
FLAC (15-453) Spring 2014 - L. Blum

1

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453 UNDECIDABILITY II:
REDUCTIONS

TUESDAY Feb 18

ATM = { (M,w) | M is a TM that accepts string w }

ATM is undecidable: (constructive proof & subtle)

Assume machine H semi-decides ATM (such exist, why?)

H((M,w)) =
Accept if M accepts w

Rejects or loops otherwise

Construct a new TM DH as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.

DH (M) =

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

DH (M) =

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

DH

DH DH

DH DH

D
H

DH

DHDH

DH DH

DH DH

Note: It must be the case that DH loops on DH

There is no contradiction here!

Thus we effectively constructed an instance which
does not belong to ATM (namely, (DH, DH))
but H fails to tell us that.

That is:

Given any semi-decision machine H for ATM

(and thus a potential decision machine for ATM),

we can effectively construct an instance which
does not belong to ATM (namely, (DH, DH))

but H fails to tell us that.

So H cannot be a decision machine for ATM

FLAC (15-453) Spring 2014 - L. Blum

2

In most cases, we will show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM “<“ L

So, ATM “<“ HaltTM

Is HaltTM “<“ ATM ?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w } (*)

ETM = { M | M is a TM and L(M) = } (*)

REGTM = { M | M is a TM and L(M) is regular} (*)

ALLPDA = { P | P is a PDA and L(P) = Σ* } (*)

EQTM = {(M, N) | M, N are TMs and L(M) = L(N)} (*)

ALL UNDECIDABLE

(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?

ETM = { M | M is a TM and L(M) = }

Theorem: ETM is undecidable

Proof:Assume, for a contradiction, that TM Z
decides ETM .

s If s w, REJECT

If s = w, run M(w)

Algorithm for deciding ATM: On input (M,w):

Mw

1. Create Mw

2. Run Z on Mw

Use Z as a subroutine to decide ATM

So, L (Mw) = M(w) does not accept
L (Mw) M(w) accepts

REGULARTM = { M | M is a TM and L(M) is regular}

Theorem: REGULARTM is undecidable

Proof:Assume, for a contradiction, that TM R
decides REGULARTM

Use R as a subroutine to decide ATM

s

M’w
1. Create M’w

2. Run R on M’w

So, L (M’w) = Σ* M(w) accepts
L (M’w) = {0n1n} M(w) does not accept

If s = 0n1n, accept

Else run M(w)

R

N

Is L(N) regular?

s If s = 0n1n, accept

Else run M(w)

Mw

L(Mw) = Σ* if M(w) accepts

{0n1n } otherwise

L(Mw) is regular M(w) accepts

R

s If s = 0n1n, accept

Else run M(w)

Mw

L(Mw) = Σ* if M(w) accepts

{0n1n } otherwise

L(Mw) is regular M(w) accepts

Mw

Is L(Mw) regular?

Yes M accepts w

FLAC (15-453) Spring 2014 - L. Blum

3

MAPPING REDUCIBILITY

f : Σ* Σ* is a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A m B, if there is a computable function

f : Σ* Σ*, where for every w,

w A f(w) B

f is called a reduction from A to B

Think of f as a “computable coding” from A to B

A Bf

f

A is mapping reducible to B, A m B,

Σ* Σ*

Also, A m B, why?

if there is a computable f : Σ* Σ*
such that w A f(w) B

Theorem: If A m B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

Theorem: If A m B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from A to B

We build a machine N that (semi) decides A as follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

All undecidability proofs from today
can be seen as constructing an f that
reduces ATM to the proper language

(Sometimes you have to consider
the complement of the language.)

All undecidability proofs from today can be
seen as constructing an f that reduces ATM to
the proper language

ATM m HALTTM (So also, ATM m HALTTM):

Map (M, w) (M’, w)
where M’(w) = M(w) if M(w) accepts

loops otherwise

So (M, w) ATM (M’, w) HALTTM

FLAC (15-453) Spring 2014 - L. Blum

4

CLAIM: ATM m ETM

f: (M,w) Mw where Mw (s) = M(w) if s = w

loops otherwise

So, (M, w) ATM Mw ETM

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = }

CONSTRUCT f : Σ* Σ*

So, M(w) accepts L (Mw)

 ATM m ETM

So ETM is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is ETM SEMI-DECIDABLE?

CLAIM: ATM m REGTM

f: (M,w) M’w where M’w (s) = accept if s = 0n1n

M(w) otherwise

So, (M, w) ATM M’w REGTM

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* Σ*

So, L (M’w) = Σ* if M(w) accepts
{0n1n} if not

So REGTM is UNDECIDABLE

Is REG SEMI-DECIDABLE?

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ATM m REGTM

f: (M,w) M”w where M”w (s) = accept if s = 0n1n

and M(w) accepts
Loop otherwise

So, (M, w) ATM M”w REGTM

CONSTRUCT f : Σ* Σ*

So, L (M’’w) = {0n1n} if M(w) accepts
 if not

So, REG NOT SEMI-DECIDABLE

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {(M, N) | M, N are TMs and L(M) = L(N)}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

CLAIM: ETM m EQTM

f: M (M, M) where M (s) = Loops

So, M E TM (M, M) EQTM

ETM = { M | M is a TM and L(M) = }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* Σ*

So EQTM is UNDECIDABLE

Is EQTM SEMI-DECIDABLE? NO, since,

 ATM m ETM m EQTM
What about EQTM?

Map (M,w) to a PDA PM,w that recognizes Σ*
if and only if M does not accept w

CLAIM: ATM m ALLPDA

CONSTRUCT f : Σ* Σ*

 ATM m ALLPDA

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

More subtle construction

PM,w will recognize all (and only those) strings
that are NOT accepting computation histories

for M on w

So, (M, w) ATM PM,w ALLPDA

FLAC (15-453) Spring 2014 - L. Blum

5

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a
sequence of configurations C1,C2,…,Ck, where

1. C1 is the start configuration,
2. Ck is a rejecting configuration,
3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1

2. Ck is an accepting configuration,

1. C1 is the start configuration,

M accepts w if and only if there exists an accepting
computation history that starts with C1=q0w

1. Do not start with C1 or

2. Do not end with an accepting configuration or

3. Where some Ci does not properly yield Ci+1

PM,w will recognize all strings (read as sequences
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

1. Start with C1 and

2. End with an accepting configuration and

3. Where each Ci properly yields Ci+1

PM,w will reject all strings (read as sequences
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

q00000

q1000

xq300

x0q40

x0xq3

x0q2x

xq20x

q2x0x

q2x0x

P recognizes all strings except
accepting computation histories :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly:

For example,

If =uaqibv and (qi,b) = (qj,c,R),

then Ci properly yields Ci+1 Ci+1 = uacqjv

FLAC (15-453) Spring 2014 - L. Blum

6

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly:

For example,

If =uaqibv and (qi,b) = (qj,c,L),

then Ck properly yields Ck+1 Ck+1 = uqjacv

P recognizes all strings except
accepting computation histories :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is even, put Ci
R on stack and see if Ci+1

follows properly.

P recognizes all strings except
accepting computation histories :

q00000

q1000

xq300

x0q40

x0xq3

x0q2x

xq20x

q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #

0 0 0 q1

0

0

0

0

q0

ODD

:

q00000

q1000

xq300

x0q40

x0xq3

x0q2x

xq20x

q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #

q1

0

0

0

EVEN

 x q3 0 0

:

f: (M,w) PM,w where

PM,W (s) = accept iff s is NOT an accepting computation of

M(w)

So, (M, w) ATM PM,w ALLPDA

So, (M, w) ATM PM,w ALLPDA

EXPLAIN THE PROOF TO YOUR NEIGHBOR

CLAIM: ATM m ALLPDA

CONSTRUCT f : Σ* Σ*

 ATM m ALLPDA

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

WWW.FLAC.WS
Read chapter 5.1-5.3 of the book for next time

