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Programming Languages 

Third Edition 

Chapter 6 

Syntax 

Objectives 

• Understand the lexical structure of programming 

languages 

• Understand context-free grammars and BNFs 

• Become familiar with parse trees and abstract 

syntax trees 

• Understand ambiguity, associativity, and 

precedence 

• Learn to use EBNFs and syntax diagrams 
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Objectives (cont’d.) 

• Become familiar with parsing techniques and tools 

• Understand lexics vs. syntax vs. semantics 

• Build a syntax analyzer for TinyAda 
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Introduction 

• Syntax is the structure of a language 

• 1950: Noam Chomsky developed the idea of 

context-free grammars 

• John Backus and Peter Naur developed a 

notational system for describing these grammars, 

now called Backus-Naur forms, or BNFs  

– First used to describe the syntax of Algol60 

• Every modern computer scientist needs to know 

how to read, interpret, and apply BNF descriptions 

of language syntax 
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Introduction (cont’d.) 

• Three variations of BNF:  

– Original BNF 

– Extended BNF (EBNF) 

– Syntax diagrams 
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Lexical Structure  

of Programming Languages 

• Lexical structure: the structure of the tokens, or 

words, of a language 

– Related to, but different than, the syntactic structure 

• Scanning phase: the phase in which a translator 

collects sequences of characters from the input 

program and forms them into tokens 

• Parsing phase: the phase in which the translator 

processes the tokens, determining the program’s 

syntactic structure 
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Lexical Structure  

of Programming Languages (cont’d.) 

• Tokens generally fall into several categories: 

– Reserved words (or keywords) 

– Literals or constants 

– Special symbols, such as “;”m “<=“, or “+” 

– Identifiers 

• Predefined identifiers: identifiers that have been 

given an initial meaning for all programs in the 

language but are capable of redirection 

• Principle of longest substring: process of 

collecting the longest possible string of nonblank 

characters 
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Lexical Structure  

of Programming Languages (cont’d.) 

• Token delimiters (or white space): formatting that 

affects the way tokens are recognized 

• Indentation can be used to determine structure 

• Free-format language: one in which format has no 

effect on program structure other than satisfying 

the principle of longest substring 

• Fixed format language: one in which all tokens 

must occur in prespecified locations on the page 

• Tokens can be  formally described by regular 

expressions 
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Lexical Structure  

of Programming Languages (cont’d.) 

• Three basic patterns of characters in regular 

expressions: 

– Concatenation: done by sequencing the items 

– Repetition: indicated by an asterisk after the item to 

be repeated 

– Choice, or selection: indicated by a vertical bar 

between items to be selected 

• [ ] with a hyphen indicate a range of characters 

• ? indicates an optional item 

• Period indicates any character 

 
Programming Languages, Third Edition 9 

Lexical Structure  

of Programming Languages (cont’d.) 

• Examples: 

– Integer constants of one or more digits 

 

– Unsigned floating-point literals 

 

• Most modern text editors use regular expressions 

in text searches 

• Utilities such as lex can automatically turn a 

regular expression description of a language’s 

tokens into a scanner 
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Lexical Structure  

of Programming Languages (cont’d.) 

• Simple scanner input: 

 

• Produces this output: 

 

Programming Languages, Third Edition 11 

Context-Free Grammars and BNFs 

• Example: simple grammar 

 

 

 

 

 

 

•  separates left and right sides 

• | indicates a choice 
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Context-Free Grammars and BNFs 

(cont’d.) 

• Metasymbols: symbols used to describe the 

grammar rules 

• Some notations use angle brackets and pure text 

metasymbols 

– Example: 

• Derivation: the process of building in a language 

by beginning with the start symbol and replacing 

left-hand sides by choices of right-hand sides in the 

rules  
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Context-Free Grammars and BNFs 

(cont’d.) 
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Context-Free Grammars and BNFs 

(cont’d.) 

• Some problems with this simple grammar: 

– A legal sentence does not necessarily make sense 

– Positional properties (such as capitalization at the 

beginning of the sentence) are not represented 

– Grammar does not specify whether spaces are 

needed 

– Grammar does not specify input format or 

termination symbol 
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Context-Free Grammars and BNFs 

(cont’d.) 

• Context-free grammar: consists of a series of 

grammar rules 

• Each rule has a single phrase structure name on 

the left, then a  metasymbol, followed by a 

sequence of symbols or other phrase structure 

names on the right 

• Nonterminals: names for phrase structures, since 

they are broken down into further phrase structures 

• Terminals: words or token symbols that cannot be 

broken down further 
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Context-Free Grammars and BNFs 

(cont’d.) 

• Productions: another name for grammar rules 

– Typically there are as many productions in a context-

free grammar as there are nonterminals 

• Backus-Naur form: uses only the metasymbols 

“” and “|” 

• Start symbol: a nonterminal representing the 

entire top-level phrase being defined 

• Language of the grammar: defined by a context-

free grammar 
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Context-Free Grammars and BNFs 

(cont’d.) 

• A grammar is context-free when nonterminals 

appear singly on the left sides of productions 

– There is no context under which only certain 

replacements can occur 

• Anything not expressible using context-free 

grammars is a semantic, not a syntactic, issue 

• BNF form of language syntax makes it easier to 

write translators 

• Parsing stage can be automated 
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Context-Free Grammars and BNFs 

(cont’d.) 

• Rules can express recursion 
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Context-Free Grammars and BNFs 

(cont’d.) 
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Context-Free Grammars and BNFs 

(cont’d.) 
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Parse Trees  

and Abstract Syntax Trees 

• Syntax establishes structure, not meaning 

– But meaning is related to syntax 

• Syntax-directed semantics: process of 

associating the semantics of a construct to its 

syntactic structure 

– Must construct the syntax so that it reflects the 

semantics to be attached later 

• Parse tree: graphical depiction of the replacement 

process in a derivation 
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 

• Nodes that have at least one child are labeled with 

nonterminals 

• Leaves (nodes with no children) are labeled with 

terminals 

• The structure of a parse tree is completely 

specified by the grammar rules of the language and 

a derivation of the sequence of terminals 

• All terminals and nonterminals in a derivation are 

included in the parse tree 
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 

• Not all terminals and nonterminals are needed to 

determine completely the syntactic structure of an 

expression or sentence 
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 

• Abstract syntax trees (or syntax trees):  trees 

that abstract the essential structure of the parse 

tree 

– Do away with terminals that are redundant 

• Example:  
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Parse Trees  

and Abstract Syntax Trees (cont’d.) 

• Can write out rules for abstract syntax similar to 

BNF rules, but they are of less interest to a 

programmer 

• Abstract syntax is important to a language designer 

and translator writer 

• Concrete syntax: ordinary syntax  
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Ambiguity, Associativity,  

and Precedence 

• Two different derivations can lead to the same 

parse tree or to different parse trees 

• Ambiguous grammar: one for which two distinct 

parse or syntax trees are possible 

• Example: derivation for 234 given earlier 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 

• Certain special derivations that are constructed in a 

special order can only correspond to unique parse 

trees 

• Leftmost derivation: the leftmost remaining 

nonterminal is singled out for replacement at each 

step 

– Each parse tree has a unique leftmost derivation 

• Ambiguity of a grammar can be tested by 

searching for two different leftmost derivations 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 

Programming Languages, Third Edition 34 



18 

Ambiguity, Associativity,  

and Precedence (cont’d.) 

• Ambiguous grammars present difficulties 

– Must either revise them to remove ambiguity or state 

a disambiguating rule 

• Usual way to revise the grammar is to write a new 

grammar rule called a term that establishes a 

precedence cascade 

• Can replace  

– With either        or  

• First rule is left-recursive; second rule is right-

recursive 

Programming Languages, Third Edition 35 

Ambiguity, Associativity,  

and Precedence (cont’d.) 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 
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Ambiguity, Associativity,  

and Precedence (cont’d.) 
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EBNFs and Syntax Diagrams 

• Extended Backus-Naur form (or EBNF): 

introduces new notation to handle common issues 

• Use curly braces to indicate 0 or more repetitions 

– Assumes that any operator involved in a curly 

bracket repetition is left-associative 

– Example:  

• Use square brackets to indicate optional parts 

– Example: 
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EBNFs and Syntax Diagrams (cont’d.) 
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EBNFs and Syntax Diagrams (cont’d.) 

• Syntax diagram: indicates the sequence of 

terminals and nonterminals encountered in the 

right-hand side of the rule 
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EBNFs and Syntax Diagrams (cont’d.) 

• Use circles or ovals for terminals, and squares or 

rectangles for nonterminals 

– Connect them with lines and arrows indicating 

appropriate sequencing 

• Can condense several rules into one diagram 

• Use loops to indicate repetition 
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EBNFs and Syntax Diagrams (cont’d.) 
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Parsing Techniques and Tools  

• A grammar written in BNF, EBNF, or syntax 

diagrams describes the strings of tokens that are 

syntactically legal 

– It also describes how a parser must act to parse 

correctly 

• Recognizer: accepts or rejects strings based on 

whether they are legal strings in the language 

• Bottom-up parser: constructs derivations and 

parse trees from the leaves to the roots 

– Matches an input with right side of a rule and 

reduces it to the nonterminal on the left 
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Parsing Techniques and Tools 

(cont’d.) 

• Bottom-up parsers are also called shift-reduce 

parsers 

– They shift tokens onto a stack prior to reducing 

strings to nonterminals 

• Top-down parser: expands nonterminals to match 

incoming tokens and directly construct a derivation 

• Parser generator: a program that automates top-

down or bottom-up parsing 

• Bottom-up parsing is the preferred method for 

parser generators (also called compiler 

compilers) 
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Parsing Techniques and Tools 

(cont’d.) 

• Recursive-descent parsing: turns nonterminals 

into a group of mutually recursive procedures 

based on the right-hand sides of the BNFs 

– Tokens are matched directly with input tokens as 

constructed by a scanner 

– Nonterminals are interpreted as calls to the 

procedures corresponding to the nonterminals 
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Parsing Techniques and Tools 

(cont’d.) 

Programming Languages, Third Edition 48 



25 

Parsing Techniques and Tools 

(cont’d.) 

• Left-recursive rules may present problems 

– Example:  

– May cause an infinite recursive loop 

– No way to decide which of the two choices to take 

until a + is seen 

• The EBNF description expresses the recursion as 

a loop: 

• Thus, curly brackets in EBNF represent left 

recursion removal by the use of a loop 
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Parsing Techniques and Tools 

(cont’d.) 

• Code for a right-recursive rule such as: 

 

• This corresponds to the use of square brackets in 

EBNF:  

 

– This process is called left-factoring 

• In both left-recursive and left-factoring situations, 

EBNF rules or syntax diagrams correspond 

naturally to the code of a recursive-descent parser 
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Parsing Techniques and Tools 

(cont’d.) 

• Single-symbol lookahead: using a single token to 

direct a parse 

• Predictive parser: a parser that commits itself to a  

particular action based only on the lookahead 

• Grammar must satisfy certain conditions to make 

this decision-making process work 

– Parser must be able to distinguish between choices 

in a rule 

– For an optional part, no token beginning the optional 

part can also come after the optional part 
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Parsing Techniques and Tools 

(cont’d.) 

• YACC: a widely used parser generator 

– Freeware version is called Bison 

– Generates a C program that uses a bottom-up 

algorithm to parse the grammar 

• YACC generates a procedure yyparse from the 

grammar, which must be called from a main 

procedure 

• YACC assumes that tokens are recognized by a 
scanner procedure called yylex, which must be 

provided 
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Lexics vs. Syntax vs. Semantics 

• Specific details of formatting, such as white-space 

conventions, are left to the scanner 

– Need to be stated as lexical conventions separate 

from the grammar 

• Also desirable to allow a scanner to recognize 

structures such as literals, constants, and 

identifiers 

– Faster and simpler and reduces the size of the 

parser 

• Must rewrite the grammar to express the use of a 

token rather than a nonterminal representation 
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Lexics vs. Syntax vs. Semantics 

(cont’d.) 

• Example: a number should be a token 

 

 

 

 

 

– Uppercase indicates it is a token whose structure is 

determined by the scanner 

• Lexics: the lexical structure of a programming 

language 
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Lexics vs. Syntax vs. Semantics 

(cont’d.) 

• Some rules are context-sensitive and cannot be 

written as context-free rules 

• Examples: 

– Declaration before use for variables 

– No redeclaration of identifiers within a procedure 

• These are semantic properties of a language 

• Another conflict occurs between predefined 

identifiers and reserved words 

– Reserved words cannot be used as identifiers 

– Predefined identifiers can be redefined in a program 
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Lexics vs. Syntax vs. Semantics 

(cont’d.) 

• Syntax and semantics can become interdependent 

when semantic information is required to 

distinguish ambiguous parsing situations 
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Case Study: Building a Syntax 

Analyzer for TinyAda 

• TinyAda: a small language that illustrates the 

syntactic features of many high-level languages 

• TinyAda includes several kinds of declarations, 

statements, and expressions 

• Rules for declarations, statements, and 

expressions are indirectly recursive, allowed for 

nested declarations, statements, and expressions 

• Parsing shell: applies the grammar rules to check 

whether tokens are of the correct types 

– Later, we will add mechanisms for semantic analysis 
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Case Study: Building a Syntax 

Analyzer for TinyAda (cont’d.) 

Programming Languages, Third Edition 58 


