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Abstract. One serious impediment to the widespread adoption of anonymous communication pro-
tocols is the threat of abuse. Anonymous communication can, by its very nature, facilitate socially
unacceptable behavior. In this paper we present one approach to dealing with abuse: selective trace-
ability. A system for anonymous communication is said to be selectively traceable if it allows the tracing
of a message’s sender after a set of sensible conditions have been met (e.g., both the FBI and the ACLU
have agreed to trace the message, or 90% of the users agree that the message should be traced, etc.). We
introduce general techniques to transform a large class of anonymous communication protocols (includ-
ing most of those that have been proposed so far, such as DC-Nets, Mix-Nets, and their derivatives) into
selectively traceable anonymous communication protocols. We also present more efficient modifications
to two existing anonymous communication protocols that do not affect the asymptotic efficiency of the
underlying schemes. Our resulting protocols are provably secure against malicious adversaries.
We also study anonymity protocols where participants can prove that they did not send a particular
message, and which therefore allow a form of ad-hoc and uncoordinated tracing. If a protocol has this
undesirable property, we call it exculpable. Exculpability is not usually addressed in the anonymous
communication literature, but because some anonymity protocols are exculpable and others are not, we
believe it is important to do so. We discuss the notion of exculpability in anonymous communication,
and show, in particular, how the state-of-the-art proposals in DC-Net-based protocols allow exculpation.
We also show that our generic transformations do not alter the exculpability (or non-exculpability) of
the underlying protocols.

1 Introduction

Protocols for anonymous communication have been studied extensively in the literature. (For recent
examples, see [AKP03,DS03,ABH03,KORS04,GJ04,GRPS02,LS02,RR98,SBS02,SGR97].) The goal
of an anonymous communication protocol is to allow parties to send and receive communication
anonymously. Examples of such communication include email, Web browsing, and, more generally,
the sending and receiving of TCP packets. Anonymous communication has several important po-
tential applications that include anonymous email for “whistle-blowing,” anonymous web browsing
to access useful but possibly embarrassing or incriminating information (e.g., “how to deal with
a drug addiction”), and the potential to ensure individual privacy in electronic transactions. At
the same time, there are obvious ways in which anonymity protocols could be used for antisocial
or criminal purposes, such as slander, threats, and illegal pornography. In some cases, especially
when the anonymity guarantees provided by a system are very strong, the negative consequences of
allowing users to communicate anonymously outweigh the benefits, thus creating a major stumbling
block for the wide-spread adoption of anonymizing systems.

Systems for anonymous communication have generally tried to provide the strongest possible
guarantees while providing some reasonable level of efficiency and ease-of-use, but, surprisingly,
have not formally addressed “revoking” the anonymity of a message. In this paper we argue that it
would be useful to have anonymity protocols that allow the tracing of a message’s sender whenever
a set of fair and sensible conditions is met. To this effect, we define selectively traceable anonymous
communication.

Another reason for looking closely at tracing in anonymity protocols is that some existing
anonymity protocols already allow a certain form of ad hoc tracing by allowing participants to prove
that they did not send some particular message. If a protocol has this property, we call it exculpable,
because participants can prove that they are “not to blame” for a particular message. Exculpability
is related to tracing in that a protocol that is exculpable allows a certain form of gradual and
uncoordinated tracing: every participant except the sender can show that they did not send the
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message. We claim that tracing based on exculpability is undesirable because it can be unfair
and inadvertent. While similar to the notions of coercibility in election protocols [A04,BT94,JJ02],
deniability in encryption [CDNO97], and adaptive security in multiparty computation [CFGN96],
exculpability is not usually addressed in the anonymous communication literature, but because
some anonymity protocols are exculpable and others are not, we believe it is important to do so.

We present two definitions of traceable anonymity. In one, which we refer to as weak traceable
anonymity, a message should be traced whenever the revocation policy is satisfied, and in the other,
strong traceable anonymity, nothing about the sender of a message should be learned unless the
tracing policy is satisfied. To clarify the distinction between these definitions, we mention that a
weak traceable protocol can be exculpable: the message can be traced when the tracing policy is
satisfied, but something about the identity of the sender can be revealed even if the tracing policy
is not satisfied, by having one of the participants prove they did not send the message. A strong
traceable protocol does not allow exculpation.

We are cognizant of the fact that tracing, like anonymity, may be abused. In particular, we
want to avoid any requirements that tracing information be logged by any single, central authority,
since in many cases the primary reason for having an anonymity protocol is to provide protection
against central authorities. To describe a general framework for traceable schemes, it will therefore
be important to specify who is able to trace. The setting we consider is as follows: there is a finite
set G of users who may be able to send or receive messages anonymously, and there is a finite set
V of voters who are authorized to trace a message. There is also a set V ⊆ 2V , the tracing policy,
such that an act of tracing only occurs when all the members of a tracing set R ∈ V agree to it.
(We assume that V is monotone, so that if R ∈ V and R ⊆ R′, then R′ ∈ V. It therefore suffices to
consider only the minimal sets in V.) We call (G,V,V) a tracing scheme. Some examples of tracing
policies include:

1. The trivial tracing policy, V = ∅, in which tracing is not allowed.
2. Given V and an integer 1 ≤ t ≤ |V |, let V(t) = {R ⊆ V | |R| = t}. V(t) is a threshold tracing

policy, with parameter t. Tracing occurs only when at least t members of V agree that tracing
should occur.

3. Let V be the judges on the Supreme Court of the United States, and let V = V(5). Under this
tracing scheme, a majority of the judges must agree to tracing before it takes place.

4. Let V consist of the FBI and the CIA, and let V = V(1) = {{FBI}, {CIA}}. With this policy,
the FBI or the CIA can trace whenever they please.

We present definitions and several technical results relating to selectively traceable anonymous com-
munication. We remark that selectively traceable anonymous communication can be formulated as
a multiparty computation [GMW87], and that any adaptively secure protocol for general multi-
party computation [CFGN96] would satisfy our definitions. The solution thus obtained, however,
would be extremely inefficient and we do not pursue it. Our technical results include:

– A generic and efficient transformation from any anonymous communication pro-

tocol against honest-but-curious adversaries. We show that a large class of systems for
anonymous communication can be transformed into systems with selectively traceable anonymity
that is secure against honest-but-curious adversaries. The transformation uses group signatures
[CvH91,ACJT00], which allow a member of a group to sign a message so that it can be verified
that someone in the group signed it, but not which particular member of the group did. Group
signatures also allow a designated group manager (which can be implemented distributedly) to
revoke the anonymity of any signature. The idea of our basic transformation is to append a
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group signature to every message sent on an anonymous communication protocol and requiring
the receivers to drop all messages that are not signed. To trace a message, a tracing set revokes
the anonymity of its signer.
It is crucial in this construction that the receivers drop messages that are not signed. If the
receivers are curious and actually do look at unsigned messages, the system can degrade into
a non-traceable anonymous communication protocol: whenever a participant wants to send a
message that cannot be traced, they simply send it without a signature. Since in general receivers
will have an incentive (curiosity) to read unsigned messages before dropping them, we believe
this to be a serious game-theoretic problem of the construction. The tracing functionality of this
construction, therefore, is only secure against honest-but-curious adversaries. (The construction
does not change the anonymity properties of the underlying anonymous protocol.)

– A generic but less efficient transformation that yields security against malicious

adversaries. The above game-theoretic problem can be corrected using generic non-interactive
zero-knowledge proofs, by requiring the sender of a message to prove, in zero knowledge, that
the message to be sent is signed with a group signature. The resulting construction, though
generic and more efficient than general adaptively secure multiparty computation, is somewhat
inefficient due to the inefficiency of generic zero-knowledge proofs. More efficient protocols could
be constructed in this manner by using a specific anonymous communication protocol and a
specific group signature and devising efficient zero-knowledge proofs specific for the resulting
language.

– Two efficient transformations from specific DC-Net-based protocols. We show efficient
transformations from two specific DC-Net-based protocols: [ABH03,GJ04]. The transformations
do not affect the efficiency of the underlying non-traceable protocols and yield security against
malicious adversaries.

– Exculpability results. We discuss the notion of exculpability in anonymous communication,
and show, in particular, how the DC-Net-based protocols in [ABH03,GJ04] allow exculpa-
tion. We also show that our generic transformations do not alter the exculpability (or non-
exculpability) of the underlying protocols.

2 Threshold Cryptography and Group Signatures

We use two main building blocks for the technical results that follow: threshold El Gamal encryption
and group signatures. The first technique generalizes El Gamal encryption so that private keys are
distributed among a number of principals; the second provides a way for a principal to sign a
message anonymously in such a way that the signer’s anonymity can later be revoked by the
“group manager.”

Distributed El Gamal Decryption

We will use a public-key encryption system to encrypt information that identifies the sender of a
message. To do so in a way that respects a particular revocation policy, however, we want decryption
to occur only when all the voters in some revocation set R ∈ V agree to take part. In other words,
we describe a cryptosystem with the following features:

1. There is an “aggregate” public key y that can be used to encrypt messages, as with regular
public-key cryptosystems.

2. Each voter vi has a secret private key xi that can be used to “partially” decrypt a ciphertext C,
and decryption is computationally hard unless all the voters in some revocation group R ∈ V
take part in the decryption.
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To implement such a scheme, we use threshold El Gamal encryption [P91], which we now describe
for completeness.

Let
�

q be a group of prime order q, generated by g (e.g., let p, q be primes such that q|(p− 1),
and let

�
q be the unique order q subgroup of � ∗

p). Let x be an integer between 0 and q − 1. An El
Gamal private key is the pair (g, x) and its corresponding public key is the tuple (

�
q , q, g, y) where

y = gx. (When q,
�

q , and g are clear we refer to x and y as the public and private keys.) To encrypt
a plaintext message M ∈

�
q , a random integer k ∈ � q is selected, and the ciphertext is the pair

C = (a, b), where a = gk and b = Myk. To decrypt a ciphertext C = (a, b), just take M = b/ax. The
encryption process is semantically secure under the Decisional Diffie-Hellman assumption [B98].

El Gamal encryption can be generalized so that the private key is distributed among n different
principals or voters, and all n must agree to participate for each act of decryption. We describe the
case for n = 2; the generalization to n is straightforward. Let voters v1 and v2 generate private keys
x1 and x2, and publish the public keys y1 = gx1 and y2 = gx2 . Let y = y1y2 be the aggregate public
key. To decrypt the El Gamal ciphertext C = (a, b) = (gk,Myk), vi publishes di = yk

i = (ak)xi for
i = 1, 2, and the ciphertext C can be decrypted as b/d1d2 = Myk/yk = M . The “aggregate private
key” is x = x1 + x2, but it is never computed explicitly.

Now suppose that we have n voters v1, . . . , vn and a threshold t, and we want decryption to
occur if and only if there are t voters who take part in the decryption process. As before let vi choose
a private key xi and publish yi = gxi so that an aggregate public key y =

∏
i yi can be computed

by anyone. (The private key x =
∑

i xi cannot be computed explicitly.) Now let vi generate shares
si[1], . . . si[n] of xi according to a linear threshold secret-sharing scheme such as Shamir’s [Sha79],
send si[j] securely to vj , and publish gsi[1], . . . , gsi[n]. After this procedure each voter can compute
Xi =

∑
j sj[i], and the quantity Yi =

∏
j gsj [i] is publicly computable.

If we want to decrypt a ciphertext C = (a, b), suppose that V is a set of voters with |V | ≥ t.
Because the secret-sharing scheme is linear there exists a publicly computable vector wV such that
wV [i] 6= 0 only if vi ∈ V , and

∑
i wV [i] · Xi = x. (For example, in Shamir’s scheme, wV [i] is

computed by Lagrangian interpolation: wV [i] =
∏

vj∈V,j 6=i
vj

vj−vi
) Voters in V vote to decrypt C by

publishing di = aXi . To decrypt they then calculate
∏

i d
wV [i]
i = ax. As before, M = b/ax.

Group Signatures

Group signature schemes [CvH91] provide a way for members of a group to sign messages anony-
mously. That is, they allow a member of a group to digitally sign a document in such a way that it
may be verified that the document was signed by a group member, but not which particular group
member signed it unless a designated group manager “opens” the signature.

Definition 1. (From [ACJT00]): A group signature scheme is a digital signature scheme comprised
of the following five procedures:

– SETUP: On input a security parameter `, this probabilistic algorithm outputs the initial group
public key GPK (including all system parameters) and the secret key S for the group manager.

– JOIN: A protocol between the group manager and a user that results in the user becoming a new
member of the group. The user’s output is a membership certificate and a membership secret.

– SIGN: A probabilistic algorithm that on input a group public key, a membership certificate, a
membership secret, and a message m outputs group signature of m.

– VERIFY: An algorithm for establishing the validity of an alleged group signature of a message
with respect to a group public key.

– OPEN: An algorithm that, given a message, a valid group signature on it, a group public key and
a group manager’s secret key, determines the identity of the signer.
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Group signature schemes must satisfy a variety of properties. Signatures produced using SIGN must
be accepted using VERIFY, for example, and the actual signer of a message should remain anonymous
until the signature is opened by the group manager. For more details, see Ateniese, Camenisch,
Joye, and Tsudik [ACJT00].

More than one recent group signature scheme (including [ACJT00,CS03,CG04,KTY04]) imple-
ments OPEN as an instance of El Gamal decryption. For such schemes it is possible to distribute the
functionality of the group manager so that each instance of OPEN operates according to a thresh-
old scheme. (Similarly, JOIN can typically be implemented using a distributed threshold signature
scheme [Sho00,KY02].)

3 Generic Transformations

In this section we present a way to convert a generic anonymous communication protocol to a new
protocol that permits selective anonymity revocation. We assume that there is an independent set
V of voters and a threshold revocation policy V ⊆ 2V . (We remark that any monotone revocation
policy may be implemented using our method, though in the worst case the length of the shares
may be exponential in the size of the voting set. Here we focus only on the threshold case.)

We do not assume anything about the voters except that they can be trusted with a secret
share of the El Gamal private key that will be used for decryption. The voters may be principals
in the original anonymous communication scheme, but this isn’t a necessary requirement.

Let M be the set of possible anonymous messages, which are generated by one party to be
processed for anonymous delivery to another party, and let PM be the set of protocol messages,
which are exchanged by parties during the execution of the protocol. Our generic transformation
applies to protocols that include a finite number of parties {P1, . . . , Pn} and include the primitive
operations SEND, PROCESS, and RECOVER, which we now describe (the operations use a set of public
parameters selected by an initial setup stage):

– SEND: a procedure executed by Pi that takes as input an anonymous message m ∈M, a recipient
Pj , and a set Si of secret parameters, and outputs a vector c (or multiple vectors) of protocol
messages ci,1, . . . , ci,n ∈ PM to be sent to P1, . . . , Pn.

– PROCESS: a procedure executed by Pj that takes as input a vector of protocol messages c1,j, . . . , cn,j

received from P1, . . . , Pn, as well as secret parameters Sj, and outputs a new vector c
′ of pro-

tocol messages c′j,1, . . . , c′j,n ∈ PM to be sent to P1, . . . , Pn. (We remark that there may be
several rounds of PROCESS operations during a single execution of the protocol.)

– RECOVER: a procedure executed by Pj that takes as input a vector c (or multiple vectors) of
protocol messages c1,j , . . . , cn,j received from P1, . . . , Pn, as well as secret parameters Sj, and
outputs a message m ∈M to be sent to a party Pk.

All well-known anonymity protocols in the security literature implement variants of these protocols.
With mixes and onion-routing protocols, for example, a PROCESS step takes a protocol message from
a single party and forwards it along to another party, possibly after performing some operation on
the message such as encryption and/or decryption.

For our generic transformations we also assume that some appropriate set of parties (such as
the voters, the group members, or a trusted certification authority) implement a “group manager,”
in a distributed fashion, executing the JOIN protocol of the group signature scheme to allow new
members to send and receive messages anonymously in the system.
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Transformation 1: The first transformation we propose affects the SEND and RECOVER steps of
a given protocol. In the new protocol the sender Pi must sign the message m ∈ M using group
signatures, and the resulting message m′ is the one that must be processed by the SEND operation.
For any party Pj executing a RECOVER operation to recover a message m, Pj must ensure that m
has been signed using a group signature and must discard the message if it has not been signed.

If a receiver Pk presents an anonymous message to the voting group V for revocation, a revo-
cation set R ∈ V may open the signature to reveal the sender of the message.

A significant problem with Transformation 1 is that nothing stops the party Pj executing
RECOVER from reading the recovered message, or sending it on to its intended recipient, simply out
of curiosity or out of a desire to subvert the revocation scheme. In some protocols, such as those
based on DC-Nets, the RECOVER operation is done publicly, so everyone sees the original message,
and may look at it out of curiosity. As soon as unsigned messages are read instead of dropped,
senders have no incentive to sign messages that they may later be blamed for, and the system
degrades into a non-revocable protocol.

Transformation 2: In most anonymity protocols, the PROCESS step involves protocol messages
from which the original anonymous message m cannot be efficiently recovered by the party executing
the step. The message may be encrypted, for example, or split into shares using some secret-sharing
scheme. (One exception to this is the Crowds framework [RR98], where messages may be sent in
plaintext. Protocol participants essentially flip a coin to decide whether to execute a PROCESS or a
RECOVER operation, and they can see the anonymous messages at every step.) The transformation
we outline below may be applied whenever it is impossible or computationally infeasible to recover
m from the PROCESS step.

Our solution to the game-theoretic problem of Transformation 1 is to require that an agent Pj

executing a PROCESS step must check that the protocol messages c1,j , . . . , cn,j are all generated from
underlying anonymous messages that have been signed using the group signature scheme. To do this
without revealing anything about the underlying message, we use noninteractive zero-knowledge
(NIZK) proofs [BDMP91].

Detour: A NIZK Primer

NIZK proofs allow a party to demonstrate noninteractively that some value y is in a language
L for any L ∈ NP . An NIZK proof holds in relation to a randomly chosen common reference
string (CRS), Σ, which can be obtained prior to the proof by a distributed computation. Σ
essentially serves as a series of random challenges that a prover can only answer if he has
a witness for y ∈ L. NIZK proofs also have the property that they can be simulated: if the
prover is allowed to choose the CRS by himself, he can choose it along with some trapdoor
information t such that having t will later allow him to prove, relative to Σ, arbitrary
statements about L. (That is, he can show that y ′ ∈ L for any y′, without a witness.)
These “simulated” proofs are then indistinguishable from actual proofs to any other party.
It follows that an NIZK proof is only secure when the prover is not allowed to choose the
CRS; for our transformation it should be chosen as a distributed computation when the
other public parameters are produced. For a more thorough introduction to NIZK proofs,
see [BDMP91].
As an example, an NIZK proof can be used to prove that y is the result of a polynomial-time
computable function F on some input x known by the party. In this case, an NIZK proof for
some value y serves as proof that the party knows x such that F (x) = y, and furthermore,
it doesn’t reveal anything more about x than is already revealed by y. If F is efficiently

6



computable (say, polynomial time), then generic constructions are available that allow us
to construct NIZK proofs for pairs (x, y) ∈ F . Because NP is closed under disjunction,
NIZK proofs can be given for disjunctive statements, i.e., that a value y ∈ L1 ∪ L2, for
NP languages L1 and L2. NIZK proofs are polynomial in length, but for general languages
of the type above, are long and not entirely practical (because the polynomial functions
characterizing the length have high degree and involve large constants).

Let GPK be the group verification key for a group signature scheme. To use NIZK proofs we
construct the language LΠ(GPK) for the underlying anonymous communication protocol Π as
follows. Let

LS(GPK) = {x : x ∈ SEND((m,σ), . . . ) ∧ VERIFY(GPK,m, σ) = TRUE)} ,

that is, LS(GPK) is the set of legitimate protocol messages generated by SEND on a (group)-
signed anonymous message. LS(GPK) ∈ NP , since (m,σ) serves as a polynomial-length witness
for x ∈ LS(GPK) when σ is a group signature on m.

Let

LP (GPK) = {x : x ∈ PROCESS(c1, . . . , cn, . . . ),
n∧

i=1

(ci ∈ LS(GPK) ∨ ci ∈ LP (GPK))} ,

so that LP (GPK) is the set of legitimate protocol messages generated by PROCESS with inputs that
were “legitimate” protocol messages (i.e., generated by some sequence of SEND executions on signed
anonymous messages and subsequent PROCESS executions). For any polynomial-time protocol there
is a polynomial-length witness for the statement x ∈ LP (GPK) as well: the original signed messages
and the random bits used by all parties in the protocol so far.

Similarly, we define the language

LR(GPK) = {x : x ∈ RECOVER(c1, . . . , cn, . . . ),

n∧

i=1

(ci ∈ LP (GPK))} ,

which is the set of output messages originating from signed input messages and is similarly in NP .
Finally, we define the language

LΠ(GPK) = LS(GPK) ∪ LP (GPK) ∪ LR(GPK) .

The transformed protocol works as follows: the new SEND procedure executes the original SEND
procedure on a pair (m, SIGN(m)) to produce a vector of protocol messages ci, and then produces
an NIZK proof πi that each protocol message ci is in LΠ(GPK). The transformed protocol messages
are then pairs (ci, πi). The new PROCESS procedure on a tuple of protocol messages each of the form
(cj , πj) first checks that all proofs are correct; if for some j the proof is incorrect then (cj , πj) is
replaced by (ε, ε) (ε here just means “the empty message”). Then the original PROCESS procedure is
invoked on (c1, . . . , cn) to produce a vector of original protocol messages (c′1, . . . , c′n), and the proofs
πi are used as witnesses to produce NIZK proofs π ′

i that c′i ∈ LΠ(GPK). The transformed protocol
messages are again the pairs (c′i, π

′
i). Finally, the new RECOVER procedure is similarly transformed, as

follows: the protocol messages are checked for correctness, and if any proof fails the corresponding
original protocol message is left empty; the original RECOVER procedure is executed on the vector
(c1, . . . , cn) to produce output message (m,σ) and a proof is produced that m ∈ LΠ(GPK); finally,
(m,σ) is output along with the proof.

The protocol just described is secure against malicious adversaries and preserves the anonymity
guarantees of the underlying protocol.
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4 More Efficient Transformations

In this section, we will demonstrate simple modifications to allow selective tracing of two DC-
Net-based protocols: k-AMT [ABH03] and a protocol due to Golle and Juels [GJ04] which we
refer to as GJ. Both protocols make slight alterations to the basic DC-Net protocol [Cha88] to
implement a shared channel; these modified protocols are then run in several parallel copies, and
cryptographic mechanisms are employed to prove that each participant broadcasts on at most one
channel, ensuring fair access to the medium. Our approach considers the messages sent on each
channel orthogonally and allows determining who has broadcast on a single channel, so for ease of
exposition we will describe the protocols here only in terms of a single shared channel.

4.1 k-AMT

The k-AMT protocol implements a shared channel as a secure multiparty sum computation, using
Pedersen commitments1 to ensure correctness. The basic protocol has four phases:

1. Commitment Phase:

– Pi splits Xi ∈ � q into n random shares si,1, ..., si,n

– Pi chooses ri,j ← � q

– Pi computes commitments Ci,j = Cri,j
(si,j)

– Pi broadcasts {Ci,j : 1 ≤ j ≤ n}

2. Sharing Phase:

– For each j 6= i,
Pi −→ Pj : (ri,j , si,j).

– Pj checks that Cri,j
(si,j) = Ci,j

3. Broadcast Phase:

– Pi computes the values Ri =
∑

j rj,i mod q and Si =
∑

j sj,i mod q

– Pi broadcasts (Ri, Si)

– All players check that CRi
(Si) =

∏
j Cj,i mod p

4. Result:

Each player computes the result as X =
∑

i Si mod q, computes R =
∑

i Ri mod q and checks
that CR(X) =

∏
i,j Ci,j mod p

As was previously mentioned, k-AMT actually runs several parallel copies of this protocol and
includes procedures for proving that a party has transmitted on at most one parallel channel or
“slot.” Here we will describe how to augment the basic protocol so that it is selectively traceable.
It should be clear that these modifications are orthogonal to the additional procedures defined in
the k-AMT protocol.

The new protocol essentially capitalizes on the relationship between El Gamal encryption and
Pedersen commitments to allow the voters to “decrypt” the commitments generated in Phase 1
(when the tracing policy is satisfied). Here we describe the necessary modifications.

1. Initialization: As a group, choose securely an El Gamal key pair (G, x, y) where y = Gx, such
that the private key x is shared by threshold secret sharing according to the desired revocation
policy, as in Section 2.

1 If p, q are primes such that p = 2q + 1, and g, h ∈ � ∗

p both have order q, a Pedersen commitment to the value
x ∈ � q is generated by randomly choosing r ∈ � q and computing Cr(x) = grhx.
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2. Commitment Phase: In addition to the {Ci,j : j ∈ [M ]} commitments broadcast by party Pi,
we will have Pi broadcast a certificate that can be proven correct for a given set of commitments,
but can only be opened by the owner of the private key of the El Gamal encryption scheme
above.

Assuming that a round of k-AMT is correctly computed, we are guaranteed that Si =
∏

j Ci,j =

gXihRi , where Ri =
∑

j ri,j. Let ai = GRi and bi = g−XiyRi . Together, ai and bi form an El

Gamal encryption of g−Xi with the public key y.

Finally, we compute σi to be an efficient non-interactive proof of knowledge that the discrete
log of ai with respect to base G is the same as the discrete log of Sibi with respect to base hy.
The certificate broadcast in addition to the commitments is just (ai, bi, σi).

To verify a certificate, which all parties will do for all broadcast commitments, simply verify
the proof of knowledge.

Now, to trace a message: identify the slot that it was transmitted on, obtain a number of parties
as required by the revocation policy, and securely compute the decryption M of each party’s
certificate for that slot. For all participants who sent nothing on the channel we have Xi = 0, and
thus M = g−Xi = 1. All other participants send something on the channel, and in particular if only
one participant i sent a message we have X = Xi, and thus M · gX = 1.

To compute σi, we want to show that logG ai = loghy Sibi. In general, to prove that logg y =
logh z when logg h is unknown and hard to compute, it suffices to prove knowledge of logg/h(y/z).
(If there exists a such that y = ga and z = ha, then because gaz = hay we have logg/h(y/z) = a. If

y = ga and z = hb, with a 6= b, then knowledge of logg/h(y/z) can easily be used to compute logg h.)
Therefore, σi is a noninteractive proof of knowledge of logG/hy(ai/Sibi), and can be computed

efficiently using standard techniques.2 Note that this modification doesn’t affect the asymptotic
efficiency of the underlying protocol.

4.2 The GJ DC-Net Protocol

The GJ DC-Net protocol takes advantage of bilinear maps to perform many Diffie-Hellman key
exchanges noninteractively, thus achieving a single-round (noninteractive) DC-net protocol. The
protocol works over groups

�
1 ,

�
2 of prime order q, and with an admissible bilinear map ê :�

1 ×
�

1 →
�

2 . (A map is bilinear if ê(aP, bP ) = ê(P, P )ab.) We denote the group operation in
�

1

using additive notation, and the group operation in
�

2 using multiplicative notation, as is common
when dealing with admissible bilinear maps. (

�
1 is typically an elliptic curve group.) We let P ∈

�
1

be a public parameter and assume all parties know a map H : {0, 1}∗ →
�

1 , which we will model as
a random oracle. As previously mentioned, the GJ protocol is actually comprised of several parallel
executions of a simple shared channel along with some auxiliary information that proves a player has
transmitted on at most one channel; for simplicity, and because our modifications are orthogonal,
we describe only the single channel and omit the auxiliary information. For a description of the full
protocol, see [GJ04].

1. Setup Phase Every player Pi picks private key xi ∈ � q and publishes yi = xiP as his public
key.

2 In the random oracle model, a proof of knowledge of α = logγ β has the form (ζ = γρ, λ = αH(ζ) + ρ), where

ρ ∈R � q and H : � ∗

p → � q is a random oracle; the proof is accepted if γλ = βH(ζ)ζ; interactive versions of this
protocol first appear in [CEGP86].
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2. Pad Construction Let s be some unique identifier of a particular execution of the shared
channel. (For example, a running count appended to the list of users). All players compute the
element Qs ∈

�
1 as Qs = H(s). Then each pair of players (noninteractively) computes a shared

Diffie-Hellman key

ki,j(s) = ê(yj, xiQs) = ê(P,Qs)
xixj = ê(yi, xjQs) = kj,i(s) .

Each player i computes his “pad”

pi(s) =
∏

j

ki,j(s)
δi,j ,

where δi,j = −1 if i < j and 1 otherwise.
3. Transmission In session s, we let the intended message of Pi be the element mi(s) ∈

�
2 , where

mi(s) is the identity element 1 ∈
�

2 if Pi has no message to send. To transmit, each player Pi

publishes value Wi(s) = mi(s)pi(s).
4. Message Extraction The final message is extracted by computing

m(s) =
∏

i

Wi(s) =
∏

i

mi(s)
∏

j

ki,j(s)
δi,j =

∏

i

mi(s) ,

since ki,j(s)
δi,j = kj,i(s)

−δj,i . Thus if exactly one mi(s) 6= 1, then we have m(s) = mi(s).

To support selective tracing, the only modification to the previous procedures is in the setup
phase: after generating key pair (xi, yi) and publishing yi, player Pi will share his private key xi

among the voters in a similar fashion to that described in section 2. Then to trace the message
m(s), the voters will compute the pads pi(s) for each i using their shares. If the published value
Wi(s) = m(s)pi(s), then Pi is the sender.

More formally, we describe the new procedures below:

– Modified Setup Phase. As before Pi picks private key xi and publishes public key yi = xiP .
Pi also generates shares zi,1, . . . , zi,m to be sent to voters v1, . . . , vm using a linear secret sharing
scheme consistent with the tracing policy V. Pi publishes the values Qi,t = zi,tP and sends vt

the share zi,t. All players verify that the published values are consistent (for example, that there
are at least m sufficient sets V ∈ V such that

∑
vt∈V wV [t]Qi,t = yi) and each voter vt verifies

that Qi,t = zi,tP for all i.
– Tracing Procedure. To “vote” to trace message m(s), voter vt publishes the values Zi,t =

zi,tQs for i ∈ [n]. Once a sufficient set V ∈ V have voted to trace, the values ki,j(s) can be
reconstructed by computing

ki,j(s) = ê(yi,
∑

vt∈V

wV [t]Zj,t)

= ê(yi,
∑

vt∈V

wV [t]zj,tQs)

= ê(yi, xjQs)

Once the values ki,j(s) are reconstructed, tracing proceeds as described above: pi(s) is computed
as in the Pad Construction phase, and Wi(s) is compared to pi(s)m(s); if they are equal, Pi

is responsible for the message m(s). Notice that fraudulent voting can be detected in this
protocol: it is easy to verify that the value Zi,t published by vt is consistent by checking that
ê(Qi,t, Qs) = ê(P,Zi,t).
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We note, in passing, that in the full GJ protocol [GJ04] shares of the private keys xi are distributed
amongst the players to allow them to reconstruct the pads of players who do not participate in
any given session. This is done so that players can compute the output of DC-net without full
participation, but it follows that the GJ protocol already provides a threshold tracing scheme, with
the players themselves acting as voters.

5 Exculpability in Anonymous Protocols

Informally, we say that an anonymity protocol is exculpable if every player who did not send a
message can produce a proof that this is the case. More formally, we say that a protocol is ρ-
exculpable if there is a separate “proof protocol” � between a player Pi and a verifier V such that
the difference in the probabilities that V “accepts the proof” when Pi sent the message and Pi

did not send the message is at least ρ. (In other words, ρ measures the confidence of the proof
procedure.) If a protocol is 1-exculpable, only the legitimate sender of a message cannot exculpate
himself (but everybody else can); if a protocol is 0-exculpable the verifier should not believe any
proofs. If ε is negligible, we say that a protocol that is (1− ε)-exculpable is strongly exculpable, and
that a protocol that is at most ε-exculpable is non-exculpable. If a protocol is ρ-exculpable for some
constant ρ, we say that it is plausibly non-exculpable.

In this section we assume that all the players in the protocol Π are plausible senders of any
message m. Assuming that all the players belong to the same “anonymity set” (i.e., the set of players
who could have sent a particular message — see [HO03] for one formalization of this definition)
lets us ignore acts of exculpation that can arise simply because two players belong to different
anonymity sets.

Formally, for an anonymous communications protocol Π we define exculpability as follows:

– A proof procedure � is a pair (P,V) of programs such that V outputs either accept or reject.
(Intuitively, P can be thought of as a program that is run by some player Pi.)

– After the public parameters of Π are chosen, V is allowed to choose a message m as a function
of the parameters. This is the message that, if sent during an execution of the protocol, V will
ask players in Π to prove they have not sent.

– Let viewX(Pj : m) denote the view of party X in the anonymity protocol Π when Pj sends
message m and m is delivered. The view includes X’s inputs (including random tape) and any
protocol messages sent and received during the execution of Π.

– Let A denote an (arbitrary) adversary who cannot compromise the anonymity guarantee of Π.
For any player X, denote by viewA(X : m) the views of all parties corrupted by A as well as
all protocol messages from Π that A observes. Essentially, A will serve as V’s agent in Π: we
allow the verifier access to A’s view of Π to help in deciding whether to accept P’s proof that
Pi didn’t send m. Denote by � i(X : m) the output of V (on input m and viewA(X : m)) when
interacting with P (on input m and viewPi

(X : m)).

– Let Pi and Pj be arbitrary players in Π. We say that Π is ρ-exculpable if there is a proof
procedure � and an adversary A such that

|Pr[ � i(Pj : m) = accept]− Pr[ � i(Pi : m) = accept]| ≥ ρ ,

regardless of Pi’s actions in the second case.

Notice that this definition is in some sense “weak” because the adversary (verifier) is allowed to
choose the message. This makes non-exculpability a stronger definition, however. The exculpability

11



of several protocols from the literature satisfies a stronger definition, in which the message is not
chosen by the adversary; we will demonstrate this below.

Exculpability for group signature schemes can be defined analogously. We remark that the “full
anonymity” requirement of [BMW03] implies that group signatures satisfying their definition are
non-exculpable.

5.1 Exculpability Preservation

Here we show that the general transformations in Section 3 preserve (up to a negligible additive
factor) the exculpability of the underlying (non-traceable) anonymous communications protocol,
given that the selected group signature scheme is non-exculpable. That is, we will show that any
proof system that has an acceptance gap of ρ in the transformed protocol can be converted into a
proof system with acceptance gap at least ρ−µ for the underlying anonymous protocol if the group
signature scheme is at most µ-exculpable. This implies that using a non-exculpable anonymous
protocol will result in a non-exculpable selectively traceable protocol.

The proof will proceed in two steps. First, we will show that simply adding group signatures
to the messages (i.e., Transformation 1 of Section 3) preserves the exculpability properties of the
underlying anonymous communication protocol. Afterwards, we will prove that adding the NIZK
proofs also preserves the exculpability.

Group Signature transformation. Let Π denote an anonymous communication protocol and
let Π∗ denote the protocol that results from applying Transformation 1 to Π. Suppose that Π ∗

is ρ-exculpable and that the group signature scheme GS used in the transformation is at most
µ-exculpable. Then there must be a proof procedure � ∗ = (P∗,V∗) for Π∗ with acceptance gap ρ,
for some adversary A∗ and a pair of players Pi and Pj. We construct a proof procedure � for Π,
which “simulates” the group signature part of Π ∗ so that it can run � ∗:

– On input the public parameters from Π, V plays the role of the group manager in GS to
pick a group public key GPK. V appends GPK to the parameters (producing a set of public
parameters consistent with Π∗) and runs V∗ to choose a message m∗. V computes a signing key
for Pj and computes σ∗ = SIGNj(m

∗). V also chooses the message m = (m∗, σ∗).

– V and P jointly execute the JOIN protocol from GS to produce Pi’s signing key. This is so that
when P runs P∗ he can supply a transcript of the JOIN protocol. (Note however, that if Pi sends
m in Π, this view will be slightly different than if Pi sent m∗ in Π∗, because m is signed by Pj .
We prove, essentially, that the non-exculpability of GS means that this doesn’t matter for the
acceptance probabilities.)

– V appends GPK and σ∗ to his input viewA to form a view view∗
A consistent with Π∗. Similarly,

P appends GPK and his signing key and σ∗ to viewi to form a view view∗
i consistent with Π∗.

– V executes V∗(m∗, view∗
A), and P executes P∗(m∗, view∗

i ).

– P proves in zero-knowledge that his actions are consistent with the extra inputs computed with
V. If this proof fails, or P aborts the protocol, V outputs reject. Otherwise V outputs the
decision of V∗. This ensures that P does not “cheat” by using different inputs to increase the
acceptance probability.

Let us compute the acceptance gap of � . To do so, we will imagine an experiment in which Π ∗

delivers m∗ with a group signature from either Pi or Pj . Denote the event that Pi’s signing key is
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used by Si, and the event that Pj’s key is used by Sj. Then we have that:

ρ ≤ |Pr[ � ∗
i (Pi : m) = accept | Si]− Pr[ � ∗

i (Pj : m) = accept | Sj]|

≤ |Pr[ � ∗
i (Pi : m) = accept | Si]− Pr[ � ∗

i (Pi : m) = accept | Sj]|

+ |Pr[ � ∗
i (Pi : m) = accept | Sj]− Pr[ � ∗

i (Pj : m) = accept | Sj]|

= |Pr[ � ∗
i (Pi : m) = accept | Si]− Pr[ � ∗

i (Pi : m) = accept | Sj]|

+ |Pr[ � i(Pi : m) = accept]− Pr[ � i(Pj : m) = accept]|

≤ µ + |Pr[ � i(Pi : m) = accept]− Pr[ � i(Pj : m) = accept]|

where the second line follows by the triangle inequality, the third follows from the definition of the
proof procedure � — it is running � ∗ exactly in the (imaginary) case that Sj happens — and the
last follows because GS is at most µ-exculpable.3 Thus we have that

|Pr[ � i(Pi : m) = accept]− Pr[ � i(Pj : m) = accept]| ≥ ρ− µ ,

as claimed.

NIZK transformation. Let Π denote an anonymous communication protocol that results from
applying Transformation 1, and let Π∗ denote the result of applying Transformation 2 to Π, that is,
adding the NIZK proofs to the protocol. We will show that if Π ∗ is ρ-exculpable then Π is at least
ρ−ε exculpable, for a negligible function ε. Informally, this is because NIZK proofs are simulatable:
a party who can choose the common reference string used for the proof can, without a witness,
produce simulated proofs that are indistinguishable from accepting proofs. Because both P and V
may need to generate proofs on strings that the other has not seen, they will use a secure two-party
computation protocol [Yao86] to generate the CRS and any simulated proofs so that neither learns
anything about the CRS except the proofs they need to emulate Π ∗.

Formally, let � ∗ = (P∗,V∗) have acceptance gap ρ for Π∗. Then we construct the system � for
Π as follows:

– P and V jointly execute a secure two-party computation to choose a simulated CRS Σ ∗ and
random shares (sP , sV ) of the trapdoor for Σ∗.

– V appends Σ∗ to the public parameters for Π to produce parameters consistent with Π ∗. V
runs V ∗ on these parameters and outputs the message m∗ chosen by V ∗.

– On inputs viewi,m
∗ and viewA,m∗ to P,V respectively, the parties simulate NIZK proofs for

all messages in each of their views:

• For each protocol message m ∈ viewi, P and V run a secure two-party computation in
which P’s input is (m, sP ), and V’s input is sV ; P’s output is a simulated proof that m ∈
LΠ(GPK), and V’s output is ε.

• For each protocol message m ∈ viewA, P and V run a secure two-party computation in which
V’s input is (m, sV ), and P’s input is sP ; V’s output is a simulated proof that m ∈ LΠ(GPK),
and P’s output is ε.

3 Suppose that |Pr[ � ∗

i (Pi : m) = accept | Si] − Pr[ � ∗

i (Pi : m) = accept | Sj ]| > µ. Then � gives a way for Pi

to prove that he did not generate the group signature σ∗ with acceptance gap greater than µ: V and P run Π∗

together, with V playing the roles of other parties, and P sends m∗ using the group signature σ∗. Then they run
� on their views of this execution; the acceptance gap will be preserved.
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At the end of this process, P knows a list πP of proofs and V knows a list πV of proofs. Each party
incorporates these proofs into his view appropriately, producing views view∗

i , view∗
A consistent

with Π∗.
– P and V run P∗(m∗, view∗

i ),V
∗(m∗, view∗

A).
– P proves in (interactive) zero knowledge that his actions in � ∗ are consistent with the additional

information computed previously. If this proof fails, or if at any point P aborts the protocol, V
outputs reject, otherwise V outputs the decision of V ∗.

Since the simulated proofs πP , πV are indistinguishable from proofs produced in Π ∗, it should
be clear that the acceptance probabilities of � in either case are the same as those of � ∗, up to
a negligible additive factor ε, which is the negligible probability that the simulation procedure for
(Σ∗, t) fails. Thus the acceptance gap for � is at least ρ− ε, as claimed.

5.2 Exculpability in k-AMT and GJ DC-Nets

In Section 4 we focused on selective tracing in protocols based on DC-Nets, in part because of the
reliance of those protocols on cryptographic techniques that are amenable to tracing. For similar
reasons, both of those protocols are exculpable. Here we show how participants in those protocols are
able to prove easily that they did not send particular messages that were sent by other participants
during an execution of the protocol.

In k-AMT, player Pi broadcasts commitments Ci,j = Cri,j
(si,j) of the random shares si,1, ..., si,n

broadcast to the other players when Pi sends message Xi. If Pi wants to prove that she did not
send a message, i.e., that Xi = 0, she needs only to open the commitments Ci,j by announcing
the shares si,j and the random values ri,j. (Opening a commitment Ci,j to some value s′i,j 6= si,j

is as computationally hard as computing logg(h), where g and h are the generators used in the
commitment scheme.) Other users can easily check that

∑
j si,j = 0, thus proving that Pi did not

send the message in question.
In a GJ DC-Net, player Pi can prove that he didn’t send a message during session s by publishing

the quantity zi(s) = xiQs. (Note that zi(s) doesn’t reveal anything about Pi’s private key xi.) From
zi(s), Pi’s pad pi(s) can be publicly computed as

pi(s) =
∏

j

ki,j(s)
δi,j =

∏

j

ê(yj , zi(s))
δi,j .

Much the same as with k-AMT, Wi(s) — the value publically declared by Pi — will be the same
as pi(s) if and only if Pi did not send the message.

We have argued that exculpability is an undesirable property for anonymity protocols. However,
these two protocols represent the state-of-the-art for anonymity systems that are cryptographically
secure in the presence of malicious adversaries as well as robust against non-participation and
denial-of-service attacks. (Chaum’s original DC-Net protocol and its variants [Cha88,WP89,Wai89]
were not exculpable because the shared secrets used to compute pads were computed interactively
and participants could plausibly deny having used any particular pad.) Whether there exists a
strong traceable DC-Net-based protocol is an interesting open question.
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6 Conclusion

In this paper we have discussed selective tracing and exculpability as two issues that designers of
anonymity protocols should bear in mind. We have described a general framework for describing
tracing policies that we believe to be general enough to capture most situations where fair and
sensible tracing policies are desired. We have also proposed two generic solutions for adding selective
tracing to anonymity protocols, and have shown how two recent anonymity protocols based on DC-
Nets can be made weakly traceable.

Extending this work to protocols based on mixes is one possible direction for future work. Our
proposed “Transformation 2” (in Section 3) is extremely inefficient in both space and time —
more efficient transformations that apply to specific protocols (or at least to mix-style protocols in
general) are highly desirable. There are also protocols for which our second transformation is not
helpful. The Crowds system [RR98], where messages are sent as plaintext, is one example. Crowds
is also an example of a system that is scalable to very large networks, and all of the implementations
for tracing described here are not scalable to the same degree because they require voters to keep
track of all the users of the anonymity system.

In closing, we want to stress that we are not advocating anonymity tracing as a necessary feature
of anonymity protocols, and we are definitely not advocating tracing policies that make use a single
trusted authority. Our goal is to point out that tracing is already an implicit feature of several
existing protocols (e.g., exculpable protocols) and that tracing should therefore be dealt with more
explicitly — even if the tracing policy V is simply ∅ so that tracing is impossible. We also claim that
anonymity systems may be easier to deploy in some contexts if they include tracing functionality,
and to that end we want to develop systems that provide tracing policies that are less likely to be
abused. Finally, the issue of traceable anonymity presents interesting technical problems that may
help to further the goals of anonymity research. We hope that this will be the case.
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