FLAC (15-453) Spring 2014 - L. Blum

15-453 UNDECIDABILITY II:

REDUCTIONS
FORMAL LANGUAGES, TUESDAY Feb 18
AUTOMATA AND
COMPUTABILITY

(Bainet i
A ={(M,w) | M is a TM that accepts string w } I?eje_(;tdf I\'a achtl:leptsAM t
ie.i) =Acce
Aqy is undecidable: (constructive proof & subtle) (() pY)

Accept if M rejects M

Assume machine H semi-decides A, (such exist, why? Dy(M)= < (ie.ifH(M , M) = Reject)

Accept if M accepts w loobs if M loobs on M
H((M,w)) = P P

\(i.e. ifH(M, M) loops)

Rejects or loops otherwise

Construct a new TM D, as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.

(Reject if D, accepts Dy .
(i.e. if H(D,, , D,) = Accept) That is:

A {if D reiects D Given any semi-decision machine H for Aqy
_ ccept i reiects
Du(Dy) =< (i.e. ifH(D, , Dy) = R:ject) (and thus a potential decision machine for Ay,),

. we can effectively construct an instance which
loops if D, loops on D, does not belong to Ay, (namely, (D,, D,;))

i.e.ifH(D, ,D,) loops
\ (Dy . Dy) loops) but H fails to tell us that.

So H cannot be a decision machine for Ay,

Note: It must be the case that D, loops on Dy
There is no contradiction here!

Thus we effectively constructed an instance which
does not belong to A, (namely, (Dy, Dy))
but H fails to tell us that.

FLAC (15-453) Spring 2014 - L. Blum

In most cases, we will show that a
language L is undecidable by showing
that if it is decidable, then so is A,

We reduce deciding A, to deciding
the language in question

A-I-M “<“ L

So, Ary “<* Halty,
Is Haltry “<® Ag, ?

A ={(M,w) | M is a TM that accepts string w }
HALTy = { (M,w) | M is a TM that halts on string w } (*
Em={M|[MisaTMand L(M) =2} (*)
REG, ={ M| Mis a TM and L(M) is regular} (*)
EQqy = {(M, N) | M, N are TMs and L(M) = L(N)} (*)

ALL.,,={P|PisaPDAand L(P)=2*} (Y

ALL UNDECIDABLE

(*) Use Reductions to Prove
Which are SEMI-DECIDABLE?

Eqy={M|MisaTMand L(M) =<}
Theorem: Eqy, is undecidable

Proof: Assume, for a contradiction, that TM Z
decides E. Use Z as a subroutine to decide Aqy

Algorithm for deciding Aqy: On input (M,w):
1. Create M,,

MW
S —> If sw, REJECT |,
If s = w, run M(w)

So,L (M,) =3 < M(w) does not accept
L(M,) =93 < M(w)accepts
2.RunZon M,

REGULAR, ={M | Mis a TM and L(M) is regular}
Theorem: REGULAR;y, is undecidable

Proof: Assume, for a contradiction, that TM R
decides REGULAR,

Use R as a subroutine to decide Aqy
1. Create \’,,

M,
S —> If s =0™", accept
Else run M(w)

So,L (M’,)=Z* < M(w)accepts
L (M) = {0""} & M(w) does not accept
2.RunRon M’,,

M,
S —> If s =0"", accept | —,

Else run M(w)

L(M,") =[Z* if M(w) accepts N

01"} otherwise l

L(M,") is regular < M(w) accepts

R1 Is L(N) regular?

|

M,
S —> If s = 0", accept | —,

Else run M(w)

L(M,’) =[Z* if M(w) accepts M.’
w

{on1"} otherwise l

L(M,’) is regular < M(w) accepts

R| s L(M,) regular?

|

Yes < M accepts w

FLAC (15-453) Spring 2014 - L. Blum

MAPPING REDUCIBILITY

f: X* > X* is a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <, B, if there is a computable function

f: X* > Z* where for every w,

weAsflw)eB
fis called a reduction from Ato B

Think of f as a “computable coding” from A to B

A is mapping reducible to B, A<, B,
if there is a computable f: z* —» *
suchthatw e A< f(w) e B

z* Z*

f

—

Also, - A< - B, why?

Theorem: If A<, B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from Ato B

We build a machine N that decides A as follows:
On input w:
1. Compute f(w)
2. Run M on f(w)

Theorem: If A<, B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from A to B

We build a machine N that (semi) decides A as follows:

On input w:
1. Compute f(w)
2. Run M on f(w)

All undecidability proofs from today
can be seen as constructing an f that
reduces Ay, to the proper language

(Sometimes you have to consider
the complement of the language.)

All undecidability proofs from today can be
seen as constructing an f that reduces Aq,, to
the proper language

Ay < HALT 1 (So also, — Apy < HALT)

Map (M, w) —> (M’, w)
where M'(w) = M(w) if M(w) accepts
loops otherwise

So(M,w) € Ay & (M, w) € HALT

FLAC (15-453) Spring 2014 - L. Blum

Ay ={(M,w) | M is a TM that accepts string w }
Em={M|MisaTMand L(M) =&}

CLAIM ATM Sm - ETM ‘ —_ ATM Sm ETM ‘
CONSTRUCTf: * > z*

f: (M,w) > M, where M, (s) =M(w)ifs=w
loops otherwise

So, M(w) accepts < L (M,) # &

‘ Sos(MsW)EATMQ MWE_'ETM ‘

So — E;yis NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is E,, SEMI-DECIDABLE?

Ay ={(M,w) | M is a TM that accepts string w }
REG.y={M|Mis a TM and L(M) is regular}

CLAIM: Ay <, REGyy So REGyy, is UNDECIDABLE
CONSTRUCT f: 2* —» Z*

f: (M,w) > M’,, where M’ (s) =acceptifs=0""
M(w) otherwise

So, L (W’,) =Z* if M(w) accepts
{0mMn} if not

| So,(M,w) € Ay &M, € REGy, |

Is REG SEMI-DECIDABLE?

Ay ={(M,w) | M is a TM that accepts string w }
REGy ={M| M is a TM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM is NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* —» Z*

f: (M,w) > M”, where M”, (s) =acceptifs=0""
and M(w) accepts
Loop otherwise

So, L (M”,) = {0} if M(w) accepts
g if not

| So,(M,w) ¢ Ay o M, € REGy,
So, REG NOT SEMI-DECIDABLE

Ay ={(M,w) | M is a TM that accepts string w }
HALT:y = { (M,w) | M is a TM that halts on string w }
Em={M|MisaTMand L(M) =}
REG;, ={M| Mis a TM and L(M) is regular}
EQ:y ={(M, N) | M, N are TMs and L(M) = L(N)}

ALL.,,={P|PisaPDAandL(P)=3*}
ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

Em={M|MisaTMand L(M) =<}
EQqu = {(M, N) | M, N are TMs and L(M) =L(N)}

CLAIM: Ery <, EQ;y So EQq,, is UNDECIDABLE
CONSTRUCT f: * > Z*

f: M —> (M, M ;) where M 5 (s) =Loops

| So,McEqye (M,My)cEQy |

Is EQqy, SEMI-DECIDABLE? NO, since,

[= Am < Em < EQqy | What about —EQqy?

Ay ={(M,w) | M is a TM that accepts string w }
ALLppp={P|PisaPDAandL(P)=Z*}

CLAIM: Ary <, = ALLpps | = Ary < ALLpp, |

' CONSTRUCT f: z* —» Z*
Idea! More subtle construction

Map (M,w) to a PDA Py, , that recognizes =*
if and only if M does not accept w

‘ So, (M, w) ¢ Apy < Pyw € AlLppa ‘

Puw Will recognize all (and only those) strings
that are NOT accepting computation histories
for M on w

FLAC (15-453) Spring 2014 - L. Blum

COMPUTATION HISTORIES
CONFIGURATIONS An accepting computation history is a

sequence of configurations C,,C,,...,C,, where

1 1 01 0q7001 1 0 1. C, is the start configuration,

2, C, is an accepting configuration,

3. Each C; follows from C;,
q7 An rejecting computation history is a
sequence of configurations C,,C,,...,C,, where
1. C, is the start configuration,
2. C, is arejecting configuration,
11110l1l0]lolol1l1lo0 3. Each C, follows from C; ,

M accepts w if and only if there exists an accepting
computation history that starts with C,=q,w

Pu.w Will recognize all strings (read as sequences Py Will reject all strings (read as sequences
of configurations) that: of configurations) that:
1. Do not start with C, or 1. Start with C, and
2. Do not end with an accepting configuration or 2. End with an accepting configuration and
3. Where some C; does not properly yield C;,, 3. Where each C; properly yields C,,,

5,7 Y € 5:7 Y £
le,a —€ ls,a —€

Non-deterministic checks for 1, 2, and 3. Non-deterministic checks for 1, 2, and 3.

2H
{0¥|n20} 9,0000 P recognizes all strings except
o-o8 Oq,000 accepting computation histories :
e Cx - Oxq,00
.U'D'R . 0—-xR D onq40 #C1# CZR #C3 #C4R #C5 #CGR#----# Ck
DX:S,'; o-o.Rr o-xr || %R [Ix0xq,

. . . Ox0q,x If i is odd, put C; on stack and see if C,,,R
@ q @ i i
O-0R

Oq,x0x For example,

9 Cx0x It =uaby and 5 (q,b) = (q;.R),
then C, properly yields C;,, < C;,; = ua

FLAC (15-453) Spring 2014 - L. Blum

P recognizes all strings except
accepting computation histories :

#C# C,RH#C,#C R#C, #CR#...# C,

If i is odd, put C, on stack and see if C,,R
follows properly:

For example,
If =u@qby and 5 (a,b) = (ay,c.L),
then C, properly yields C,,; < Cy i = v

P recognizes all strings except
accepting computation histories :

#C# C,RH#C,#C R#C, #CR#...# C,

If i is even, put CRon stack and see if C,,,
follows properly.

0000
Ofx Jojofo |

E Ox0xq;

m Ox0q,x
Oxq,0x
Oq,x0x

#q,0000#000q,0#00xq,00§0q,0x CI#COIx0xq,# ... #

A ={(M,w) | M is a TM that accepts string w }
ALLyp,={P|PisaPDAandL(P)=Z*}

CLAIM: Ary <~ AlLpps | = Ay < ALLpos |

CONSTRUCT f: * —» Z*

f: (M,w) - Py, where

Puw (S) = acceptitts is NOT an accepting computation of

M(w)
| So, (M, w) ¢ Apy < Pyw € AlLppa ‘

| So,(M,w) € Ay = Py, € ~ALLpps |
EXPLAIN THE PROOF TO YOUR NEIGHBOR

WWW.FLAC.WS

Read chapter 5.1-5.3 of the book for next time

