, the dynamics of the first blade (&) depend on the state of the third blade (z3) the
same way the dynamics of the second blade (#3) depend on the state of the fourth blade
(24). The same holds for the mistuning vector z, the dynamics of the first blade (&) depend
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on the mistuning of the seventh blade (z7) the same way the dynamics of the third blade
(23) depend on the mistuning of the ninth blade (z9). Applying this chain of logic to all

blades we must have

1 = filz,z,t) = fi( @1, 22, %5, o0 Tre1, Tpy 21,22, 235+« 3 Zr—1y 2y 1)

tg = falw,z,t) = fi( @o, @3, .0, Tro1, Xry T1,y 22,28, o vy Zre1y Zry 21, L+ f—g)

i3 = fs(x,z,t) = fi( x3,2a,... %0, 21, T2, 23,24y .., 2p, 21,22, L+ f—g) (3.3)
M _ 2m(r—1)

. = folz,2,0) = fi( e 21,00 B0 sy, 2,21, s 22, 21, L T ).

The time shift of 27 /r{) in expression (3.3) follows from assuming a stationary disturbance, as
would be generated by stator/inlet guide vane wakes or by an inlet distortion. For a cascade
of undeformed blades rotating at angular velocity € past such a stationary disturbance (as in
Figure 3.1) the disturbance at blade two will precede the same disturbance at blade one by
27 /rQ). Now consider the case where blades are deforming due to their states x and possibly
their mistuning z (for example, mistuning stiffness will change the nominal deformation of
blades under aerodynamic loading). If at time ¢ blade one is deformed from its nominal
angular position #; by some amount ¢ due to its state (z; = ) and its mistuning (z; = (),
then it occupies the position 8; 4+ (v, 3) and has some shape deformation ((e, 3). It follows
that if blade two has the same state (z2 = «) and mistuning (z; = 3) at time ¢ + 27/rQ
then it must deform an identical amount and will also occupy the position 8; + ¥ («, 3)
with the same shape ((a,3). At these two identical conditions (same position and shape)
blade one and blade two will experience the same dynamics due to forcing. This is precisely
the statement in (3.3), #; depends on z1,z; and ¢ the same way 23 depends on x3, z; and
L+ 27 /rod.
To ease notation we define the rotation operator ¢ which rotates vectors of size m or rm
to the left. The scope of the argument (size r or rm) is clear from context,
W21y 22, o 5 2r) = (2144, Z2giy e e s Bry Bl e e 5 Zi)s zz€ Ror C

(3.4)

; m m
Orr, Ty ] = (T4 Toggy e e s Try X1y e e, T, x; € IR™ or C™.
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6 Rotating Frame

|

Stationary Frame

Figure 3.1: Cascade disturbance.

1 is the inverse rotation to the right.

For convenience, ¢! is written simply as ¢ and ¢~
Using the rotation operator and defining 7 = 27/r{), condition (3.3) on model (3.1) can be

rewritten succinctly as

of(z,2,1) = f(ez, 02,1+ 7). (3.5)

Applying (3.5) a total of r times we note f(x,z,t) = f(x, z,t+ 27 /Q) which is of course the
periodicity associated with a complete rotation.

Expression (3.5) is a system symmetry and is the basic building block for all the analysis
that follows. It holds for linear and nonlinear systems whether they be low order models or
computationally expensive CFD simulations. All parts of the mistuning problem (includ-
ing questions relating to linearizations, stability, forced response or optimization) inherit a

portion of this system symmetry which may be exploited to great advantage.

3.2 Trajectory Symmetry

The results below follow immediately from the system symmetry shown in (3.5). Let
£(2,s,2,1) denote trajectories or solutions to (3.1) with initial condition Z at time s where

the mistuning has been fixed at z. For this initial condition & at time ¢t = s (so z(s) =
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£(z,s,2,8) = &), the state of the system at any other time ¢ is given by z(t) = £(2, s, 2, 1).
It follows from (3.5) that solutions & must satisfy

0&(Z,8,2,t) = E(pd, s + 7,0z, + 7). (3.6)

Equation (3.6) says that if we know the solution for #, s and z, then we have also found the

trajectory for initial condition ¢z at time s + 7 with mistuning pz.

Theorem 3.2.1 For model (3.1) with symmetry (3.5) the trajectories £(Z,s,2,1) salisfy
condition (3.6).

Proof: Let n(t) = p&(2,s,z,t) — (@i, s+ 7, 0z,t+ 7). By construction, n(s) = ¢ —pz =0

and so we have

n(t) = @€(2,8,2,1) — E(p2, s + 7,02, +7) by construction
= of(&(z,s,2,t),2,t) — f(€(pZ, s+ T, 02,0+ T), 02,1+ T) from (3.1)
= fle&(z,s,2,1),pz,t+7) — f(€(pZ, s+ 0z, + T),pz,t +7)  symmetry (3.5)
= f(n(t) + £(pt, s + 7,02, L+ 7),02,1 + 7)

—f((p, s + 7,002,014 7), 02, +7) by construction

H(n,t) a definition.

>

Clearly H(0,t) = 0 for all ¢, regardless of values &, s and z. Thus n(t) satisfies n = H(n,1),
n(s) = 0 with H(0,¢) =0 and so n starts at zero and stays zero for all time. Consequently,
n(t) = p€(z,s,2,t) — E(pZ, s+ 1,02, t + 7) = 0 for all z,s,z and ¢. |

In the special case of a tuned cascade (z = 0 or more generally ¢z = z which is equivalent
to z1 = z3 = -+- = z,) and no forcing (no time dependence in (3.1)) we can drop the now

redundant z and ¢ notation to reduce (3.5) to

f(x) =7 f(p). (3.7)
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If we further pick tuned initial conditions % = & then (3.6) becomes (s is dropped because

all starting times are equivalent)

pE(E,1) = £(&,1) (3.8)

which implies & (2,t) = &(2,t) = -+ - = &.(2,1) and the solution remains tuned for all time.
We shall find that the mistuning problem is essentially linear, hence we will exploit a
special case of (3.5) and (3.6). Nevertheless, it is instructive to note the scope of symmetry

arguments which provide results for the full nonlinear system (3.1).

3.3 Unforced Dynamics and Equilibrium Symmetry

We are concerned with the stability and forced response of bladed disks. Both stability and
forced response are considered about an equilibrium point of the unforced system. Conse-
quently, we split the forced nonlinear system (3.1) into an unforced f and forcing perturbation

/' portion,

T = f(x,2,t) = f(z,2) + f'(z, 2,1). (3.9)

Here f is the dynamics of (3.1) if there is no disturbance and f’ is defined as f — f. Since the
time-invariant dynamics are just a special case of equation (3.1), they must satisfy a special

case of condition (3.5). Specifically, f has symmetry

fz,2) = o7 f(pz, p2). (3.10)

Symmetry (3.10) will drastically restrict the behaviour of equilibrium points.

Consider any equilibrium point 2*(2) of the unforced system, f(z*(z),z) = 0. (It is
crucial to note that in practice * can vary with mistuning. For instance, a change in stiffness
will cause different nominal deformations in blades due to aerodynamic loading.) First we
consider equilibrium points z*(0) of the tuned unforced system f(z,0), the following result

is standard (see [GSS88]).
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Lemma 3.3.1 Given the tuned unforced system f(x,0) with symmetry ¢ f(x,0) = f(pz,0),
consider any equilibrium point *(0). Then @ z*(0) for j € (1,2,...,r) are also equilibria
of f(x,0). If 2*(0) = px*(0) then this family of equilibria collapses to a single equilibrium.

Proof: By symmetry and since z* is an equilibrium of f,

F(e’27(0),0) = ¢’ f(27(0),0) = 0.

Hence ?z*(0) form a total of r equilibrium points. If 2*(0) = ¢z*(0) they are all equal. B

Note that symmetry on the tuned unforced system ¢ f(z,0) = f(¢z,0) does not imply a

symmetric equilibrium point z*(0) = ¢z*(0), as in the example below:

Example 3.3.1 Consider the tuned unforced system (no z ort dependence)

.Ci?l = fl(Ll?l,.iL’g) =T — T2 + 3$1$2 — 21’% — Ll?g + 6

Ci’g = fl({L'Q,CL’l) =Ty — 1 + 3(1/’1$Q — 2(1?3 — .’L’% + 6

which satisfies the tuned symmetry condition ¢ f(x) = f(ex). There are no symmetric

equilibria x* of the form x] = x} because
filwh,a7) = a7 — a7 — 3077 — 207 — ai? 4+ 6 =6 £ 0

and so x* = (x5, x7) cannot satisfy f(x*) = 0. However, there do exist asymmetric equilib-

rium points and

f1(2,0) = 2—-0+3+%0—-2%22—-0+6 =0

f1(0,2) =0—-2+3%0-2%0—2246 =0

so f(2,0) = f(0,2) = 0 and hence x* = (2,0) and z* = (0,2) are both equilibria. So f(z) =10
has no symmetric solutions, but it does have two asymmetric equilibria.

In a rough sense, this example is degenerate as illustrated in Figure 3.2. For a two-
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dimensional tuned system &1 = fi(x1,xq), 22 = fi(xa, 1) the equilibrium points x* satisfy
fi(zy,23) = fi(as, x3) = 0. In the left portion of Figure 3.2 we note the curve fi(xy,x9) =0
and its reflection about the x1 = x4 line fi(x9,x1) = 0. Since there is only one fi(x1,22) =0
curve, any inlersection (an equilibrium point) with fi(xq, 1) =0 must occur along x1 = x4
and all equilibria are symmetric—the “generic” case. In the right portion of Figure 3.2 there
are two curves that satisfy fi(x1,x2) = 0, neither one of which intersects ©1 = x3. Now
the reflection of curve two can intersect curve one and the reflection of curve one can in-
tersect curve two. This yields two asymmetric equilibrium points which are reflections of
one another. So to have only asymmelric equilibrium points in this two-dimensional system
we must have a nonlinear [ with at least two solution curves that do not intersect the 45
degree line ©1 = x9 —the “degenerate” case as in Example 3.3.1. It is possible that families

of asymmetric equilibria (as in Fxample 3.3.1) are degenerale in some appropriate way, but

this would be hard to show rigorously for arbitrary nonlinear systems. |
T2 T3 fi(wa,21) =0
. Equili bri um J -
. Equiylibrium Points N, _
fi(zr,29) =0 X 4 P
xy Ty
N N
o o
2% fi(zg, 1) =0 ¢ ¥
- - f1<331,l‘2) =0

Figure 3.2: Symmetric equilibrium vs asymmetric equilibria.

Thus there are two possible cases: either there is a symmetric equilibrium 2*(0) = x*(0)
or there is a family of asymmetric equilibria 2*(0), pz*(0), p*z*(0), - - , "~ '2*(0). Typically,
families of equilibria are not observed in jet engines and so we only consider symmetric tuned
equilibrium points z*(0) = pz*(0).

A mistuned equilibrium symmetry follows generically: pa*(2) = 2*(pz).
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Lemma 3.3.2 Consider the unforced system & = f(x,z), see (4.1), with symmelry

of(z,2) = fpz, p2)

and equilibrium point x*(z). If the tuned equilibrium point is symmetric +*(0) = @x*(0) and

the Jacobian at x*(0) is non-singular

det [‘;—i(x*(()),())] £0

(true almost always), then the equilibrium has symmetry pz*(z) = x*(¢z).

Proof: Let n(z) = 2*(z)—2*(0). Since 2*(z) is an equilibrium point that varies as z changes,

it satisfies f(z*(z),z) = 0 for any z, specifically

f(z*(2),2) = f(z*(pz),2) = 0.

By symmetry ¢ f(z,2) = f(pz,p2) of the unforced system, we have

J(@"(2),2) = pf(g™"" (p2),2) = 0.

Substituting 7 and noting assumption ¢ ~'z*(0) = z*(0) yields

J(@(0) +n(2), 2) = ¢f(27(0) + ¢ 'n(2),2) = 0.

Since det {g—i(x*(()), 0)} # 0 the implicit function theorem [PM77, p.354] implies that relation
f(z*(0) 4+ a(2),z) = 0 uniquely defines a(z) locally. (Note that ¢ f = 0 implies f = 0.)
Hence n(z) = ¢~ 'n(pz) and so

pr"(2) = 2°(0) + pn(z) = 2°(0) + n(p2) = 27(pz)

which is the required relation. |
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The proof above requires that f(z,z) = 0 uniquely define 2 as a function of z in a
neighbourhood of (2*(0),0), hence the use of the implicit function theorem. So for pz*(z) =
z*(pz) to fail requires the degenerate case where f(z, z) = 0 has multiple equilibria branching
from(z*(0),0). We used the implicit function theorem to show that (generically) this is not
the case in a neighbourhood of £*(0). Note that pa*(z) = 2*(pz) allows the equilibrium point
z* to lose symmetry as we introduce mistuning so in general pa*(z) # 2*(z) when z # 0.
Due to the arguments above, we shall assume a pz*(z) = 2*(pz) equilibrium symmetry in

the remainder.

3.4 Unforced Linear Symmetry

We now turn to the symmetry of linear systems. Specifically, the section below deals with
symmetries related to the unforced linear stability problem while Section 3.5 studies the
symmetry of forced linear systems. Stability about the equilibrium point 2*(z) of Section 3.3

is found by computing the eigenvalues of the linearization
&= M(2)z (3.11)

where
M(z) 2 [%(x*(z),z)] (3.12)

and we have made the change of variables © — z*(z) — z in (3.11).

From the definition we find that M has symmetry
pM(z) = M(p2)p (3.13)
which is to be interpreted as follows: for any vector x

v [M(z)a] = M(pz)[pz] (3.14)
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and so ¢ only acts on vectors as defined in (3.4).

Lemma 3.4.1 Given unforced system f with symmetry f(z,z) = ¢~  f(px, pz) and equilib-

-1 .*

rium point x* with symmetry x*(z) = p~'a*(pz), then M(z) defined in (3.12) has symmetry
M(z) = o™ M(p2)ep.

Proof: By definition of the equilibrium point z*, f(z*(z),z) = 0. Hence a Taylor expansion
yields

[(w,2) = M(2)](z = 27(2)) + O]z — 2" (2)|I")-

Applying symmetry of f to the linear term provides

of(z,2) = floz,pz)
= o {[M(2)](x — z*(2))} = [M(p2)](pz — 2*(p2)).

The crucial step is the equilibrium symmetry pa*(z) = 2*(pz) which allows
p{IM(2)](z —27(2))} = [M(p2)]p(z — 27(2)).
So for any y = z — 2*(2) we have M(2)y = o' M(pz)py, the required symmetry. |

If we now let z = 0 we find that M(0) must satisfly M(0) = ¢~'M(0)¢ and so it follows
that the tuned linearization M(0) must be block circular. Precisely, M = M(0) must have

the form

M = : (3.15)

where Mj e R™*™,
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Structure (3.15) motivates Theorem 3.4.1 which is crucial in both analysis and compu-
tation. Let p; = exp(2mij/r) denote powers of the rth root of unity where i = v/—1 and
define

Qj= M +pMy+p:Ms+---4+p'M, eC™™, je(1,2,...,r). (3.16)

Theorem 3.4.1 For M a block circular matriz as in (3.15), let /\;l, u;l and v;l be the dth

etgenvalue, lefl eigenvector and right eigenveclor, respectively, of Q);. Then )\;l form the

cigenvalues of M with left and right eigenvectors Uf = [uf, pi~"uf, pi uf, ... pjuj] and
‘/],d = [U?,]%‘U?, P ,p;_Z'U;'lap;_lv;l]'

Proof:To prove the theorem we need only show Mde = /\?de and U;iM = /\?U]d. Both

statements are verified by substitution. |

The above theorem also proves the constant inter-blade phase-angle assumption (corre-
sponding to tuned eigenvectors above with phase angle p;) common in flutter analysis which
only holds when the system is tuned. In our case, Theorem 3.4.1 will be important when we
begin computing eigenvalues and vectors of the tuned system in Chapter 4 because it allows

us to express the eigenvalues and vectors of M as eigenvalues and vectors of ();’s.

3.5 Forced Linear Symmetry

Below we deal with the symmetries of forced linear systems. Specifically, we analyze the

system
&= M(2)x+ Bg(Z)@MQt (3.17)

which captures forced response to leading order. Here M(z) is the previously defined lin-
earization of (3.12). Coefficient B, corresponds to the fth spatial mode of the disturbance
in the fixed reference frame: ((#) = sin(¢0) in Figure 3.1 with resulting forcing frequency

w = (. Transforming between the rotating and stationary frame yields a relationship
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between the forcing perturbation f’ in equation (3.9) and B, above
P (2),2,0) = 3 Bulz) explile + &), (3.13)
£=0

Notice that (3.18) has a complex component ¢™’; this is done for purposes of convenience
and one can simply take the real part of the response at the close of analysis. Since we are
concerned with linear systems, we can analyze each spatial mode ¢ individually.

For M(z) stable, the transient response decays to zero and the steady state forced re-

sponse may be written in frequency domain as

X(2) = [iwl — M(2)]" Bu(2). (3.19)

twt

, while

Here steady state forced response in the time domain is given by z(z,t) = X(z)e
frequency w is defined as w = #£). Our current concern is with resulting symmetries of X
and By. (We have already shown the linearization symmetry (3.13) of M.)

Both of the results below follow from nonlinear symmetry (3.5). The quantity p, is

defined as previously: p, = exp(2mil/r).

Lemma 3.5.1 The forcing term f' with Fourier expansion (3.18) also has symmelry (3.5),

namely

[z z,0) = 7 [z, 0z, 1 + 7).

Hence the symmetry ox*(z) = x*(pz) on the equilibrium implies any vector coefficient By(z)

has symmetry By(z) = pip™ " By(pz).

Proof: The first statement follows from symmetry (3.5). To prove the second statement,

set all disturbance modes to zero except mode £. Hence equation (3.18) reduces to

['(2*(2), 2,1) = Bu(2)e™. (3.20)
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By symmetry on [’ and z* we have

pf'(2™(2),2,1) = [fl(ex™(2), 02,1+ 7)

= (2" (pz),02,t + 7). (3.21)
Substituting (3.20) into (3.21) yields

QOB({(Z)GMQLL — Bg(@Z)GiEQ(t+T)

= prg(goz)eMm (3.22)
since 7 — g2mit/r 2 pe. Hence By(2) = prp™ ' Bo(p2). [ |

A similar result follows for frequency response X(z) of (3.19).

Lemma 3.5.2 [f model f has symmetry (3.5) and equilibrium point x* has the symmetry of
Lemma 3.3.2, then the linear forced response X of (3.19) has symmetry X (2) = prp~ ' X (p2).

Proof: By Theorem 3.2.1, trajectories ¢ have symmetry
£(2,8,2,t) = o €(p2, s+ T, 0z, t + 7).
For stable M(z) as considered in Section 4.3, the linear steady state response is given by
E(2,1) = °(2) + X(2)e "

where initial conditions Z,s may be dropped because the transient decays to zero. By

symmetry of £ we have

0€(z,1) = px*(2) + X (2)e™ = (2, t + 1) = 2*(pz) + X (pz)e™ ),
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However, pz*(z) = 2*(pz) and so
iQr &
pX(2) = X(p2)e™ = pX(p2)

which ends the proof. |

Lemma 3.5.2 implies that if we know the first blade dynamics X;(z) for arbitrary mis-

tuning z, we know the entire response by

Xz(Z) = PZXI(SOZ)

Xs(2) = ppXi(p%2)

X, (2) = pj ' Xu(e 7 2). (3.23)

This is true for all the symmetries (linearization M, eigenvectors V' and U, eigenvalues A,
forcing vector By and forced response X); they allow us to find the entire object for any

mistuning z by computing a single blade or block as a functional form.

3.6 Eigenvalue and Eigenvector Symmetry

Given symmetry (3.13) of linearization (3.12), we can derive symmetries for eigenvalues and
left, right eigenvectors of M(z). First we show that eigenvalues A;(z) are invariant under

rotation.

Lemma 3.6.1 If the Jacobian has symmetry M(z) = @ 'M(pz)p, then ils eigenvalues
Ai(z) have symmetry A;(z) = Xi(pz).
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Proof: An eigenvalue \;(z) satisfies M(2)V(z) = X\i(2)V(2) where V(z) is the corresponding

right eigenvector. By symmetry

M(z)V(z) = Ai(z)V(2)
eAM()V(2)} = Xi(2)eV(z) rotate both sides

M(p2){pV(2)} = Xi(2)pV(2) by symmetry of M.

So Ai(z) is also an eigenvalue of M(pz) with eigenvector ¢V/(z), hence by definition there
exists an eigenvalue A;(pz) of M(pz) with X\;(z) = A;(pz). Setting z = 0 we see that these
must be the same eigenvalue ¢+ = j. (Unless A;(0) is non-distinct, in which case numbering

of the repeated eigenvalues is arbitrary.) Consequently \;(z) = A;(¢z). |

Using the indexing notation of Theorem 3.4.1 we relabel eigenvalues and left, right eigen-
vectors as /\;-l(z), U]'?l(z) and de(z) respectively. Recall that left (row) eigenvectors and right

(column) eigenvectors satisfy
M(2)Vi(z) = M (2)V]'(2), Ui (z)M(2) = Xj(2)US (2).

Our notation allows an elegant formulation of eigenvector symmetry.

Lemma 3.6.2 For Jacobian with symmetry M(z) = o' M(pz)p and distinct eigenvalues,
the right and left eigenvectors de, U]d in notation of Theorem 3.4.1 have symmetry

VI(z) = pje™ ' Vie2)

d -1, _—177d
Ui(z) = p; '™ U (p2).
Proof: By definition

M (2)Vi'(2) = M(2)V/'(2)
e{M(2)Vi(2)} M(2)pVi(2) rotate both sides
M(ez){eVi(2)} = M(p2z)eVi(z) by symmetry of M and A.
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So ¢Vi(z) is the j,dth right eigenvector of M(pz). Since eigenvectors with distinct eigen-
values are unique up to a scaling constant, we have g.ijd(z) = and(goz). Applying this
symmetry r times we find de(z) = o/"de(z) hence " = 1 which implies a = p; for some 1.
Alternatively, or to check that ¢« = 5, we set z = 0 and find o = p; since c,ijd(O) = ij]-d(O)
by Theorem 3.4.1. A mirror argument holds for left eigenvectors U ]d(z). |

3.6.1 Repeated Eigenvalues

Generically, (tuned) circulant matrices have distinct eigenvalues. This follows from theorem
3.4.1 and is easy to see for the scalar block case (m = 1) since the eigenvalues are simply the
@;’s. Hence for non-distinct eigenvalues we must have ); = Q); for 1 # j —an extra condition
on the M;s which will not hold in general. For matrix blocks (m > 1) the same condition
applies, Q; = @Q; for 1 # j implies non-distinct eigenvalues. However, in the latter case we
can also have non-distinct eigenvalues when a particular ¢); has non-distinct eigenvalues or
if an eigenvalue of (); equals an eigenvalue of Q); for ); # @);. Both additional cases are also
degenerate and hence circular matrices have distinct eigenvalues generically. In other words,
if we generate block circulant matrices at random, then the set of matrices with non-distinct
eigenvalues forms a measure zero set. However, models are not generated at random and

there are various cases which can lead to indistinct eigenvalues.

Repeated Eigenvalues through Simplifying Assumptions

Simplifying model assumptions can lead to degenericity. For example, if we have a model
with no blade coupling then the resulting degenerate circular Jacobian would have the form
M; # 0 and My = M3 = --- = M, = 0 in which case Q;, = Q; = --- = Q, = M; and all
the eigenvalues are non-distinct. Another example is the simple model cited in Chapter 2.

This model is degenerate because it only includes coupling between adjacent blades and so

My #0,—My = M, # 0 while M5 = My = --- = M,_; = 0. Hence some of the Q);’s repeat

and there are some non-distinct eigenvalues.
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Repeated Eigenvalues via Additional Symmetries

Additional symmetries can also lead to repeated eigenvalues. Good examples are flip symmet-
ric systems (system invariant under  — —6 both structurally and aerodynamicaly, see Figure
3.3). Now the Jacobian has additional symmetry M(z) = ¢~ M(dz)¢d where ¢ is the flip
operator. For the mistuning vector, ¢ takes the form ¢[z1,29,... , 2] = [2r, 2r21, . -+ , 22, 21]-
If we had a partial differential equation description (6) = M[z(6)] where 6 is the angle along
the disk as in Figure 3.3, then flip of the state vector would be given as ¢z(6) = z(—6).
For a finite dimensional description we write ¢[z1, xa,... ,2,] = [qAb;r;r, Prr_i,. .. , dx, gAb:lzl]
The action of qAb on the state z; of blade 5 depends on our choice of z;. If x; describes a

2 m

flip symmetric state of blade j (here z; = [z}, 2%,... 27

] might be the m bending modes or

the deflection of m points along the centerline of blade j) then it is not necessary to change

the order of z; itself and so qAb = I. However, if z; describes asymmetric modes (for example

zj = [z}, 23] where z} is the deflection of the clockwise tip and z? is the deflection of the
counter-clockwise tip of blade j), then g;[wjl, 23] = [23, z}] and when applying ¢ it is necessary

not only to reverse the blocks z; but also to flip each block itself via qAb If z; contains both
flip symmetric and asymmetric components, then qg is a combination of the two cases above.
In all cases ¢* = I because two flips return the original system, hence ¢! = ¢ and qAb_l = qAb

Flip symmetry M(z) = ¢~' M(¢z) implies a constraint on the tuned linearization M (0) =
M. Namely, éMlé = Ml,g%MggAb' = Mr,q%MggAé = M,_y,.... (This does not imply that
MTI = My,MI' = M,,....) Since =1 = ¢ it follows from (3.16) that ; and @ _; are similar,
qAbQ]qg = (_;, and so eigenvalues repeat, A; = A_;, for j # 0 and r/2. This is a consequence
of the fact that if V() (or V; for the finite dimensional system) is an eigenvector of a flip
symmetric system with eigenvalue A, then V(—0) (respectively V_;) is also an eigenvector
with the same eigenvalue \. When V(6) # V(—6) then the eigenvalue is necessarily repeated.
This corresponds to @; similar to @,—; for 7 # 0,7/2. When the eigenvalues are so repeated,
there is still a full set of eigenvectors and so the eigenvalues are (generically) simple. Notice

that practical fans and compressors have blade twist and so exhibit a preferred direction of

spin; they are not flip symmetric.
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P N

Flip Symmetric Flip Asymmetric

Figure 3.3: Flip symmetric and asymmetric disks.

Repeated Eigenvalues because of Simple Mechanical Structure

Simple mechanical systems have the form
Mzi+Kzx=0 (3.24)

where both the mass and stiffness matrices are symmetric and positive definite: M = MT >
0, K = KT > 0. For our purposes this corresponds to bladed disks with no aerodynamic
forces or damping and where centrifugal forces (S# term with ST = —8) may be ignored.
(When a centrifugal force is present, the eigenvalues split.) The symmetric, positive definite
structure of M and K holds true even if there is no rotational symmetry. For a tuned bladed
disk, we have the rotational symmetry oM = My and oKX = Kp. If, in addition, the disk
is flip symmetric, we also have ¢ M = M¢ and oK = K¢.
Equation (3.24) leads to the eigenvalue/vector problem

MMV + KV =0. (3.25)

It follows immediately that the eigenvalues A are purely imaginary. If A is an eigenvalue with

eigenvector V, then premultiplying equation (3.25) by V* = VT (the conjugate transpose)
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yields
NV*MV +V*KV = 0. (3.26)
>0 >0

Since M, K are positive definite, then A\ = —V*KV/V*MV is real and negative. Hence A
is purely imaginary. Combining this property of mechanical systems with circular symmetry
will cause the eigenvalues to repeat.

Consider the tuned system oM = My and oK = K¢. Analogous to M(0) in equation
(3.15), matrices M and K have block circular form

My My o0 M, Ky Ky ool K,
-/Mr ./\/ll /\/lz ICT ICl ICQ
M = . , K= . . (3.27)
My Ms ... M,y Ky Ks oo Ky
Let 1 = A% and define
Q;M = M +p;Ma+ P?-/Ms +-- P;_IJMT (3.28)
Q;C = Ky +p;Ka2 + P?ICS +oo 4t P;_llcr- (3.29)

Then the following is a natural extension of Theorem 3.4.1 to simple mechanical systems.

Theorem 3.6.1 For M, K block circular matrices as in (3.27), let ,u;l, u;l and v;l be the dth
eigenvalue, left eigenvector (—,u?u?@?" = u;le) and right eigenvector (—,LL?Q;M ;l = Q;Cv;-l ,
respectively, of the pair Q;M,Qf Then ,u;-l form the eigenvalues of the pair M, K with left
(—pUM = UK) and right (—pMV = KV ) eigenvectors U]d = [u?,p;_lu?,p;_Qu?, e ,pju;-l]

d_ fd . d r—2,d r—1,d
and VI = [v§, pjvi, ..., pi~ v, pim vfl.

Proof:To prove the theorem we need only show —,LL?JMde = /Cde and —,u;lU]dA/l = U;l/C.

Both statements are verified by substitution. |
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But, MT = M and KT = K because we are dealing with a mechanical system. Hence

QM = Mi+pMa+piMs+ -+ pi > ML 4+ pi 7 M] (3.30)

J

QF = Ki+piKa+ plKs+ -+ pi K3 +p7'K7 (3.31)

J

Since p; = p,_; it follows that (Q;\A)T = Qﬁ’]‘ and (Qf)T = Q’f] Thus the pairs Q?A,Qf
and Q’_\’;, Q’f] have the same eigenvalues. This is a non-trivial relationship for j # 0 and r/2
and so all eigenvalues repeat except pd and ,uff/Q. This means right /left eigenvector blocks of

Theorem 3.6.1 satisfy the relationship

T
vj = (ul;) =, (3.32)
ul = (vf)" =at . (3.33)
The last equality follows from Q;"' = “_V;, Qf = ’fj which is true just because M and K are

real, see equations (3.28) and (3.29). Hence for the real repeated eigenvalues ,u;l (1 #0,r/2)
one can span the eigenspace by two complex eigenvectors V; and V; = V_; or by the real and
imaginary components: Re[V], Im[V}].

If the disk is flip symmetric and we also have ¢ M = M@, oK = K¢ then gADQ;M = Q“_V;qg
and Q5 = Q%;4. Thus

—njQi"; = Qjvj (3.34)

—pldQMv! = GQN! (3.35)

—iQM (Bf) = @ (d0f) (3.36)

and so qgv;j must be an eigenvector of Q’_\’;, ’fj, meaning qgv;j = avij. (The constant «

is necessary else the conditions on eigenvectors are over-constrained.) Recall, ’E;l = vij SO

A

v;i = qg%j = qb(avi]-) = ozq;@;l = ozq;v;l = aa v;fl hence aa = 1 or a = €Y. Equations (3.32)



39

and (3.33) now become

d T _ 4 07 d
of = (ul;)" =vl; =€, (3.37)
d T —d —i0 7 d
u; = (vij) =ul; =e€ qbu_j. (3.38)
The constraint above (ﬁij = ei%vfj or 17;{ = e_igggv?) allows flip asymmetric eigenvectors
qAbv;l + v;j. For example v;fl = [a, €%a] is valid, so long as the flip vector, here vi]- = [a,e "],

also appears. So if V} is an asymmetric eigenvector, then its flip, ¢V; = BV_;, is also an

eigenvector (3 turns out to be p;e'?).

3.6.2 Eigenspaces for Repeated Eigenvalues

It is important to realize that in all the cases above the non-distinct eigenvalues are gener-
ically simple (have diagonal Jordan form) and so travel smoothly with parameters. This is
because each of the ;s will have distinct eigenvalues generically. As a result, each Q; will
typically have a complete set of left and right eigenvectors {u;-l, v?}?zl and so M(0) will have
a complete set of left and right eigenvector {U?, de};:gz:l_ (This is because unlike the block
matrices ()}, the eigenvectors U]d, V}d do not repeat.) Hence in the case where @;’s repeat we
will have non-distinct but typically simple eigenvalues which travel smoothly with parame-
ters. (In contrast, repeated eigenvalues for non-circulant matrices are generically non-simple.
In our case, if repeated eigenvalues are caused by degenericity within a single blade block, say
by some very special blade shape, then the repeated eigenvalues will indeed be generically
non-simple [there is no circular structure within a blade block to force a diagonal Jordan
form]. However, all the degenerate cases listed above correspond to global, blade to blade,
degenericities and thus the circulant matrix structure implies that when eigenvalues repeat
they are generically simple.)

Nevertheless, these non-distinct simple eigenvalues can allow for some interesting be-
haviour. In [KMW9S8], a purely mechanical, flip-symmetric, tuned bladed-disk is shown

to display asymmetric mode shapes (eigenvectors). This follows directly from non-distinct

(doublet) eigenvalues implied by the mechanical (or flip symmetric) structure. Mimicking



40

the proof of Lemma 3.6.2 for tuned eigenvalue /\;-i(()) yields

M@O)Vi(0) = X(0)V;(0)
e M(0)VA(0)} = A (0)eV(0) rotate both sides
M(O){@de(ﬂ)} = M(0)pV4(0) by symmetry of M(0).

So ©V#(0) is also an eigenvector of M(0) with eigenvalue A¥(0). If A%(0) is distinct then it
has a one-dimensional eigenspace spanned by de(O). Hence apV]-d(O) = and(O) (where a = p;
by Theorem 3.4.1) and so the tuned eigenvector is symmetric. However, if eigenvalue )\?(0)
is repeated (say a doublet), then it has a two-dimensional eigenspace spanned by de(()) and
some other eigenvector V. Now ©V(0) must lie in this subspace so V(0) = aV(0) + Bv.
Hence this two-dimensional eigenspace is invariant under rotation ¢. If in addition the system
is flip-symmetric the eigenspace is also invariant under the flip operator ¢. The following
result is intuitive; it says a two-dimensional rotationally invariant subspace (the eigenspace
above) is spanned by two symmetric vectors. (For the remainder we drop the superscript

notation in eigenvectors de.)

Lemma 3.6.3 Let X be a two-dimensional linear subspace of C'™ which is invariant under
rotation X = X, meaning that for any x € X we have px € X. Then, X = span{V,, V;}
where V, = p.V,, Vi = pVy for some integers a # b. In other words, X is necessarily

spanned by two symmelric vectors.

Proof: Assume X = span{V,, V;} with ¢V, = p,V,, ¢V, = pV,. For any € X we have
r=aV, + BV, so px = apV, + BeVy = ap,V, + Bp V4 hence pz € X.

Now suppose X = span{z,y} and o X = X, we need to show X is spanned by V,,V;
with oV, = p. V., ©Vs = pp V4 for some integers a # b. If v = oV, + 51Vh, y = auV, + B2 V4
with oV, = p, V., oV, = p» V4 then we are done. Otherwise,

x=oV,+ 5V, +e (3.39)

y = aVy+ BaVy + 6 (3.40)

where ¢ and § do not contain V,, V, components (eTVa ='Wy, =46TV, =67V, = 0). We can
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let z,y be linear combinations of x,y to eliminate V; from & and V, from g. This yields

= V,+é (3.41)

j=Vitd (3.42)
where z, ¢ still span X. Since 2,7 € X it follows that ¢z, 0y € X so
o = ct + dy. (3.43)
By equations (3.41), (3.42) and (3.43),
0T =pVy + e =c(V, +6)+dW + 5) (3.44)

But ¢ and § do not contain V., Vy components so ¢ = p, and d = 0. Thus pé = p,€ which
means € = () since ¢ has no V, component and only V, has symmetry oV, = p,V,. Similarly,

6 = 0. Hence # = V, and y =V, are symmetric; they span X and the proof is complete. N

A doublet tuned eigenvalue A(0) has an eigenspace X with the properties of Lemma 3.6.3.
The natural choice of basis for this eigenspace is two symmetric eigenvectors gijd = p;V; and
QO‘/Z»d = p;V; as above. However, one can pick asymmetric eigenvectors V; = o4 V; 4+ 41V; and
Vo = aaV; 4 52V, so long as they are linearly independent. (Vector V] is asymmetric since
Vi = a1V + BV = aap; Vi + BipiV; # vVi in general.) This explains how asymmetric
tuned modes (eigenvectors) are possible in [KMWO9S8]; they are necessarily produced by the
summation of two symmetric modes. In fact, since the system is purely mechanical and flip
symmetric, the two modes must be V; and V_;. This explains the “checkerboard” diagram
in [KMW98|.

In conclusion, repeated eigenvalues are degenerate. However, degenericity may be created
by extra structure (such as flip symmetry, modeling assumptions or a simple mechanical form
of the equations). In practice: flip asymmetry (direction of spin or blade twist), centrifugal

forces (note spinning implies flip asymmetry since it creates a preferred direction) or presence
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H Object ‘ Symbol ‘ Symmetry ‘ Proof H
Model f flz,z,8) = o7 oz, 02,0+ T) Section 3.1
Unforced model f f(z,2) = ¢~ f(pz, 02) Follows from above
Trajectories £ £(2,s,2,1) = o €(pZ, s+ 7,02,t + 7) | Theorem 3.2.1
Equilibrium z* *(2) = o2 (p2) Lemma 3.3.2
Response X X(z) = pop™ ' X(p2) Lemma 3.5.2
Forcing vector By Bi(2) = prp™ ' By(2) Lemma 3.5.1
Linearization M M(z) = o ' M(p2)p Lemma 3.4.1
Eigenvalues A Az) = AMez) Lemma 3.6.1
R. Eigenvectors % Vi(z) = pjo~ ' Vi{ez) Lemma 3.6.2
L. Eigenvectors U? Ul(z) = pj_lc,o_lU]d(cpz) Lemma 3.6.2

Table 3.1: System symmetries: p; = exp(2mij/r).

of aerodynamic forces serves to split the eigenvalues. All the models analyzed in this thesis
have distinct eigenvalues. When the eigenvalues are repeated, they are still generically
simple and so the eigenvalue perturbation results of Section 4.2.2 continue to hold. For
the forced response results of Section 4.3.5, the eigenvector perturbation equations contain
tuned eigenvectors corresponding to repeated eigenvalues which must be chosen so as to
diagonalize the mistuning perturbation matrix. This makes the perturbation depend on the
specific mistuning chosen (introducing the same extra degrees of freedom as the number of

repeated eigenvalues) and complicates the analysis.

3.7 Symmetry Summary

We have seen that symmetry (3.5) on the full nonlinear system (3.1) implies symmetries on
all subsequent objects, be they equilibrium points, forcing vectors or eigenvalues. In fact,
symmetry permeates all issues associated with mistuning, from initial model formulation up
to final design optimization. We shall exploit such symmetries throughout the remainder of

this work. For the moment, Table 3.1 lists all symmetries developed so far.
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Chapter 4 Analysis of Mistuned Stability

and Forced Response

Our central aim is shown in Figure 1.5 of the introduction (repeated here as Figure 4.1). At

Low analysis, high complexity: aimost useless.

Specific Model
>

Validfor any z.

@ Analysis

E> Perturbation Method

Stability: s

Model
x =f(x,z,t)

[X, s = P(f) Resp., Stability
Valid for any f. E> asfunctionas:
X(2), s(2)

High analysis, low complexity: useful for design.

Figure 4.1: Developing a method valid for any model.

the top of Figure 4.1 we find the simplest approach: given a model f and specific mistuning
z, find the stability s and forced response X. Our goal here is the analysis arrow of Figure
4.1 which achieves the approach at the bottom of Figure 1.5: given a model f find stability
and forced response for all (small) mistuning. Sections 4.2 and 4.3 develop a mistuning
perturbation method for stability and forced response respectively. Using the symmetry
arguments of Section 3 they yield expressions for stability and forced response as a function
of mistuning. This allows an in-depth understanding of mistuning tradeoffs, sensitivity,

parameter dependence and robustness.
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4.1 The Linear Problem

To leading order, both forced response and stability are linear problems (however, their
solutions are highly nonlinear in the mistuning parameter z). These standard linear problems
are derived below. Two analytic methods are required to solve them: the first is a symmetry
arguments tool box as addressed in Section 3, the second is a set of linear algebra tools
dealing with perturbations of eigenvalues and eigenvectors, Section 4.3.

In order to show the assumptions made, break up the full forced nonlinear system (3.1)

into a forced and unforced part

&= f(z,2,t) = f(z,2) + f(z,2,1), (4.1)

here f is the dynamics of (3.1) if there is no disturbance and f’ is defined as f — f. For
example, if we think of forcing due to a stationary inlet distortion, then f corresponds to
the dynamics with zero distortion while f’ is the additional dynamics produced by a nonzero
distortion.

Now consider an equilibrium point z*(z) of the unforced system, f(z*(z),2) = 0. (It is
crucial to note that z* can vary with mistuning, for instance a change in stiffness will cause
different nominal deformations in blades due to aerodynamic loading.)

It is valid to assume the equilibrium point of interest x* for the tuned unforced system

f(z,0) is symmetric: *(0) = @a*(0). For if this assumption does not hold then we must have

a whole family of equilibria: z3(0) = z*(0),25(0) = ¢2*(0),2z5(0) = @?z*(0), -+ ,23(0) =

r

©"'2*(0), see Lemma 3.3.1, which is an occurrence typically not seen in jet engines. Lin-

earization of (4.1) about x*(z) yields the time-varying linear dynamics

of o

b= | Z(a%(2),2) + (a®(z), 2,0) | {o = 2"(2)} + f(a7(2),2,1). (4.2)
ox ox —
. . . . . forcing
time—I1nvariant time—varying

As an example, in simple aerodynamic model of Chapter 2 the (state dependent) force on

blade ¢ is proportional to the distance between adjacent blades times the sin of the incidence
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angle: sin(a)[x;41 — z,—1]. An inlet distortion changes the incoming velocity in the fixed
frame and so spinning blades see a resulting variation in incidence angle as a function of
time, a(t) = a 4+ A(?). This results in the linear time-varying perturbation term [sin(a +
A(t)) — sin(a)][®it1 — zi—1]. Even though such terms are physically of second order (the
first order effect is clearly the time-invariant term sin(a)[z;41 — xi-1]), they are perturbing
a lightly damped matrix [0 f/dz] (turbomachines have lightly damped modes) and so may
cause large changes. Clearly one must solve the time-invariant problem before attempting
the more difficult time-varying case, and so we neglect the [0f'/dz] term in the remainder.
However, future work should examine the effect of the time-varying [0f'(... ,t)/0z] term
and check whether it can be ignored.

Neglecting higher order terms (including the time-varying linear term [0 f'(... ,t)/0z] as

above) we get the standard linear problem
&= M(z)x + Bg(z)eimt. (4.3)
As defined previously (equation (3.12))

9F
M) 2 [ 0) (4.4
and the deviation from equilibrium = — z*(z) has been relabeled as z. Coefficient By corre-
sponds to the fth spatial mode of the disturbance in the fixed reference frame: ((8) = sin(¢9)
in Figure 3.1 with resulting forcing frequency w = (.

For M (z) stable the transient response decays to zero and the steady state forced response

may be written in frequency domain as

X(2) = [iw] — M(2)]"" By(2). (4.5)

Here steady state forced response in the time domain is given by #(z,t) = X(z)e™’. Since
the analysis is conducted at a fixed spatial mode ¢/, X dependence on / and w is understood
but dropped in the notation.

Up to our linear time-invariant formulation, expression (4.5) provides the exact stability
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and forced response for any specific mistuning z. Yet (4.5) by itself is not useful for two

reasons.

1. It is computationally infeasible to re-evaluate (4.5) for each new mistuning pattern;
typical cascade models have many states and require long computation times. Conse-
quently, it is impractical to characterize response to mistuning by computing (4.5) for

a large set of mistuning patterns.

2. Computing (4.5) for each new pattern z provides almost no understanding. Sensitivity

and parameter dependence is not revealed by exhaustive calculation.

Instead one should find an approximation of the stability and forced response as a function
of mistuning, A\(z) ~ /N\(z),X(z) A )N((Z), where \, X are tractable and provide insight. The
eigenvalues A(z) are reduced to a simple form by symmetry and the coefficients in this form
may be calculated by standard eigenvalue derivative methods. For the forced response case
we must approximate the inverse of A(z) = [iwl — M(z)] in (4.5) as a function of z. In
Section 4.3.1 we find that because A(z) is almost singular, its inverse is a steep nonlinear

function of z. Thus approximating this inverse matrix is at once our main aim and the major

difficulty.

4.2 Stability Approximation

Our first goal is to define the stability boundary change, s(z), due to mistuning. Flutter
boundaries are defined in terms of a performance or loading parameter /. Here U € IR
denotes a parameter of practical interest such as engine-throttle, Mach-number, reduced-
frequency or rotor speed. Typically, a cascade will lose stability at some critical loading
Ui+, and so operation will not be possible beyond this point. The critical loading U,
depends on mistuning, and so we can have a stability change s(z) due to mistuning. To

define the stability change, we rewrite the unforced dynamics in (4.1) with loading U,

i = f(z,U,z). (4.6)
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For any fixed U, model f(z,U, z) reduces to f(z,z) of equation (4.1) and so all previous
results still hold.
For a fixed z, as we vary the loading parameter U within some operating range [Up, U],

the system (4.6) traverses a set of equilibria X*(U, z) defined by

X*(U,z)y=A{«": f(2",U,z) =0,U € [Uy, Ui]}. (4.7)

Assuming that X*(U, z) is non-empty for z in some neighbourhood of the origin and for all
U € [Uy, U], we pick a subset x*(U,z) C X*(U,z) which corresponds to the equilibrium
point of interest at each U. As an example, suppose we have a model (4.6) of a (tuned) jet
engine with z = 0, U is the throttle and it varies between Uy and Uy, then we can think of
2*(U,0) as the design operating point which varies as a function of throttle setting. Clearly,
z*: IR x IR" — IR" is a function of U and z, possibly discontinuous and non-smooth in both
arguments. (Continuity and smoothness assumptions will be discussed shortly.)

Now consider the stability of 2*(U, z) as a function of U for a fixed z. Define
h(U,z) = max[Re(A(U, 2))], (4.8)

where A(U, z) are the eigenvalues of M(U,z) = g—i(;z;*(U,z),U,z) (as defined in (3.12)).
If h(U,z) is negative (respectively positive), then the equilibrium point z*(U, z) is stable
(respectively unstable). Since we are concerned with flutter boundaries it is assumed that
as the loading U increases, then at some point, U..;, stability is lost. Thus, define

Ugir(2) = uer[rl}(i)%l]{u : h(u,z) = 0}. (4.9)
If A(U, z) does not cross the origin for U € [Uy, Uy], let U..;4(2) = oo with appropriate choice
of sign. (When the system loses stability as U/ decreases, the min should be replaced with a

max. Also, if there is more then one stability boundary of interest, the interval [Uy, U;] may

be appropriately partitioned so that only one boundary is under consideration.) Finally, the
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Stability Boundaries

h
-
7 Mistuned
j Tuned
Unstable
0 /,
. Stable Ucrit@) .~ Ucrit(z) u
\\\\ JERCEE _/,’/ ———  hU0)
\“/,/ ---------- 02
A\
Eigenvalues Cross
Figure 4.2: Change of stability boundary, s(z).
increase in stability s(z) is defined as
5(2) = +HUori(2) — Uori(0)] (1.10)

where the positive sign is replaced with a negative if instability occurs as U decreases.
Physically, loading /' may be time dependent—if we take U/ as Mach number it varies with
outside disturbances and as blades sweep past stators and inlet guide vanes. However,
we can always split a time dependent loading U(¢) into an averaged and perturbed part:
U(t) = U+ U'(t). The steady part U leads to the study of stability (our current focus)
while the unsteady part U’(t) is exactly the forced response or mode localization problem
(Section 4.3).

To summarize, s(z) is simply the change in stability (at the relevant equilibrium point)
as a function of mistuning. In practice, it is the change in operating range due to mistuning.
The technical remarks above are appropriate because they allow us to equate assumptions

on the smoothness of s with smoothness conditions on f. For a graphical interpretation see

Figure 4.2.
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4.2.1 Stability Extension Smoothness

Smoothness of s(z) is necessary so that we may take derivatives with respect to z. We will
find that a leading order analysis requires derivatives up to second order (first order terms
do not capture relevant behaviour); hence we need s(z) to be three times differentiable in
some neighbourhood Q of the origin: s € C3(). Since we will be approximating s(z) to
second order, we really care about the subset © C © where s(z) is accurately approximated
by second order terms in z. For the analysis to be practical, this region ® must be of a
reasonable size. Typically, if f, 2* are smooth and the eigenvalue of M are distinct and not
too close, then both conditions above are satisfied. We briefly mention the four cases that
can violate smoothness and practical size of © requirements.

Case one: Equilibrium point z*(U, z) does not travel smoothly with U and/or z. Typi-
cally, such problems are caused by equilibrium bifurcations and present a host of difficulties
which must be dealt with before stability can be considered.

Case two: If h(U,0) has a degenerate root at U..;+(0) as shown in Figure 4.3, then s(z)

h Degenerate Intersection

s(2)

H 1
H Lt
: Ucrit(0) Ucrit(z) /
0 f 0
1/

Figure 4.3: Discontinuous increase in stability boundary.

is discontinuous in z. Under such circumstances one would consider the minimum damping
h(U,z) at a given U instead of the stability extension s(z).

Case three: If the real part of the least stable (or critical eigenvalue) in A(U,0) is very
close to the real part of another eigenvalue, then it is possible that these real parts will switch
as z is varied (see Figure 4.4). In this case s(z) will be smooth on a very small region €2,

hence © (a subset) is unacceptably small. For a non-distinct least stable eigenvalue we have
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) z=0 A zZ0 Eigenvalues
may switch!
Uarit©) .-~ Ucrit@) -~ s(az)
- & Z :> S
U - - U
pth eigen = h(U,0) pth eigen
- --- qgtheigen - --- qgtheigen =h(U,2) 0 a 1

Figure 4.4: Eigenvalue switching creates a discontinuity in s(z).

the special case where s(z) can be discontinuous at the origin. It is possible to tackle these
problems by keeping track of a number of eigenvalues during the analysis.

Case four: When eigenvalues are too close together in real and imaginary parts (almost
indistinct), their motion with parameters is very complex as they veer to avoid collisions
with one another. In this case, the simple leading order behaviour predicted by second order
terms only applies in a tiny region © (see Figure 4.10). The size of region O essentially
determines what we mean by “small” mistuning. There is no easy fix for this case within the
current perturbation approach since keeping track of higher order terms in z (third, fourth,
fifth, ... ) quickly becomes prohibitively expensive. Notice that this case can be of practical
interest (eigenvalues are nearby when the blade coupling is small) and so it should be the
topic of future research. For the special case where the least stable eigenvalues is indistinct,
we can have © = 0. If this repeated eigenvalue is simple (for the circulant matrices of interest
this is the generic case, see Section 3.6.2), we can track all the eigenvalues as they split and
solve the problem. However, if the repeated eigenvalue is non-simple (degenerate case), its

motion is fundamentally discontinuous and cannot be represented by a power series.

4.2.2 Reduction by Symmetry

Having defined the stability extension s(z), our next goal is to determine its simplest form

by symmetry techniques. By smoothness (see Section 4.2.1) we can expand s(z) in a power
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series about the origin,

r

(21,52 = Y _az+ Y bizizi + O(|[2]°). (4.11)
i=1 ij=1
This power expansion is practical in the region © where s(z) is accurately approximated by
second order terms.

From Lemma 3.6.1 we know that eigenvalues have an invariance symmetry, A\;(U, z) =
Ai(U, z). 1t follows from (4.8) and (4.10) that A and s have the same invariance symmetry:
h(U,z) = h(U,pz), s(z) = s(pz). Applying the rotation ¢ a total of k times we find
s(2) = s(¢*[z]) for all integers k. Taking z = [¢,0,...,0] and substituting »*[2] into the

power expansion for all & € (0,1,2,... ,r — 1), we get

are + b€ = age+bye? = ... =ae+ b, (4.12)
which holds for all € up to O(e?). Consequently,

a; = a; (4.13)

bii = by; (4.14)

for all 7 and j. Similarly, letting z = [0,...,0,¢,0,...,0,¢,0,...,0] where the ¢’s are located
in the ¢th and jth spots, by varying 7, j and k as previously we can show

bij + bji = blivilj+r] T OLj+ifi+) (4.15)

for all ¢, 7 and k, where [i + k] = (¢ + k) mod r. Thus symmetry yields a constraint on the

power coeflicients a;, b;;.
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To proceed we make the following definitions,

A

a = a1 = a9 = =+ = Gy

b é 5112522:"':bw
A

c1 = big+ by =boz+ bz = =bp_1} + brp1] = b1 + by,
A

¢z = big+b31 =bog + by ="+ =0bp_1;1 + bip—1] = bz + by,
A

¢t = bipgr + b = - = b + big

where k is defined in the remainder as

reven

r=1 podd.

2

>
|

Using the definitions above, we can rewrite (4.11) as

s(z) = alz1+ 204+ -+ 20) (4.16)
+ b(2f + 254+ 2
+ ci(z1224+ 2023+ - + 2021)

+ co(z123+ 2224 + - + 2r22)

+ (212148 + 222246 + -+ 2o2) + O(HZHS)

It is obvious by inspection that s(z) is invariant under rotation as advertised. Observe that
the first order term vanishes if we assume zero average mistuning, > ._ z; = 0. Equa-

tion (4.16) can be rewritten more compactly as

r

s(z)=aY zi+2"Sz+0(2]) (4.17)

=1
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where S is defined for even and odd r, respectively,

1 C2 c2 ¢ C2 Sk Ck c2  c1
b 2 2 Ck -+ 37 b 2 2 2 2 2 2
c1 . c2 c2 c1 a2 Sk Ck c2
2 b 2 2 Ck 2 2 b 2 2 2 2 2
2 o1 o2 2 o1 o2 ek Ck
2 2 b 2 2 Ck 2 2 b 2 2 2 2
S = or
L c2 2 o L c2 Sk Ck ¢ o
|2 2 - Cr 2 D) b_ | 2 2 - D) 9 e D) D) b

and 27 denotes the transpose of z. Notice that S is real, symmetric and cyclic, a very special

structure caused by the symmetry of the problem.

We now take a step back to consider our results thus far. By using symmetry arguments,

we have reduced “find new stability boundaries” to “find r/2 + 2 stability coefficients”. Once

we have found a, b, ¢y, ¢, ..

., Cg, the analysis problem is solved up to second order in z.

This

is a very useful simplification. Furthermore, we can make interesting conclusions based on

equation (4.17). Some of these conclusions are listed below:

1.

1.

1il.

The structure proved above is independent of model type, hence it is true for any
model including dynamical system, imposed sinusoidal motion or CFD models.

The only requirement is a 27 /r rotation symmetry group.
When restricted to zero average, mistuning appears as a second-order effect.

To prove equation (4.17) we assumed a rotational symmetry. However, the second
order term, 275z, also has a sign and reflection symmetry. In other words, 275z
is invariant under z — —z and (z1,29,...,2,) = (2, 2r-1,...,22,21). This
implies that (for a zero average mistuning) sign and reflection appear as third-
order effects. So there is a hierarchy of stability effects; tuned (average) terms

appear in the first order, zero average mistuning is a second-order phenomenon
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and mistuning reflection is of third order.

It remains to determine the stability coefficients a, b, cy,. .., cg; we present two methods to

do so in the following subsections.

Method A: Computing Eigenvalue Derivatives

Determining a, b, ¢y, ... ,c; can be easily viewed as a derivative of eigenvalues with respect
to parameters problem. The approach below has some nice properties. It only requires
information at z = 0 (the tuned case) and is easily adjusted for different types of mistuning

with a minimum of computation.

Method A is based on any discrete blade model (4.6) where the Jacobian

M(U,z) & %(mo(U,z),U,z), (4.18)

has the property that the quantities

oM 0*M
M(Ucrif(())v())v a—Zi(Uc”t(O%O)’ m(UCMt(O),O), (419)
oM 0*M 0*M

Ucrit(0)7 O)7

W( EYiE (Ucrit(())vo)v M(Ucmt(o)vo)

can be computed (analytically or numerically) for all 7 and j. Practically, the requirement
above is not easily satisfied for complex models (4.6). Specifically, M (U, z) cannot be com-
puted for most computational-fluid-dynamic (CFD) models.

To define s(z) in terms of eigenvalue derivatives, consider the power expansion of h(U, z)

(Figure 4.2) about U..;;(0) for any z in €,

h(U,z) = h(Usi(0),2) + [2—3(
1 [0%*h
5 o

Usrir(0), z)] (U — Uspis(0)) (4.20)

(Ueriz (0), 2)} (U = Uait(0))* + O(|U = Uerie (0) ).

Figure 4.2 illustrates a case where eigenvalues cross between U.,+(0) and U.+(z). However,

in Section 4.2.1 we assume that s(z) is smooth for all z in © which implies that eigenvalues
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cannot cross and (4.20) holds in €. Denote partials with respect to U by subscripts,

h(z) & h(Uai(0), 2) (4.21)
ha(z) 2 g—Z(UCM(O),z) (4.22)
P (2) 2 %(UCM(O),Z) (4.23)

By definitions of U..;; and s (see equations (4.9) and (4.10)), using (4.21), (4.22), (4.23) and
substituting U = U..i1(z) into equation (4.20) we obtain

0 = A(Uerit(2), 2) = h(2) + hu(2)s(2) + %huu(Z)SZ(Z) +O([1=1) (4.24)

where the error estimate is derived by noting that s(z) = O(]|z||).
We can apply identical symmetry arguments to hi(z), hy(2), huu(z) as we applied to s(z),

thus
h(z) = h(0) —I—hi:zi—l—zTHz—l-O(HZH?’) (4.25)
=1
hu(2) = hy(0) + Ay, i zi+ 2T Hyz + O(||2]|*) (4.26)
=1
huu(2) = huu(0) + " i 2+ 2T Hypz + O(HZHS) (4.27)
=1

where h(0) = 0, hy,(0), hyu(0), A, hy, by are constant and the constant matrices H, H,, H.,
have the same structure as S—real, symmetric and cyclic.

Substituting (4.17), (4.25),(4.26) and (4.27) into (4.24) yields

[h+ ah,(0)] Z zi+ 27 [H + hy(0)S + (ahy 4+ ¢®hy(0)/2)E] 2 + O(]|2]?) = 0,  (4.28)
Zi)z

where £ is a full matrix of unit entries which is generated by quadratic cross terms: (3_;_,
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2T Ez. Equation (4.28) holds for all z in Q hence

h + ah,(0) = 0 (4.29)

and by Lemma 4.2.1,
H + h,y(0)S + (ahy + a*hy,(0)/2) E = 0. (4.30)
Lemma 4.2.1 If R € R™™" is a real symmelric matriz, T’ is any open neighbourhood in IR"

about the origin, then zT Rz = 0,Vz € ' if and only if R = 0.

Proof: Assume P = 0, clearly 27 Pz = 0 for all z. Conversely, suppose 2T Pz = 0,Vz € T
but P # 0. Since P is symmetric and nonzero, there must exist a real nonzero eigen-
value A with real eigenvector V. Let z = V, scaled suitably so that 2 € T'. Then
2Pz = 2T(M\2) = \||2]|? # 0, a contradiction. |

It is assumed in Section 4.2.1 that A(U,0) intersects the origin at U..;;(0) in a non-
degenerate fashion (not as shown in Figure 4.3), so h,(0) = 0h(U.#(0),0)/0u is non-zero.
Therefore,

h 1 B [o hh(0)
_ g H b — E). 4.31
= = e ) 43

By definition, h(U,z) = Re[M,(U, z)] where A, is the least stable (maximal real part)
eigenvalue of M (U..+(0),0). It remains the least stable eigenvalue for z in © the neighbour-

hood of interest—no eigenvalue switching as in Figure 4.4. Using definitions (4.21), (4.22),
(4.23) and differentiating equations (4.25), (4.26) and (4.27) with respect to z and U yield
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equations which hold for any j (by symmetry)

o Toy,
h = Re -a—Zj(Ucmt(O),O):| 5 (432)
[D?)
C = Re i azfp(UCMt(O)70):| , (433)
92\,
o; = Re -W(Ucrzt(()),())] 5 (434)
ha(0) = Re | 22(0,4(0),0) (4.35)
U - € _aU crat 9 9 .
§ [ 92,
hu = Re | 55 aZj(zjm,f(()),0)} : (4.36)
[02),
huu(o) = R’e -aUz (UCTit(O)7O) ) (437)

where ( and p; are the entries of H and appear in the same format as b and ¢;, the entries of S
in equation (4.17). In the above we can set j to unity for convenience. Substituting equations
(4.32) through (4.37) into (4.31) yields expressions for the coefficients a, b, ¢y, ..., ¢k in terms

of eigenvalue derivatives,

[0,/
= oy (4.38)
R N G e R e [P e JRCED
= Ty (g ] aoaa) ety ) ()

where all derivatives above are evaluated at (U, z) = (U.(0),0) and {z} denotes the real
part of z. It only remains to actually compute the right-hand sides of equations (4.38),
(4.39) and (4.40). These computations are performed using the classic results of Lancaster
[Lan64] for the derivatives of eigenvalues with respect to matrix parameters. Specifically,

the symmetric derivatives can be written as

oA
a—:(UCTit(())v()) = Ppp, (4.41)

%),
ou?

AREN
*M < PokPk
(Uerit(0),0) = U {W(Ucrﬁ(o)vo)} Vit2 ) (4.42)
H PR k
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where

pij = UT'OM (Uyir(0),0)/0p]V;,

Ui, V; are the ith left and right eigenvectors of M(U..(0),0) and p can take on the values

21,22, ... ,2- or U. Using the chain rule we can derive a formula for asymmetric derivatives,
%), 1/ 9%, %), %X,
cri ) =3 A o cri ) - cri ) - cre ) 4.4
0,0 = 5 ( G20(0,0) = T2 Us(0).0) = T2 Us0).0)) (483

where p and v can take on values zy,z23,...,2, or U and n is a variation in both p and v
(set both v and p equal to ). This reduces the asymmetric partials to three symmetric
partials which can be computed as in equation (4.42). For example, 9*),/0z,0z; is derived
by setting p to z1, v to z3 and equating z; and 23 to n, then

%X, _ %), N 9%, i %), .
on? 0z} 022 021025

(4.44)

Equations (4.41), (4.42) and (4.43) hold when the eigenvalue A,(U..;+(0),0) is simple,
meaning that its Jordan block has simple (diagonal) form. In particular, if A,(U..+(0),0)
is distinct, then these equations are valid. We do not consider the non-distinct case since
smoothness of s(z) is violated when A,(U..+(0),0) is non-distinct.

To apply (4.41), (4.42) and (4.43) we need to compute A;, U; and V;, the eigenvalues
and left, right eigenvectors of M(U..+(0),0) for all «. Since M(U..+(0),0) has a block cir-
cular structure (equation (3.15)) we can apply Theorem 3.4.1 to compute the eigenvalues
and vectors. This provides a significant reduction in computational complexity: instead of
solving the rm x rm eigenvalue/vector problem (m is the number of states per blade) where
computation time increases as (rm)®, we solve an m x m eigenvalue/vector problem r times

3 a savings of r?. Theorem 3.4.1 also avoids the numer-

with resulting computation time rm
ical difficulties inherent in solving eigenvalue/vector problems for matrices with non-distinct

eigenvalues.
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Method B: Finite Difference

For some models (4.6) it is not possible to compute the quantities (4.19). In particular, it is
impractical to compute M (U, z) and its derivatives for computational-fluid-dynamics (CFD)
models due to their complexity and large number of states. For that case we suggest the
method below.

Given any model (4.6) which can accurately predict s(z) for any given mistuning z,

estimate the coefficients a, b, ¢y, ... , ¢, by finite difference. From equation (4.16)
s s(€,0,...,0)
a =220) = — (4.45)
52, _8(26,0,...,0) — 25(¢,0,...,0)
b = %@(O) ~ 5e2 (4.46)
2, s(€,0,...,0,6,0,...,0) — 2s(€,0,...,0)
cZ - 8218821+Z‘ (0) ~ 2 (447)

where in the last equation the second ¢ in s(€,0,...,0,¢,0,...,0) appears in the (i + 1)th
spot and e is small. To obtain a,b,¢y,... ,c; we need to run model (4.6) a total of r/2 + 2
times so as to form the right-hand side of equations (4.45), (4.46) and (4.47). Once these
runs have been completed, the analysis question is solved and the effect of all other types of
mistuning is known up to second-order in z. To estimate the required coefficients we need
a model that predicts s(z) accurately so that meaningful second order finite differences may
be formed. Consequently, the method above is susceptible to numerical noise which may

cause large errors when attempting to numerically determine second-order derivatives.

4.2.3 Stability Approximation Summary

We conclude this subsection by summarizing the method of analysis.

i. Find the Jacobian matrix M (U, z), equation (3.12).

ii. Compute the eigenvalues of M(U,0) for U € [Uy, U;], the range of interest, by
Theorem 3.4.1.

iii. From step ii, construct h(U,0) the maximal real part of eigenvalues at every

U € [Us, U]
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iv. Find U,;+(0), the point where h(U,0) changes sign. Suggested methods to do so

are a bisection algorithm or the Newton-Raphson method.
v. Compute left and right eigenvectors (U;, V;) of M(U.+(0),0) using Theorem 3.4.1.

vi. Evaluate equations (4.41),(4.42) and (4.43) as g and v vary over zq,z2,..., 2
and U.

vii. Substitute the results of step 6 into (4.38), (4.39) and (4.40) to compute the

stability coefficients a, b, cq,. .., cg.

Notice that all steps above only require information at the tuned point z = 0.

4.3 Forced Response Approximation

To compute the forced response we use an eigenvalue/vector perturbation scheme. This
method is valuable for two reasons: first it allows for a large region of method validity as
in the forthcoming Example 4.3.1, second it states the forced response solution in terms of
eigenvalues and eigenvectors providing a link to familiar concepts in linear systems. The
basic idea is very simple: we write the response in terms of eigenvalues and eigenvectors,
this allows an approximation of the mistuned response by perturbation of the eigenvalues

and eigenvectors about the tuned point.

4.3.1 Perturbation Comparison

To motivate the chosen method we compare two methods of approximating the inverse
matrix A™'(z) = [iwl — M(z)]. Method one is a series expansion whose variations are used
in much of the mode localization literature (for example [Sin86]). Method two is based on

eigenvalue/vector perturbations and is developed in here.
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Series approximation

If the spectral radius of matrix P is less than one, p(P) < 1, meaning that all eigenvalues of

P lie within the open unit disc, |A| < 1, then the following series converges
[+ P '=1-P+P*—P°+-. (4.48)

Series (4.48) may be used to approximate the inverse of matrix A(z) = [iwl — M(z)] in
equation (4.5). In shorthand, let Ay = A(0) and AA, = A(z) — A(0), then

A7(2) = [Ag+ AA!
= [Ao( + AFTAA) T
= [+ A;'AA A
= [ — AJ'AA, + (AJTAA,)? — - AT (4.49)

which converges if and only if p(A;'AA.) < 1. A fundamental problem is that Ay is almost
singular. Engines have light damping, Re[A;(z)] = 0, and can be forced near resonance,
w & Im[A;(2)]. Hence A(z) can have an almost zero eigenvalue: iw—A\;(z) &~ 0. Consequently,
Aj'is very large, and so p(A;'AA.) < 1 only allows very small matrices AA, and hence only
a small range of z is permitted. Thus, the series method has a tiny region of validity when

the system is lightly damped and forced close to resonance—as is the case in turbomachines.

Eigenvalue/vector approximation

Alternatively, the inverse matrix A~'(z) can be written as

A7 2) = [iw]l — M(2)]7" = T(2)[iwl — A(2)]7'T7(2) (4.50)
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where

e 0
tw—Ar (2
[iwl — A(2)] " = : (4.51)
1
0 tw—An(z)

Here A(2),T(z) and T~!(z) are the eigenvalues and right/left eigenvectors of linearization
M(z). By approximating eigenvalues A(z) we can easily capture matrix (4.51), even when
A(z) is almost singular: 4w — A;(z) ~ 0.

A fundamental limitation of this method is eigenvalue collision. When eigenvalues are in-
distinct, Aj(z) = A;(2), eigenvectors become discontinuous and the eigenvector perturbations
of Section 4.3 fail. If M(0) has almost indistinct eigenvalues, then small z may cause these
eigenvalues to collide on some surface which passes close to the origin and our perturbation
technique (which begins at the origin z = 0) will not be able to see close to or past this
surface. A concrete example of this phenomena is demonstrated in Example 4.3.1.

As noticed by Mignolet, Hu [MH97] and others, it is difficult to check the series conver-
gence condition p(A;'AA,) < 1 for general matrices Ay as a function of mistuning 2. It is
even more difficult to check the distinct condition of the eigenvalue/vector method. How-
ever, this does not prevent us from checking these conditions for a simple example. We do
so below and note that method limitations revealed by the example generalize to arbitrary

linear systems.
Example: Series versus Eigenvalue/vector Convergence
Take the simplest possible case: two blades, r = 2, with one state per blade, m = 1. Pick

the following matrix A(z) = [iwl — M(z)] with symmetry (3.13),

a+2z b+ z
A(z) = o (4.52)
b+ 21 a+ 2



63

where coefficient @ may be complex (it depends on iw) but zy,z, and b are real. Matrix

(4.52) has eigenvalues

M(z)=a—b, M(z)=a+b+ 2z + 2z (4.53)

with right (column) eigenvectors

b + Z9 1
Vi) = Vi(e) = (4.5
—b — 1 1
and left (row) eigenvectors
[17_1] [b—I_Zlab—l_Z?]
— . = 1 = 4.
Nz =5 + 214 2 R =" + 21+ 22 (4.55)
The inverse of A(z) is given by
) 1 a+z9g —b— 2y
A7l(z) = (4.56)

(a —b)(a+ b+ 2z + 22) b—2 a+z

We see immediately that A™!(z) has a steep nonlinear dependence on z if a+b = 0, precisely
if A(0) has an eigenvalue close to zero: A2(0) & 0.
It is simple to check convergence conditions of the series and eigenvalue/vector methods

for this example. Matrix A;'AA, in (4.49) has eigenvalues

z1 + z2

a+b’

(GG=0 (o =
Hence the condition for convergence of the series method is given by
p(AFTAA) <1 <= |21+ 22| < |a+b). (4.57)

Expression (4.57) is a conservative guarantee that Ay(z) # 0 in (4.53).

On the other hand, our eigenvalue/vector perturbation which begins at the origin, z = 0,
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will not be able to see across the 1/(2b+ z; + z2) singularity in the eigenvectors (4.55). Hence

the eigenvalue/vector method only converges if

z1+ 29 > —2b when 6> 0

Z1+ 29 < —2b when b < 0, (4.58)
where b is real. This is exactly the point where eigenvalues become indistinct,
)\2(2) — )\1(2) =2b + Z1 + Z9 = 0.

If A(0) is almost singular (A2(0) = a + b = 0) but the eigenvalues are far from being
indistinct (A1(0) — A2(0) = 2b % 0), then the series approximation has a tiny sliver of
convergence while the eigenvalue/vector method has a large region of convergence—Figure
4.5. (Shading denotes regions where (4.57) or (4.58) fail and methods do not converge.) This
is a case we expect to see in practice: light-damping and near resonance (almost singular)
with significant blade coupling (eigenvalues far apart).

For the contrary case: almost indistinct eigenvalues (A1(0) —A2(0) = 2b & 0) but far from
singularity (A1(0), A2(0) % 0 hence a ~ 0) the series method is good and the eigenvalue/vector
method is bad—Figure 4.6. This is not an interesting case: large-damping or no resonance
(far from singularity) indicates a conservative design where mistuning will have no impact.

For the case where we have both indistinct and almost singular eigenvalues, (A1(0) ~
A2(0) &~ 0 or a & b~ 0) both methods are poor—Figure 4.7. This case can be encountered
practically. For example: fans with stiff hubs (small structural coupling), complex blade
shapes and small aerodynamic coupling can exhibit many closely-spaced, lightly-damped
modes.

It should be noted that variations and enhancements on the series method will still be
poor in the almost singular case. Fundamentally it is not possible to approximate the (multi

variable) discontinuous function 1/[iw — A;(z)] by a smooth polynomial expression

1

m%ao—l—al-z—l—zTAgz—l—---
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z1

SERIES EXPANSION EIGENVALUE/VECTOR

Figure 4.5: Method convergence: almost singular case.

SERIES EXPANSION EIGENVALUE/VECTOR

Figure 4.6: Method convergence: almost indistinct case.

in a substantial region of z space when iw — X;(0) is small. Yet it is possible to achieve an
approximation that holds over a large region with only a few terms by approximating A;(z)
in the denominator (matching two similar discontinuous functions). The functional form
1/[iw — Aj(z)] yields the required steep nonlinear dependence on mistuning.

In summary, Table 4.1 follows from equations (4.50), (4.51) and the example. The light-
damping limitation of the series method is also noted in [WP90]. By comparison, the eigen-

value/vector method holds in the lightly-damped resonant case, but fails if we have closely

H Low Damping ‘ High Damping
: Sensitive to Mistuning Not Sensitive to Mistuning
Distant . .
Fivenvalues Eigen Approx. +/ Eigen Approx. +/
& Series Method  x Series Method /
Sensitive to Mistuning Not Sensitive to Mistuning
Nearby . .
Ficenvalues Eigen Approx. X Eigen Approx. x
& Series Method — x Series Method /

Table 4.1: Perturbation method validity.
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SERIES EXPANSION EIGENVALUE/VECTOR

Figure 4.7: Method convergence: almost singular and indistinct.

spaced modes. Of course symmetry arguments along with equations (4.50) and (4.51) con-
tinue to hold. To extend the eigenvalue/vector method to the nearby eigenvalues case requires

the tracking of sharply veering eigenvalues and eigenvectors.

4.3.2 Jordan Decomposition

Forced response X in the frequency domain is given by expression (4.5) rewritten below as
X(2) = A7Y(2)By(2) (4.59)

where A(z) = [iw]l — M(z)]. To develop a simple functional form for X(z) we have to
approximate the inverse matrix A~!(z) which we do by bringing together the symmetry
tools of Section 3 together with eigenstructure perturbation concepts below.

Assume the tuned linearization matrix M = M(0) of (3.15) has distinct eigenvalues. This
is true generically (almost always); as discussed in Section 3.6.1. Then M(z) has a diagonal

Jordan form where the eigenvalues and eigenvectors vary smoothly with z; see [Lan64],

| | Ai(2) 0 — Ui(z) —

(4.60)

Here A(z) is a diagonal matrix of eigenvalues and T'(z), T~!(z) are matrices of right and left
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eigenvectors respectively. Let the right eigenvectors V;(z) be normalized as ||V;(0)|| = 1 for

any j. By definition A(z) = T'(2)[iwl — A(2)]T~*(2), and so the inverse matrix A~!(z) is

given by
ANz) = [iwl — M(2)]™' = T(2)[iwl — A(2)]7'T7(2) (4.61)
where
e 0
[iwl — A(2)]™' = . (4.62)
0 zw—;n(z)

Expression (4.61) may be rewritten

AN (z) = Z M_; V,(2) (4.63)

nXn complex matrix

where n = rm. Using equation (4.63) we will find an approximation for the inverse matrix
A~(z), and hence the forced response X(z), by perturbing the eigenvalue A(z) and left,
right eigenvectors U(z), V(z) about the tuned point z = 0.

4.3.3 Response per Mode with Symmetry

Now consider forced response X?%(z) due to a single mode j, d (numbering of Theorem 3.4.1).

From equations (4.59) and (4.63) we have

_ VIRUAE)Bi)

XM(Z) iw— A(z)

(4.64)



where the response for all modes is given by

X(2) = D Xx(2), (4.65)

U]d(z) = [u?(z), pj_lu;l(cpz), p]f?u;l(@%)’ 7pj—r+1u;{(@r—1z)]
[ i) [ B ]
PV (92) peBp2) (4.66)
Vi) = | plui(e?s) | Bi(z) = | piB(p*2)
7)) | 7B |

where v?(z), u;‘l(z) and f(z) correspond to the first (m sized) block of de(z), U]d(z) and By(z),
respectively.

Equation (4.66) allows us to write the response of the first blade (first block of X74(z)
in (4.64)) as

| e (EuEen |
X6 = oy | P Bly™2) ol(z) |- (467)

w
s=0

Equation (4.67) is a great simplification, it reduces computing the forced response X(z) from
an rm-sized vector problem to a first-blade m-sized problem. Response of the first blade due

to all modes follows from (4.65),

Xi(2) = > X2). (4.68)
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Subsequent response for all blades is given by symmetry (3.23),

X(z) = [Xl(z), peX1(2), prXi(e®2), - ,pz_le(cp’"_lz)] ) (4.69)

Intuitively, if we want to know the response of blade three to some mistuning pattern z,
we totate z back twice (p?z) and evaluate the response of blade one (X;(p?z)). Then the
response of blade three is the same, modulo the required phase shift p; due to the relative

position of the stationary forcing.

4.3.4 Tuned Response

When the system is tuned (z = 0) equation (4.68) reduces to
"L ul(0)3(0
X,(0) =r Z M U%(o) (4.70)

where L = {modr. For example: if r = 10 and ¢ = 12 (meaning ((#) = sin(126) in Figure
3.1) then only j = L = 2 modes will appear in (4.70). Hence forcing modes separated by r
(say £ = 2 and £ = r + 2) have the same spatial structure (same symmetry of forcing vector
By(z)) but differ in forcing frequency w = Qf. In fact the modes of (4.70) are precisely the
modes which are fixed in the stationary frame. Suppose we have an observer at position 4

in the stationary frame. At some time ¢ blade one travels past with amplitude
21(0,1) = X, (0)e"™,
at the earlier time ¢t — 7 = { — 27 /r{) the second blade had arrived with equal amplitude

.ﬁi’g(o,t — ’7') = X2(0 eiéQ(t_T)
0)ettUt=7) symmetry (3.23)
definition of 7

= X, (0)e¥ definition of p,.
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Consequently, the tuned response z(0,¢) = X(0)e** is stationary in the disturbance refer-
ence frame. This is true for any stationary forcing (combination of many fs above) and is
not a surprising conclusion.

it

In contrast, the mistuned response, z(z,t) = X(z) with z # 0, can display all modes

(allows j # £ mod r modes) and is not stationary in the disturbance reference frame, here
1(z,1) = Xa ()€™,
but

To(z,t—7) = XQ(Z)eMQ(t_T)
— pZXl (@Z)eiéﬂ(t_q—)
— Xl(goz)eiéﬂt

+ Xl(z)eiégt = Z1(z,1).

Think of a fan with all rigid blades except one flexible or mistuned blade. Since only the
flexible blade may vibrate, it is clear that the response is anything but stationary in the
fixed reference frame.

Geometric Interpretation

Statements above can also be seen geometrically: y = T~'(z) z is the change of coordinates

which transforms equation (4.3) into diagonal form
g = A2)y 4+ T (2)By(z)e™. (4.71)

Now T7'(2)By(z) is the projection of the forcing vector By(z) into the diagonal coordinate
system. The matrix 77!(z) consists of left eigenvectors U]d(z) of M(z). When the system is
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tuned B,(0) lines up with the Lth right eigenvector block V£(0)

VI(0) = [v, pev, pio, - pp o) (4.72)

BZ(O) = [67 pé/Bv p?ﬁ7 7p2_1 6] (473)

More precisely, B,(0) projects onto a subspace defined by the span of V/(0) as d varies
between 1 and m. So the only nontrivial equations in (4.71) are those corresponding to the

Lth modes

y;l = A;l(())y;l, for j # L, (4.74)

g, = AL(0)yg + UL(0) Be(0)e™". (4.75)
As z is varied away from zero, the eigenvectors V(z), U(z) shift and the Lth right eigenvector
subspace drops away from the forcing vector By(z). For the mistuned case B;(z) has a
projection onto all eigenvectors, the structure (4.74), (4.75) fails and all modes come into
play. The amount by which any specific mode shape de(z) appears is determined by the size
of projection U]d(Z)Bg(Z) scaled by the inverse eigenvalue ,u;l(z) =1/[iw — )\;l(z)], precisely
the scalar term U]d(Z)Bg(Z)/[iw — /\?(z)] in equation (4.64). Consequently, lightly-damped
modes close to resonance will appear far more readily with mistuning than highly-damped

modes forced far from resonance.

4.3.5 Eigenstructure Approximations

So far we have not made any approximations, so the modal expression of (4.67), (4.68) and
(4.69) is an exact solution to the linear forced response problem (4.5). An obvious first cut
approximation is to drop all highly damped modes. In this case summation (4.68) is only
taken over j = fmodr (the tuned modes) plus any additional mistuned modes j,d which

satisfy

RO | <6 = [ud(0)] = — >

= = (4.76)

L
5
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where 1/4§ is the (roughly) desired accuracy. Equation (4.76) is a useful estimate, yet it does
not address our primary goal of expressing (4.67) as a simple functional form in z. To do so

we turn to standard tools in eigenvalue and eigenvector perturbation.

Inverse Eigenvalue Perturbation

We need to approximate the term

1

pi(z) = o= X(2) (4.77)

in equation (4.67). Here p?(z) is an eigenvalue of A7'(z) and A%(z) is an eigenvalue of
M(z). Eigenvalues )\;l(z) are approximated by methods analogous to those of Section 4.2.2.

: d
Remember that eigenvalue A(z) has symmetry

N(2) = Xj(p2)

and so is invariant under rotation (see Lemma 3.6.1). Invariance under rotation implies (by

the same symmetry argument as used to derive equation (4.16))

Ni(z) = M(0) + ojalz1 + 22+ -+ 2) (4.78)
+ Gialzi + 25 + -+ 22)
+ @/}{’d(ZlZQ + zoz3+ -+ 2021)

+ 1/;%":[(2123 + z9z4 + - + 2r29)

+ ¢i7d(2121+k + zozoqk + -+ 2ezp) + O(HZHS)

= A(0) + 04 Z zi + 27[®; 4]z + O(]|z|]?).
=1
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where k is given by

g reven
(4.79)
=1 podd.

2

>

Notice that the linear term o )., z; does not capture mistuning dependence, it only
reacts to the averaged or tuned Y_, z; portion. It is the quadratic term 27 ®z which really
reveals eigenvalue motion as a function of mistuning and captures motion due to zero average
mistuning: » ', z; = 0. Since p(z) in (4.77) can depend strongly on A(z), it is crucial to

capture this second order eigenvalue dependence on mistuning given by 27 ®z.

Differentiating (4.78) shows that coefficients o, ¢, 11, -+, correspond to eigenvalue
derivatives
aN? 102\ , 9?\¢
1= —=—2(0), ¢jq=-——2(0), v =_—" (0). 4.80
U]7d 821( )7 ¢]7d 9 azf ( )7 77Z)z 8218214-2'( ) ( )

These eigenvalue derivatives with respect to parameters are computed as in Section 4.2.2.
. . . . . d . . . .
This yields an approximation for the 1/[iw —Af(z)] term in equation (4.67) by approximating

eigenvalue A?(z) in the denominator of (4.77).

Coupling Approximation

Our next goal is to approximate the remainder of expression (4.67), namely find an approx-

imation for the coupling term
r—1
Vi(z) = (Z pZ_jU?(sOSZ)ﬂ(¢SZ)> vi(z). (4.81)
s=0

Consequently, (4.67) may be rewritten as X{"d(z) = ,u;l(z)\ll;l(z) The term W varies slowly
with z—eigenvectors change slowly unless eigenvalues are clustered because rate equations
like (4.84) always depend on eigenvalue distance A; — A, in the denominator. Consequently,

it is acceptable to approximate W(z) as a first order function in z.
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Equation (4.81) can be further split into two parts: the summation

dl(2) = 3 gl 2)(e) (4.82)

and the first block v#(z) of right eigenvector V*(z). So W!(z) = g/(z)v¥(z) where g(z) is a

J

scalar function and v?(z) cC™.

Right Eigenvector Perturbation: We linearly approximate v¥(z) found in (4.81) by

d
av]-

(=) ~ pl(0)] + [a—zl@) .

e |5 (0)] 2. (4.83)

av;l

d

Since v$(0) corresponds to the first block of tuned right eigenvector de(O) it may be computed

from Theorem 3.4.1. The required eigenvector derivatives are given by formulas similar to

those in [Lan64],

?jm) ) U2(0) | 240)] vi4(0)

p,s#d

S0~ 350) v3(0). (4.84)

P

As in the eigenvalue perturbation, all we need to do is compute the tuned eigenvalues and
right, left eigenvectors, A(0), U/(0) and V'(0), which substitute into equations (4.83) and (4.84)
to yield a linear approximation for v;l(z). If desired, one may make a further approximation
by dropping from summation (4.84) any mode p, s which is far from target mode j, d, |/\;l(0) —
A2 (0)] large.

Summation Approximation: It remains to approximate the summation term g;l(z) of

equation (4.82). It is easy to show that gf(z) has symmetry

9i(p2) = pi—s gj(2). (4.85)
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Symmetry (4.85) implies that g;l(z) has the form
9i(2) = g}(0) + g (=1 + proj 22+ pi_j za + - + 975 z) + O(||=I). (4.86)

To complete a first order approximation of g;l(z), we need only find the complex coefficients

g;fl(()) and g;l. The tuned portion g;fl(()) is computed from (4.82) and Theorem 3.4.1,

g}(0) =0 for j # L
g.(0) = rug(0)5(0). (4.87)

Coeflicient g;? is obtained by differentiating (4.82) and (4.86) with respect to zy,

d

99

e

—d

9p
<o>] O]+ 0] |20 >D )
1—s Z1-s
It remains to find left eigenvector derivatives with respect to parameters, du/0z;, and as
in the right eigenvector case this is done by standard methods as in [Lan64]. Analogous to

equation (4.84) we have

o U2(0) |24(0)| v (0)

p,s#5d

X0 us(0). (4.89)

and once more we need only find the tuned eigenvalue and left, right eigenvectors, A(0), U(0)
and V(0), from Theorem 3.4.1 to complete the calculation.
Combining Terms

Combining linear approximations for v;fl(z) (equations (4.83) and (4.84)) and gf(z) (equations
(4.86), (4.87), (4.88) and (4.89)) yields a linear approximation for coupling term \I/;l(z) of
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equation (4.81),

Wi(z) = gi(2)vj(2) = | og" | + | ol | 214 | af? | 2ot oot | @i | 2+ O(]2]),

| | | |
(4.90)

> ‘
where " are known, constant, complex, m sized, column vectors. Recall that the forced

response of blade one, Xf’d(z), due to the j, dth mode is taken from (4.67) and (4.81),

vi(z)

L
X = ey
J

(4.91)
Here inverse eigenvalue 1/[iw—/\;~l(2)] of equation (4.77) is accurately captured by approxima-
tion (4.78) of /\?(z) in the denominator. Approximation (4.90) together with the denominator
approximation of eigenvalue /\?(z) as above yields the approximate forced response of blade

one due to mode 7, d,

J,d ! 5 j,d
oy foy 2oy 2o+ +alfz,

X]7d ~ .
1 (Z) to — )\;l(()) — 0jd Z::l Z; — ZT[q)Ld]Z

(4.92)

In cleaner notation (drop all j, d indexing), the approximate response of blade one due to a

single mode is given by

ap + ar1z1 + agze + -0+ oz,

iw—X0)—od_ 7z —2T0z

X2~ (4.93)
Here a; are known, constant, m sized vectors; w = ¢ is the forcing frequency; A(0) is an
eigenvalue of tuned linearization matrix M(0); a is a known complex coefficient; and ® is a
known complex matrix containing coefficients ¢, ¢, -+ , ¢y as in (4.78). Further, it follows
from (4.87) that o = 0if j # fmodr since af corresponds to the tuned portion of the

response. An approximation for the total response of blade one follows from (4.68) and
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(4.92)

Jd 5 Jd j,d
oy ‘a7z tay ze o+ ol

X, (z) = ‘ Z Xi(z) ~ Z o N0) — a5 = T (4.94)

In addition, we can drop terms in (4.94) which correspond to highly damped modes. In that
case the summation is taken over all tuned modes with 5 = £mod r plus those that satisfy
(4.76). Finally, the response for all blades is given by symmetry (4.69).

Our analysis goal has now been achieved. Equations (4.92), (4.94) and (4.69) provide a
simple functional form in z for forced response X(z). Once we have computed coefficients
a;,0 and ¢, 1y, - -+, of matrix ® for all desired modes, we know the forced response for
arbitrary mistuning. More importantly, functional form (4.92), (4.94) and (4.69) allows
for an intuitive understanding of the mode localization problem and permits sensitivity or

tradeofl studies as in Section 5.2.1.

4.3.6 Forced Response Approximation Summary

To close this section we present a short summary of the forced response analysis method.
1. Start with any nonlinear model (3.1) which necessarily has symmetry (3.5).

2. Pick appropriate equilibrium point 2*(z) which has symmetry of Lemma 3.3.2. (See

Section 4.1 for discussion.)

3. Compute linearization matrix M(z) and forcing vector By(z) of (4.3) about chosen
equilibrium z*(z). See Sections 4.1. Can consider one forcing mode ¢ at a time by

linearity.

4. Check stability as in Section 4.2.2 to insure forced response is meaningful. Transforming

to frequency domain yields the linear forced response problem (4.5) for any loading.

5. Solve for eigenvalues, A(0), and right, left eigenvectors, V(0),U(0), of tuned matrix
M = M(0) in equation (3.15) by Theorem 3.4.1.
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6. Use A(0),U(0) and V(0) as in Section 4.2.2 to compute eigenvalue perturbation for
A(2) of equation (4.78). This approximates eigenvalues u(z) of inverse matrix A~'(2) =
[iwl —M(2)]~" in the denominator through expression (4.77). Further substitute values
of A(0),U(0) and V(0) into (4.84) and (4.89) to compute (4.83), (4.86) and (4.88) which
together yield W(z) of (4.90). Combine W(z) of (4.90) and u(z) of (4.77) to find first
blade approximation (4.91) and (4.92) for any given mode j,d.

7. Sum over tuned modes, j = fmodr, and any other modes whose amplitude is larger
then desired accuracy 1/4, see (4.76), to yield an approximation of first blade forced
response (4.94).

8. Response for all other blades follows from symmetry (4.69).

9. Redo above for all relevant spatial modes £ of item 3. Summation over all such modes

{ yields final result.

Notice that all of the above only requires information at the tuned point z = 0.

4.4 Mistuning Sensitivity

In the following two sections we describe some factors that create the sensitivity to mistuning.
Section 4.4.1 deals with stability sensitivity, while Section 4.4.2 discusses forced response

sensitivity.

4.4.1 Stability Sensitivity

The results of Section 4.2.2 present an interesting dilemma. We know experimentally [Whi64]
that stability boundaries can be sensitive to (zero-average) mistuning: s(z) varies sharply
with z. (We can always consider zero-average mistuning because the averaged part Y z;/r
corresponds to a tuned change.) Yet equation (4.17) proves that (zero-average) mistuning
appears as a second-order effect: s(z) = O(||z||*) when Yz = 0. It follows that second
order terms 27 Sz should be creating the mistuning sensitivity. Hence || S| (leading order

mistuned sensitivity) must be large compared to |a| (the tuned sensitivity) in (4.17).
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Thus, if we pick a random mistuning direction ||| = 1 and vary the size of mistuning

along this direction z = a2, we get the quadratic curve

s(az) = [az,éi a+ [éTS,%] o’ + O(HaHS) (4.95)
=1
with @ >"
.1 Zi small or zero Comgamdiaga%@iﬁ@ (see Figure 4.8). Hence the symmetry ar-
S
s(az)
-§ N
: $
ol N
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<
&
l enall inear cosfidet
0
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Figure 4.8: Stability sensitivity to mistuning

guments of Section 4.2.2 provide a simple explanation of stability results seen by other
researchers. For example, both Bendiksen [Ben86, Figures 2 & 3] and Crawley, Hall [CH85,
Figures 12 & 13] display the characteristic quadratic shape of Figure 4.8. The analysis of

Section 4.2.2 reveals two factors which can cause ||.S|| to be large compared to |a].

i) Nearby Eigenvalues

Quadratic coefficients b, ¢;, which depend on second order eigenvalue motion 9%)/0z?, are
inversely related to the distance between eigenvalues |A\; — A;| (equations (4.39), (4.40) and
(4.42)). However, the linear coefficient |a| is independent of |\, — A;| (equation (4.38)).

Consequently, nearby eigenvalues create a large ||S||/|a| ratio. Nearby eigenvalues also limit
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the range where our small mistuning perturbation method is valid (see Section 4.3.1). For
stability analysis, the eigenvalue/vector approximation method is aimed at the case where
eigenvalues are close enough to create mistuning sensitivity (||.S]|/|a| large) but are sufficiently
far apart so that leading order (quadratic) terms in (4.17) provide valuable information.

The distance between eigenvalues is roughly determined by size of the blade coupling
(aerodynamic or structural) divided by the number of blades (see Section 4.5). If the blade
geometries are complex, there exist more structural modes per blade and so the distance
between eigenvalues shrinks further. Hence compressors with stubby (rigid) blades and large
(flexible) disks will have large structural coupling and the eigenvalues will be far apart.
Typically, this is the case for compressors near the back of the engine where the blade
passages become small. Here, our stability approximation will be accurate but the stability
sensitivity will be low. On the other hand, lightly loaded fans with long blades and rigid
disks will have small structural and aerodynamic coupling. Now the eigenvalues will be close
together, stability sensitivity will be high and our approximation will only hold in a small
region of z space.

For example, Figure 4.10 shows data from a simple Pratt and Whitney model for a
compressor with no structural coupling and only small aerodynamic coupling. Here the tuned
eigenvalues (denoted by *) are very close together. Now we introduce mode one mistuning
zj = €Z; = ecos(2mj/r) where the size of mistuning e varies between 0 and 1.485% in .033%
increments. Eigenvalues approximations are given by A(z) & A(0) 4+ 2T ®z = A\(0) + (2T ®2)e?
and correspond to straight lines in Figure 4.10. True eigenvalue motion was computed by
solving the mistuned M (eZ) eigenvalue problem directly, and this corresponds to the curved
lines in Figure 4.10. The exact (grey curved) and approximate (black straight) eigenvalues
paths always agree for sufficiently small € where leading order quadratic terms are sufficient.
However, Figure 4.10 clearly demonstrates that for small coupling, the approximation (4.78)
can hold in a very small region of z space. In some cases the region of agreement is so
small it cannot be distinguished in Figure 4.10. (By comparison, for the high-fidelity model
of Chapter 6 the approximation holds up to about 10% mistuning for the least-stable non-
colliding eigenvalues, see Figure 6.9.)

The size of coupling in this example is not realistic. For compressors with stubby blades,
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Sensitivity due to Damping Slope
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Figure 4.9: Stability sensitivity to mistuning can depend on damping slope 0h/0U.

the aerodynamic coupling is indeed small; however the structural coupling can be quite
large. The model used for Figure 4.10 includes the small aerodynamic coupling but ignores
the larger structural coupling, hence the tuned eigenvalues are too close and this creates
sharp eigenvalue veering.

In between the small/large blade coupling extremes (where many practical problems
reside and the quadratic dependence of s(z) is seen clearly [Ben86, CH85]) sensitivity will
increase and the region of method validity will decrease as blade coupling decreases. This
is natural; it is harder to describe more sensitive problems. In contrast, forced response
sensitivity is caused primarily by light-damping. In that case we can have distant eigenvalues
(so we achieve good eigenvalue tracking in our forced response analysis) together with high

forced response sensitivity.

ii) Slow change in damping

The term 0h/0U = Re[0),/0U] in equations (4.38), (4.39) and (4.40) is the rate of change
in damping Re[),] with loading. This terms appears once in the denominator of (4.38) and
three times in the denominators of (4.39) and (4.40). Hence a small Re[d),/0U] will typically
create a large ||S]|/]a|. (Of course other terms such as 9*),/0U? also influence the size of

IS||/|a].) The small damping found in jet-engines typically creates a small Re[d\,/0U] term
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(left of Figure 4.9) but this need not be the case (right of Figure 4.9).

4.4.2 Forced Response Sensitivity

There exists a simple and elegant geometric interpretation of the forced response solution.
Consider a hypothetical three-blade, two-states-per-blade example as in Figure 4.11. First
look at the tuned case. The tuned matrix M(0) of (4.3) has six eigenvalues A?(0). These
eigenvalues are labeled by index j and plotted as crosses in the complex plane at the top-
left of Figure 4.11. Here the jth tuned eigenvalues correspond to the jth nodal diameter
mode. Hence each tuned eigenvalue /\;l(()) has associated tuned right eigenvectors (or jth
nodal diameter mode shape) de(()) with constant inter-blade-phase-angle 275 /r, 7 = 0,1 or
2. Theorem 3.4.1 implies )\;-l has complex conjugate )\f_j (the backwards traveling wave) so
the numbering of modes in Figure 4.11 is correct.

Our forcing is taken to be purely second modal (¢ = 2 in (4.3), think of two upstream
struts) and so only modes with j = 2 are active (as denoted by circled eigenvalues in top-left
of Figure 4.11). In fact, this is a consequence of (4.74) and (4.75) which state that the
tuned forcing vector B,(0) lies in the subspace V;*(0) generated by V}'(0), VZ(0),---, Vi*(0).
Physically, the 5 = 2 tuned nodal diameter mode shape matches the ¢ = 2 spatial forcing.
This is denoted schematically in middle-left of Figure 4.11 where B(0) exactly lines up
with subspace V;*(0). Hence forcing B2(0) can only affect 7 = 2 modes and so we write in

shorthand
X(0) =7V (0)

meaning that the response only contains j = 2 modes. Coefficients in v, are proportional to
the inverse of distance |/\;-l(0) —1w|, thus lightly damped modes forced near resonance create
large vs. In our example, A}(0) has medium damping (mode j = 2,d = 1 in top-left of
the complex plane) while lightly damped mode A3(0) (mode j = 2,d = 2 at bottom-left) is
far from resonance for all positive rotation speeds of the fan. Hence 7 = 2 modes generate

the gentle Bode plot at bottom-left of Figure 4.11, with associated resonant frequency wy =
Im[A;(0)].
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Mistuned Eigenvalue Comparison: mode 1, incr 0.00033, max-size 0.01485
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Figure 4.10: Eigenvalue veering with mistuning for P&W model: tuned eigenvalues (*),
exact mistuned eigenvalues (-, grey curved paths), approximate mistuned eigenvalues (-,
black straight paths).
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Now suppose we allow mistuning. First of all, the eigenvalues shift as shown in top-
right of Figure 4.11 and this movement is captured by expansion (4.78). Such motion may
be either stabilizing or destabilizing, in our example we show the stabilizing case (least
stable eigenvalues move left) as is often the case. Yet the eigenvalues are not perturbed
alone, the eigenvectors also shift away from the tuned case as in equations (4.83), (4.84)
and as shown pictorially in middle-right of Figure 4.11. By breaking the symmetry, the
modes (eigenvectors) are no longer pure nodal diameter modes where each blade response
is separated by a constant inter-blade-phase-angle. Now (the forcing) By(z) no longer lines
up with subspace (mode shapes) V;*(z) and so Bz(z) can project onto all the eigenvectors.
Notice that By(z) typically retains its direction since £ = 2 basically corresponds to second
modal forcing (as could be caused by two upstream struts) and will not be affected by
mistuning of blades. All modes are now excited and this is denoted by all modes being

circled in the top-right of Figure 4.11. The associated forced response has the form
X(2) =7%V5(2) + W' (2) + 725 (2),

where the size of coefficients in 7; is determined by the amount Bs(z) projects onto eigen-
vector subspace V*(z) times the inverse of [A?(z) — iw| which measures the distance from
resonance. Since mode one, A\{(z), has very light damping, 4; will be large at resonance even
for very small shifts in the eigenvectors. As a result we get the Bode plot shown in bottom-
right of Figure 4.11 with the severe peak at w; = Im[A}(2)]. In a nutshell, this is the mode
localization phenomena. Even when mistuning is stabilizing (modes shift to the left) the
appearance and resonance of previously unexcited low-damped modes can cause huge peaks.
Moreover, the problem is incredibly sensitive. Tiny changes in the eigenvectors, as created
by small random mistuning due to machining imperfections, may create unacceptably large
vibrations due to low damping found in turbomachines. Of course this extends to the case
of multiple mode forcing (many values of ¢ in (4.3)). For example: we might have forcing
with weak £ =1 (say a mode one inlet distortion) and strong ¢ = 2 (our two struts) spatial
decomposition, creating an acceptable tuned response in modes 5 = 1 and 7 = 2. Upon
mistuning, the large { = 2 forcing component will excite an unacceptable response in the

lightly damped 7 = 1 mode.
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4.5 Behaviour Implied by Model Structure
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Figure 4.12: Some possible model sets with examples.

The tools developed so far are aimed at systems with circulant symmetry. This is a large
class of systems that includes bladed-disks, circular saws, car brake hubs, washing-machine
spindles and helicopter blade assemblies—in fact any device that has r circumferentially
arranged features which can be mistuned. Hence the restricted set of behaviour derived must
hold true for washing-machines, just as it does for bladed-disks. In a sense, the allowable
set of behaviour is still too rich. We would like to be able to differentiate between bladed-
disks and washing-machines without having to write down a specific bladed-disk or washing-
machine model. To do this we can start making general observations: bladed-disks are
lightly-damped, whereas washing-machines, one would guess, are not. By assuming light-
damping we can show additional behaviour. This is the idea behind Figure 4.12 where we
show different sets corresponding to general modeling assumptions. By making these further
assumptions, we restrict the set under consideration and approach the devices of interest.
Doing this top-down approach has advantages over a bottom-up (or search) approach where
we would try to improve (or enlarge) the set of models under consideration. Specifically, it

does not require accurate models, we can make interesting statements based solely on generic
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statements such as: damping is small, coupling is dominated by adjacent-blades, or damping
of the disk is higher then damping of the blades. This is what we mean by “behaviour”

from “model structure.”

We have already done some of this informally; we considered flip
symmetric and simple mechanical systems in Section 3.6.1, and lightly damped systems in
Section 4.4.2. Below we study the case where coupling is dominated by adjacent blades

which can be true for aerodynamic coupling.

4.5.1 Tuned Eigenvalue and Eigenvector Structure

For the block-circulant tuned linearization M = M(0) as in equation (3.15), the tuned

eigenvalues are the eigenvalues of the (); matrices in Theorem 3.4.1,
Qi =M, +pMy+p:Ms+ - +p, "' M,. (4.96)

Let ny with d = 1,2,... ,m be the eigenvalues of M;. These are the blade-alone eigenvalues
because M; describes how each blade affects itself. Thus 7y essentially captures the structural
modes for a single blade perturbed slightly by blade-alone aerodynamic effects (no structural
or aerodynamic blade-to-blade coupling yet).

If there is one state per blade (m = 1), the M;’s are scalars and the tuned eigenvalues
are simply A\; = M, + p; My + p?Mg + -+ p;_lMT. We see that each M; creates a circular
eigenvalue loop. So, for example, if all the M;’s are zero except for M; = n and M5 = ¢ (blade
one only couples to blade five), then A; = n+pie where p; = exp[2mij/r] and j = 1,2,... 7.
Hence the coupled eigenvalues are arranged in a circle of radius € about the blade-alone
eigenvalue 7.

When m > 1 the M’s are m sized matrices. For this case suppose the blade coupling
(aerodynamic or structural) is small: ||M;|| > ||M;]| for all j > 1. Then we can view each
Q; as a perturbation away from M, thus by standard eigenvalue perturbation techniques

(as in equation (4.41))

A =+ pilaaMaB) + pllaaMsBa] + - -+ + pi 7 eaM,B4) + O(|| M;]?) (4.97)
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where oy, 3; are the left, right eigenvectors of M; (normalized as ||34]| = 1 and a8 = I).
So long as the M,’s are small compared to M; the same statement holds as above: each
M; creates an eigenvalue loop of size |agM;34| about the blade-alone eigenvalue 4. This is

shown graphically in Figure 4.13 for three blades. So the tuned eigenvalue spread, or the

+ 0 go

I Single blade L & Multi blade /
coupling coupling
/ eigenvalues | eigenvalues |

Blade adone \
eigenvalues h

I
Jr
@ radius’ (;@

Figure 4.13: Tuned eigenvalue loops caused by blade coupling.

“loop radius,” roughly measures the amount of blade coupling. If there is only adjacent
blade coupling, then M, and M, in equation (4.97) create an ellipse centered at 7: )\;-l =
na + pje1 + p—;je2. When the coupling is dominated by adjacent blade terms, the eigenvalues
lie close to this ellipse (this can be clearly seen in Figure 4.15).

Similar to equation (4.97), we can find a perturbation equation for the tuned left and

right eigenvectors of @),

ar + O(|[ M) (4.98)

N RS A
e Nda — 1t
t

"8, + O(| M; 1) (4.99)

N#ENG v r—1 3
B aypiMa + -+ p; 7 M]3
vl = Ba+ g —
1

The eigenvectors of the tuned matrix M = M(0) are now given by Theorem 3.4.1.
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4.5.2 Adjacent Blade Coupling: Eigenvalue Motion

We can derive conditions on eigenvalue motion with mistuning based on the assumption of
adjacent blade coupling. To ease computation, it is further assumed that the linearization

matrix M(z) can be written as

Ml Mg Mg Mr—l 77“ M’21 0 0 0 0
MT Ml Mg Mg Mr—l 0 M/ZQ 0 0 0

M(z) = (4.100)
Mg Mg Ce Mr—l Mr Ml 0 0 Ce 0 0 M/ZT

Hence it is assumed that mistuning appears along the diagonal, this is true for any individual
blade property mistuning—such as blade mass, stiffness or natural frequency mistuning. It
is also assumed that mistuning appears in a linear fashion which is approximately true
for any small mistuning, and is always true for stiffness mistuning. Finally, assume that
172 — m| > ||M;]| for all @ # b and j. This means that the eigenvalue loops of Figure 4.13
are separated far apart and is consistant with the assumption that || M;]| > || M;]|.

Now restrict the discussion to adjacent blade coupling only, furthermore suppose the
coupling due to the blade above and below is symmetric (as in the model of Chapter 2),
then

My £ 0, My=—M, #0. (4.101)

All other coupling terms are zero

M3 - M4 - = Mr—l - 0 (4102)

From equations (4.98) and (4.99), we find that u;-l ~ ag and U;l R 34 since |ng — 1| is large
compared to || M;||. (Keep in mind that we are approximating the blocks u,v of the tuned
eigenvectors U, V, see Theorem 3.4.1.) Using the above together with equations (4.80),
(4.42), (4.44) and (4.97) yields coefficient L/Jl"d of eigenvalue expansion (4.78) for eigenvalue
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M(z2),
i NRZ cos(*5=1) (4.103)
sin( 2“ sin(2r )
where
. M/ 2
R= M e (4.104)
r?og My 34

and the summation is taken over all indexes ¢t where the denominator is nonzero. So the
arrangement of eigenvalue coefficients @/}l"d of expansion (4.78) can essentially be derived from
the statement that adjacent blade coupling is dominant (the complex coefficient R merely
fixes the orientation and depends on how the left, right eigenvectors of M; pass through the
mistuning perturbation M’ and coupling My = —M, terms).

For example, if we have 11 blades we know by equation (4.97) that the 3rd or 8th nodal
diameter eigenvalue is least stable. (According to equation (4.97), for adjacent blade coupling
as in (4.101) and (4.102) we have the eigenvalue perturbation term (p; — p’~ D(agMyBy) =
2i(agMy3q) sin(2mj/r). This makes eigenvalue line-up in a straight line oriented with com-
plex phase iagM,3;. The 3rd and 8th eigenvalues are at the tips of this line.) For the
model of Chapter 2, iayM,f3; is in the right-half plane and so the j = 3 eigenvalue is least
stable. Substituting 7 = 3 into equation (4.103) we find that the summation term increases
monotonically in [ (the summation term is real). Hence depending on the phase of R, the

]’ increases (or decreases) monotonically in [ for the

real part of the stability coefficients
least stable eigenvalue. For the model of Chapter 2, R is in the right-half plane and so the
real part of the stability coefficients increases monotonically. This means we can apply the
results of Section 5.1.2 to conclude that the optimal stabilizing arrangement of blades is
the “pyramid arrangement” as shown in Figure 5.2 (here we are minimizing the real part
of the least stable eigenvalue so conditions (5.5), (5.6), now written for ¢; instead of ¢, are
flipped). This information is based only on the statement that coupling is dominated by ad-
jacent blades and that R is in the right-half plane (the last part holds true for a wide range

of parameters in the model of Chapter 2; if R is in the left-half plane then the “pyramid
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arrangement” becomes the most destabilizing mistuning).

4.6 Example: Quasi-Steady Model

Our perturbation method is applied to a quasi-steady, inviscid, incompressible, linear model
(as developed by Coller in [SC97]) with eleven blades (r = 11) and three states per blade

(m = 3)). Here the structural dynamics are modeled by a linear mass-spring system
mj(jj —|— k]'q]' = QbLJ (4105)

where ¢; 1s the bending displacement of blade j; b is the semi-chord length; and the mass and
spring stiffness m;, k; can be mistuned. The aerodynamic forces L; are computed by solving
a steady, inviscid, irrotational flow through a cascade of flat-plate airfoils for arbitrary blade
displacement and velocity. This involves solving a linear Fredholm equation of the first kind.
Reducing the equations by intelligently choosing a finite number of spatially distributed
vorticity modes, one can write and solve a reduced set of linear algebraic equations. This
yields a steady lift for arbitrary blade displacement and velocity: L = L(q, ¢). Aerodynamic
unsteadiness is modeled by a simple lag equation (hence the ‘quasi-steady’ designation).
Non-dimensionalizing in standard fashion, we get the non-dimensional quantities of time
t = V1/(2b), deflection g — ¢/(2b) and reduced velocity U + V/(2bwy) where wy = +/ko/mo

is the tuned natural frequency and V' is dimensional velocity. This yields the model equations

AV AL AL L AL, Al
AP A2 AT AT A2
MU, z) = . (4.106)
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In the above,

0 1 0
i N 14+6k; 2pb? sin(a) f1 2pb%cey 2002 (1—c)e;

Al(U’ ZZ) - <_U2(j_+5mi) + 'r/r)a,o(l+5m¢) ) m0€1+5m¢) 'r)fo(1+5m¢) (4107)

0 20wy _ 2Uwyq
and for j # 1
0 0 0
7 N 2pb? sin(a) f; 2pb2ce; 2pb2(1—c)e;
AJ(U’ ZZ) - 77,010(1—1—57)11') m0€1+5m1‘) 7)50(1+5m¢) (4108)

0 0 0

where mistuning can appear as k = z (stiffness mistuning where k; = ko(1 + z;)) or ém = =

(mass mistuning where m; = mo(1 + z)).

4.6.1 Example Stability Analysis

We take the reduced velocity

V mo

as the loading parameter. Within this model we can mistune two quantities, the blade
stiffness k; and mass m;. It was noticed that both forms of mistuning result in almost
identical behaviour, both in coefficients computed a, b, ¢y, ... , ¢; and in optimization results.
Consequently, we only discuss stiffness mistuning.

In Section 4.2.3 we outlined seven steps to compute the coefficients a, b, ¢y, ... , c;. Com-
puting eigenvalues and vectors by Theorem 3.4.1 we can plot A(U,0) of Step 3, Section
4.2.3 (Figure 4.14). Here U,.;+(0) = 6.818 and evaluating steps five through seven (end of
Section 4.2.3) yields the coefficients a, b, ¢y, ..., c;. Comparison with Method B of Section
4.2.2 shows that for € sufficiently small in equations (4.45),(4.46) and (4.47), the coefficients
computed by Methods A and B fall arbitrarily close to one another (up to machine error)

hence results for Method B are not shown.
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Figure 4.14: Minimum damping versus loading.

a b cy Ca cs3 C4 Cs

0.310 | 0.529 | 0.554 | 0.154 | -0.205 | -0.483 | -0.632

Table 4.2: Analysis coefficients for stiffness mistuning.

One can see that coefficients b, ¢q, - - - , ¢5 are not large compared to a. Hence the stability
of this model is not very sensitive to mistuning (this will be verified explicitly in Section
5.1.1). This is because the distance between the tuned eigenvalues is fairly large compared
to the structural natural frequency (loop radius/natural frequency & 0.25 in Figure 4.15).

The coeflicients a, b, ¢; can provide a surprising amount of information. For example, if we
consider the even simpler model discussed in Chapter 2, then we can include angle-of-attack
mistuning. In that case we get a different set of a, b, ¢; coefficients. Now for a range of model
parameters it can be shown in closed form that S (of equation (4.17)) is negative definite.
As a result, for zero-average mistuning we have s(z) ~ z/'Sz < 0 for all z # 0 (see equation
(4.17)). Hence this simpler model predicts that zero-average, angle-of-attack mistuning can
only decrease stability. This is commensurate with compressor design experience. The
angle-of-attack in bladed disks is carefully controlled to provide uniform flow and prevent
aerodynamic losses, it is plausible that all non-uniform changes in angle-of-attack will lead

to a decrease in performance.
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4.6.2 Example Forced Response Analysis

To study forced response we choose a loading that creates a lightly-damped system U =
U,i+(0) = 6.818 . The resulting tuned lightly-damped eigenvalues )\;l(()) are shown in Figure
4.15 labeled by index j. Eigenvalues A and A3 are the most lightly damped with damping
ratio —Re[A]/|A| = 0.0000330/0.0376 = 0.000875, a small damping on the verge of instability.
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Figure 4.15: Tuned eigenvalues /\;l(()) labeled by nodal diameter j.

From the tuned eigenvalues of Figure 4.15 we can predict the nature of the tuned and
mistuned response. We pick spatial forcing mode ¢ = 1. Since the tuned system only
displays forced modes, only modes A¥(0) are active. From Figure 4.15 we see that for
positive forcing frequencies all of the j = 1 modes (A}, A\] and A}) are far from resonance.

(Mode A}(0) has very high damping and is to the left of Figure 4.15 [not shown]. Mode
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A1(0) has positive frequency and medium damping. Finally, mode A}(0) has small damping
but negative frequency, thus it is not excited by the positive forcing frequency.) As a result,
if we plot the amplitude of vibration as a function of forcing frequency w we get the gentle
Bode plot of Figure 4.16 with resonant peak Im[A(0)] = 0.0454 (see equations (4.64) and
(4.65)).
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Figure 4.16: Tuned Bode plot: z = 0.

Tuned Bode Plot

Such gentle behaviour is lost upon introduction of mistuning. To illustrate the point we
pick a small random mistuning z,,; where we have changed the stiffness of each blade by
less then two percent. The system is still stable. Plotting the amplitude of response for each
blade as a function of forcing frequency w yields the Bode plot of Figure 4.17. The thick-line
denotes the tuned response, while the eleven thin-lines denote the mistuned response of each

blade. As demonstrated in Figure 4.11, all modes now come into play and the response is

Log [X(2) -
Log IX@)I wistuned vs Tuned Bode Plots Mistuned vs Tuned Zoom Plot
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Figure 4.17: Mistuned Bode plot with zoom: z = z,,4.

dominated by the least stable mode A3(2,,4) which resonates at w = 0.0376. We can see
that the mistuned response is very sharp and its peak is half an order of magnitude above
the tuned response, a direct consequence of the lightly-damped mistuned j = 9 eigenvalue:
—Re[A3(2rna)]/ | X5 (2rna)| = —0.000050/0.0376 = 0.001330. This demonstrates numerically
the sharp sensitivity to mistuning discussed in Section 4.3.1. Clearly, the performance is

dirastnamsat A= 0.0376.
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Let us compare the tuned and mistuned response at two frequencies: the resonant fre-
quency w = 0.0376 and a frequency w = 0.02 which is far from resonance. Figure 4.18
shows the response for the tuned and mistuned system at these frequencies. In both cases,
solid-dots denote the amplitude and phase of each blade for the tuned response (all blades
have equal amplitude and are separated by a constant-inter-blade-phase-angle) while solid-
squares denote the mistuned response. For the resonant frequency we see that even a small
amount of mistuning z = z,.,4 can cause a large degree of scatter due to the excitation of
previously dormant j = 9 modes. In contrast, for w = 0.02 far from resonance, other modes

are basically not excited and the mistuned response is nearly identical to the tuned response.

Mistuned vs Tuned Response Mistuned vs Tuned Response
(forcing frequency w = 0.0376) (forcing frequency w = 0.02)
|
H

Figure 4.18: Tuned (z = 0) vs mistuned (z = z,,4) response.

All of the data above is given by approximation (4.94). Figure 4.19 compares the ap-
proximation (4.94) with the exact solution of equation (4.5) for z = 2,4 and z = 5z,,4 at
w = 0.0376. As in Figure 4.18, we are plotting the amplitude and phase of each blade. Here
the circle at the origin denotes the size of the tuned response; open-circles denote the exact
mistuned response found by solving (4.5) at z = 2,44 or 2 = 5 z,,g With w = 0.0376; crosses
represent the series approximation of [Sin86]; solid-squares are given by the full-mode approx-

imation (4.94) and; solid-triangles represent a partial-mode approximation with § = 0.005
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in (4.76).

Our method gives excellent results for small mistuning z = z,,; and provides acceptable
results for larger (roughly 9%) mistuning z = 5 z,,4. In contrast, the series method results
used in the literature fail to converge (in the small mistuning case z = z,,4 they are com-
pletely inaccurate, while in the larger case z = 5 z,,,4 they are off the scale of the plot). This
is because the series convergence criteria p(Ag'AA,) < 1 of Section 4.3.1 fails in both cases.

Consequently, inclusion of additional terms in the series expansion will be of no use.

Mistuned Comparison: Z = Zng Mistuned Comparison: zZ = 5znq
® " + .
; . <

NCID

o o

Figure 4.19: Approximation comparison at resonance frequency w = 0.0376 for small and
large mistuning: Exact response of equation (4.5) = open-circle; Approximate response of
equation (4.94) = filled-square; Partial-mode approximate response of equation (4.76) =
filled-triangle; Series method of [Sin86] = cross.

4.7 Literature Misconceptions

At this point we can dispel two misconceptions found in the literature. One, sensitivity to
mistuning is caused primarily by light-damping and the destruction of eigenvector symme-
try (see Figure 4.11), not mode-veering or weak/strong blade coupling (except insofar as
these cause or combine with light-damping). Look at equations (4.64) and (4.65). These

equations are exact. Weak blade coupling causes eigenvalues to cluster and creates fast eigen-
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value/vector motion (veering of A(z),V(z) and U(z)). However, this veering occurs in the
vicinity of the clustered eigenvalues/vectors—it is confined to a small region. If the clustered
eigenvalues are far into the left-half-plane (strong-damping) the net effect on response (4.64)
and (4.65) is small. Mode veering without light-damping cannot cause mistuning sensitivity.
Light-damping without mode-veering can cause mistuning sensitivity (see Table 4.1).

Two, there are no bifurcations in the linear forced response problem (4.5). Some past
researchers [AN89] have confused the quickly varying behaviour of X (z) caused by the fast,
but smooth, dependence on mistuning in (4.77) with a strict definition of bifurcations. To
be precise, z is a bifurcation point for dynamics (4.5) if X is not smooth at 2. Yes, eigen-
value/vector motion can be discontinuous. However, 0.X(2)/0z is always well defined unless

an eigenvalue of M (%) lands on the imaginary axis (this follows from Theorem 4.7.1).

Theorem 4.7.1 Consider a matriv A(a) dependent on real scalar o with A(a) smooth and
invertible for all a in (ay,az). So dA(a)/da and A™(«a) exist for all a € (ay,az). Then
dA™ () /da exists for all o € (aq,az) meaning A™'(a) is smooth for all values o in the open

interval (o, ag).
Proof: The proof is standard and proceeds by construction. For any a € (ay, az) we have

d ol

—%—0.

By the product rule

and so

(@ =~ [ @) )] (47

which exists for all @ € (a1, az) because A7 (a) and dA(a)/da exist for all o in (a,ay). B

Theorem 4.2.1 extends to vector dependence, o — z, by the chain rule. Hence M(2)
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having no eigenvalues on the imaginary axis implies A(2) is invertible and so A7'(z) is
smooth at Z. Hence X(z) is smooth at Z by (4.59). No bifurcations occur unless M(2)
has eigenvalues on the imaginary axis. When this happens stability is lost: either the
eigenvalue continues on into the right half plane, generic case, or stability is determined by
the nonlinear terms we neglected in Section 4.1. Either way, (4.5) is meaningless when M (Z)
has an eigenvalue on the imaginary axis. Thus it is meaningless to study the bifurcations

of (4.5)—when a bifurcation exists (4.5) no longer applies.

4.8 Approximation Method Limitations

The eigenvalue/vector approximation method presented in this chapter is aimed at lightly
damped systems because bladed-disks in turbomachines are known to have small damping.
Hence the given perturbation is accurate for lightly damped systems; a case of practical
importance. However, like any other perturbation technique, the method presented here will
perform poorly in certain cases. Specifically, the leading order expansion of eigenvectors (to
first order) and eigenvalues (to second order) captures the initial motion of eigenvalues and
eigenvectors with mistuning. It does not capture subsequent eigenvalue/vector motion due
to higher-order terms. Hence the method fails as eigenvalues approach one another and begin
to veer sharply (see Figure 4.10 and Table 4.1). Such eigenvalue collision is more likely for
close-by eigenvalues which are typically caused by small blade coupling (see Section 4.4.1).
In practice, this turns out to be a significant, but not severe, restriction. For the high-
fidelity model presented in Chapter 6, the blade coupling is quite small yet the perturbation
of this chapter holds over a reasonable range (up to about 10% mistuning). Moreover,
isolated eigenvalues are captured more accurately then grouped eigenvalues. This can be
seen clearly in Figure 6.9 where most eigenvalues (including the most critical lightly-damped
eigenvalues) are captured accurately up to about 10% mistuning. However, the eigenvalues
that almost collide with one another veer away from their initial directions (for example at
(z,y) =~ (—0.2,1) in Figure 6.9) and so for these eigenvalues the approximation fails.

A second method limitation has to do with computation size. In principle, the methods

of this chapter hold for any linear system as shown in equation (4.3). In practice, it is not
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possible to compute the quantities (4.19) of Section 4.2.2 for large CFD models. This means
that we have to work with reduced low-order models (such as the model presented in Chap-
ter 6) where these quantities are computable. Clearly, it is more difficult to generate such
low-order models for complex fluid flows (e.g.,three-dimensional, turbulent, transonic flow)
then for simpler flows (e.g., two-dimensional, inviscid, subsonic flow). Moreover, even though
the framework in this thesis can deal with any type of mistuning; it is harder to generate
models that include aerodynamic mistuning (such as blade-shape or angle-of-incidence) then
it is to create models with structural mistuning (say mass or stiffness mistuning). Generat-
ing a model with aerodynamic mistuning requires an understanding of how each blade shape
affects the flow field. So if we wanted to include blade shape mistuning in the model of
Chapter 6, we would have to generate the flow field, and create the associated POD modes,
for a set of mistuned cascades that would span all possible mistuned cascades. This require-
ment is over and above the 20 hours of runtime required to generate a low-order aerodynamic
model without shape mistuning. In summary: the methods described in this thesis holds for
any flow-condition and mistuning type; however, it is more difficult to generate the required
low-order models for complex flow-conditions and aerodynamic mistuning than for simpler

flow-conditions with structural mistuning.
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Chapter 5 Passive Control of Flutter and

Forced Response via Mistuning

Once the analysis question has been solved, the next concern is intentional mistuning. Here
mistuning is viewed as a passive (no actuators) control scheme. Obvious questions are: when
is mistuning beneficial? And, if it is beneficial what is the optimal mistuning? In order to
address these questions we must define the notion of optimal mistuning.

First it is necessary to decide which “type” of mistuning will be used. Various possibilities
include blade stiffness, blade angle of attack, blade shape and many other forms of mistuning.
In this chapter it is assumed that the type of mistuning has been pre-determined and we
will not concern ourselves with optimizing over type. We solve the stability optimization
first, and then move on to tackle the combined stability /forced response optimization paying

special attention to robustness considerations.

5.1 Stability Optimization

From a practical standpoint we wish to maximize the stability extension s(z) while keep-
ing the “side effects” of mistuning acceptable. Here side effects refers to everything from
increased weight and manufacturing cost to a decrease in operating range [SF76] due to
mistuning. To solve the true optimal problem we would quantify all the possible side effects
(such as cost, weight, operating range and many others) and form a constrained optimiza-
tion problem where we maximize s(z) subject to the constraint that side effects remain
below some practically motivated boundary. Clearly, such an approach is too ambitious. At
present we do not know how to quantify increase in cost, operating range and other factors
as a function of mistuning. Furthermore, there is no way to compose a complete list of all
possible side effects. Consequently, an optimization problem thus obtained will almost cer-

tainly be intractable due to complexity of constraints. To start, we simply restrict the size
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of mistuning and assume that resulting side effects are acceptable if z is sufficiently small.
In Section 5.2 we shall include the most important side effect: the constraints due to forced

response and high-cycle-fatigue.

5.1.1 Continuous Optimization

This problem is concerned with the design of optimal blades. Meaning, we place some
constraints on the allowable mistuning, solve this optimization problem, and then build
blades with the desired mistuning properties. For this first problem our constraint is simply
mistuning size, and so we must pick an appropriate mistuning norm. To motivate the norm
chosen consider a blade stiffness mistuning. Manufacturing and weight considerations would
allow some small variation in each blade, so: |z;| < € for all «. This leads to a natural

optimization problem constrained by the infinity norm on z:

1 Optlimization: Mazimize s(z) = ay.._, z; + 27 Sz 4+ O(||z]|*) subject to ||z < €.

Having formulated the optimization problem, we can determine if mistuning is beneficial.
Of course it is understood that we are judging the benefit based on the model chosen to
represent the cascade.

We show that mistuning only makes sense if mistuning size € is sufficiently large compared

to a ratio of linear (a) to quadratic (b, cy,... ,c) terms in equation (4.16). Recall equation
(4.17),
s(z)=a) zi+2"Sz+0(z]]) (5.1)
=1
where S is a real, symmetric, cyclic matrix containing the quadratic coefficients b, ¢y, ... , ¢

and 27 is the transpose of z. Let

z  solulion to: max a).._, z subjectto |z <1,
z* solution to: max  zTSz  subject to ||z]. <1, 30, 2z =0.
By inspection, z = (1,1,...,1), and corresponds to a mean tuned increase in parameters

(assume a > 0, else reverse sign of z). Conversely, z* corresponds to a zero average mistuning



103

which optimizes s(z) up to second order (assume S £ 0 and hence z* # 0). If we impose a
zero average restriction and truncate third-order terms, then optimization {1} has solution
ez*. Furthermore, |[2*||c = 1 else z*TSz* may be increased by z* +— (1 + §)z*.

Now ask the following practically motivated question: given an allowable size of mistuning
€, 1s it better to apply the optimal zero average mistuning z* or just increase parameters all

around by a tuned amount z 7 So compare

s(az) = (ar)a+ <2TSE) o? + O(ozg) (5.2)
s(az®) = 0+ (Z*TSZ*) a? + O(a3) (5.3)

where a > 0 is the size of mistuning. For sufficiently small « the tuned stability extension
s(az) is always greater since it has a non-zero linear term (ar)a. However, 2T §2% is typically
greater than 275z because 2* is the constrained quadratic optimum (note z* # ) and hence

(Z*TSZ*)oz2 eventually overtakes (ar)o + (ETSE)QZ (see Fig 5.1). Such a crossover occurs at

. ra (5.4)
@ = TG — TGz '

Based on this second order analysis: if a* < € then e-sized zero-average mistuning is worth-
while ( s(ez*) > s(ez) ), otherwise it is not. Rephrasing, a zero-average mistuning is only
worthwhile if it is bigger than a*. Of course the second order approximation may fail at
o* if o* is too large in which case we can not make any claims. Notice that o is small
if second-order coefficients (b, ¢, ... ,cx) dominate the first order coefficient a. Clearly o*
measures the mistuning sensitivity (as first mentioned in Section 4.4.1).

It is now clear that our results allow the reader to judge when to apply mistuning, based
on the model (3.1). However, they also determine which mistuning should be applied. This
is done by solving the optimization {1} up to second order—a standard linear constraint
quadratic programming problem. There exist numerical techniques [AKLV95] which can find
global maximums of @ ._, z; + 275z subject to ||z||. < €. Current software (supplied by F.
Al-Khayyal, T. Van Voorhis and the company CPLEX) can usually solve problems up to r &~
30. Larger optimizations take too long (r = 60 is projected to take years) but it is possible
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Mistuning Trade-Offs

-------------- True Stability Extension

Second Order Approx.

slope = 0 o o

Figure 5.1: Worthwhile mistuning lower bound.

that computation time can be decreased dramatically by utilizing the special structure of S.
In fact, because general quadratic programs are provably NP hard [MKS87], solutions to large
optimal mistuning problems will not be possible unless one exploits the special symmetry
and structure of the mistuning problem. Such exploitation of problem structure—and the

resulting dramatic decrease in computational complexity—is demonstrated in section 5.1.2.

Example: Quasi-Steady Model (continued)

For the quasi-steady model of Section 4.6, to determine the optimal zero average stiffness
mistuning we numerically solve the optimization problem {1} up to second order, subject
to the additional constraint » ., z; = 0. The optimal solution ez* has the form z* =
(1,1,1,1,1,0,—-1,—1,—1,—1, —1). Of course all rotations, reflections and sign inversions of
¢z* are also optimal because 27 Sz is invariant under rotation, reflection and sign change of z.
This yields a total of 2r equivalent optimums. This type of mistuning differs markedly from

the ad-hoc choices found in the literatures (e.g., alternate blade and random mistuning).
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To answer the question of sensitivity to mistuning, we compute a* of equation (5.4) and
obtain o = 0.18. So based on the quasi-steady model in Section 4.6, zero average optimal
mistuning is only worthwhile if it is bigger than 18% (e > 0.18 in the optimal solution ez*).
We can increase the mistuning sensitivity by decreasing the size of the blade coupling in the
model (see discussion of Section 4.4.1).

We note that the optimal mistuning problem seems to have a robust structure with
respect to model parameters. Based on a limited parameter search, small changes in system
parameters and/or operating conditions such as nominal rotor stiffness, blade mass, and
stagger angle do not change the optimal answer. Even though the coefficients a,b, ¢y,... , ¢
change slightly, the optimal solution remains unchanged. However, changing the type of

model significantly changes coefficients and optimization results.

5.1.2 Discrete Optimization

Mistuning can, at first glance, lead to computationally complex optimization problems. For
example, suppose n blades are made and these blades have a set of mistuning values (say
stiffness variations) yi, y2, . .. , y» due to machining tolerances. Given the stability coefficients
a,b,ci,ca,. .. ¢, and assuming y;’s are known (measurable), what is arrangement of the r
blades that maximizes stability? If we wanted to solve the problem exhaustively, we would
have to check n permute r or n!/(n — r)! possibilities. Clearly this is not practical for large
r or n; even the special case n = r requires r! operations. One solution can be found in
random start (global) optimization techniques, such as random seed gradient descent or
genetic algorithms. These techniques are fast but provide no guarantee of approaching the
global optimum. Another option is to use techniques that exhaustively search the parameter
space such as branch and bound methods. These methods guarantee global optimums but
are not practical for large problems due to computational complexity. Neither option yields
global optimums for large problems. Moreover, standard packages for both random start
and exhaustive search algorithms do not exploit system symmetry. Yet, exploiting system
structure can result in tremendous complexity reduction. Specifically, the circular structure

of the mistuning problem and the additional structure of the stability coefficients ¢; found
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in the quasi-steady model (see Section 4.6.1, Table 4.2) allows (a globally optimal) solution
of the n = r combinatorial optimization in closed form.
Monotonically Decreasing Stability Coefficients

Consider the set of models where stability coefficients satisfy the relation

Cl >Cy > " >Cko1 >Ck, T Odd7 (55)

€1 > Cy >0 > gy > 2, T even. (5.6)

Condition (5.5) or (5.6) holds for the quasi-steady model of Section 4.6 over a fairly broad
range of parameter values. This condition is not true in general, but it does hold for a class of

models. (See Section 4.5 for a discussion of the structure of coefficients ¢;.) When condition

(5.5) or (5.6) holds, the problem

2 Combinatorial Optimization: Given mistuning values (y1,Ya, ... ,Yr), the stability coef-

ficients (a,b,cy,... c;) that satisfy condition (5.5) or (5.6) and the resulting matriz S
of equation (4.17); mazimize s(z) = aY i_, z + 275z subject to = € 1l = {z : z =
(yl17y127 s 7ylr)7li 7£ lj? Vi 7& ]}

may be solved closed form. Optimization {2} is not restricted to mistuning applications.
An identical optimization arises in computer science—related to optimal arrangement of
records to be searched—and its statement and terse solution can be found in Knuth [Knu73,
p-405, Q18 & Q20]. Optimal solutions are all rotations and reflections of the “pyramid”
arrangement z = (zl,ZQ, ... ,ZT) where zpy1 2> 2k > 2pyo > Zhe1 > 0 2 2l > 29 2 2 2 2
for r even or zpy1 > 2p > Zppo > Zp—1 > > Z3 > Zp—1 > 21 > 2 for v odd (see Fig 5.2).
So computational complexity drops from r! to rlog r which is the sorting time for r objects
[Knu73].

The proof presented here follows Knuth [Knu73]. We show the r odd case but r even
is almost identical, the only difference being the factor of two that multiplies ¢ in (5.6).
First note that the solution to {2} is independent of the coefficients @ and b because the

relevant terms a>._, z; and b} '_, z? are invariant under permutations of z. So without
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1 2 k-2 k-1 k k+1k+2 k+3 r-1 r

Figure 5.2: Optimal “pyramid” arrangement (r even).

loss of generality we may consider the objective function z7Cz = 27 (S — bI)z which depends
on coefficients ¢; only. Now, for any z make one of two identifications (here 8 and § are

placeholder variables)

< = (a17a27"' 7ak7/67’7k7"' 7’727’71) (57)

= (0517052,... y Ok Vs - o 7727’7175> (58)
and define the sets

A:{Z':Ozi<%',i€(1,2,...,k)}, (59)

B=Hi:a,=v,1€(1,2,... ,k)}, (5.10)

C:{Z':Ozi>%',i€(1,2,...,k)}. (5.11)

Consider switching «; and v; when «; > =;, hence switch for all ¢ € C. For both (5.7) and

(5.8) it can be shown that the resulting change in the objective function 27 Cz is given by

A= (eisi = aey) (5 — aj)(as — %) (5.12)

1€Cj€A
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where

)= TATh i hsk (5.13)
r—G+75—h),i14+j—h>k

and h is 1 or 0 depending on whether we consider (5.7) or (5.8), respectively. It follows that
i — g| < I(4,7) for all 2,7 in (1,2,... k). Hence c_j > ¢y ;) by condition (5.5), and the
terms (v; — ;) and (a; —7;) are strictly positive by definition of sets A and C'. Consequently,
A > 0 unless either A or C' is empty. In other words, we can improve on z in (5.7) or (5.8) if
both A and ' are non-empty. It turns out that only the “pyramid” arrangement of Figure
5.2 has either A or C' empty for all rotations and reflections, hence it is the only arrangement
that cannot be improved by the construction (5.5-5.13).

Next, recall that optimums come in sets of 2r—if z* is an optimum then so is any
rotation or reflection of z*. (Since a reflection about z} is equivalent to a reflection about
z7 and 2(¢ — 1) rotations, we really only have one reflection and r rotations for a total of 2r
equivalent optimums.) So suppose an optimal solution z* of problem {2} is not a rotation
or reflection of the pyramid arrangement. Rotate z* so that z; = max; z] appears in the
(k + 1)th spot (if there is more then one maximum then pick any of these maxima) and
reflect 2™ about 27, if 2] < z;,,. These two operations yield an equivalent optimum and
imply 23, > 2 > 27,

Since z* is not a rotation or reflection of the “pyramid” arrangement then one of the
inequalities in the top row of (5.14) must fail. The middle and bottom row correspond to

the same chain of inequalities using the relabeling of (5.7) and (5.8), respectively,

th+1 2y, th+2 25y 2 254 21 EM

,8 2 O Z Yk 2 [ ] Z e 2 (0] 2 Y2 Z aq 2 T

o ap Ye-1 k1 ay T oy J
(5.14)

. . * * * * * 7
First consider the case where z; ; # z; # zr42, hence z; |, > z; > z;,,. We have

assumed z* is not a “pyramid” arrangement so at least one of the inequalities in (5.14) must
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fail. There are two possibilities: either a; > 4; fails in the middle row of (5.14) for some ¢
or v; > «; fails in the bottom row of (5.14) for some j. In the first possibility, v, > «; so
A is non-empty, but z; > 27, so ay > v, and €' must be non-empty. Hence A of equation
(5.12) is positive, z* can be improved by the construction of (5.5-5.13) and so z* is not
the optimum—a contradiction! Similarly, in possibility two a; > ~; so C' is non-empty, but
i > ap and hence A is non-empty. This also contradicts the assumption that z* is optimal.

Now consider the cases where 27, # 2; # 2p4o does not hold. When z;,, = z; but
25 F Zhey F Zi_y, then zp > zp , because 2} is a maximum of z* and we may reflect so
that 25, > 2;_;. Now we apply the same arguments as above except v, > a; gets replaced
by ~r_1 > ai_1 to ensure A is non-empty for the bottom inequality chain. The same
reflection and right shift applies for the next case where z; | = 2} = 2[ ., # z;_; # Zj,s
and so on. Notice that we need at least two values of z* different from the maximal value

* *

zy = max; 2], otherwise all arrangement are optimal. For example, if the mistuning values

are y; =Yg = - -+ = y,_1 # y, then all arrangements are equivalent by circular symmetry.

Arbitrary Stability Coefficients

When the stability coefficients ¢1, ..., ¢; do not satisfy condition (5.5) or (5.6) the discrete
optimization task {2} becomes much harder. There is no obvious way to extend the meth-
ods above to the arbitrary coefficients case because it is the coefficient monotonicity which

enforces A > 0 in equation (5.12) and allows an analytic solution. This leaves three choices:

1. Develop discrete optimization tools that exploit symmetry but do not require coefficient

monotonicity (for the approximate or exact stability increase).
2. Optimize on the exact stability extension by standard discrete optimization techniques.

3. Optimize the approximate stability extension s(z) ~ 27 Sz by using standard discrete

optimization techniques.

Clearly, choice one is the most challenging and desirable (at this time there are no techniques
which allow this option). Choice two is the next best solution and is acceptable for low

complexity models. Choice three must be used when computation in two is prohibitive.
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Figure 5.3: Optimal combinatorial mistuning of UTRC fan. Top left: the mistuning pattern.
Top right: tuned eigenvalues (dots), mistuned eigenvalues (crosses) [circle denotes £ = 1
spatial forcing]. Bottom left: tuned response (solid), mistuned response (dashed—all 16
blades). Bottom right: at fixed forcing frequency the tuned response (dots), mistuned
response (squares).
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As a demonstration, technique two was applied to a United Technologies Research Center
(UTRC) fan with 16 blades. The model used was a linear, imposed periodic-motion model
with two states per blade and structural dynamics modeled by a mass/spring system. Since
the aerodynamic coefficients are only known at one loading (air-speed) the stability extension
s(z) is not defined. Instead all eigenvalues were pushed as far left as possible—an optimal
damping increase.

Specifically, the deviation of each blade from the average natural frequency was measured
and this provided the allowable mistuning values yq,ys,... ,y16. Maximum mistuning size
was 1.7%. The cost function used was the maximum real part of the eigenvalues: ¢(z) =
max(Re[A(z)]). Hence minimizing this function pushes all eigenvalues to the left. A random
seed was used to start the optimization, and then the program would optimally switch
neighbouring blades until a local optimum was found. The random seed would reset and a
new search would commence. The best local optimum after twenty thousand iterations is
shown in Figure 5.3.

Notice that the blade coupling here is very small, so even a small amount of mistuning
will cause a very large change in eigenvalues. Hence the mistuning pattern shown is outside

the O(||z||*) range where our eigenvalue/vector approximation applies.

5.2 Combined Forced Response/Stability Optimization

Of all the mistuning “side-effects,” forced-response with its associated high-cycle-fatigue is
most important. Our current step is to consider optimization for both stability and forced

response. To do so we must first consider some engineering tradeoffs.

5.2.1 Engineering Tradeoffs

Engineering design tradeoffs are summarized below. These tradeoffs are based on symmetry
arguments (Section 3) and hold for any model. Figure 5.4 show a schematic of the mistuning
space IR" for a fixed forcing frequency w and spatial forcing mode ¢: light-gray regions

correspond to an acceptable forced response, medium-gray denotes unacceptable response
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Figure 5.4: Intentional mistuning for robustness under manufacturing uncertainty.

and black regions show instability. (We shall prove this figure shortly.)

There is a small region of acceptable response about the origin. Blades are produced
within some manufacturing tolerance (dotted black circle). For simplicity, lets assume blades
are distributed uniformly within this manufacturing region. (For a non-uniform distribution,
the results are essentially the same except that factors must be normalized by the relevant
distribution.) In Figure 5.4 there is a sliver of unacceptable response inside the manufacturing

tolerance region. Hence, the probability of unacceptable response is given by:

area of unacceptable sliver inside tolerance

probability of failure = (5.15)

area of manufacturing tolerance
This probability increase if:

1. Manufacturing tolerance increases.

2. Damping decreases: leads to smaller acceptable response region.

3. Allowable blade amplitude decreases: again smaller acceptable region.
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Basically, there exist competing tradeoffs. Engine manufacturers cannot decrease cost (loosen
manufacturing tolerances) and increase performance (decrease damping) and lengthen blade-
life (lower blade response amplitudes). In fact, if we fix the allowable failure probability there

exists a linear constraint between tolerance, damping and vibration amplitude:
K x manufacturing tolerance < damping x allowable blade response (5.16)

(K is a computable constant). Hence, it is not possible to reduce cost and prolong engine

life and increase performance all at the same time if one designs around the tuned point.

5.2.2 Robust Optimization

Fortunately, mistuning itself may be used to combat mistuning sensitivity. If we introduce
the intentional mistuning z,¢ shown in Figure 5.4 we can guarantee acceptable response
under the same manufacturing tolerance. Here zj,; could be continuous or discrete, the only
requirement is that it push all lightly damped eigenvalues to the left. (Or less conservatively,
if we know the forcing frequencies appear in some range w; < w < w,, we need to ensure
all eigenvalues with imaginary part in this range w; < Im[A(z)] < w, have been moved suffi-
ciently far to the left.) Since eigenvalues move quadratically with mistuning, we must jump
across the linear range where eigenvectors are breaking symmetry and increasing the forced
response before we see a benefit due to improved damping. Hence intentional mistuning zj,;
essentially creates robust damping. Figure 5.4 is derived up to quadratic terms O(||z||?) but
of course the concept holds more generally. If there exists a large region in z space that
pushes all lightly-damped eigenvalues to the left, then the mistuning value at its center (for
small or large mistuning) will create robust improved stability and forced-response.

To demonstrate the tradeoffs above we use the specific model of Section 4.6. However,
these tradeoffs are based on symmetry arguments and hold in general. Suppose our concep-
tual factory produces blades whose stiffnesses vary uniformly between 0.98 kg and 1.02 k.
Blade life is deemed acceptable if blades vibrate less then ten times the tuned amount:
IX(2)|| < 10]|X(0)||. We consider the resonance forcing frequency w = 0.0376 (see Figure
4.17). By Monte Carlo simulation we find that there is a 9.5% probability of instability and a
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4.6% probability of unacceptable response. This means that both the black unstable regions
and dark-grey unacceptable response regions penetrate the manufacturing tolerance circle of
Figure 5.4. Together, there is a 14.1% probability system behaviour is unacceptable.

For simplicity, let us consider how zero average mistuning, > z; = 0, effects stability

and forced response. We want to understand dependence on the magnitude of mistuning.

z|| =1 and let mistuning z

Consider a mistuning direction z with > Z; = 0 on the unit ball
vary along this direction as z = €Z (along a ray from the origin in Figure 5.4). From (4.78),

each eigenvalue M!(e 2) varies as
Re[M(e2)] ~ —n — k€. (5.17)

with n = —Re[A%(0)] the tuned damping. If 2 is stabilizing then ky = ky(2) > 0, else &y < 0.
Destabilizing directions Z yield the black quadratic regions in Figure 5.4 where € becomes
sufficiently large to move A?(z) into the right-half-plane.

At resonance frequency w = 0.0376 the mistuned forced response is dominated by the

least damped mode A3(z) (see Figure 4.15). Hence equation (4.92) implies

k
~ _ 0€ (5.18)

X(ez)|| = .
X))~

For Z stabilizing (k1 > 0) tradeoff (5.18) is shown in Figure 5.5. This curve has been deter-
mined numerically in [KP96] and [CP97] by extensive computations. However, both papers
have not been able to explain its shape. In our case, symmetry provides a straightforward
explanation. Rotation invariance (Lemma 3.6.1) implies eigenvalues vary quadratically with
mistuning (the n + ki€ term in the denominator of (5.18)) while eigenvectors are permitted
to vary linearly (the kge term in the numerator). In the 2 stabilizing case, the response first
climbs linearly as ko/n (mistuned modes appear as in Figure 4.11) and then sinks quadrat-
ically as eigenvalues move into the left-half-plane. Light damping (small 1) causes a fast
linear growth.

If we choose A as the acceptable blade vibration, then the leftmost estimate of Figure
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Response Amplitude vs Mistuning Size
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Figure 5.5: Response sensitivity to mistuning size (5.18).

5.5 yields the allowable manufacturing tolerance

A
[ Zmanutl] < k_n (5.19)
0

We could find the minimum estimate (using max#kqo(2)) by varying 2 over the unit ball

= 1. This would yield the radius of the biggest ball that can be contained within the

z

acceptable region at the origin in Figure 5.4. Equation (5.19) is equivalent to tradeoff (5.16).

Varying Z and e together recovers Figure 5.4. Coefficients ky and k; vary with 2 so that
different directions have different sections of acceptable and unacceptable response. To pick
an intentional mistuning z;,. we must find a stabilizing direction 2 (see Section 5.1) and pick

€ beyond the right-hand intersection

k‘o A?]
e — — — 5.20
T Ak ke (5:20)
of Figure 5.5: z = €2 with € > €*. Now an additional small random mistuning z =

Zint + Zmanut Will shift us along the gentle right-hand portion of (5.18).
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Figure 5.6: Constraints must be large enough to allow robust intentional mistuning.

Suppose, as in Section 5.1, that we have additional “side-effects” that limit the size of
our mistuning. Then if the allowable mistuning size is large enough to permit an intentional
mistuning within one of the acceptable regions outside the origin in Figure 5.4, we can intro-
duce a sensible intentional mistuning. Otherwise, we are restricted to the small acceptable
region about the origin (see Figure 5.6). We must have enough allowable mistuning size
to be able to jump outside the linear range (where eigenvectors have broken symmetry but
eigenvalues have not moved left substantially) into the quadratic or higher range (where we

can introduce appreciable damping through eigenvalue motion).

Example: Quasi-Steady Model (continued)

Numerical results for the model of Section 4.6 are shown graphically in Figure 5.7. Here we
have fixed the spatial forcing to £ = 1. Recall, for a 2% manufacturing tolerance there is a
4.6% probability of unacceptable response. We choose a specific manufacturing mistuning
|zspec]| < 2% such that X (zsp.) is unacceptable. (Hence zg.. lies in the unacceptable sliver
inside the manufacturing tolerance region of Figure 5.4.) Resulting amplitude of all the
blades | X;(zspec)| is plotted as thin-lines in Figure 5.7. The mistuned response is far above

the acceptable limit A (dashed-line)

X (Zspee) lloo = max[Xi(zspee)| > 10| X (0)[|o0 = A. (5.21)
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Figure 5.7: Response under manufacturing tolerance: acceptable level A - dashed-line; bound
for | X (2int + Zmanut)| - thick-line; amplitude | X (z5p..)| of all blades - thin-lines.

Now pick the intentional mistuning

it = €2 = 0.1(1,1,1,1,1,0,—1,—1,—-1, =1, —1).

Here Z is chosen by an eigenvalue optimization as in Section 5.1.1 while ¢ = 0.1 is larger
then €* of equation (5.20). Using the triangle inequality it is possible to find a rigorous
and very conservative bound for the intentionally mistuned response X (zint + Zmanuf) under

manufacturing uncertainty ||Zmanut|]| < A = 2%, namely

LD W 3 e M I
where
Nz, A) = max o + [+ 2] @] + A (Jd? + -+ + |l
and
Di (zin, A) = |(—Re[A(zint)] — [rA[Re[o4]] + rA*(2N + 1)|Re[®;4]]])

—I—ZHw—Im[ (th |—‘ rAImU]d]—I—r(ZN—I—l)AQHm ]de
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with |Re[®]| = |Re[¢]|+ |Re[11]| + - - - + |Re[thx]| or take imaginary part as appropriate. Here,
bounds on A(zint) are given by (4.78). Equation (5.22) bounds the forced response under
intentional mistuning z;, with manufacturing uncertainty. (Note that the bound only holds
if the second order mistuning perturbation is accurate.) This forced response bound is shown
as the thick-line in Figure 5.7. Clearly it falls below A for all forcing frequencies w. Thus,
the introduction of intentional mistuning z, guarantees stability and acceptable response

under manufacturing tolerance.
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Chapter 6 Application to a High-Fidelity
Low-Order (HFLO) Model

All the mistuning techniques presented so far have been applied to simple, and correspond-
ingly low-fidelity, test models. In this chapter the mistuning analysis methods are used to
analyze a high-fidelity model derived from CFD data [WPP99] by proper orthogonal decom-
position (POD) [Sir87]. Methods derived in Chapters 3, 4 and 5 are applied to this model.
The mistuning behaviour and sensitivity predicted analytically in Chapter 4 is demonstrated
numerically. Moreover, based on the results of Chapter 5 we show that there exists an in-
tentional mistuning that robustly improves both stability and worst-case forced response
under manufacturing tolerances. This chapter is a joint work: modeling results are due to
Karen Willcox at MIT while the mistuning analysis and optimization results are based on

the mistuning framework in this thesis.

6.1 Generating a HFLO Aerodynamic Model

In the modeling of bladed-disks, resolution of the aerodynamics presents a significant chal-
lenge. Ome approach is to use high-fidelity computational-fluid-dynamic (CFD) solvers to
resolve the unsteady Fuler or Navier Stokes equations directly. Even though the methods
of Chapter 3 hold for CFD models, it is not possible to compute the quantities of Chapter
4 for these complex models. The size of CFD models makes them unsuitable for mistun-
ing analysis. A second approach is to use exploit simplifying fluid dynamic assumptions
(two-dimensional, inviscid, incompressible flow, flat-plate blades, etc.) or to develop mod-
els based on phenomenological intuition (as blade passage size increases, blade force should
increase—see Chapter 2 model). Such methods provide limited information at low-fidelity
and are typically not useful in complex flow conditions such as transonic, stalled or off-design

flows. An intermediate approach is to project the high-fidelity CFD model onto a set of basis
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vectors so as to create low-order high-fidelity model amenable to mistuning analysis.
This intermediate approach is developed in [WPP99]. Here, the unsteady aerodynamic

equations (Euler or Navier Stokes) are written as
U+ R(UX) =0, (6.1)

with U, X representing the large aerodynamic state and boundary conditions respectively.
Assuming the aerodynamic state and boundary conditions are given by small variations from
a steady solution, (U, X) = (U—I—U’, )N(—I—X’), equation (6.1) is linearized about a steady-state
solution of the CFD code: R((j,j() = 0. This yields a linear system of equations for the
perturbations U’ and X'

. oR
U+PU =—-——X' 6.2
+ X (6.2)
where P = OR/JU evaluated at U, X
The boundary perturbation X'(¢) captures both the the time-varying domain geometry
(such as blade deflection) and time-varying inlet/outlet flow conditions (such as inlet flow
distortions or pressure disturbances). For example, if we consider blade plunge h and blade

twist a as the allowable blade deflections, and we further allow the fth spatial fourier mode

pressure disturbance p(6,t) = cos(£0 + w;t) = Re[e*?e"s!] then

—g—)b;X'(t) = [uh() + [ih(t) + faa(t) + Jaé(t) + e cos(w;t). (6.3)

By combining fourier modes, any arbitrary disturbance in space and time may be represented.

In general we have
[+ PU" = f(H, D) = fuH(t) + fo D(1 (6.4)

where H(t) captures allowable blade deflections while D(t) denotes outside forcing modes.
Equation (6.2) is transformed into the frequency domain via U’ = Ue™* and f = fe™*,

Both spatial blade deflections and outside forcing f can be decomposed into components
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which contain a single spatial frequency f; = [f,pjf, e ,p;_lf]. This allows the computa-

tional domain to be reduce to a single blade passage for each spatial frequency. Resulting

solutions of the linearized, unsteady, CFD equations in the frequency domain

[P +iw]U = J (6.5)

provide an image of the flow at each temporal frequency w, for each spatial frequency f;.
Images are calculated over all possible spatial modes (j = 1,2,--- ,r), for a set of frequencies
w within some range wy, < w < wy. POD is used to convert these images (or snap-shots)
into the most efficient set of basis-vectors—these basis vectors are optimal in the sense that
they contain the most average “kinetic energy” (UTU) per vector. Galerkin projection is
now used to project the linearized fluid equations (6.4) onto the first rp basis vectors. Since
the chosen basis vectors are optimal, even a small model (small p) will capture most of
the energy of the original CFD code and so provide a low-order, high-fidelity aerodynamic
description.

The final set of aerodynamic equations so developed in [WPP99] has the form

& = Az + Bu+ BEd (6.6)
y = Cx+ Du+ Fd. (6.7)

Here z € IR™ is the aerodynamic state with p POD modes per blade, u € IR"? describes
the instantaneous blade deflection (such as blade bending and torsion) with ¢ deflection
states per blade, y € IR" are the aerodynamic forces (such as lift and moment) with s
forces per blade. Finally, d(¢) and d(t) capture the time-varying outside disturbance (for
example pressure or velocity distortion at inlet) and F, F' describe the spatial extent of this
disturbance. If we consider g spatial disturbance frequencies, then d, d e RY.

It takes a significant amount of time to generate these aerodynamic models. For example,
in the 20 blade model introduced in Section 6.4 with 6 POD modes per blade, the POD
snapshots were sampled at 10 frequencies with 2 snapshots per frequency. This gave 20

snapshots per inter-blade phase angle, with one additional snapshot per angle to account
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for a static correction. Hence a total of 21 x 20 = 420 POD snapshots were computed.
This took approximately 20 hours of runtime on a DEC alpha 433MHz machine. The POD
modes themselves were computed by generating a correlation matrix (here 40 x 40) and
computing its eigenvalues and eigenvectors for each inter-blade phase angle. This portion
took approximately 3 hours of runtime. Finally, the projection onto the 20 x 6 = 120 basis
vectors took about 15 minutes and gave the final aerodynamic equations (6.6) and (6.7).

Coupling this aerodynamic model with a structural model

uw= P(z)u+ Q(z)y. (6.8)
provides the final set of system equations

u = [P(z) + Q(z)D]u+ Q(z)Cx + Q(z)Fd (6.9)
& = Az + Bu+ Ed. (6.10)

(In Section 6.3, equations (6.9) and (6.10) have a slightly more complex form because the
structural input u of equations (6.6) and (6.7) has more states then the structural model
vector u of equation (6.8). Hence some components in equation (6.6) must be eliminated.
See Section 6.3 for details.)

Since the CFD snapshots are taken within some frequency range wy, < w < wy, the model
described by equations (6.9) and (6.10) only holds within this range. Moreover, the above
analysis assumes tuned aerodynamics—all the blades have the same shape. It does allow for
a mistuned structural model as in equation (6.8). Finally, the fluid modeling limitations are
inherited from the CFD code. So if the CFD code is two-dimensional and inviscid, the low-
order model will not capture viscous, three-dimensional effects. However, the methodology

of [WPP99] allows for a generation of low-order aerodynamic models from any (linearized)

CFD code.
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6.2 HFLO Model Validation

The low-order model generated in [WPP99] is based on an inviscid two-dimensional Euler
CFD code. It was validated in three steps. First, the nonlinear steady-state CFD solver was
validated against experimental data. Experimental steady-state pressure coefficients along
the blade surface from a transonic cascade [SS84] were compared against pressure coefficients
predicted by a nonlinear steady-state CFD calculation (Mach number 0.82, incidence angle
58.5 degrees). The blade shape and resulting data is shown in Figure 6.1. It can be seen

0

0.5

15

Cp

25

Figure 6.1: Steady pressure distribution along the DFVLR transonic blade: experimental
(0,4) vs CFD (curves). (Figure courtesy K. Willcox)

that there is good agreement between experiment and computation. Figure 6.2 shows the
corresponding steady-state pressure contours for the DFVLR transonic blade passage, the
shock wave just past the leading edge can be seen clearly.

Second, the linearized unsteady CFD solver was compared against experimental data
found in [BF86] which contains a database of well documented experimental cases for aeroe-

lastic analysis of turbomachines. Data from a subsonic compressor stage was compared
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Figure 6.2: Blade passage pressure contours for the DFVLR blade. (Figure courtesy K.
Willcox)

against simulation (inlet Mach number of 0.18, —66 degree angle of incidence). This cas-
cade was analyzed in unsteady pitching motion at a reduced frequency of 0.122. Damping
coefficients predicted by a work-per-cycle calculation using the inviscid, linearized, unsteady
CFD code are shown versus experimental data in Figure 6.3. There is good agreement
between experiment and computation. The agreement obtained using the linearized CFD
solver is much better then that shown in [BF86] for other analytic methods. Numerical
results for transonic, single airfoils were also compared against experiment and there was
good agreement.

Third, the reduced aerodynamic POD model was compared against the linearized un-
steady CFD solver. The comparison between the linearized CFD code and the low-order
model determines if enough sample frequencies have been chosen for the POD snapshots.
A comparison was performed for a four blade case. Here all four blades were displaced in
a plunge pulse. Figure 6.4 shows the resulting lift versus time on all four blades computed

by the linearized CFD code and derived from the low-order POD model. It was found
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Figure 6.3: Experimental and numeric aerodynamic damping coefficients. (Figure courtesy

K. Willcox)

that doing the same pulse comparison for four different blade motions (non-zero inter-blade
phase angles) was not practical with the linearized CFD code due to large computations
times. However, results for nonzero inter-blade phase angle for imposed blade sinusoidal

motion showed excellent agreement between the linearized CFD solver and the low-order

POD model.

6.3 Converting the HFLO Model into the Mistuning
Framework

In [WPP99], some quantities are written in inter-blade phase angle coordinates. However, the
formulation used here, starting with equation (3.1), is expressed only in blade coordinates. In

order to be within the current framework, the HFLO model of [WPP99] is transformed into

blade coordinates only. As a result, the block diagonal matrices A, B, C' and D of equations
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Figure 6.4: Pulse response for linearized CFD vs low-order model. (Figure courtesy K.

Willcox)

(6.6) and (6.7) become block circular. So for a fixed spatial forcing mode ¢, the aerodynamic

equations have the form

T

Z2

A Ay
A A, A,

Ay Az ...

A,

Ay

T

T2

By By ...

B, By B,

By Bs ...

B,

B,

Uy

Uz

d(t)

(6.11)
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and
_yl_ _C'l Cy ... C’T_ _.1‘1_ _Dl Dy ... DT_ _ul_ | f ]
Y2 | _ C, ‘C'l Cy ... .ﬁl}‘Q N D, .Dl Dy ... u.Q N p(ff a0, (6.12)
| Yr | _Cz Cs ... C’l_ Ea _D2 Ds ... Dl_ | ur | _pz_lf_

Here z; € IR”, u; € IR? and y; € IR’ correspond to the aerodynamic states, blade deflections
and aerodynamic forces on blade j. Block matrices A; € IRP*?, B; € IRP*?,C; € IR**? and
D; € IR**? are commensurate with the dimensions of z,u and y. The component blocks
€ € IR? and f € IR® of the /th spatial mode disturbance vectors £ and F depend on the type
of disturbance considered and the spatial mode £. Finally, d € IR and its time derivative d
capture the time-dependence of the /th mode spatial disturbance. For the current model, y;
is simply the normalized lift on blade j and so s = 1. Vector u; = [h;, hj, h]] where h; is the
normalized plunge (down) of blade j. Hence u; consists of blade displacement, velocity and
acceleration and so ¢ = 3. Finally, there are six aerodynamic states per blade hence p = 6.
Now that the aerodynamic results are in blade coordinates, or in block circular form,
they can be coupled with a mistuned structural model to provide a closed set of equations

that fits the current mistuning framework. The structural non-dimensional model is given

by

Here y = m/(wpb?) is the mass ratio, ¢ is the non-dimensional damping while k = 2bw/U
is the reduced frequency (m is blade effective mass, p is density of air, b is semi-chord, w is
the tuned natural frequency and U is the free stream velocity). The non-dimensionalization
is standard; plunge is normalized by the blade chord (h — h/c) while time is normalized
by the reduced frequency, airspeed and chord (¢ — kUt/c). This normalization implies
that A — A/(kM); the columns of B which correspond to h and h are transformed as
By — Bp/(kM) and Bj — (kM)Bj respectively; the columns of D which correspond to
h and h are transformed as Dj ~ (kM)D; and Dj ~ (kM)?Dj respectively. Finally,
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structural mistuning is represented by z;, the percent change in the natural frequency of
blade j.

Aerodynamic description (6.11), (6.12) has a structural input of u; = [hj,ﬁj,ﬁj] while
the structural equation (6.13) has a state of v; = [hj,ﬁj]. Hence it is necessary to eliminate
ftj from equation (6.11) in order to provide a closed model (the terms h] do not appear in
(6.12) since the third column of each D; is zero). Let v; = [k, h;] and denote the first two
(of three) columns of D; by Dj. Combining equations (6.12) and (6.13) yields

h;y = —2Ch; — (1 + zj)hj +K[Cia; + Cozjpy + - + Craj_i]
‘|'K[D1Uj + DQU]'-H + -+ Drvj_l] (6.14)
+K[p, ' fld(1)

where K = —2/(mpk?®). Combining (6.11) and (6.14) and setting the disturbance to be

periodic in time d(t) = ¢™* yields the following dynamics for blade one

d | v S0 v A Al v; B,
R I e L S i i e B R R (AT
dt | o 00| |2 A A 2y By + iwe
where the structural and disturbance terms are
0 1 0 - .
Si(z) = , By = | Be=K[Y pi B (6.16)
—(1+2z) =2¢ Kf =1

with B; = [Bj, B]] SO Bj captures the first two columns of B; while Bj captures the third

and last column of B;. Aerodynamic coupling is given by the terms

Al = , Al = : (6.17)
[X’D]' [(Oj
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and
Al(z;) = B + B; [0, 1]8(z;) + K H;, (6.18)
A= A+ KG; (6.19)
where
G; = 3102' + 3202'—1 + 4+ Br0i+1 (6.20)
H; = B\D;i + ByDi_y + - + BTDZ'H- (6.21)

This completes the dynamics for blade one. All other blades follow by symmetry of M(z)
(equation (3.13)) and B(z) (Lemma 3.5.1). Specifically, rename [v;, z;] as z; and let

S + ALl A} B,
i | S 3 B I
Alfz) | AL Ai(z;) | AT By + iwe
for j between 2 and r. Then
T M (z) My(z) . M,(2) T B(w)
z2 | | Mi(pz)  Mi(pz) Ma(pz) = peB(w) Siut
T My(e™l2) Ms(¢™'2) ... Mi(¢"'z) | | py Bw)
LT L L] L i
M(2) B(w)
(6.23)

Due to the form of the aerodynamic forcing in equations (6.6) and (6.7), the forcing vector
B depends on the forcing frequency w. The required extension is straight forward. Forcing
vector B in equations (4.3) now depends on forcing frequency (B = B(w)); this w dependence
continues on through # = ((w) in equation (4.67) till the final response approximation in

equation (4.94) where a now depends on w.
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6.4 Tuned Eigenvalues for the DFVLR Bladed Disk

The DFVLR cascade is an experimental setup designed to study transonic two-dimensional
flow [SS84]. It consists of an array of blades (cascade) in a transonic wind-tunnel, there
is no spinning disk. Since there exist accurate experimental results for this setup which
permit reliable model validation, and because the CFD code used to generate the model is
also two-dimensional, the DFVLR blade shape was chosen to generate the current low-order
(rotating) bladed-disk model. The case selected for analysis has a steady state inlet flow with
Mach number 0.82 at a relative flow angle of 58.5 degrees. Figure 6.2 shows the resulting
steady state pressure contours within the blade passage. Structural parameters were chosen
to represent a (realistic) compressor bladed disk on the verge of instability, to this end we
chose a mass ratio of ¢ = 100, a reduced frequency of & = 0.125 and a damping of ( = 0.25
which represents both the structural damping and any viscous aerodynamic damping not
captured by the inviscid CFD model.

The resulting tuned system eigenvalues are shown in Figures 6.5 and 6.6. There are
r = 20 blades and m = 8 states per blade, hence there are a total of rm = 160 eigenvalues.
Figure 6.5 shows all 160 eigenvalues. Notice how the uncoupled aerodynamic eigenvalues
(¢) are perturbed slightly by the structural/aerodynamic coupling, and how the structural
blade-alone mode at [—(, +¢] is split into the 20 nodal diameter coupled eigenvalues (the
clustered of crosses at [—0.25, +i]). Figure 6.6 shows a zoom of these clustered “structural”
modes, here each eigenvalue is numbered by its associated nodal diameter. Notice the lightly-
damped 10th nodal diameter mode Ajg = —0.00025 + 0.94164z. It is this eigenvalue that
will go unstable if we further decrease the reduced frequency, and its behaviour creates the

sharp mistuning sensitivity.

6.5 Mistuning Results for the DFVLR Bladed Disk

This section discusses the mistuned behaviour of the DFVLR bladed disk model. As shown
in equation (6.13), mistuning appears as the percent change in the blade structural frequency.

Figure 6.7 shows the bladed disk behaviour for a random mistuning (generated by a normal
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Tuned System vs Purely Aerodynamic Eigenvalues.
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Figure 6.5: Tuned eigenvalues for the DFVLR cascade. Coupled structural /aerodynamic
system eigenvalues (4), the uncoupled aerodynamic eigenvalues (o).
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Tuned System Eigenvalues: numbered by nodal diameter.
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right: tuned eigenvalues (dots), mistuned eigenvalues (crosses) [circle denotes ¢ = 4 spatial
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distribution with a 4% variance). To demonstrate mistuning sensitivity, we choose forcing
in the fourth spatial mode (¢ = 4) because this corresponds to the most damped tuned
eigenvalue in Figure 6.6. When the system is tuned, only the damped fourth nodal diameter
eigenvalues are excited (denoted by the circled eigenvalue in the top right of Figure 6.7),
and this yields a gentle tuned Bode plot (solid line, bottom left of Figure 6.7). However,
when the system is mistuned, the lightly-damped 10th nodal diameter mistuned eigenvalue
is excited, and this creates the sharp peak at the mistuned resonant frequency w = 0.93754
(dashed lines, bottom left of Figure 6.7; bottom right plot shows the complex amplitude
and phase for all the blades at resonance). So the sensitivity mechanism for the DFVLR
bladed-disk high-fidelity model is exactly the one described in Section 4.4.2 and Figure 4.11.

Moreover, Figure 6.7 shows that this specific random mistuning serves to stabilize the sys-
tem; the mistuned eigenvalues are to the left of the tuned eigenvalues. In general, the eigen-
value perturbation of Chapter 4, equation (4.78), reveals which mistuning vectors are stabi-
lizing for each eigenvalue. Plot 6.8 shows the number of destabilizing mistuning directions
per eigenvalue. (For example, the eigenvalue third from the right has 2 destabilizing modes.
Hence for a mistuning of the form z = [1, cos(27j/r), cos(dnj/r),... ,cos(2m[r —1]7/r)], this
eigenvalue is only destabilized by j = 1 and 2. This information is based on the eigenvalues of
matrix Re[®] in equation (4.78). Since ® is symmetric and circulant, all eigenvalue of Re[®]
are real with eigenvectors of the form v; = [1, cos(2nj/r), cos(4nj/r),... ,cos(2m[r —1]j/7)].
Positive eigenvalues, p > 0, correspond to destabilizing directions: vTRe[®]v; = p;|lv;||* > 0.
Since @ is invariant under the flip operator, mode j and —j are equivalent (have the same
eigenvalues) and so only r/2 directions need to be checked.) Since the mistuning vectors
(z = [1,cos(2my/r),cos(4mj/r),... ,cos(2n[r — 1]7/r)], 7 = 1,2,... ,r) span the mistuning
space, Figure 6.8 reveals that some eigenvalues are always stabilized (or always destabilized)
by mistuning. For example, the two most lightly damped eigenvalues in Figure 6.8 are al-
ways stabilized by mistuning, while the most highly damped eigenvalue is always destabilized.
Hence mistuning tends to move the eigenvalues of Figure 6.8 closer to one another (least
stable eigenvalues move left, most stable move right). The corresponding intuition is that
since the model here is inviscid, there is no energy loss except through structural damping.

Hence mistuning serves to exchange and spread the energy between different aerodynamic



135

Number destabilizing mistuning modes per eigenvalue (10 max).

1.5 T T T T T
1.4 ]f N
1.3F *
1.2 B
139
g {
E 5
1.1 3 B
3
hrd
- 5 3 i
! C 5 o5 7 ?
+9 + + 2 0
5 ¥ +
0.9 + *
0.8 B
1 1 1 1 1
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

real

Figure 6.8: Number of destabilizing mistuning directions per eigenvalue.

modes and the eigenvalues move closer to one another.

Figure 6.8 above is based on the leading order eigenvalue approximation (4.78). Figure 6.9
addresses the region of validity for this perturbation. Here the chosen mistuning direction
is in the first mode: Z = [1, cos(27/r), cos(4n/r),... ,cos(2w[r — 1]/r)]. Mistuning is varied
along this direction asz = €Z up to a 15% mistuning (0 < € < 0.15). The resulting exact and
approximately computed mistuned eigenvalues are shown in Figure 6.9. It can be seen that
the eigenvalue approximation of equation (4.78) predicts the leading order trends. When
eigenvalues do not veer (as in the most critical least stable eigenvalue) the approximation
holds up to about a 10% mistuning size. However, when eigenvalues come close to collision
and veer away from one another they no longer follow the leading order trends. This is true
for the eigenvalues clustered near the point [—0.2,0.98] in Figure 6.9. It can be seen that

the exact eigenvalues (curved paths) veer away from one another; whereas the approximate
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Mistuned Eigenvalue Comparison: mode 1, incr 0.002, max-size 0.15
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Figure 6.9: Eigenvalue motion with mistuning for the DFVLR model: tuned eigenvalues
(*), exact mistuned eigenvalues (-, grey curved paths), approximate mistuned eigenvalues
(-, black straight paths). (Note: eigenvalues move quadratically with mistuning size, so the
least stable eigenvalue approximation is accurate up to about 10% mistuning.)

eigenvalue paths (straight lines) continue in their initial directions. Since forced response and
stability are dominated by the least stable eigenvalues, the approximation scheme derived in

Chapter 4 is quantitatively useful up to about a 10% mistuning size.

6.6 Mistuning Tradeoffs for the DFVLR Bladed Disk

Our purpose in this section is to compare the mistuning tradeoffs and sensitivities of the
DFVLR high-fidelity model against the analytical results in Sections 5.2.1 and 5.2.2. Con-
sider Figure 6.10, here we picked a random mistuning z,,q and varied mistuning along this
direction as z = €zyq up to a 15% mistuning size (0 < e < 0.15). For each mistuning value

z, a frequency sweep was performed over 0.9 < w < 1.1 and the worst-case maximal-blade
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Response vs Mistuning Size (DFVLR model, random mistuning)
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Figure 6.10: Exact worst case forced response vs mistuning size. Dashed line denotes the
acceptable response level. (Compare with Figure 5.5 of Section 5.2.2.)

deflection was recorded: || X(z,-)||cc = max(w)|X;(2z,w)|. (Hence this is the worst case over
blades and frequencies.) This worst-case response || X(z, )|/ is plotted against mistuning
size in Figure 6.10. Notice that Figure 6.10 looks exactly like Figure 5.5 derived analyti-
cally in Section 5.2.2 from symmetry considerations. Its shape follows from equation (5.18)
where the eigenvectors vary linearly in the numerator (initial response grows linearly as mis-
tuned modes appear) but the increased damping due to the stabilizing mistuning appears
quadratically in the denominator (the gradual response decrease). So the behaviour shown
in Figure 6.10 follows directly from symmetry arguments which imply that eigenvalues vary
quadratically with mistuning while eigenvectors vary linearly (see Sections 4.3.5, 4.4.2, 5.2.1
and 5.2.2).

Moreover, we can replicated the behaviour of Figure 5.4 in Section 5.2.1. To do so

we pick two random mistuning directions zyq1 and zpmg2, and let the mistuning vary as z =
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O Zrnd1 + B2maz Where a and 3 range between —0.15 and 0.15. This creates a two-dimensional
slice of the mistuning space shown schematically in Figure 5.4. For each mistuning value z, we
check the worst-case (exact) response || X(z,-)||«. If this response is below the acceptable
limit (|| X(z,)||lc < 9 as shown in Figure 6.10) then the response is deemed acceptable
and marked by a point (-); otherwise the response is deemed unacceptable and marked
by a bullet (o). The resulting plot is shown in Figure 6.11 (there are no unstable regions
because all mistuning values serve to stabilize the two least-stable eigenvalues—see Figure

6.8). Notice that just as in Figure 5.4, Figure 6.11 has a small acceptable region about the

Two dimensional slice of Figure 5.4
0.15+

0.1r

0.05

T

z2 = second random vector
o

-0.05

-0.154H 1 1 ! ! 1 1
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
z1 = first random vector

Figure 6.11: Acceptable/unacceptable forced response for a two-dimensional mistuning slice.
Dots (-) denote an acceptable response, bullets (o) denote an unacceptable response. All
points are stable. (Compare with Figure 5.4 of Section 5.2.1.)

origin surrounded by an unacceptable region (corresponding to the unacceptable peak of
Figure 6.10) which is in turn surrounded by another acceptable region (corresponding to the

tail of Figure 6.10). Consequently, as in Figure 5.4 the origin is not robust; even a small
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random mistuning will lead to unacceptable response. However, there might exist a robust
intentional mistuning outside the unacceptable region that will guarantee acceptable forced
response even under manufacturing uncertainty. Such an intentional mistuning is derived in

the next section.

6.7 Robust Intentional Mistuning for the DFVLR Bladed
Disk

Since the mistuned forced response of the DFVLR model is dominated by the least stable
10th nodal diameter eigenvalue pair (see Figure 6.6), we can use the optimization results of
Sections 5.1.1 and 5.2.2 to drive this eigenvalue pair to the left and improve both stability
and worst-case forced response in a robust manner. To do so we solve the maximal-damping

linear-constraint quadratic-cost optimization problem

3 Optimization: Mazimize A((z) = —2TRe[®]z subject to ||2]|oo < 0.1 and Y z = 0.

which is analogous to optimization {1} in Section 5.1.1. Here we are finding the mistuning
z that drives the least stable eigenvalue pair most effectively to the left, subject to a zero-
average and infinity norm less than 10% constraint.

We can find the global optimals of problem {3} by using the branch and bound techniques
described in [AKLV95]. The resulting global optimals are found to be

2 =01[1,1,1,1,1,1,1,1,1,1,-1,—1,—1,—1,—-1,—1,—-1,—1, -1, —1] (6.24)

and any rotation ¢’z* thereof. Based on this optimum we can compute the quantity

ro
Toz — 270z

o = Re [ ] = 0.004 (6.25)
which is analogous to equation (5.4) in Section 5.1.1. (Here Z = 10z* is the optimal size one
mistuning while z = [1,1,... ,1] corresponds to a tuned increase.) So purely from a stability

viewpoint, intentional mistuning is worthwhile if its bigger then 0.4%.
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Figure 6.12: Optimal mistuning of DFVLR bladed disk. Top left: the optimal mistuning
pattern. Top right: tuned eigenvalues (dots), mistuned eigenvalues (crosses) [circle denotes
¢ = 4 spatial forcing]. Bottom left: tuned response (solid), mistuned response (dashed—all
20 blades). Bottom right: at fixed forcing frequency the tuned response (dots), mistuned
response (squares).
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Mistuning behaviour for the optimal mistuning (6.24) is shown in Figure 6.12. Notice
how the mistuned eigenvalues have been pushed left; much more so than in the random
mistuning of Figure 6.7. This creates a smaller mistuned forced response in Figure 6.12 as
compared to Figure 6.7.

It remains to see if the improved response and stability behaviour created by the optimal
mistuning (6.24) is robust to manufacturing tolerances. Suppose blades are produced with
a random mistuning variation of 2%, meaning z; varies uniformly between —0.02 and 0.02.
Based on a Monte Carlo simulation, there is a 64% chances of unacceptable response about
the origin: Prob[|| X (2, )|l > 9, z; € (—.02,.02)] = 0.64. This is intuitively clear from
Figure 6.11, within the 2% box about the origin there is a large probability of landing in
the unacceptable region. For the case of intentional mistuning, robustness was not checked
rigorously because the approximation (4.94) begins to break down at about 10% mistuning
and so it is not possible to create a bound as in equation (5.22) and Figure 5.7. However, a
Monte Carlo simulation was performed about the intentionally mistuned point and the worst-
case forced response was acceptable over all points sampled. Specifically, it was shown that
Prob[|| X (z* + 2, )|l > 9, 2 € (—.02,.02)] < 0.001. (A rigorous deterministic bound could
be achieved by standard p robust analysis techniques.) Figure 6.13 shows the behaviour for
a typical optimal plus random mistuning: z = 2* 4 zma for ||zmdllec < 0.02. Notice that
the forced response is well below the acceptable limit: || X (2* 4 2,)|lcc < 9. In conclusion,
the introduction of the optimal intentional mistuning robustly improves both stability (the

minimum damping) and the worst-case forced response.
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Figure 6.13: Optimal plus random mistuning of DFVLR bladed disk. Top left: the optimal
plus random mistuning pattern. Top right: tuned eigenvalues (dots), mistuned eigenvalues
(crosses) [circle denotes ¢ = 4 spatial forcing]. Bottom left: tuned response (solid), mis-
tuned response (dashed—all 20 blades). Bottom right: at fixed forcing frequency the tuned
response (dots), mistuned response (squares).
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Chapter 7 Summary and Future Work

This thesis addresses how mistuning affects bladed-disk performance, and examines the
possibility of using mistuning as a robust passive control strategy to improve both stability
and forced response. As a result, two basic questions are posed. The analysis question: given
any mistuning, what is the new performance? And the optimization question: does there
exist, and if so what is the best, intentional mistuning that robustly improves performance?

The analysis question is addressed in Chapters 3 and 4. Two basic techniques are used:
symmetry arguments and an eigenvalue/vector perturbation. Chapter 3 covers symmetry
arguments which are exact and hold for any model (linear, nonlinear, analytic or computa-
tional). Symmetry essentially says that if we take any mistuning pattern z and observe the
resulting disk performance P(z), then any rotation of the same mistuning pattern ¢z must
yield identical performance P(z) = P(pz) because the two disks so mistuned are actually the
same disk up to a rotation. The constraint P(z) = P(yz) must hold for all aspects of the mis-
tuning problem (stability, response, eigenvalue/vector motion, optimization) and so greatly
restricts the allowable behaviour. Exploiting this constraint allows a great simplifications of
many mistuning issues.

Chapter 4 covers the eigenvalue/vector perturbation. This approximation method is
aimed at the standard linear stability /response problem. An eigenvalue/vector approxima-
tion was chosen because bladed-disks are known to be lightly-damped. This means the
eigenvalues can be very close to the imaginary axis and their motion, although small, can
produce very strong nonlinear effects. By perturbing eigenvectors in the numerator and the
inverse of eigenvalues in the denominator, we can accurately predict the forced response
even in the lightly-damped, strongly-nonlinear case. Moreover, eigenvalues (the modes) and
eigenvectors (the mode shapes) are fundamental quantities for linear systems, understanding
their variation with mistuning is crucial. Throughout the eigenvalue/vector perturbation we

exploit the symmetry results of Chapter 3. This not only eases the computational burden,
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but also reveals underlying tradeoffs and aids in understanding the mistuning problem. (For
example, symmetry implies eigenvalues vary quadratically with mistuning while eigenvectors
vary linearly. This explains why the mistuned forced response first rises and then falls as
mistuning size increases, see Figures 5.5 and 6.10 with associated discussion.)

Like any approximation technique, there are cases where the eigenvalue/vector pertur-
bation performs poorly. When eigenvalues are close together, the eigenvalue motion is very
abrupt and the eigenvectors may suffer motion discontinuities as eigenvalues collide. In this
case the eigenvalue/vector perturbation method is only valid for very small mistuning (see
Section 4.3.1, Table 4.1, for a comparison of the eigenvalue/vector method with a standard
perturbation method in the literature). In practice this is a significant, but not severe,
restriction. The high-fidelity model used in Chapter 6 has nearby eigenvalues yet the eigen-
value/vector approximation of Chapter 4 holds over a reasonable range, up to about 10%
mistuning for the critical (least stable, non-colliding) eigenvalues, and certainly provides the
correct leading order trends.

The passive control, or optimization, question is dealt with in Chapter 5. Due to the
analysis of Chapters 3 and 4 we find that in order to have an intentional mistuning which
increases stability and decreases forced response robustly, we must jump across an unaccept-
able region in the mistuning space to a point where significant damping has been introduced
(see Figures 5.4 and 6.11). To do this, all eigenvalues (or at least eigenvalues within the
frequency range of interest) must be moved left. If only a single eigenvalue pair is lightly-
damped and within the range of frequencies being forced, than the relevant optimization
reduces to the single eigenvalue problem of Section 5.1. The associated example in Section
5.2.2 shows that a robust intentional mistuning may be found that improves both stability
and forced response. This has been demonstrated for the high-fidelity low-order aerodynamic
model of Chapter 6. Here there is only one critical lightly-damped eigenvalue pair (this is
because there is only a single structural mode per blade). Using the methods of Section 5.1,
we find an intentional mistuning that robustly improves both stability and forced response
for this high-fidelity model.

When multiple lightly-damped eigenvalues are important, it is necessary to push them

all left. For a simple solution, one can examine all the relevant eigenvalue perturbations and
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search for a mistuning mode p (i.e., z; = cos(2mpj/r)) that pushes all the relevant eigenvalue
left. A better solution is to perform an optimization that always pushes the least stable
eigenvalue left (such an optimization was performed to generate Figures 5.3).

In both single and multiple eigenvalue optimization cases there are two types of optimiza-
tions. Continuous optimizations are covered in Section 5.1.1, here one solves an optimization
so as to build a disk with the optimal blade mistuning values. Section 5.1.2 covers discrete
optimizations where one is choosing the optimal arrangement from a given set of blades.
Once again, symmetry techniques can provide a great deal of simplification. For example,
in Section 5.1.2 a discrete optimization problem is solved in closed-form. (If there were no
symmetry present this problem would be NP (non-polynomial) hard and it would not be
possible to find global optimums with even a small number of blades.) However, the given
symmetry solution only holds for the class of models that have monotonically decreasing
stability coefficients, at present there is no obvious extension to the general case of arbitrary
stability coefficients.

Future work should focus on several extensions to the work in this thesis. First, a
methodology should be developed for tracking sharply veering eigenvalues. There has already
been some work in this area [AN89] but this research has not made use of symmetry to
simplify the tracking. Essentially, symmetry provides a simplification of order r, where
r is the number of blades. So without symmetry, if we wanted to track eigenvalues to
third order we would have to find r® coefficients; with symmetry we need only find r?
coefficients. For leading order terms this is a tremendous simplification, we can find the
quadratic dependence of eigenvalues on mistuning with only r/2 terms (equation (4.78)).
However, when eigenvalues start veering we very quickly need to start keeping track of third,
fourth and fifth order terms (look at Figure 4.10 and notice how sharply the eigenvalues can
move). Even though symmetry provides a simplification of order r, the growth in required
coefficients is still explosive. Hence additional techniques for simplifying the perturbations
must be found. At present, it is not clear how model structure (as discussed in Section 4.5)
might aid in the analysis but this is a promising avenue of study.

Second, the optimization tools employed in this thesis consist of fairly standard packages

(branch and bound algorithms, gradient descent with random seed, and so forth). Many
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of these methods have severe limitations: exhaustive search algorithms such as branch and
bound quickly become computationally prohibitive while random seek algorithms cannot
guarantee an approach to global optimums. None of these standard packages exploit sym-
metry to aid in the optimization. Yet we know from Section 5.1.2 that symmetry can,
in some cases, greatly simplify the relevant optimization problems. Hence the design and
implementation of optimization tools that exploit system symmetry should be pursued.

Third, it is well known that bladed-disk models have a large uncertainty associated with
them. This is especially true for models dealing with complex aerodynamic phenomena
such as shock waves, tip-losses, viscous effects and, most notably, turbulence. Hence one
would like to know if the mistuning results derived are robust to model uncertainty. (This
is different from robustness with respect to mistuning uncertainty which is addressed in this
thesis, see Section 5.2.1.) There are at least two ways to approach this issue.

Method one is to try make conclusions based purely on phenomenological data. For
example, suppose we know that blade coupling is caused primarily by a leading-edge shock
wave interaction. Is it possible to say anything about the resulting mistuned behaviour based
only on this fact, i.e. can we make any conclusions without writing down a specific model?
Information obtained this way would be robust (true for any model whose coupling mecha-
nism is caused by leading-edge shock waves). Results of this type would be an extension to
those presented in Section 4.5.

Method two deals with analyzing a set of models and is more along the lines of standard
robust analysis. Suppose we have a set of models parameterized by a vector §. Here ¢
might be the location of a blade shock wave, or it could capture small variations in blade-
shape, operating-conditions or some other parameters of interest. (Creating such a set of
models is itself a non-trivial task. The low-order modeling work in [WPP99] can serve as
a starting point.) In general, one would like to find bounds on the perturbation mistuning
parameters (a,b, c,0,¢,1, ®, o of equations (4.16), (4.78) and (4.94)), and on the resulting
optimal mistuning (see Chapter 5) for all § in some set A that describes model uncertainty.
A limited way to do this is to compute derivatives of the mistuning coefficients with respect
to the model parameters of interest (da/09,0b/06, ... ,0a/dd). Now for small variations of

0 we can find rough bounds on the motion of the mistuning coefficients. If we further know
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that the optimal mistuning is related robustly to the coefficients (as in Section 5.1.2 where
the optimal answer remains a pyramid arrangement, Figure 5.2, so long as the mistuning
stability coefficients are monotonically decreasing, see equations (5.5) and (5.6)) then we have
some information at which ¢’s the optimal answer will change. Hence to gain robust analysis
results about the tuned point we need to push bounds on model variation ¢ through to bounds
on the mistuning coefficients a, b, ¢, o, ¢, 1, ®, a. To gain robust optimization results we must
transform the bounds on the mistuning parameters into bounds on the optimal mistuning.
Symmetry can, and should be, used to help simplify these questions. For example, symmetry
can be exploited to help compute bounds on the mistuning perturbation coefficients.

Additionally, one would like to examine the robustness of any large intentional mistuning
outside the perturbation validity range. In that case either a new perturbation scheme with
a larger method of validity should be developed and exploited in the computations, or the
analysis must proceed without the aid of a perturbation about the tuned point. Perturbing,
instead, about a mistuned point disallows the use of symmetry arguments (the starting point
is not symmetric) and makes the problem harder. If the mistuned point in question has a
partial symmetry (for example alternate blade mistuning has the symmetry that rotating
the disk by two blades returns the same disk) then this can be exploited. One could envision
progressing the robust analysis from a large degree of symmetry (lots of structure but far
from optimal), through points of less symmetry (less structure, closer to optimal) to the final
point of interest (no or least amount of symmetry, optimal mistuning). Examining such an
approach, and others, is suggested as a topic for future research.

Fourth, it is known that mistuning can cause large changes in stability. However,
the question of how mistuning affects the transition to limit cycles (soft/supercritical or
hard/subcritical bifurcation) has not been addressed. In order to answer this question non-
linear flutter models must be developed that will capture the nonlinear limit cycle behaviour.
The corresponding mistuned bifurcation analysis would require an extension of the current
symmetry tools to the nonlinear case.

Fifth, the symmetry tools developed herein apply to any object with rotational symmetry.
Hence some of the tools developed in this thesis could apply to other devices of practical

interest. Possible applications might included devices as diverse as circular saws, car-brake
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hubs and computer drives. However, there also exist a wide class of devices that have other
types of symmetry. For example, turbo-machine compression systems contain axial bearings
and so there is an approximate axial symmetry (bearing j and bearing j + 1 experience the
same dynamics if we neglect edge effects). Exploiting (the possibly approximate) system
symmetry in these cases to aid in the analysis should be examined.

Finally, the methods in this thesis should be examined experimentally. Currently, an
experiment is planned at NASA Glenn that would examine the effects of damping and
intentional mistuning on a bladed-disk in the NASA spin-pit facility (see Appendix B for a
short description of the planned experiment). The aim of the experiment is to determine the
range of perturbation validity, demonstrate mistuning sensitivity to damping, and to show

the feasibility of robust intentional mistuning.
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Appendix A MAST Software

MAST, an acronym for Mistuning Analysis by Symmetry Techniques, is written in Matlab,
runs on Unix platforms, and implements the results of Chapters 3 and 4. This software
has been optimized for speed (the 120 state model of Section 6.3 runs in approximately 20
minutes on a Sun Ultra 10, 433MHz machine) and is well commented. (There also exists an
earlier Mathematica version of MAST, which is much slower.) At the time of writing, the
latest available version was MAST 2.0 created in April, 1999.

This software is available free of charge, so long as all copyright header messages are

retained. It may be obtained as follows:
o ftp cds.caltech.edu
e login: anonymous
e password: your email
e cd pub/bshapiro/MAST
e get MAST2.0.tar (or later version if available)
e quit
e tar -xf MAST2.0.tar (uncompress tar file).

This will create a directory structure with all the MAST files. Documentation and help is
available in the file README/Description, notation used is consistant with this thesis.

To run MAST, the user must input the first block row of the linear model (4.3). The
standard format is to enter this information in symbolic form as a function of the mistuning
vector z. Given this model, MAST finds the leading order perturbation for all the eigenvalues
(equation (4.78)) and the forced response (equation (4.94)) and prints this data out to an

output directory. The user can vary the forcing mode ¢ to get a response approximation
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for any mode of interest. Other information can be displayed on screen. For example,
MAST computes the number of destabilizing mistuning modes per eigenvalues and shows a
plot of the tuned eigenvalues number by the number of destabilizing mistuning modes for
each eigenvalue. Related packages include some optimization tools (random search gradient
descent tools). All MAST files contain short descriptions which outline their purpose and

function. Any questions or comments about this software may be sent to the author.
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Appendix B Planned NASA Glenn

Experiment

The experiment described here is in cooperation with Oral Mehmed at NASA Glenn and is
funded internally within the Smart Green Engine program (managed by Kestutis C. Civin-
skas), which is part of the Aeronautics and Propulsion Systems Base R & T effort (managed
by Frank D. Berkopec). Existing NASA Glenn spin-pit facilities will be used. The basic aim
is to examine the change in mistuning sensitivity due to damping, and to test the feasibility
of introducing intentional mistuning to robustly improve both stability and forced response.
To this end, the experimental configuration under consideration is the simplest possible that
allows mistuning, variable damping and engine-order forcing. A (tentative) schematic of the
experimental setup is shown in Figure B.1.

The bladed disk will be cut out of a sheet of steel, currently 8 blades are planned (only
4 are shown on the figure to avoid crowding). Variable weights on the tips of the blades will
provide the mistuning capability while forcing will be achieved by air-injectors. By turning
on from 1 to 8 air-injectors and varying the speed of rotation, we will be able excite the
natural modes of the bladed-disk. Finally, the damping of the metal disk will be varied by
attaching a thin layer of a visco-elastic material (sold commercially) topped by a thin-layer
of metal (say aluminum or brass). The resulting metal-elastic-metal sandwich causes the
elastic layer to shear when the material is bent. During bending motion this shear creates
dissipation in the visco-elastic layer and hence causes increased damping. The resulting
change in stiffness is very small. The amount of damping may be varied by changing the
width and thickness of the attached ” constrained-layer-damping” strips (see reference [YD72]
for details and damping computations). The capabilities above will allows us to examine the
dependence of mistuning sensitivity on damping, and the feasibility of intentional mistuning

as a robust passive control strategy.
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Proximity-probe
Bladed-disk Q) VP

Strain-gage

Damping-strip

Mistuning
Mass

i

Air-injectors (rear injectors not shown)

Figure B.1: Experimental Setup: all attached devices (masses, strain-gages, damping-strips,
etc) are shown per blade and on top of the bladed-disk for clarity.



153

Bibliography

[AKLV95] F.A. Al-Khayyal, C. Larsen, and T. Van Voorhis. A relaxation method for non-

[ANS9]

[Bat84]

[Ben84]

[Ben86]

[BFS6]

[Blo87]

[CHS5]

[Chig4]

convex quadratically constrained quadratic programs. Journal of Global Opti-

mization, 6(3):215-230, 1995.

D. Afolabi and O.D.I. Nwokah. The frequency response of mistuned cyclic sys-
tems. In Vibration Analysis—Techniques and Applications; Twelfth Biennial
American Society of Mechanical Engineers Conference on Mechanical Vibration

and Noise, pages 209-217, Jan 1989.
W. W. Bathie. Fundamentals of Gas Turbines. John Wiley & Sons, 1984.

0.0. Bendiksen. Flutter of mistuned turbomachinery rotors. ASME Journal of
Engineering for Gas Turbines & Power, 106:25-33, 1984.

0.0. Bendiksen. Recent developments in flutter suppression techniques for tur-

bomachinery rotors. J.Propulsion, 4(2):164-171, 1986.

A. Bolcs and T.H. Fransson. Aeroelasticity in turbomachines; comparison of the-
oretical and experimental cascade results. Technical Report AFOSR-TR-870605,

Ecole Polytechnique Federale de Lausanne, 1986.

H. Bloemhof. Flutter of mistuned cascades with structural coupling. In Unsteady

Aerodynamics & Aeroelasticity of Turbomachines & Propellers, 1987.

E.F. Crawley and K.C. Hall. Optimization and mechanisms of mistuning in

cascades. Transactions of the ASMFE, 107:418-426, April 1985.

R.M. Chi. Mistuned flutter of shroudless turbomachine rotor blades. Technical
report, United Technologies Research Center, Fast Hartford CT 06108, March
1984.



[Chi85]

[Chig1]

[CPYT]

[CS85]

[Dav95]

[DB84]

[DH69]

[For94]

[GLYT]

[GM96]

[Gre81]

154
R.M. Chi. Separated flow unsteady aerodynamic theory. Journal of Aircraft,
22(11):956-964, 1985.

D.R.J. Chillingworth. Bifurcation from a manifold, volume 1463 of Singularities

Theory and its Applications, Lecture notes in mathematics. Springer Verlag, 1991.

M.P. Castanier and C. Pierre. Consideration on the benefits of intentional blade
mistuning for the forced response of turbomachinery rotors. In Proceedings of the

ASME Aerospace Divison, volume AD-55, pages 419-425, 1997.

R.M. Chi and A.V. Srinivasan. Some recent advances in the understanding and
prediction of turbomachine subsonic stall flutter. Transactions of the ASME,
107:408-417, April 1985.

O. Davenport. AFOSR high cycle fatigue workshop. Meeting Briefing, Oct 1995.

J. Dugundji and D.J. Bundas. Flutter and forced response of mistuned rotors

using standing wave analysis. AIAA Journal, 22(11):1652-61, 1984.

R.C.F. Dye and T.A. Henry. Vibration amplitudes of compressor blades resulting
from scatter in blade natural frequencies. ASME Journal of Engineering for

Power, 91:182-188, July 1969.

H. Forching. Aeroelastic stability of cascades in turbomachinery. Prog. Aerospace

Seci., 30:213-266, 1994.

F. Guyard and R. Lauterbach. Forced symmetry breaking perturbations for
periodic solutions. Nonlinearity, 10:291-310, 1997.

D.L. Gysling and M.R. Myers. A framework for analyzing the dynamics of
flexibly-bladed turbomachines. In [International Gas Turbine and Aeroengine

Congress and Fzhibition, 1996. ASME, 96-GT-440.

E. M. Greitzer. The stability of pumping systems—the 1980 freeman scholar
lecture. ASME Journal of Fluids FEngineering, 103:193-242, 1981.



[GSS0]

[GSSSS]

[KK82]

[KMWO98]

[Knu73]

[KP96]

[KP97]

[Lan64]

[Lau96]

[LWS93]

155

M. Golubitsky and D.G. Schaeffer. A discussion of symmetry and symmetry
breaking. In Proceedings of Symposia in Pure Mathematics, volume 40, part 1,
pages 499-515, 1980.

M. Golubitsky, 1. Stewart, and D. G. Schaeffer. Singularities and Groups in

Bifurcation Theory, volume 2. New York: Springer Verlag, 1988.

K.R. Kaza and R.E. Kielb. Flutter and response of a mistuned cascade in incom-

pressible flow. ATAA Journal, 20:1120-1127, Aug 1982.

M. Kim, J. Moon, and J.A. Wickert. Spatial modulation of repeated vibration
modes in rotationally periodic structures. Journal of Vibration and Acoustics,

120, October 1998.

D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, 1973.

M.J. Kruse and C. Pierre. Dynamic response of an industrial turbomachinery

rotor. In Proceedings of the 32nd AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Fzhibit, 1996.

M.J. Kruse and C. Pierre. An experimental investigation of vibration localization
in bladed disks, part i: Free response. In Proceedings of International Gas Turbine
and Aeroengine Congress and Fzhibition, ASMFE, Orlando FL, volume 97-GT-
501, 1997.

P. Lancaster. On eigenvalues of matrices dependent on a parameter. Numerische

Mathematik, 6:377-387, 1964.

R. Lauterbach. Symmetry breaking in dynamical systems. In Nonlinear dynamical
systems and chaos, volume 19, 1996. Progress in nonlinear differential equations

and their applications (Groningen).

M.B. Levine-West and M.A. Salama. Mode localization experiments on a ribbed

antenna. ATAA Journal, 31(10):1929-1937, October 1993.



[MH97]

[MKS7]

[MMSS]

[NHS5]

[PDS7]

[PM77]

[PM92]

[Pot72]

[SAB92]

[SC85]

156
M.P. Mignolet and W. Hu. Direct prediction of the effects of mistuning on the

forced response of bladed disks. In Gas Turbine and Aeroengine Congress and

FEzxhibition, June 1997.

K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic and

nonlinear programming. Mathematical Programming, 39:117-129, 1987.

0. Mehmed and D.V. Murthy. Experimental investigation of propfan aeroelastic
response in off-axis flow with mistuning. In 2/th Joint Propulsion Conference-

AIAA, ASME, SAE and ASEE, July 1988.

E. Nissim and R.T. Haftka. Optimization of cascade blade mistuning, part II:
Global optimum & numerical optimization. AIAA Journal, 23,00.9:1402-10,
1985.

C. Pierre and E.H. Dowell. Localization of vibrations by structural irregularity.

Journal of Sound & Vibrations, 114(3):549-64, 1987.

M.H. Protter and C.B. Morrey. A First Course in Real Analysis. Springer-Verlag,
1977.

C. Pierre and D.V. Murthy. Aeroelastic modal characteristics of mistuned
blade assemblies: Mode localization and loss of eigenstructure. AIAA Journal,

30(10):2483-96, 1992.

J. H. Potter. The Gas Turbine Cycle, November 1972. ASME paper presented

at the Gas Turbine Division Forum Dinner.

SAB. Report of the ad hoc committee on air force aircraft jet engine manufactur-

ing and production processes. Technical report, U.S. Air Force Scientific Advisory

Board, July 1992.

A.V. Srinivasan and D.G. Cutts. Aerodynamically excited vibrations of a part-
span shrouded fan. Journal of Engineering for Gas Turbines and Power, 107:399—
407, April 1985.



[SC97]

[SF76]

[Sha9s]

[Sin86]

[Sir87]

S584]

[Wat93]

[Whi60]

[Whi64]

[Whi66]

[WP90]

157
B. Shapiro and B.D. Coller. Characterizing optimal mistuning by symmetry
arguments. In IKEE Conference on Control Applications, 1997.

A.V. Srinivasan and H.M. Frye. Effects of mistuning on resonant stresses of
turbine blades. In Structural Dynamic Aspects of Bladed Disk Assemblies, Dec
1976.

B. Shapiro. Symmetry approach to extension of flutter boundaries via mistuning.

Journal of Propulsion and Power, 14(3):354-366, May-June 1998.

A. Sinha. Calculating the statistics of forced response of a mistuned bladed disk
assembly. ATAA Journal, 24:1797-1801, 1986.

L. Sirovich. Turbulence and the dynamics of coherent structures. part 1: Coherent

structures. Quarterly of Applied Mathematics, 45,n0.3:561-571, October 1987.

H.A. Schrieber and H. Starken. Experimental cascade analysis of a transonic

compressor rotor blade section. Journal of Engineering for Gas Turbines and

Power, Transactions of the ASMFE, 106:288-294, April 1984.

B.C. Watson. An Investigation Into the Influence of Mistuning on the Forced
Response of Bladed Disk Assemblies. PhD thesis, Georgia Institute of Technology,
1993.

D.S. Whitehead. Force and moment coefficients for vibrating airfoils in cascade.

Great Britian A.R.C., R. & M. 3254, 1960.

D.S. Whitehead. Torsional flutter of unstalled cascade blades at zero deflection.
Great Britian A.R.C., R&M 3429, 1964.

D.S. Whitehead. Effect of mistuning on the vibration of turbomachine blades
induced by wakes. Journal of Mechanical Engineering Science, 8:15-21, March
1966.

S.T. Wei and C. Pierre. Statistical analysis of the forced response of mistuned

cyclic assemblies. ATAA Journal, 28:861-868, May 1990.



[WPPY]

[YD72]

158
K.E. Willcox, J.D. Paduano, and J. Peraire. Low order aerodynamic models for
aeroelastic control of turbomachines. In 40th ATAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials (SDM) Conference, St Louis, MO,
volume 99-1467, April 1999.

M.J. Yan and E.H. Dowell. Governing equations for vibrating constrained-layer
damping sandwich plates and beams. Journal of Applied Mechanics, Transactions

of the ASMFE, pages 1041-1046, 1972.



