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Topic A: B-modes from varying 27

Weak Gravitational Lensing Tables



B-modes from varying 27

A claim was made in (Vale et al. 2004) that modulations in source redshift
creates B-modes.

B-mode from aperture mass at 15 arcmin. Left: No modulation; Middle: 10% seeing
modulations; Right: 10% depth modulation.
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B-modes from varying 27

A claim was made in (Vale et al. 2004) that modulations in source redshift
creates B-modes.

-05

B-mode from aperture mass at 15 arcmin. Left: No modulation; Middle: 10% seeing
modulations; Right: 10% depth modulation.

I believe that this claim is wrong.
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Topic A: B-modes from varying z7

Why do I have doubts about this claim?
Shear field at different depth still stays E-mode field.
Possible resons for the observed B-mode in (Vale et al. 2004):

o Artifact of the simulation. E.g. discontinuity in shear field.

e Artifact of measurement. E.g. problems with pixelisation, aperture-mass
estimator.

e Increased noise.
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Topic A: B-modes from varying 27

Possible aspects of study

Even if it is true, this is worth studying in more detail:

e Fuclid will face problem of varying depth due to different quality
photo-z’s from inhomogeneous ground-based data.

e Appearing B-mode means it is leaked from E-mode, so change in
cosmological weak-lensing signal. Important to quantify potential
systematic.

e There is also information in the B-mode, e.g. induced by intrinsic
alignment, higher-order effects, which might be exploited. Important to
quantify systematic B-mode.

e We can study ways to reduce this B-mode. Smooth data across varying
z-regions? Use different aperture-mass estimator (integral over 2PCF, or
other)?

e The authors did a purely numerical study. Worth to check analytically if
possible.
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Topic A: B-modes from varying 27

A related analytical approach has been developed in (Guzik & Bernstein 2005).

Add systematics field € to shear field:
d(6) = (1+¢€(8))v(0)
If uncorrelated to shear, results in separated correlation function:

¢ho) =

(d(¢)d(¢+0))
= (L+(e(@)e(0+0))) (v(P) (P +0))
= (1+£°(0)) £7(0).

This can produce a residual B-mode power spectrum:

APg50) =7 | " 466¢°(9) [€1(6)Jo(16) £ €7 (6)a(16)]

0

GBO5 consider as one of their cases a systematic signal constant in circular
patches (e.g. calibration error dependent on pointing), and find B-modes. Is
this the correct description of varying depth?
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Topic A: B-modes from varying 27

Tasks

A. Numerical study, redo (Vale et al. 2004) analysis.
1. Download (N-body +) ray-tracing/ray-shooting simulations. Need
positions z,y, shear v (and/or convergence ) and redshift z.
2. Produce E-/B-mode estimates: Compute the 2PCF, e.g. with athena,

and (M2, ) with pallas.py. Make sure there are no intrinsic significant

B-modes.
3. Introduce redshift variations: Select galaxies at different z in patches.
Redo step A.2, see whether B-modes are introduced.
B. Analytical study.
1. Use the (Guzik & Bernstein 2005) or a different approach to model
redshift variations over a field.

2. Compute the expected B-mode signal to see whether or not it is zero.
C. Advanced studies.

o Use realistic redshift variations on a large (Euclid-like?) field.

e Study other systematic effects, seeing variations, shear calibration,
environment biases that correlated with density, ...
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Topic A: B-modes from varying z7

Simulations to download

e Log-normal simulations, B. Joachimi, 08/2013, 25 fields, one z-bin, with
masks, used for code testing and validation in OU-LE3.
www.astro.uni-bonn.de/~reiko/le3sim/simpublic/euclid_le3_
versim_v1.3.tar.gz

e Log-normal simulations, B. Joachimi, 04/2016, 1 field, two z-bins, with
masks, used for code testing and validation in OU-LE3.

Get link from http://www.cosmostat.org/ecolel?

e MICE v2.0 simulation, 5,000 deg?, some issues with the lensing signal,
fixed?
https://cosmohub.pic.es/#/catalogs/1 (login required)

e Euclid Flagship v1.0 simulation, 5,000 deg?, much deeper, to lower halo
mass, higher resolution than MICE.
https://cosmohub.pic.es/#/catalogs/53 (login required)
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Topic A: B-modes from varying z7

Simulating varying redshift

You can use the following relation between limiting magnitude and median
redshift, for a realistic simulation of varying z given ground-based survey
specifications on limiting magnitude.
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From (Duncan et al. 2014).
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Topic B: Fisher matrix fit with CosmoSIS
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: use

The Fisher matrix is an

extremely useful tool in
cosmology, see Elena
Sellentin’s lectures. )

It allows very fast estimation
of (cosmological) parameter
errors for given observables
and their errors (covariance),
even in high dimensions.
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: definition

The Fisher matrix is an approximation of the likelihood function that
circumvents the need of Monte-Carlo sampling.

Instead of tens of thousands of evaluation of the likelihood, only a few 10 or so
evaluations of the likelihood or related functions are required.

It is defined as the matrix of second derivatives of the log-likelihood,

9?[-InL]
Fop=( ———%— ).
: < 90,005
The Cramér-Rao bound indicates then the lower bound on the variance o2 of
parameter p,, with

oo =/(F71)

(7N
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: in practice I

Weak lensing
For example, the Fisher matrix for the weak-lensing power spectrum can be

written as oP.(0) 9P, (1)
Fas =22 54, (C mlO 557
£ pq

where the indices p, ¢ denote redshift bin combinations,
p,g=1...ny(n, +1)/2, and P, is the tomographic weak-lensing power
spectrum.

Practical difficulties with the Fisher matrix

Computing numerical derivations can be problematic, since often a very high
precision is required. Which is the case for the Fisher matrix, where small
errors in the derivatives propagate in a non-linear way to the parameter
constraints due to the non-linear process of matrix inversion.

Such errors can be introduced by interpolation of cosmological quantities for
speed-up, insufficient accuracy of numerical integration, too large
discretisation steps etc.
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: in practice II

Codes that compute theoretical models for Monte-Carlo sampling do not need
to be as accurate as Fisher-matrix codes (Wolz et al. 2012).

Often the Fisher matrix changes substantially with small algorithmic changes,
for example

e step size h of the numerical derivatives

e number of points n that are used (n-point stencil).
In addition the Fisher matrix is often ill conditioned in the presence of

parameter degeneracies, or badly constrained parameters. Inversion is then
tricky; often a prior is added to “regularize” the Fisher matrix.
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Topic B: Fisher matrix fit with CosmoSIS

An alternative method to compute the Fisher matrix?

Instead of relying on derivatives, how about the following idea:

Around the maximum-likelihood (or posterior) point in parameter space po,
the likelihood for n points are computed, and a quadratic function is fitted to
those points.

This quadratic form is then an estimate of the Fisher matrix.
This circumvents the necessity for numerical derivatives.
Questions:
e How many points are required? Does this number scale linearly with the
dimension?
e How do we choose the step size? Adaptive if possible.

e Should the steps only vary one direction at a time, or be a combination of
parameters?

e How does the precision of this approach compare to the traditional Fisher
matrix?
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Topic B: Fisher matrix fit with CosmoSIS

Tasks

A. Implementation
Implement this alternative Fisher matrix estimator in CosmoSIS.

Implementation of likelihood evaluation around fiducial point, fitting,
convergence testing.

B. Comparison
Compare with the traditional Fisher matrix, that is already part of CosmoSIS.
Play around with parameters, number of points, different probes, cosmological
parameter, .. ..

C. Further studies
This could also be implemented in nicaea, or MontePython, which computes
directly the derivative of the likelihood for the Fisher matrix.

(From my obscure notes from recent IST Euclid meeting in Heidelberg):
Eric Linder mentioned minuit minimizer and quadratic interpolation, see
https://pypwa.jlab.org/mntutorial.pdf.
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Topic C: Peak counts and shear bias with camelus

Peak counts and shear calibration
In the lecture we will discuss the multiplicative shear bias m,

<Eobs> ,y;)bq _ (1 + mz) true + ¢ - 1’2.

This bias can depend on the environment of galaxies.

In particular, it depends on the local density of galaxies. Galaxies trace dark
matter, which produces the weak-lensing signal. Thus, a density-dependent
bias will be correlated with the lensing signal.

This might be particularly important for weak-lensing peaks, which trace
regions of very high density.

Halo mass function

¥k map and peaks
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Topic C: Peak counts and shear bias with camelus

The problem

This cannot easily be simulated and then calibrated, for example with simple
galaxy image simulations.

The correlation with the local desity means that the cosmological signal needs
to be simulated as well.

This typically is an N-body simulation.

However, at least for a simple WL peak model (see lecture Part I day 3 [3/6]),
this step can be replace by simple, fast simulations, implented in camelus (Lin
& Kilbinger 2015).
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Topic C: Peak counts and shear bias with camelus

Tasks |

A. Run the C-code camelus
Download from https://github.com/Linc-tw/camelus.

Perform a few test runs and familiarize with the produced output.
B. Model and test density-dependent m

1. Simple model
For the galaxies simulated by camelus, estimate local density 0
(e.g. count in cells), and apply m(d) with some fonctional dependence.
See for example (Hockstra et al. 2016).

2. More realistic model

The galaxies should follow (trace) the halo distribution, this is not yet
implemented in camelus.

Relatively easy: Produce WL map with random galaxies from first run of
camelus, re-distribute galaxies according to 2D density, re-run camelus
using this new distribution, and some model m(9).

Even better, the galaxies should follow the halo distribution in 3D. This
can be implemented by modifying the code, but might be quite involved.
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Topic C: Peak counts and shear bias with camelus

Tasks 11

C. Quantify influence of m

In all of the above cases: Produce WL peak histograms with and without
density-dependent m, compare using Euclid-like survey setting (area, depth,
etc.).

Compare these changes to the sensitivity of peak histograms from dark-energy.
From this, actual requirements on m(d) for WL peak counts could be derived.

D. Advanced studies

Parametrize m(9), add as sampling parameters to camelus.

Perform joined analysis of cosmology and m(J).

Detailed analysis of influence of m on cosmological parameters, including
correlations and degeneracies.
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