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Topic A: B-modes from varying z?

B-modes from varying z?

A claim was made in (Vale et al. 2004) that modulations in source redshift
creates B-modes.L2 VALE ET AL. Vol. 613

Fig. 1.—B-mode aperture mass on a scale, for fields. The left panel is with no modulation, the center panel includes sharp 10% modulations in′15 2!.5# 2!.5
the seeing correction on a scale (as detailed in the text and outlined by the solid lines), and the right panel is for 10% modulations in the source redshift′22
relation at a scale of . The gray scale is linear and spans " .′ !48 5# 10

Fig. 2.—Variance in the aperture mass resulting from 10% modulations of the shear amplitude. Left: E-mode power (solid line) and the absolute value of the
change in the E-mode power resulting from modulations using a pixelized grid (dotted line) and a smooth gradient (dashed line) as described in the text. In both
cases the E-mode power is reduced on the largest scales for this particular realization. Right: B-mode power resulting from the same modulations.

3. SIMULATIONS

In order to assess the systematic errors induced by uncor-
rected changes in the calibration or depth of the survey, we
make use of simulated weak lensing maps. These maps are
generated by ray tracing through N-body simulations. We use
the methods described in detail in White & Vale (2003), pro-
viding only a brief summary here.
Our calculation is done within the context of a L cold dark

matter model (model 1 of White & Vale 2003) chosen to pro-
vide a good fit to recent cosmic microwave background and
large-scale structure data. The weak lensing maps are made
from an N-body simulation using a multiplane ray tracing code,
as described in Vale & White (2003). The code computes the

shear matrix A, which describes the distortion of an2# 2
image due to lensing by a distribution of sources. The shear
matrix A is decomposed as

k " g g " q1 2A p , (1)( )g ! q k ! g2 1

where the are the shear components, k is the convergence,gi
and q is the rotation, which is generally small.
We make maps of the shear and the convergence at a range

of source redshifts from to 3 in steps of Mpc.!1z ∼ 0 Dx p 50 h
In each case, a grid of rays subtending a field of view22048
of is traced through the simulation. The two shear com-3!
ponents and the convergence are output at each source plane
and down-sampled to pixels. The final map is a21024
weighted sum of the contributions from each source plane;
for a distribution the weight given to source plane jdp/dzs
is

dp
w p H(z )Dx. (2)j jFdzs j

We use a source distribution of the form (Brainerd et al. 1996)

dp 2 3/2∝ z exp [!(z /z ) ]. (3)s s 0dzs

For this distribution . We use 2AzS p G(8/3)z ! 1.5z z p0 0 0 3
for our base model and include fluctuations in wherez0
appropriate.

B-mode from aperture mass at 15 arcmin. Left: No modulation; Middle: 10% seeing

modulations; Right: 10% depth modulation.
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I believe that this claim is wrong.
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Topic A: B-modes from varying z?

Why do I have doubts about this claim?

Shear field at different depth still stays E-mode field.

Possible resons for the observed B-mode in (Vale et al. 2004):

• Artifact of the simulation. E.g. discontinuity in shear field.

• Artifact of measurement. E.g. problems with pixelisation, aperture-mass
estimator.

• Increased noise.
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Topic A: B-modes from varying z?

Possible aspects of study

Even if it is true, this is worth studying in more detail:

• Euclid will face problem of varying depth due to different quality
photo-z’s from inhomogeneous ground-based data.

• Appearing B-mode means it is leaked from E-mode, so change in
cosmological weak-lensing signal. Important to quantify potential
systematic.

• There is also information in the B-mode, e.g. induced by intrinsic
alignment, higher-order effects, which might be exploited. Important to
quantify systematic B-mode.

• We can study ways to reduce this B-mode. Smooth data across varying
z-regions? Use different aperture-mass estimator (integral over 2PCF, or
other)?

• The authors did a purely numerical study. Worth to check analytically if
possible.
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Topic A: B-modes from varying z?

A related analytical approach has been developed in (Guzik & Bernstein 2005).

Add systematics field ε to shear field:

3

III. EFFECT OF SYSTEMATICS ON E/B
POWER SPECTRA

Ideally, we would like to measure the shear field γ(θ)
directly. What we observe, however, is the coherent el-
lipticity induced on an ensemble of galaxies, which (a)
is defined by the distortion g = γ/(1 − κ); (b) is im-
parted on galaxies that are not intrinsically circular, and
(c) are viewed through a finite point-spread function
(PSF). The measured shear field d(θ) will in practice
be modulated or contaminated by various observational
effects [14]. Although techniques for shear extraction
from galaxy images have been extensively developed and
tested [5, 15, 19], there remain imperfections which can
be detrimental to precision cosmology.

Throughout the paper we assume that the observed
field is related to the true shear field by a position-
dependent multiplicative scalar factor 1 + ϵ(θ) such as
will result from a misestimation of the “resolution” [5] or
“shear polarizability” [19]. The systematic field ϵ(θ) is a
random field assumed to have zero mean and described to
the lowest interesting order by the two-point correlation
function. Thus we express the observed field in terms of
the shear and the systematics fields as

d(θ) = (1 + ϵ(θ))γ(θ). (4)

This relation is local in real space, so it is going to couple
modes of the shear field in the Fourier space, i.e. have
some non-local effect on the relevant power spectra. We
assume that the shear field γ due to massive structures in
the Universe is uncorrelated with systematics field ϵ(θ),
which is a Galactic or instrumental foreground. The ob-
served two-point correlation function ξd(θ) can in this
case be written as

ξd(θ) ≡ ⟨d(φ)d(φ + θ)⟩ (5)

= (1 + ⟨ϵ(φ) ϵ(φ + θ)⟩) ⟨γ(φ)γ(φ + θ)⟩ (6)

= (1 + ξϵ(θ)) ξγ(θ). (7)

We have introduced two-point correlation functions ξγ(θ)
for the shear field and ξϵ(θ) for the systematics field. For
simplicity we will assume that the systematics field ϵ(θ)
is homogeneous and isotropic. In practice the assump-
tion of isoptropy is not restrictive, as the effects of an
anisotropic systematic could be approximated to first or-
der by considering the azimuthally averaged correlation
function.

Correlation functions for the distortion field, ξd
+(θ)

and ξd
−(θ), may be expressed as products of the corre-

lation functions for the shear and systematics ξd
±(θ) =

(1 + ξϵ(θ)) ξγ
±(θ) which follow from eqs. (1) and (7).

We can rewrite eq. (3) in terms of the distortion in-
stead of the shear and then account for systematic sig-
nals ϵ(θ). We split the observed E and B mode power
spectra P d

E,B(l) into two contributions as follows

P d
E,B(l) = P γ

E,B(l) + ∆P ϵ
E,B(l), (8)

where the term P γ
E,B(l) is E mode (B mode) power spec-

trum of the shear and ∆P ϵ
E,B(l) represents the contribu-

tions to the E mode (B mode) power due to systematic
signals. We focus on these error terms in the remainder
of the paper. Using eqs. (3) and (8) they can be written
as

∆P ϵ
E,B(l) = π

∫ ∞

0

dθθξϵ(θ)
[
ξγ
+(θ)J0(lθ) ± ξγ

−(θ)J4(lθ)
]
.

(9)
We assume that the shear correlation functions ξγ

± re-
ceive contribution from E mode only, i.e. P γ

E(l) = Pκ(l),
P γ

B(l) ≡ 0, since B-mode cosmological contributions are
expected to be a few orders of magnitude smaller on
scales > 1′ [7]. The systematic errors ∆PE,B(l) to E
and B mode power spectra can be written as integrals
over the convergence power spectrum Pκ(l) with a win-
dow function WE,B(l, q):

∆PE,B(l) =

∫ ∞

0

dq q Pκ(q)WE,B(l, q), (10)

where the window function depends solely on the corre-
lation function ξϵ of the systematic modulation, and is
given by

WE,B =
1

2

∫ ∞

0

dθθξϵ(θ) [J0(lθ)J0(qθ) ± J4(lθ)J4(qθ)] .

(11)
In the limit of a systematic that is completely correlated
across the entire observation, i.e. a constant calibra-
tion error, we have ξϵ(θ) = Σ2, where Σ2 is the vari-
ance of the calibration error. In this limit we obtain
WE(l, q) = Σ2 q−1δD(l − q) and WB(l, q) ≡ 0, where we
have used an integral relation for the Bessel functions∫∞
0

dθ θ Jn(l θ)Jn(q θ) = q−1 δD(q − l) [20]. Thus the er-
ror contributions to E/B power spectra are ∆PE(l) =
Σ2Pκ(l) and ∆PB(l) = 0 in this case, and there is no
conversion of E power to B power, as expected.

Numerical simulations of calibration inhomogeneity in
[8] are presented in terms of the aperture mass statistics
Map(R) and M×(R) with compensated filter defined in
[21, 22]. We produce analytic predictions for inhomoge-
neous calibration errors for comparison with the numer-
ical results of [8] using the same filter as they did.

IV. MODELING OF SYSTEMATICS

We consider several potentially useful models of the
correlation function of the systematic signal ξϵ(θ) and we
examine the dependence of E and B mode power spectra
(10) on the characteristics of ξϵ(θ). The correlation func-
tions considered here are analytically tractable and able
to describe a wide variety of random processes leading to
systematic signals. Each correlation function considered
here is assumed to describe a stationary, isotropic random
field. We assume that the systematic field has a finite
variance Σ2. Equation (11) shows that ∆PE,B(l) ∝ Σ2

If uncorrelated to shear, results in separated correlation function:
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GB05 consider as one of their cases a systematic signal constant in circular
patches (e.g. calibration error dependent on pointing), and find B-modes. Is
this the correct description of varying depth?
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Topic A: B-modes from varying z?

Tasks
A. Numerical study, redo (Vale et al. 2004) analysis.

1. Download (N -body +) ray-tracing/ray-shooting simulations. Need
positions x, y, shear γ (and/or convergence κ) and redshift z.

2. Produce E-/B-mode estimates: Compute the 2PCF, e.g. with athena,
and 〈M2

ap,×〉 with pallas.py. Make sure there are no intrinsic significant
B-modes.

3. Introduce redshift variations: Select galaxies at different z in patches.
Redo step A.2, see whether B-modes are introduced.

B. Analytical study.

1. Use the (Guzik & Bernstein 2005) or a different approach to model
redshift variations over a field.

2. Compute the expected B-mode signal to see whether or not it is zero.

C. Advanced studies.

• Use realistic redshift variations on a large (Euclid-like?) field.

• Study other systematic effects, seeing variations, shear calibration,
environment biases that correlated with density, . . .
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Topic A: B-modes from varying z?

Simulations to download

• Log-normal simulations, B. Joachimi, 08/2013, 25 fields, one z-bin, with
masks, used for code testing and validation in OU-LE3.
www.astro.uni-bonn.de/~reiko/le3sim/simpublic/euclid_le3_

versim_v1.3.tar.gz

• Log-normal simulations, B. Joachimi, 04/2016, 1 field, two z-bins, with
masks, used for code testing and validation in OU-LE3.
Get link from http://www.cosmostat.org/ecole17

• MICE v2.0 simulation, 5, 000 deg2, some issues with the lensing signal,
fixed?
https://cosmohub.pic.es/#/catalogs/1 (login required)

• Euclid Flagship v1.0 simulation, 5, 000 deg2, much deeper, to lower halo
mass, higher resolution than MICE.
https://cosmohub.pic.es/#/catalogs/53 (login required)
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Topic A: B-modes from varying z?

Simulating varying redshift

You can use the following relation between limiting magnitude and median
redshift, for a realistic simulation of varying z given ground-based survey
specifications on limiting magnitude.

8 C. Duncan et al.

Figure 3. The top panel shows the effective number density of galaxies (in
galaxies/arcminute2) as a function of the faint limiting magnitude iAB for
sources with valid shape measurement (dashed), and for all galaxies with
photometry (solid). The bottom panel shows the median redshift of sources
as a function of the limiting magnitude. All data is taken from CFHTLenS
catalogues. Crosses mark values taken for an S3 survey, whilst dots mark
values taken for an S4 survey.

redshift errors �Phot = 0.05(1 + zPhot). Unless otherwise stated,
results hereafter are shown for an S4 survey.

Fig. 3 shows the median survey redshift, and effective num-
ber density of galaxies as a function of faint limiting iAB mag-
nitude taken from CFHTLenS catalogues for galaxies with valid
shape measurement (Heymans et al. 2012a) as well as for all galax-
ies with photometry. As the galaxies broad size distributions are
weakly redshift dependent, cuts on galaxy size such as those used
in a shape analysis do not significantly affect the measured median
redshift, but will cause a noticeable decrease in effective number
density of galaxies used. From Fig. 3 we choose for our S3 sur-
vey a median redshift zmed = 0.66, and galaxy number density
of hni = 8.5 galaxies/arcminute2 and 18 gal/arcminute2 for
shear and clustering analyses respectively. Similarly, we consider
for an S4 survey zmed = 0.7, and assume shapes can be mea-
sured for every detected source. Therefore, we use the photometry
line in deducing the number density of galaxies for S4, and take
ngal = 28 galaxies/arcminute2 for both shear and clustering
analyses.

Figure 4. Galaxy redshift probability distribution functions as defined in
Section 3.4, for an S3 ground–based (top) and S4 space–based (bottom)
survey (defined in Section 3.3).

3.4 Galaxy redshift distributions

We model the distribution of galaxies with true redshift zt as

p(i)(zt) =

Z z
(i)
h

z
(i)
l

dzph p(zt|zph)p(zph), (38)

where p(zt|zph) is assumed to be a Gaussian with width �z =
0.05(1 + zph), and zl and zh denote the lower and higher bounds
of the redshift bin in photometric redshift. We model the galaxy
photometric redshift distribution, p(zph), as (Smail, Ellis & Fitch-
ett 1994)

p(zph) /
✓

zph

z0

◆2

e
�
⇣ zph

z0

⌘1.5

, (39)

with characteristic redshift z0 = zmed/1.412. The galaxy redshift
distribution is subdivided into redshift bins with equal numbers of
galaxies.

Fig. 4 shows the resultant galaxy distribution for 8 redshift
bins for survey types S3 and S4, with the number density contrast
power spectra given for three redshift bin combinations in Fig. 5,
split by component. Noticeably, for closely–separated redshift bins,
the intrinsic clustering term is non–vanishing due to the presence
of photometric redshift errors which cause some galaxies to be in-
correctly assigned to a given redshift bin, and causes overlap be-
tween the binned galaxy distributions. As we take redshift bins that
are more widely separated, the power from intrinsic clustering de-
creases, so we see that for the most widely separated bins the total
power is dominated by terms that include the magnification. It is
for this reason that van Waerbeke (2010) and Hildebrandt, Waer-
beke & Erben (2009) take spatially disjoint redshift bins to isolate
the magnification contribution to the clustering power spectrum. As
the cross power (mg+gm) is always dominant over the pure magni-
fication (mm) power, frequently studies will ignore the pure mag-
nification contribution to the overall clustering power, and instead
just quote the cross contribution. In the situation where correla-
tions are considered between distant foreground and backgrounds,
the intrinsic clustering contribution is subdominant and may also be
ignored. In this analysis, we consider all contributions to the power,
as given in Equation 11.

c� 2013 RAS, MNRAS 000, 1–18

From (Duncan et al. 2014).
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: use

The Fisher matrix is an
extremely useful tool in
cosmology, see Elena
Sellentin’s lectures.

It allows very fast estimation
of (cosmological) parameter
errors for given observables
and their errors (covariance),
even in high dimensions.

This is routinely used to
forecast the performance of
planned surveys.
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: definition

The Fisher matrix is an approximation of the likelihood function that
circumvents the need of Monte-Carlo sampling.

Instead of tens of thousands of evaluation of the likelihood, only a few 10 or so
evaluations of the likelihood or related functions are required.

It is defined as the matrix of second derivatives of the log-likelihood,

Fαβ =

〈
∂2[− lnL]

∂θα∂θβ

〉
.

The Cramér-Rao bound indicates then the lower bound on the variance σ2
α of

parameter pα, with

σα =
√

(F−1)αα.
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: in practice I
Weak lensing
For example, the Fisher matrix for the weak-lensing power spectrum can be
written as

Fαβ =
∑

`

∑

pq

∂Pp(`)

∂θα
(C−1)pq(`)

∂Pq(`)

∂θβ
,

where the indices p, q denote redshift bin combinations,
p, q = 1 . . . nz(nz + 1)/2, and Pp is the tomographic weak-lensing power
spectrum.

Practical difficulties with the Fisher matrix
Computing numerical derivations can be problematic, since often a very high
precision is required. Which is the case for the Fisher matrix, where small
errors in the derivatives propagate in a non-linear way to the parameter
constraints due to the non-linear process of matrix inversion.

Such errors can be introduced by interpolation of cosmological quantities for
speed-up, insufficient accuracy of numerical integration, too large
discretisation steps etc.
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Topic B: Fisher matrix fit with CosmoSIS

The Fisher matrix: in practice II

Codes that compute theoretical models for Monte-Carlo sampling do not need
to be as accurate as Fisher-matrix codes (Wolz et al. 2012).

Often the Fisher matrix changes substantially with small algorithmic changes,
for example

• step size h of the numerical derivatives

• number of points n that are used (n-point stencil).

In addition the Fisher matrix is often ill conditioned in the presence of
parameter degeneracies, or badly constrained parameters. Inversion is then
tricky; often a prior is added to “regularize” the Fisher matrix.
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Topic B: Fisher matrix fit with CosmoSIS

An alternative method to compute the Fisher matrix?

Instead of relying on derivatives, how about the following idea:

Around the maximum-likelihood (or posterior) point in parameter space p0,
the likelihood for n points are computed, and a quadratic function is fitted to
those points.

This quadratic form is then an estimate of the Fisher matrix.

This circumvents the necessity for numerical derivatives.
Questions:

• How many points are required? Does this number scale linearly with the
dimension?

• How do we choose the step size? Adaptive if possible.

• Should the steps only vary one direction at a time, or be a combination of
parameters?

• How does the precision of this approach compare to the traditional Fisher
matrix?
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Topic B: Fisher matrix fit with CosmoSIS

Tasks

A. Implementation
Implement this alternative Fisher matrix estimator in CosmoSIS.

Implementation of likelihood evaluation around fiducial point, fitting,
convergence testing.

B. Comparison
Compare with the traditional Fisher matrix, that is already part of CosmoSIS.
Play around with parameters, number of points, different probes, cosmological
parameter, . . ..

C. Further studies
This could also be implemented in nicaea, or MontePython, which computes
directly the derivative of the likelihood for the Fisher matrix.

(From my obscure notes from recent IST Euclid meeting in Heidelberg):
Eric Linder mentioned minuit minimizer and quadratic interpolation, see
https://pypwa.jlab.org/mntutorial.pdf.
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Topic C: Peak counts and shear bias with camelus

Peak counts and shear calibration
In the lecture we will discuss the multiplicative shear bias m,

〈εobsi 〉 = γobsi = (1 +mi)γ
true
i + ci; i = 1, 2.

This bias can depend on the environment of galaxies.
In particular, it depends on the local density of galaxies. Galaxies trace dark
matter, which produces the weak-lensing signal. Thus, a density-dependent
bias will be correlated with the lensing signal.
This might be particularly important for weak-lensing peaks, which trace
regions of very high density.

Part I day 3+: Extra stu↵ Higher order statistics: peak counts

WL peak counts: Why do we want to study peaks?

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

What are peaks?

• Local maxima of the projected mass
• Direct tracers of massive regions
• Probe mass function

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 11Martin Kilbinger (CEA) WL Part I/II 121 / 135
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Topic C: Peak counts and shear bias with camelus

The problem

This cannot easily be simulated and then calibrated, for example with simple
galaxy image simulations.

The correlation with the local desity means that the cosmological signal needs
to be simulated as well.

This typically is an N -body simulation.

However, at least for a simple WL peak model (see lecture Part I day 3 [3/6]),
this step can be replace by simple, fast simulations, implented in camelus (Lin
& Kilbinger 2015).
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Topic C: Peak counts and shear bias with camelus

Tasks I
A. Run the C-code camelus

Download from https://github.com/Linc-tw/camelus.

Perform a few test runs and familiarize with the produced output.

B. Model and test density-dependent m

1. Simple model
For the galaxies simulated by camelus, estimate local density δ
(e.g. count in cells), and apply m(δ) with some fonctional dependence.
See for example (Hoekstra et al. 2016).

2. More realistic model
The galaxies should follow (trace) the halo distribution, this is not yet
implemented in camelus.

Relatively easy: Produce WL map with random galaxies from first run of
camelus, re-distribute galaxies according to 2D density, re-run camelus
using this new distribution, and some model m(δ).

Even better, the galaxies should follow the halo distribution in 3D. This
can be implemented by modifying the code, but might be quite involved.
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Topic C: Peak counts and shear bias with camelus

Tasks II

C. Quantify influence of m
In all of the above cases: Produce WL peak histograms with and without
density-dependent m, compare using Euclid-like survey setting (area, depth,
etc.).
Compare these changes to the sensitivity of peak histograms from dark-energy.
From this, actual requirements on m(δ) for WL peak counts could be derived.

D. Advanced studies
Parametrize m(δ), add as sampling parameters to camelus.
Perform joined analysis of cosmology and m(δ).
Detailed analysis of influence of m on cosmological parameters, including
correlations and degeneracies.
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