
Eoinolar Geonetry

Tie tiny threads on HERB and pin them to your eyeball What would it look like?

You see points on HERB

What does the second observer see?

You see points on HERB

Second person sees lines

This is Epipolar Geometry

Epipolar geometry

Image plane

Epipolar geometry

Image plane

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar constraint

Potential matches for \boldsymbol{x} lie on the epipolar line \boldsymbol{l}^{\prime}

The point \mathbf{x} (left image) maps to a \qquad in the right image

The baseline connects the \qquad and \qquad
An epipolar line (left image) maps to a \qquad in the right image

An epipole \mathbf{e} is a projection of the \qquad on the image plane

All epipolar lines in an image intersect at the

Where is the epipole in this image?

Converging cameras

Where is the epipole in this image?
It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

Forward moving camera

Forward moving camera

Where is the epipole?

What do the epipolar lines look like?

Epipole has same coordinates in both images. Points move along lines radiating from "Focus of expansion"

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image

How would you do it?

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image
(if the images have been rectified)
Epipolar constrain reduces search to a single line

iv-tec
 imagination and vision

E

Essential Matrix

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

Recall:Epipolar constraint

Potential matches for \boldsymbol{x} lie on the epipolar line \boldsymbol{l}^{\prime}

The epipolar geometry is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

How would you do it?

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Epipolar constrain reduces search to a single line How do you compute the epipolar line?

Essential Matrix

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

Representing the ...

Epipolar Line

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=?
$$

Epipolar Line

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=0
$$

Recall: Dot Product $c=a \times b$

$$
\boldsymbol{c} \cdot \boldsymbol{a}=0
$$

$$
\boldsymbol{c} \cdot \boldsymbol{b}=0
$$

So if $\boldsymbol{x}^{\top} \boldsymbol{l}=0$ and $\mathbf{E} \boldsymbol{x}=\boldsymbol{l}^{\prime}{ }_{\text {then }}$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=?
$$

So if $\boldsymbol{x}^{\top} \boldsymbol{l}=0$ and $\mathbf{E} \boldsymbol{x}=\boldsymbol{l}^{\prime}$ then

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Motivation

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

$$
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} \quad \boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}
$$

Essential matrix maps a point to a line

Homography maps a point to a point

Where does the Essential matrix come from?

Does this look familiar?

Camera-camera transform just like world-camera transform

These three vectors are coplanar
$\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then $\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=$?

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

Recall: Cross Product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both

$$
c=a \times b
$$

$$
\boldsymbol{c} \cdot \boldsymbol{a}=0 \quad \boldsymbol{c} \cdot \boldsymbol{b}=0
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=?
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

putting it together

rigid motion

$$
\begin{array}{r}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
\end{array}
$$

putting it together

rigid motion

$$
\begin{aligned}
& \boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
&\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
&\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0
\end{aligned}
$$

Cross product

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Can also be written as a matrix multiplication

$$
\boldsymbol{a} \times \boldsymbol{b}=[\boldsymbol{a}]_{\times} \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

putting it together

rigid motion

$$
\begin{array}{r}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
\end{array}
$$

putting it together

rigid motion

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top} \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
\end{gathered}
$$

putting it together

rigid motion

$$
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t})
$$

$$
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
$$

$$
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0
$$

$$
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
$$

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \mathscr{x}=0
$$

Essential Matrix

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

 $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0$Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

$$
\boldsymbol{e}^{\prime \top} \mathbf{E}=\mathbf{0}
$$

$$
\mathbf{E} e=\mathbf{0}
$$

(points in normalized coordinates)

How do you generalize to uncalibrated cameras?

Fundamental Matrix

16-385 Computer Vision

Recall:Epipolar constraint

Potential matches for \boldsymbol{x} lie on the epipolar line \boldsymbol{l}^{\prime}

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

points aligned to camera coordinate axis (calibrated camera)

The
Fundamental matrix is a generalization of the
Essential matrix,
where the assumption of calibrated cameras
is removed

$$
\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0
$$

The Essential matrix operates on image points expressed in normalized coordinates
(points have been aligned (normalized) to camera coordinates)

$$
\underset{\substack{\text { camera } \\ \text { point }}}{\substack{\text { image } \\ \text { point }}} \hat{e}^{\prime}=\sqrt[e^{\prime}]{\sim}=\mathbb{e}^{\prime}
$$

Writing out the epipolar constraint in terms of image coordinates

$$
\begin{gathered}
\boldsymbol{x}^{\prime \top} \mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1}\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
\end{gathered}
$$

Same equation works in image coordinates!

$$
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
$$

it maps pixels to epipolar lines

properties of the $\mathbb{E} /$ matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top}{ }^{\top} \boldsymbol{x}=0
$$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\boldsymbol{E} \boldsymbol{x} & \boldsymbol{l}=\boldsymbol{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

Epipoles
 $$
e^{\prime \top}=0
$$
 $$
E e=0
$$

(points in image coordinates)

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E} \mathbf{K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{-\top}\left[\mathbf{t}_{\star}\right] \mathbf{R K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E} \mathbf{K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R} \mathbf{K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

