
Large-scale Structured Learning

Siddharth Gopal

August 2014

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Yiming Yang (Chair)
Jaime Carbonell
Andrew Moore

Thomas Hofmann (External)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2014 Siddharth Gopal

Contents

1 Introduction 1

1.1 Large-scale Classification with Structures . 1

1.2 Unsupervised Structure Extraction . 3

1.3 Semi-supervised Structure Expansion . 5

1.4 Key contributions of the thesis . 6

2 Bayesian Logistic Models for Hierarchical Classification 8

2.1 Introduction . 8

2.2 Related Work . 9

2.3 Hierarchical Bayesian Logistic Framework . 10

2.4 Variational Inference . 12

2.4.1 Full Variational Inference . 12

2.4.2 Partial MAP Inference . 14

2.4.3 Parallel Inference . 15

2.5 Estimating Data-dependent Priors . 15

2.6 Experimental Settings . 17

2.6.1 Datasets . 17

2.6.2 Description of Baselines . 18

2.6.3 Evaluation Metrics . 19

2.7 Results . 19

2.7.1 Comparison with Flat Baselines . 19

2.7.2 Comparison with Hierarchical Baselines 21

2.7.3 Comparison of Bayesian methods . 22

2.7.4 Effect of Training-set Sizes . 23

2.8 Summary . 23

ii

3 Recursive Regularization for Graphical and Hierarchical Classification 25

3.1 Introduction . 25

3.2 Recursive Regularization Framework . 26

3.3 Large-scale Training of RR Models . 28

3.3.1 RR-SVM . 28

3.3.2 RR-LR . 31

3.3.3 Parallelization . 32

3.4 Experimental Setting . 32

3.4.1 Datasets . 32

3.4.2 Methods for Comparison . 34

3.5 Results . 34

3.5.1 Comparison against Flat Baselines . 36

3.5.2 Comparison against Hierarchical Baselines 36

3.5.3 Comparison against Benchmarks . 36

3.6 Further Experimental Analysis . 38

3.6.1 Efficiency Analysis . 38

3.6.2 Performance across Training-set Sizes and Levels of Hierarchy 40

3.7 Summary . 40

4 Large-scale Multiclass Logistic Regression 42

4.1 Introduction . 42

4.2 Related Work . 43

4.3 Parallel Training by Decoupling Log-Normalization Constant 44

4.3.1 Piecewise Bound . 45

4.3.2 Double Majorization Bound . 46

4.3.3 Log-concavity Bound . 47

4.4 Parallel Training by ADMM . 49

4.5 Experiments . 51

4.6 Summary . 54

5 Clustering on Unit-spheres with von Mises-Fisher Mixtures 55

5.1 Introduction . 55

5.2 Related Work . 56

5.3 Bayesian von Mises-Fisher Mixtures (B-vMFmix) 58

5.3.1 Variational Inference . 59

iii

5.3.2 Collapsed Gibbs Sampling . 64

5.4 Hierarchical Bayesian von Mises-Fisher Mixtures 66

5.5 Temporal Bayesian von Mises-Fisher Mixtures . 67

5.6 Experimental Setting . 68

5.6.1 Datasets . 68

5.6.2 Evaluation Metrics . 69

5.6.3 Description of Baselines . 70

5.6.4 Convergence Criterea and Other Details 70

5.7 Results . 71

5.7.1 Recoverability . 71

5.7.2 Generalizability . 72

5.7.3 Analysis of Tf-Idf Weighting . 76

5.7.4 In-sample vs Out-sample Detection . 77

5.7.5 Sampling vs Bounding Concentration parameters 77

5.8 Summary . 78

6 Transformation-based Clustering with Supervision 79

6.1 Introduction . 79

6.2 Related Work . 80

6.3 The Need for Supervision . 82

6.4 Learning Transformations by CPM . 83

6.4.1 Gaussian Mixtures (TCS-GM) . 84

6.4.2 von Mises-Fisher Mixtures (TCS-VM) . 87

6.5 Learning Transformations by CSC . 87

6.6 Experimental Setting . 89

6.6.1 Description of Baselines . 89

6.6.2 Description of Datasets . 91

6.7 Results . 97

6.7.1 Analysis on Synthetic Dataset . 97

6.7.2 Results on Real-world Data . 97

6.7.3 Performance of von Mises-Fisher Mixtures 99

6.8 Further Experimental Analysis . 99

6.8.1 Effect of Amount of Supervision . 99

6.8.2 Effect on Multiview Clustering . 101

6.8.3 Exploiting Unlabeled Data . 102

iv

6.8.4 Effect of SVD on Clustering . 103

6.9 Summary . 104

7 Future Work 106

7.1 Large-Scale Classification with Structures . 106

7.2 Unsupervised Structure Extraction . 107

7.3 Semi-supervised Structure Expansion . 107
7.3.1 Hierarchical Structures . 107
7.3.2 Learning Transformation by Max-margin Formulation (TCS-MM) 108

Bibliography 110

Appendices 121

A Variational Inference for Hierarchical Bayesian Logistic Regression 122

A.1 Variational Inference for model M2 . 122

A.2 Variational Inference for model M1 . 125

A.3 Variational Inference for model M3 . 126

B Evaluation Metrics 127

B.1 Classification Metrics . 127

B.2 Clustering Recoverability Metrics . 127

C Learning Transformation by CPM 129

C.1 General Mixture Model . 129

C.2 Gamma Mixtures . 130

D Detailed Results of TCS Models 133

D.1 Comparison of TCS models with Baselines . 133

v

Abstract

In this thesis we study large-scale structured learning in the context of supervised, un-
supervised and semi-supervised learning. In the big data era, it is increasingly important to
automatically infer structure from the data or leverage human provided structures in various
learning processes.

In the first part of this thesis, we focus on how to harness external supervision about the
structural dependencies between class-labels to improve classification performance. Specif-
ically we develop models that can exploit hierarchical and graph based dependencies be-
tween class-labels, in a tractable manner. We propose two frameworks in this context (a)
A Hierarchical Bayesian model that can leverage hierarchical dependencies using Bayesian
priors (b) A non-Bayesian Risk minimization framework that can incorporate hierarchical
and graphical dependencies into the regularization structure of the model parameters. For
both frameworks we develop fast inference and training methods that can easily handle
large-scale structures with hundreds of thousands of classes. We also develop parallel itera-
tive training procedures for well-studied conditional models for flat multiclassification (and
other tasks) that enhances the scalability in the presence of large number of outcomes.

In the second part of this thesis, we focus on cases where human-generated structures
for organizing data are not readily available and needs to be generated. Using the von Mises-
Fisher distribution as the building block we propose three increasingly powerful Bayesian
models that can recover flat, hierarchical as well as temporal structures from data on unit-
sphere manifolds. Our experiments on multiple datasets showed that our proposed models
are better alternatives to existing topic models based on multinomial and Gaussian distribu-
tions in their ability to recover ground-truth clusters.

In the third part of the thesis, the semisupervised setting, we focus on how to expand
a set of human-specificied classes (or clusters) in a manner that is consistent with user
expectations. We propose two new frameworks in this regard, a probabilistic framework
and a constrained optimization framework. Both of them rely on learning a transformation
of the instances such that the clusters in the transformed space match user expectations
better than the original space. Our extensive evaluation on several application domains
showed significant improvement in clustering performance over other competing methods.

vi

Introduction 1
The availability of massive amounts of data in digital form has fueled the need to provide a
structured and organized view of the same for effective search, browsing and data mining.
The growing size of various user content on the internet (blogposts, pictures, text, videos),
the increasing collection of digitized books and consumer behaviour for analytics, petabytes
of astronomical observations every day are few examples of steadily growing data. The goal
of the thesis is to develop models and algorithms to assist the user in providing a structured
and easily accessible organization of such large-scale data. The thesis is broadly divided into
three parts corresponding to structured learning in the context of supervised, unsupervised and
semisupervised settings.

1.1 Large-scale Classification with Structures

Structuring the data is one of the first and key steps that is done to make the data usable
for any form of data analysis, exploration or search. For instance, a hierarchical structure (or
a taxonomy) provides a natural and convenient way to organize large amounts of data and
has widespread usage in several domains; the Yahoo! directory taxonomy1 for webpages, the
International patent classification hierarchy for easy browsing/retrieval of patents, the extensive
shopping product hierarchy of Amazon 2 and Google 3, the Medical Subject Heading hierarchy
for indexing millions of research articles in PubMed are excellent examples of human generated
structures to organize data in important applications. Another commonly used structure for

1http://dir.yahoo.com/
2http://www.amazon.com/gp/site-directory
3https://support.google.com/merchants/answer/160081?hl=en

1

1.1. Large-scale Classification with Structures

organizing data is a graph, which enables easy traversal to related data points - the most popular
example is the Wikipedia graph that connects related Wikipedia categories with each other.

Once such large-scale structures have been created, it is naturally desirable to fold in new
incoming data into one or more nodes (classes) in this structure. This challenging problem will
be the focus of the first part of this thesis, where we develop classifiers that can be efficiently
trained to classify incoming data into one or more classes. Unlike typical classification systems,
the hierarchical or the graphical structures associated with the class-labels presents several
interesting challenges:

1. Label depedencies: Structures can provide valuable information while trying to classify in-
coming data. For example, consider the Yahoo! Directory for webpages, based on the
hierarchical structure between the class-labels one can say that a webpage that belongs to
class ‘Disease’ is also likely to be a member of class ‘Health’ but unlikely to be a member
of ‘Music’. One-against-rest classifiers, while most popular due to their simplicity, can-
not model such structural dependencies between the class-labels because classifiers are
trained independently and hence lack the necessary expressive power.

2. Data-sparsity: One of the common problems in large-scale hierarchies is that majority
of the classes in the hierarchy have only a few positive training examples. This highly
skewed distribution of training examples across the classes is a well documented problem
in hierarchical classification literature [Liu et al., 2005], [Yang et al., 2003], [Bennett and
Nguyen, 2009]. For example, 76% of class-labels in the Yahoo! Directory have less than
5 positive instances [Liu et al., 2005] and 63% of class-labels in the English portion of
Wikipedia have less than 10 positive instances. Learning independent models (one per
class-label) with such limited training examples would be suboptimal due to overfitting.
Joint learning would be a better alternative and would enable us to effectively ‘borrow’
the positive training examples from related classes based on the proximity of classes in
the provided hierarchies or graphs.

3. Scability: The sheer sizes of very large hierarchies and graphs present a significant compu-
tational challenge for classification algorithms. For example, the Wikipedia dataset4, one
of the common benchmark datasets, consists of approximately 2.4 million Wikipedia arti-
cles spanning across 325,000 classes (with graphical dependencies) and a vocabulary size
of 1.6 million words. Even for simple one-versus-rest classifiers, this amounts to learning
approximately half a trillion parameters (325,000 x 1.6 million) which is roughly 2 Ter-
abytes of storage. This is computationally challenging even for training simple multiclass

4http://lshtc.iit.demokritos.gr/

2

1.2. Unsupervised Structure Extraction

(K-way) classifiers and ignoring the dependencies among class-labels. Jointly learning the
parameters based on the class-label dependencies is even more challenging.

Addressing these challenges will be the focus of the first part of the thesis in chapters 2, 3 and 4

• In chapter 2 we develop a Bayesian framework for large-scale classification that can ex-
ploit hierarchical dependencies between the classes to improve performance. Our model
is based on multivariate logistic regression and harnesses the parent-child relationships
in the taxonomy by placing a hierarchical prior over the children nodes centered around
the parameters of the parent. We develop fast variational inference algorithms and fur-
ther approximations for large-scale structures which are not only orders of magnitude
faster than their typical sampling (MCMC) couterparts but offer much better classification
performance than other flat and hierarchical methods.

• In chapter 3 we develop the first large-margin framework that can exploit both hierar-
chical and graph based dependencies between class-labels to improve classification. Our
framework relies on directly incorporating the dependencies between the classes into the
regularization structure of model parameters. The simplicity of the model helps us de-
velop fast parallelizable training methods that can easily scale to very large-scale struc-
tures - orders of magnitude larger than what existing hierarchical methods have been
scaled to.

• In chapter 4, in the absence of additional structural information between classes, we
develop a distributed approach to train flat multiclass logistic regression models. Our
parallelization strategy is based on splitting the computation of the normalization constant
across multiple computing units and enables us to scale to very large number of classes.
This is the first work that shows multiclass logistic regression (and in general, conditional
models like maxent) can be scaled to tens of thousands of Multinomial outcomes.

1.2 Unsupervised Structure Extraction

In many domains, such human-generated structures for organizing data collections might not
always be readily available. In such cases it is highly desirable to provide organized views of
the data to help the end users understand the data collection better. For example, consider
the citeseer dataset 5; this dataset consists of 1 million research papers in computer science
spanning over a decade. Let us consider a user who wants to know how the field of computer
science has progressed in the last decade. It would be hard for the user to go through all

5http://csxstatic.ist.psu.edu/about/data

3

1.2. Unsupervised Structure Extraction

research articles to understand the different subfields of computer science and how each of the
subfield evolved over time. It would be much easier if we can generate a browser that brings out
the underlying themes in the research articles. For larger corpora especially, it might be even
more beneficial to generate a hierarchical browser that enables users to zoom in and zoom out
of the different subfields/subsubsfields in computer science, or a temporal browser that shows
the rise and decline of the different subfields over time.

There are a wide variety of methods that already cater to such needs, including some of the
most popular topic models such as Latent Dirichlet Allocation [Blei et al., 2003] , Hierarchical
Topic model [Blei et al., 2004] , Dynamic Topic Models [Blei and Lafferty, 2006a] and their
several other variants [Wang and McCallum, 2006], [Wang et al., 2012], [Blei and Lafferty,
2007]. Such probabilistic models define a generative model by assuming some rigid instance
representation, for e.g. Multinomial Mixtures assumes that each instance is represented as
discrete feature-counts and is drawn from one of many Multinomial distributions.

However, it is questionable whether such representation of data is appropriate for all do-
mains. For example, in text-mining (classification, retrieval, collaborative filtering etc) docu-
ments have typically been represented using a term frequency-Inverse Document frequency Nor-
malized form (Tf-Idf normalization) [Salton and McGill, 1986], where each document is rep-
resented as a point on a unit-sphere using a combination of both within-document frequencies
and inverse corpus frequencies. Tf-Idf normalization has always shown better performance than
feature-counts representation based on several supervised tasks such as classification [Joachims,
2002], retrieval [Robertson, 2004] etc. Similarly, in Image-modeling, unit normalized spatial
pyramid vectors is a common representation [Yang et al., 2009]. Normalization is often an
important step in data analysis because it removes the ‘magnitude’ of the instances from the
picture and places more importance on the directional distribution; in other words, we do not
want unduly long documents or big images to distort our inferences, hence we represent the
instances as relative contributions of individual features.

Despite the practical successes of normalized data representation, they have not been well
studied by Bayesian Graphical models. Since the data lies on a unit-sphere manifolds, popular
clustering assumptions such as Gaussian [O’Hagan et al., 2004] or Multinomial [Blei et al.,
2003, 2004, Blei and Lafferty, 2006a,b] are not appropriate. On one hand we have empirical
success of such normalized representation and on the other hand we have a wide variety of
graphical models that model data using a different representation. Can we bridge the gap
between the two approaches? Can we develop models that combine the strengths of both
by developing new graphical models for the data on unit-sphere manifolds? We address this
challenge in chapter 5 where we develop a suite of models for clustering high-dimensional data
on a unit sphere based on the von Mises-Fisher (vMF) distribution,

4

1.3. Semi-supervised Structure Expansion

• We define a comprehensive fully Bayesian formulation of a mixture of vMF distributions
that enables information sharing among clusters. Our formulation is analagous to a
Bayesian mixture of Gaussian distributions or Multinomial distributions but is especially
suited for normalized instance representation like Tf-Idf. We develop efficient algorithms
for posterior inference based on both variational inference methods as well as collapsed
gibbs sampling techniques. Our experiments on several datasets show significant improve-
ment in performance over other popular clustering models such as K-means, Multinomial
mixtures and Latent Dirichlet Allocation.

• For large-scale corpora, we extend our fully Bayesian mixture of vMF distributions to
generate hierarchically coherent (Hierarchical vMF mixture) or temporally meaningful
(Temporal vMF mixture) clusters in the data. In the former we enable partitioning the
data into increasing levels of specificity as defined by a given input hierarchy while in
the latter we redefine the static mixture to a dynamic one that accommodates changes in
cluster parameters between adjacent time-points. Our models are analagous to existing
models such as hierarchical K-means [Steinbach et al., 2000], hierarchical topic models
[Blei et al., 2004], dynamic topic models [Blei and Lafferty, 2006a] etc, but are specially
suited to model data on unit spheres. This is the first comprehensive work that provides
a thorough treatment of vMF distribution in the context of a wide variety of graphical
models for data analysis.

1.3 Semi-supervised Structure Expansion

Despite the lack of fully specified structures, end users often have some partial information or
preference of topics by which they would like to organize the data. Consider a corpus of news-
stories, let us assume a user is interested in organizing the news-stories by regions. Ofcourse the
user does not have an exhaustive list of all possible regions in the corpus. However, if the user is
willing to identify a few topics in the data for e.g. U.S., India, and China, it is desirable to have
a system that can learn that the user is interested in region-based organization and partition
the rest of the unlabeled data by regions and in the process discover other new topics such as
Iraq, Japan, etc. In other words, we want a system that can generalize the user expectations by
modeling shared properties between the observed and unobserved topics (clusters). As another
example, consider a collection of speech recordings. In this case, it is perfectly reasonable to
organize the recordings either by the content of the recording or by the speaker. An unsuper-
vised clustering algorithm cannot tell which type of partitioning (clustering) is preferable unless
the user’s expectation is effectively communicated to the system. These problems leads to two
challenging questions in the context of clustering:

5

1.4. Key contributions of the thesis

1. How can we inject supervision to steer the clustering process towards user expectations?

2. If only some clusters identified by the user are available as supervision, can the learned
user expectations be effectively transferred from the observed clusters to aid in the dis-
covery of unobserved (new) clusters in data?

The first problem has been partially addressed by some work in constrained clustering, although
not in sufficient depth (see chapter 6). The second problem, to our knowledge, has not been
addressed by any work so far. The second problem is particularly important from a practical
point of view because realistically users can only label a small set of clusters, whereas the data
keeps growing and new clusters are bound to show up. Our solutions to these problem are
presented in chapter 6,

• We present a novel probabilistic framework that exploits supervised information in a dis-
criminative and transferable manner to generate better clustering of unlabeled data. The
supervision is used to learn a transformation of the data by maximizing the conditional
likelihood of the observed cluster labels under the given probabilistic generative clus-
tering process. The estimated transformation function enables us to fold the remaining
unlabeled data into a space where new clusters hopefully match user expectations.

• We develop an analagous non-probabilistic framework where the transformation is esti-
mated using a constrained optimization framework instead. The constraints are formu-
lated such that the transformation maximizes the distance between every pair of clusters
means by a scale proportional to the sum of the spread of the respective pair of clusters.
By learning such a transformation, our hope is that the user expected clusters become
well-separated in the transformed space and can be easily recovered by any clustering
algorithm.

For both frameworks, we performed extensive testing on more than 20 data sets across sev-
eral application domains including text, time-series, speech and images and found substantial
improvement in performance over existing semisupervised clustering methods as well as unsu-
pervised baselines.

1.4 Key contributions of the thesis

To summarize, the contributions of the thesis are as follows,

1. A Hierarchical Bayesian Logistic Regression framework (HBLR) with associated fast vari-
ational inference algorithms for hierarchical classification that significantly improves over
state-of-the-art hierarchical and flat baselines (Chapter 2).

6

1.4. Key contributions of the thesis

2. A large-margin framework that can leverage hierarchical and graph based dependencies
using recursive regularization with fast training procedures based on coordinate descent
and achieves state-of-the-art results on multiple popular benchmark datasets (Chapter 3).

3. A scalable distributed approach to train Multiclass Logistic Regression model based on
upper bounding the log-normalization constant that can scale to tens of thousands of
multinomial outcomes (Chapter 4).

4. The first comprehensive framework for structure discovery using the vMF distribution to
extract flat, hierarchical and temporal structures in unit normalized data that significantly
improves over several popular clustering methods (Chapter 5).

5. Two new frameworks for transformation based clustering methods which can exploit su-
pervision in the form of observed clusters to extract better clusters from unlabeled data
and shows significant and consistent improvement over other supervised and unsuper-
vised baselines (Chapter 6).

Finally, in chapter 7, we present some of the interesting directions for future work along
these lines.

7

Bayesian Logistic Models for
Hierarchical Classification 2

2.1 Introduction

In this chapter, we develop Hierarchical Bayesian Logistic Regression (HBLR) - a Bayesian
framework that can leverage the hierarchical structure between the class-labels for improv-
ing classification performance. The Bayesian framework is a natural fit for this problem as it
can seamlessly capture the idea that the models at the lower levels of the hierarchy are different
forms of specializations of models at ancestor nodes.

We define our model by means of a probabilistic generative process of how the class-labels
and the various parameters in the model are generated. More specifically, we define a hierarchi-
cal Bayesian model where the prior distribution for the parameters at a node in the hierarchy
is a Gaussian centered at the parameters of the parent node. This prior encourages the pa-
rameters of nodes that are close in the hierarchy to be similar thereby enabling propagation
of information across the hierarchical structure and leading to inductive transfer (sharing sta-
tistical strength) among the models corresponding to the different nodes. The strength of the
Gaussian prior, and hence the amount of information sharing between nodes, is controlled by its
covariance parameter, which is also learned from the data. Modelling the covariance structures
gives us the flexibility to incorporate different ways of sharing information in the hierarchy.
For example, consider a hierarchical organization of all animals with two sub-topics mammals
and birds. By placing feature specific variances, the model can learn that the sub-topic pa-
rameters are more similar along common features like ‘eyes’,‘claw’ and less similar in other
sub-topic specific features like ‘feathers’, ‘tail’ etc. As another example, the model can incor-
porate children-specific covariances that allows some sub-topic parameters to be less similar
to their parent and some to be more similar; for e.g. sub-topic whales is quite distinct from
its parent mammals compared to its siblings felines, primates. Formulating such constraints in

8

2.2. Related Work

non-Bayesian large-margin approaches is not as easy and to our knowledge has not done before
in the context of hierarchical classification.

To make our models be applicable on large-scale structures, we present variational inference
methods that are orders of magnitude faster than typical MCMC sampling methods. For high
dimensional problems, we develop even faster partial MAP inference methods and associated
parallelization schemes that can easily scale to hundreds of thousands of class-labels.

2.2 Related Work

There has been more than a decade of work in hierarchical classification. The most popular
in the early stage are the ‘pachinko-machine models’ [Dumais and Chen, 2000], [Yang et al.,
2003] [Liu et al., 2005], [Koller and Sahami, 1997] where the classification task is decomposed
into sub-tasks recursively and each node of the hierarchy has an independently trained classifier.
The hierarchy is only used to partition the training data and not used any further in the training.
The simplicity makes these methods easy to scale, but also makes them limited in effectively
using the hierarchical dependencies.

Several approaches have been proposed for making better use of the hierarchical structure.
In [Bennett and Nguyen, 2009], a cascading strategy is employed to add the output of lower-
level classifiers as additional features for higher-level classifiers. In [DeCoro et al., 2007], a
Bayesian aggregation on the results of the individual binary classifiers was proposed. In [Xue
et al., 2008], a data-driven pruning strategy is proposed for reducing the size of the original
hierarchy. Some improvements over the results of the pachinko-machine models have been
reported; however, these approaches are heuristic by nature.

The more principled methods include the large-margin models by [Tsochantaridis et al.,
2006], [Cai and Hofmann, 2004],[Rousu et al., 2006],[Dekel et al., 2004], [Cesa-Bianchi et al.,
2006] where the discriminant functions take the contributions from all nodes along the path to
the root and the model parameters are jointly learned to minimize a global loss over the hier-
archy. Similar ideas have been explored in [Zhou et al., 2011] where orthogonality conditions
are imposed between the parent and children classifiers and in [McCallum et al., 1998] using
Naive Bayes classifiers with hierarchical shrinkage. Although there are a few works that address
the scalability of these methods with large number of training instances [Gornitz et al., 2011],
[Widmer et al., 2010], there is no work that focuses on scaling with large number of classes.
Infact, empirical improvements of most of these methods over simpler approaches have been
shown only on small datasets with typically with hundreds (or less) of class-labels. The primary
difficulty for most of these methods in scaling is due to the high-degree of inter-dependencies
among model parameters and the parameters for all the classes cannot be held in memory at

9

2.3. Hierarchical Bayesian Logistic Framework

the same time.

Among the Bayesian methods, our approach shares similarity to the correlated Multinomial
logit [Shahbaba and Neal, 2007] (corrMNL) in taking Bayesian prior approach to model the
hierarchical class structure, but improves over it in two significant aspects - scalability and
setting hyperparameters. Firstly, CorrMNL uses slower MCMC sampling for inference, making it
difficult to scale to problems with more than a few hundred features and a few hundred nodes in
the hierarchy. By modelling the problem as a Hierarchical Bayesian Logistic Regression (HBLR),
we are able to vastly improve the scalability by more than 750x (see 2.7.3). Secondly, a difficulty
with the Bayesian approaches, that has been largely side-stepped in [Shahbaba and Neal, 2007],
is that, when expressed in full generality, they leave many hyperparameters open to subjective
input from the user. Typically, these hyper-parameters need to be set carefully as they control
the amount of regularization in the model and traditional techniques such as Empirical Bayes or
cross-validation encounter difficulties in achieving this. For instance, Empirical Bayes requires
the maximization of marginal likelihood which is difficult to compute in hierarchical logistic
models [Do et al., 2007] in general, and cross-validation requires reducing the number of free
parameters for computational reasons, potentially losing the flexibility to capture the desired
phenomena. In contrast, we propose a principled way to set the hyper-parameters directly
from data using an approximation to the observed Fisher Information Matrix. Our proposed
technique can be easily used to set a large number of hyper-parameters without losing model
tractability and flexibility.

2.3 Hierarchical Bayesian Logistic Framework

Define a hierarchy as a set of nodes N = {1, 2...} with the parent relationship π : N → N
where π(n) is the parent of node n ∈ N . Let D = {(xi, ti)}Ni=1 denote the training data where
xi ∈ Rd is an instance, ti ∈ T is a label, where T ⊂ N is the set of leaf nodes in the hierarchy
labeled from 1 to |T |. We assume that each instance is assigned to one of the leaf nodes in the
hierarchy. If there are any instances assigned to an internal node, spawn a leaf-node under it
and re-assign all the instances from the internal node to this new leaf node. Let Cn be the set
of all children of node n.

For each node n ∈ N , we associate a parameter vector wn which has a Gaussian prior. We set
the mean of the prior to the parameter of the parent node, wπ(n). In what follows, we consider
three alternate ways to model the covariance matrix which we call M1, M2 and M3 variants of
HBLR. In the M1 variant all the siblings share the same spherical covariance matrix. Formally,

10

2.3. Hierarchical Bayesian Logistic Framework

the generative model for M1 is

M1 wroot ∼ N (w0,Σ0), αroot ∼ Γ(a0, b0)

wn| wπ(n),Σπ(n) ∼ N (wπ(n),Σπ(n)) ∀n, αn ∼ Γ(an, bn) ∀n /∈ T

t | x,W ∼ Categorical(p1(x), p2(x), .., p|T |(x)) ∀(x, t) ∈ D

pi(x) = exp(w>i x)/Σt′∈T exp(w>t′ x) (2.1)

The parameters of the root node are drawn using user specified parameters w0,Σ0, a0, b0.
Each non-leaf node n /∈ T has its own αn drawn from a Gamma with the shape and inverse-
scale parameters specified by an and bn (gamma distribution was chosen as it is conjugate to the
precision of the Gaussian). Each wn is drawn from the Normal with mean wπ(n) and covariance
matrix Σπ(n) = α−1π(n)I. The class-labels are drawn from a Multinomial whose parameters are a
soft-max transformation of the wns from the leaf nodes. This model leverages the class hierarchy
information by encouraging the parameters of closely related nodes (parents, children and
siblings) to be more similar to each other than those of distant ones in the hierarchy. Moreover,
by using different inverse variance parameters αn for each node, the model has the flexibility to
adapt the degree of similarity between the parameters (i.e. parent and children nodes) on a per
family basis. For instance it can learn that sibling nodes which are higher in the hierarchy (e.g.
mammals and birds) are generally less similar compared to sibling nodes lower in the hierarchy
(e.g. chimps and orangutans).

Although this model is equivalent to the corrMNL proposed in [Shahbaba and Neal, 2007],
the hierarchical logistic regression formulation is different from corrMNL and has a distinct
advantage that the parameters can be decoupled. As we shall see in Section 2.4, this enables
the use of scalable and parallelizable variational inference algorithms which make our approach
750x faster than [Shahbaba and Neal, 2007].

We can further extend M1 by allowing the diagonal elements of the covariance matrix Σπ(n)

to be feature-specific instead of uniform. In our previous example with sub-topics mammals and
birds, we may want wmammals , wbirds to be commonly close to their parent in some dimensions
(e.g., in some common features like ‘eyes’,‘breathe’ and ‘claw’) but not in other dimensions
(e.g., in bird specific features like ‘feathers’ or ‘beak’). We accommodate this by replacing prior
αn using α

(i)
n for every feature (i). This form of setting the prior is referred to as Automatic

Relevance Determination (ARD) and forms the basis of several works such as Sparse Bayesian
Learning [Tipping, 2001], Relevance Vector Machines [Bishop and Tipping, 2003], etc. We
define the M2 variant of the HBLR approach as:

M2 wn| wπ(n),Σπ(n) ∼ N (wπ(n),Σπ(n)) ∀n

α(i)
n ∼ Γ(a(i)n , b

(i)
n) i = 1..d, ∀n /∈ T where Σ−1π(n) = diag(α

(1)
π(n), α

(2)
π(n), . . . , α

(d)
π(n))

11

2.4. Variational Inference

Yet another extension of the M1 model would be to allow each node to have its own covari-
ance matrix for the Gaussian prior over wn, not shared with its siblings. This enables the model
to learn how much the individual children nodes differ from the parent node. For example,
consider topic mammals and its two sub-topics whales and carnivores; the sub-topic whales is
very distinct from a typical mammal and is more of an ‘outlier’ topic. Such mismatches are very
typical in hierarchies; especially in cases where there is not enough training data and an entire
subtree of topics is collapsed as a single node. M3 aims to cope up with such differences.

M3 wn| wπ(n),Σn ∼ N (wπ(n),Σn) ∀n

αn ∼ Γ(an, bn) ∀n /∈ T

Note that the only difference between M3 and M1 is that M3 uses Σn = α−1n I instead of
Σπ(n) in the prior for wn. In our experiments we found that M3 consistently outperformed the
other variants suggesting that such effects are important to model in hierarchies. Although it
would be natural to extend M3 by placing ARD priors instead of the uniform αn, we do not
expect to see better performance due to the difficulty in learning a large number of parameters.
Preliminary experiments confirmed our suspicions so we did not explore this direction further.

2.4 Variational Inference

2.4.1 Full Variational Inference

The primary inference procedure in Bayesian methods is to calculate the posterior distribution
of the parameters - W,α. We briefly outline the procedure for model M2 and leave the exact
details of the inference to Appendix A. For ease of presentation we overload the definition of D

to denote Y|X instead of the dataset. The posterior distribution of parameters in model M2, by
the Bayes theorem, is given by,

p(W,α|D) ∝ p(D|W,α)p(W,α) (2.2)

where

p(D|W,α) =
∏

(x,t)∈D

exp(w>t x)∑
t′∈T

exp(w>t′ x)
(2.3)

p(W,α) =
∏

n∈N\T

d∏
i=1

p(α(i)
n |a(i)n , b(i)n)

∏
n∈N

p(wn|wπ(n),Σπ(n))

=
∏

n∈N\T

d∏
i=1

Γ(α(i)
n |a(i)n , b(i)n)

∏
n∈N
N (wn|wπ(n),Σπ(n)) (2.4)

12

2.4. Variational Inference

The posterior distribution is proportional to the product of a logistic likelihood term (2.3) and
the Gamma and Normal prior over α, W (2.4). However, this convolution has no closed-form
solution, therefore the posterior distribution cannot be computed in closed-form. Therefore we
need to develop numerical techniques that can estimate this posterior.

Variational methods are a set of techniques that address this problem by considering a class
of simple distributions Q and choosing a member of this class that is closest in KL divergence to
the true posterior, that is,

min
q(W,α)∈Q

KL(q(W,α) || P (W,α|D)) (2.5)

Expanding the KL divergence,

KL(q(W,α) || P (W,α|D)) =

∫
q(W,α) log

q(W,α)

P (W,α|D)
dq

=

∫
q(W,α) log q(W,α)−

∫
q(W,α) log

P (W,α,D)

P (D)

= P (D)− (Eq [logP (W,α,D)]− Eq [log q(W,α)])

Note that P (D) does not depend on q, therefore minimizing the KL divergence in (2.5) can be
reformulated as the following equivalent maximization problem,

max
q(W,α)∈Q

Eq [logP (W,α,D)]− Eq [log q(W,α)] (2.6)

The objective in (2.6) is also known as the evidence lower bound (ELBO) since it lower bounds
the likelihood of the data (see [Wainwright and Jordan, 2008] for more details). To make this
optimization tractable, the class of simple distributions Q that we consider are a product of
independent normal and gamma distributions. More specifically,

q(W,α) =
∏

n∈N\T

q(αn)
∏
n∈N

q(wn)

q(wn) ∝ N (.|µn,Ψn)

q(αn) =
d∏
i=1

q(α(i)
n) ∝

d∏
i=1

Γ(.|τ (i)n , υ(i)n)

Here τ, υ, µ,Ψ are the parameters of this posterior that we need to estimate such that the
ELBO is maximized. To perform the maximization, we will use the coordinate ascent technique
where we update each parameter of the posterior to optimize the ELBO keeping the rest of the
parameters fixed. The update rules for the parameters are given by (the exact details of the

13

2.4. Variational Inference

derivation are presented in the appendix A),

Ψ−1n = I(n ∈ T)
∑

(x,t)∈D

2λ(ξxn)xx> + diag(
τπ(n)

υπ(n)
) + |Cn|diag(

τn
υn

) (2.7)

µn = Ψn

I(n ∈ T)
∑

(x,t)∈D

(I(t = n)− 1

2
+ 2λ(ξxn)βx)x+ diag(

τπ(n)

υπ(n)
)µπ(n) + diag(

τn
υn

)
∑
c∈Cn

µc


(2.8)

υ(i)n = b(i)n +
∑
c∈Cn

Ψ(i,i)
n + Ψ(i,i)

c + (µ(i)n − µ(i)c)2 (2.9)

τ (i)n = a(i)n +
|Cn|

2
(2.10)

2.4.2 Partial MAP Inference

In cases where the number of dimensions is more than a few thousands, the requirement for a
matrix inversion of Ψn in step (2.7) to (2.8) could be demanding. In such scenarios, we split
the inference into two stages, first calculating the posterior of wn (for the leaf nodes) using
MAP solution, and second calculating the posterior of αn. In the first stage, we find the MAP
estimate wmapn (for n ∈ T or n ∈ N) and then use laplace approximation to approximate the
posterior using a separate Normal distribution for each dimension, thereby leading to a diagonal
covariance matrix. Note that due to the laplace approximation, wmapn and the posterior mean
µn coincide.

wmap = arg max
W

∑
n∈T
−1

2
(wn − wπ(n))> diag

(
τπ(n)

υπ(n)

)
(wn − wπ(n)) + log p(D|W,α) (2.11)

(Ψ(i,i)
n)−1 =

∑
(x,t)∈D

x(i)pxn(1− pxn)x(i) + diag

(
τπ(n)

υπ(n)

)
(2.12)

where pxn is the probability that training instance x is labeled as n (using the soft max
probability given in (2.3)). The arg max in (2.11) can be computed for all wn at the same
time using optimization techniques like LBFGS [Liu and Nocedal, 1989]. For the second stage,
parameters τn and υn are updated using (2.9), (2.10). Full MAP inference is also possible by
performing an alternating maximization between wn, αn but we do not recommend it as there
is no gain in scalability compared to partial MAP Inference and it loses the posterior distribution
of αn.

14

2.5. Estimating Data-dependent Priors

2.4.3 Parallel Inference

For large hierarchies, it might be impractical to learn the parameters of all classes, or even
store them in memory on a single machine. We therefore, devise a parallel memory-efficient
implementation scheme for our partial MAP Inference. There are 4 sets of parameters that
are updated - {µn,Ψn, τn, νn}. The Ψn, τn, νn can be updated in parallel for each node us-
ing (2.12), (2.9), (2.10).

For µ, the optimization step in (2.11) is not easy to parallelize since the w’s are coupled
together inside the soft-max function. To make it parallelizable we replace the soft-max function
in (2.1) with multiple binary logistic functions (one for each terminal node), which removes
the coupling of parameters inside the log-normalization constant. The optimization can now
be done in parallel by making the following observations - firstly note that the optimization
problem in (2.11) is concave maximation, therefore any order of updating the variables reaches
the same unique maximum. Secondly, note that the interactions between the wn’s are only
through the parent and child nodes. By fixing the parameters of the parent and children, the
parameter wn of a node can be optimized independently of the rest of the hierarchy. One simple
way to parallelize is to traverse the hierarchy level by level, optimize the parameters at each
level in parallel and iterate until convergence. A better way that achieves a larger degree of
parallelization is to iteratively optimize the odd and even levels - if we fix the parameters at the
odd levels, the parameters of parents and the children of all nodes at even levels are fixed and
the wn’s at all even levels can be optimized in parallel. The same goes for optimizing the odd
level parameters. To aid convergence we interleave the µ,Ψ updates with the τ, ν updates and
warm-start with the previous value of µn. In practice, for the larger hierarchies we observed
speedups linear in the number of processors. Note that the convergence follows from viewing
this procedure as block coordinate ascent on a concave differentiable function [Luo and Tseng,
1992].

2.5 Estimating Data-dependent Priors

The w0,Σ0 represent the overall mean and covariance structure for the wn. We set w0 = 0 and
Σ0 = I because of their minimal effect on the rest of the parameters. The a(i)n , b

(i)
n are variance

components such that b
(i)
n

a
(i)
n

represents the expected variance of the w(i)
n . Typically, choosing these

parameters is difficult before seeing the data. The traditional way to overcome this is to learn
{an, bn} from the data using Empirical Bayes. Unfortunately, in our proposed model, one cannot
do this as each {an, bn} is associated with a single αn. Generally, we need more than one sample
value to learn the prior parameters effectively [Casella].

15

2.5. Estimating Data-dependent Priors

We therefore resort to a data dependent way of setting these parameters by using an ap-
proximation to the observed Fisher Information matrix. We first derive on a simpler model and
then extend it to a hierarchy. Consider the following binary logistic model with unknown w and
let the Fisher Information matrix be I and observed Fisher Information Î. Given some training
instances Dbinary

Y | x ∼ Bernoulli
(

exp(w>x)

1 + exp(w>x)

)
I = E

[
p(x)(1− p(x))xx>

]
Î =

∑
(x,t)∈Dbinary

p̂(x)(1− p̂(x))xx> (2.13)

It is well known that I−1 is the asymptotic covariance of the MLE estimator of w, so a
reasonable guess for the covariance of a Gaussian prior over w could be the observed Î−1 from
a dataset Dbinary. The problem with Î−1 is that we do not have a good estimate p̂(x) for a given
x as we have exactly one sample for a given x i.e each instance x is labeled exactly once with
certainty, therefore p̂(x)(1 − p̂(x)) will always be zero. Therefore we approximate p̂(x) as the
sample prior probability independent of x, i.e. p̂(x) = p̂ = Σ(x,t)∈D

t
|D| . Now, the prior on the

covariance of w can be set such that the expected covariance is Î−1.

To extend this to hierarchies, we need to handle multiple classes, which can be done by esti-
mating Î(n)−1 for each n ∈ T , as well handle multiple levels, which can be done by recursively
setting an, bn as follows,

(a(i)n , b
(i)
n) =

 (
∑
c∈Cn

a
(i)
c ,

∑
c∈Cn

b
(i)
c) if n /∈ T

(1, Î(n)−1(i,i)) if n ∈ T

where Î(n) is the observed Fisher Information matrix for class label n. This way of setting the
priors is similar to the method proposed in [Kass and Natarajan, 2006], the key differences
are in approximating p(x)(1 − p(x)) from the data rather using p(x) = 1

2 , extension to handle
multiple classes as well as hierarchies.

We also tried other popular strategies such as setting improper gamma priors Γ(ε, ε) ε → 0

widely used in many ARD works (which is equivalent to using type-2 ML for the α’s if one uses
variational methods [Bishop et al., 2006]) and Empirical Bayes using a single a and b (as well
as other Empirical Bayes variants). Neither of worked well, the former being to be too sensitive
to the value of ε which is in agreement with the observations made by [Gelman, 2006] and the
latter constraining the model by using a single a and b.

16

2.6. Experimental Settings

Table 2.1: Dataset Statistics

Dataset #Training #Testing #Class-Labels #Leaf-labels Depth #Features

CLEF 10,000 1,006 87 63 4 89
NEWS20 11260 7505 27 20 3 53975
IPC 46,324 28,926 552 451 4 541,869
LSHTC-small 4,463 1,858 1,563 1,139 6 51,033
DMOZ-2010 128,710 34,880 15,358 12,294 6 381,580

2.6 Experimental Settings

2.6.1 Datasets

We used the following four datasets for evaluating the performance of our proposed HBLR
models,

1. CLEF [Dimitrovski et al., 2011] A hierarchical collection of medical X-ray images with im-
age descriptor features. The dataset was normalized to have zero mean and unit variance
to improve convergence.

2. NEWS20 1 A collection of newsgroup posts by users across 20 newsgroup categories.

3. IPC [WIPO] A collection of patents organized according to the International Patent Clas-
sification Hierarchy. We considered prediction at the subclass level of the hierarchy.

4. LSHTC-small, DMOZ-2010 The small and the larger web-page collections released as a
part of the LSHTC (Large-Scale Hierarchical Text Classification) evaluation 2010 2. It is
essentially a subset of the web pages from the Open Directory Project 3.

For all the text datasets, we did the standard preprocessing steps of removing stop words,
stemming followed by Tf-Idf (ltc) term weighting [Manning et al., 2008]. Note that all the
instances in the dataset have exactly one ground-truth class-label which belongs to one of the
leaf-nodes of the hierarchy.

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://lshtc.iit.demokritos.gr/node/3
3http://dmoz.org

17

2.6. Experimental Settings

2.6.2 Description of Baselines

We compared our HBLR models against the following state-of-the-art hierarchical and non-
hierarchical models,

1. Flat Baselines: These baselines do not make use of the hierarchy to estimate the param-
eters of the classifiers,

• One-versus-rest methods: We compared against the most popular Binary Support Vec-
tor Machines (BSVM) and Binary Logistic Regression (BLR). The classifiers are learnt
independently for each class.

• Multiclass classifiers: We used the multiclass versions of support vector machines
(MSVM) and logistic regression (MLR). The classifiers are learnt such that the pre-
diction score of the ground-truth class-label is higher than every other incorrect class-
label.

2. Hierarchical Baselines: These baselines use the hierarchical information to encode de-
pendencies into the model parameters.

• Hierarchical SVM (HSVM) [Tsochantaridis et al., 2006] This method is one of the
most popular large-margin discriminative method for structured output prediction.
We use the specific instatiation of this framework developed for hierarchical clas-
sification. The model defines a hierarchical path dependent discriminant function
that minimizes a global hierarchical loss. More specifically, the parameters of the
model are estimated by maximizing the margin between every pair of correct and
incorrect labels with a penalty proportional to the hierarchical distance between the
labels. The resulting optimization problem is solved by using a constraint generation
framework that repeatedly adds the most violated constraint to the working set.

• Hierarchical Orthogonal Transfer (OT) [Zhou et al., 2011]: OT is large-margin
method that encourages the classifiers at each node of the hierarchy to be different
from the classifiers at its ancestors. Specifically, the regularization term is modified
to enforce orthogonality between the parameters of parent and the children. The
resulting optimization problem is solved using regularized dual averaging method.

• Top-down SVM (TD) [Liu et al., 2005], [Dumais and Chen, 2000], [Koller and Sa-
hami, 1997] We employed the simplest variant of pachinko machine style top-down
method using support vector machine classifier. This is a popular baseline in several
previous works.

3. Bayesian Baseline:

18

2.7. Results

• Correlated Multinomial Logit (CorrMNL) [Shahbaba and Neal, 2007]: 4: This
method uses a Bayesian form of the multinomial logit model with a prior that in-
troduces correlations between the parameters for classes that are nearby in the hier-
archy. However, the model suffers from two important limitations; Firstly, sensitive
hyperparameters of the model need to be tweaked and manually set by the user. This
is hard, especially if the user has no prior information. Secondly, the inference is per-
formed using MCMC sampling and therefore cannot scale to large number of classes.
Due to this limitation, we report the results of this method only on the smallest CLEF
dataset.

For all the non-Bayesian methods, we tune the regularization parameter using 5 fold cross-
validation with a range of values from 10−5 to 105. For the HBLR models, denoted as {M1,M2,M3}-
map, we used partial MAP Inference for all the datasets (except CLEF) because full variational
inference is not scalable to high dimensions. The IPC and DMOZ-2010 are very large datasets
so we are unable to test any method other than our parallel implementation of HBLR, and TD,
BLR, BSVM which can be trivially parallelized.

2.6.3 Evaluation Metrics

For all the datasets, we used the standard Micro-F1 and Macro-F1 evaluation metric (see Ap-
pendix B for definitions).

2.7 Results

We present and discuss a partial set of results that establish the better performance of our
proposed HBLR models against several hierarachical and flat baselines. Section 3.5 contains
several additional results on benchmark datasets as well as extension of HBLR to multilabel
datasets.

2.7.1 Comparison with Flat Baselines

Table 2.2 reports the results of our proposed models against the flat baselines - BSVM, MSVM,
BLR and MLR. The results show that on all the datasets except NEWS20 and the Micro-F1 on
DMOZ-2010, our proposed models perform better than the flat baselines.

To validate the results further, we conducted significance tests using sign-test for Micro-F1

and a wilcoxon rank test on the Macro-F1 scores. For every data collection, each method is

4http://www.ics.uci.edu/ babaks/Site/Codes.html

19

2.7. Results

Table 2.2: Comparison against flat baselines: Macro-F1 and Micro-F1 on 5 datasets. Bold
faced number indicates best performing method. NS denotes method is not scalable to the
dataset. The significance-test results between the best performing best on each dataset against
the rest of the methods are denoted by a ∗ for a p-value less than 5% and † for p-value less than
1%.

Flat Methods HBLR models
BSVM BLR MSVM MLR M1-map M2-map M3-map

CLEF
Macro-F1 48.59† 53.26† 54.33† 54.76† 55.53† 54.76† 59.65
Micro-F1 77.53† 79.92† 80.02† 80.52† 80.88∗ 80.25∗ 81.41
NEWS20
Macro-F1 82.32 82.17 81.73 81.82 81.54 80.91∗ 81.69
Micro-F1 83.10 82.97 82.47∗ 82.56∗ 82.24∗ 81.54∗ 82.56∗

IPC
Macro-F1 45.71† 48.29† NS NS 50.43† 47.45† 51.06
Micro-F1 53.12† 55.03† 55.80∗ 54.22† 56.02
LSHTC-small
Macro-F1 28.62∗ 28.12† 28.34∗ 28.38∗ 28.81∗ 25.81† 30.81
Micro-F1 45.21∗ 44.94† 45.62 45.20 45.48 43.31† 46.03
DMOZ-2010
Macro-F1 32.64 31.58 NS NS 30.29 29.45 31.88
Micro-F1 45.36 45.40 45.10 42.04 45.64

compared to the best performing method on that dataset. The null hypothesis is that there is
no significant difference between the two systems being compared, the alternative is that the
best performing method is better. The results of the significance test show that on most datasets
the results are statistically significant. Note that we are unable to conduct significance tests on
DMOZ-2010 since we did not have access to class-wise performance scores and true-test labels -
our reported evaluation measures on these datasets are from the output of an online evaluation
system which does not reveal classwise performance measures nor true test labels.

Among the models M1,M2 and M3, the performance of M3 seems to be consistently better
than M1, followed by M2. Although M2 is more expressive than M1, the benefit of a better
model seems to be offset by the difficulty in learning a large number of parameters.

20

2.7. Results

Table 2.3: Comparison against hierarchical baselines: Macro-F1 and Micro-F1 on 5 datasets.
Bold faced number indicates best performing method. NS denotes method is not scalable to
the dataset. The significance-test results between the best performing method on each dataset
against the rest of the methods are denoted by a ∗ for a p-value less than 5% and † for p-value
less than 1%.

Hierarchical Methods HBLR models
HSVM OT TD M1-map M2-map M3-map

CLEF
Macro-F1 57.23∗ 37.12† 32.32† 55.53† 54.76† 59.65
Micro-F1 79.92† 73.84† 70.11† 80.88∗ 80.25∗ 81.41
NEWS20
Macro-F1 80.04† 81.20 81.86 81.54 80.91 81.69
Micro-F1 80.79∗ 81.98∗ 81.20† 82.24 81.54 82.56
IPC
Macro-F1 NS NS 42.62† 50.43† 47.45† 51.06
Micro-F1 NS NS 55.34† 55.80∗ 54.22† 56.02
LSHTC-small
Macro-F1 21.95† 19.45† 20.01† 28.81∗ 25.81† 30.81
Micro-F1 39.66† 37.12† 38.48† 45.48 43.31† 46.03
DMOZ-2010
Macro-F1 NS NS 22.30† 30.29L 29.45 31.88
Micro-F1 NS NS 38.46† 45.10 42.04 45.64

2.7.2 Comparison with Hierarchical Baselines

Comparing to the other hierarchical baselines (Table 2.3), M3 achieves significantly higher per-
formance on all datasets, showing that the Bayesian approach is able to leverage the information
provided in the class hierarchy. Among the baselines, we find that the average performance of
HSVM is higher than the TD, OT. This can be partially explained by noting that both OT and TD
are greedy top-down classification methods and any error made in the top level classifications
propagates down to the leaf node; in contrast to HSVM which uses an exhaustive search over
all labels. However, the result of OT do not seem to support the conclusions in [Zhou et al.,
2011]. We hypothesize two reasons - firstly, the orthogonality condition which is assumed in
OT does not hold in general, secondly, unlike [Zhou et al., 2011] we use cross-validation to set
the underlying regularization parameters rather than setting them arbitrarily to 1 (which was
used in [Zhou et al., 2011]).

Surprisingly, the hierarchical baselines (HSVM,TD and OT) experience a very large drop in

21

2.7. Results

Table 2.4: Comparison with CorrMNL: Macro-F1 and Micro-F1 of the HBLR models and
CorrMNL the CLEF dataset

{M1,M2,M3}-var {M1,M2,M3}-map {M1,M2,M3}-flat
CorrMNL M1 M2 M3 M1 M2 M3 M1 M2 M3

Macro-f1 55.59 56.67 51.23 59.67 55.53 54.76 59.65 52.13 48.78 55.23
Micro-f1 81.10 81.21 79.92 81.61 80.88 80.25 81.41 79.82 77.83 80.52
Time (mins) 2279 79 81 80 3 3 3 3 3 3

performance on LSHTC-small when compared to the flat baselines, indicating that the hierarchy
information actually mislead these methods rather than helping them. In contrast, M3 is consis-
tently better than the flat baselines on all datasets except NEWS20. In particular, M3 performs
significantly better on the largest datasets, especially in Macro-F1, showing that even very large
class hierarchies can convey very useful information, highlighting the importance of having a
scalable, parallelizable hierarchical classification algorithm.

2.7.3 Comparison of Bayesian methods

First, to evaluate the speed advantage of the variational inference, we compare the full varia-
tional {M1,M2,M3}-var and partial MAP {M1,M2,M3-map} inference 5 for the three variants
of HBLR to the MCMC sampling based inference of CorrMNL [Shahbaba and Neal, 2007]. For
CorrMNL, we used the implementation as provided by the authors6. We performed sampling
for 2500 iterations with 1000 for burn-in. Re-starts with different initialization values gave the
same results for both MCMC and variational methods. All models were run on a single CPU
without parallelization. We used the small CLEF [Dimitrovski et al., 2011] dataset in order
to be able to run CorrMNL model in reasonable time. The results are presented in Table 2.4.
For an informative comparison, we also included the results of {M1,M2,M3}-flat, our proposed
approach using a flat hierarchy (i.e. no hierarchical information).

With regards to scalability, partial MAP inference is the most scalable method being orders
of magnitude faster (750x) than CorrMNL. Full variational inference, although less scalable as
it requires O(d3) matrix inversions in the feature space, is still orders of magnitude faster (20x)
than CorrMNL. In terms of performance, we see that the partial MAP inference for the HBLR has
only small loss in performance compared to the full variational inference while having similar
training time to the flat approach that does not model the hierarchy ({M1,M2,M3}-flat).

5Code available at http://gcdart.blogspot.com/
6http://www.ics.uci.edu/~babaks/Site/Codes.html

22

2.8. Summary

1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
BLR MLR BSVM MSVM M3-map

Training Examples per Class

M
ic

ro
-F

1

1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
BLR MLR BSVM MSVM M3-map

Training Examples per Class

M
ic

ro
-F

1

Figure 2.1: Micro-F1 (left) & Macro-F1 (right) on the CLEF dataset with limited number of training
instances.

2.7.4 Effect of Training-set Sizes

To further establish the importance of modeling the hierarchy, we test our approach under
scenarios when the number of training instances is limited. We expect the hierarchy to be most
useful in such cases as it enables of sharing of information between class parameters. To verify
this, we progressively increased the number of training instances per class-label on the CLEF
dataset and compared M3-map with the other best performing methods. Figure 2.1 reports the
results of M3-map, MLR, BSVM, MSVM averaged over 20 runs. The results shows that M3-
map is significantly better than the other methods especially when the number of instances is
small. For instance, when there is exactly one training example per class, M3-map achieves
a whopping 10% higher Micro-F1 and a 2% higher Macro-F1 than the next best method. We
repeated the same experiments on the NEWS20 dataset but however did not find an improved
performance even with limited training instances suggesting that the hierarchical methods are
not able to leverage the hierarchical structure of NEWS20.

2.8 Summary

In this chapter we presented a HBLR approach to hierarchical classification. We formulated
three ways of unraveling dependencies between class-labels by modelling the covariance struc-
ture between the parameters in different ways. The model M3, which learns a node-specific
covariance seems to show the best performance among the three models.

For all the models we developed fast variational methods, partial MAP inference methods
and associated parallelization schemes to tackle classification with tens of thousands (and more)

23

2.8. Summary

of class-labels. We developed and tested a practical way to set hyperparameters instead of using
vague priors or putting the onus on the end user to set parameters. Our experiments on five
datasets (and more in the next chapter) show that HBLR significantly outperforms other popular
hierarchical classification methods.

24

Recursive Regularization for
Graphical and Hierarchical
Classification 3

3.1 Introduction

In general, not all class-label dependencies are hierarchical (for e.g. the dependencies among
Wikipedia categories are in the given in the form of a graph). To our knowledge, there has
been no work that addresses the problem of classification with graphical dependencies between
class-labels. The Hierarchical Bayesian approach developed in the previous chapter cannot be
generalized to graphs as there is no notion of parent or child.

In this chapter, we develop the recursive regularization framework for large-scale classifica-
tion that can leverage both hierarchical and graphical dependencies between the class-labels for
improving classification. The framework is generally applicable to both large-margin classifiers
(like support vector machines) as well as probabilistic classifiers (like logistic regression). The
dependencies among classes and sub-classes are used to define a joint objective for regular-
ization of model parameters; in the case of a hierarchy, the model parameters of the siblings
nodes who share the same parent are regularized towards the common parent node and in the
case of a graph, the model parameter of a node are regularized towards each of its neighbors.
Intuitively, it is based on the assumption that the nearby classes in the hierarchy or graph are
semantically close to each other and hence share similar model parameters. Note that this
model is simpler than the fully Bayesian models such correlated Multinomial Logit [Shahbaba
and Neal, 2007] and the HBLR models (chapter 2) where the dependencies are modeled in
richer forms, controlling both the means and covariances in Gaussain models. However it is the
simplicity of the approach makes it easier to scale than the fully Bayesian approaches.

For the scalability of our method, we develop a parallel and iterative coordinate descent
scheme that can easily tackle the large datasets with millions of dimensions and hundreds

25

3.2. Recursive Regularization Framework

of thousands of classes. The key idea here is to formulate the coordinate descent objective
function in a way that the dependencies between the various parameters can be easily localized
and the computations for all the local regions can be carried out in parallel. Moreover, the local
computations at leaf nodes are dualized in order side-step non-differentiability issues when
using loss functions such as Hinge loss. As we shall see in section 3.5, this combination of
using iterative parallelization of local computations and fast dual coordinate descent methods
for each local computation leads to optimization schemes that can easily scale to very large
datasets.

We tested our proposed methods in terms effectiveness as well efficiency by conducting eval-
uations against other state-of-the-art methods on nine benchmark datasets including the large-
scale datasets from the Large-scale Hierarchical Text Classification Challenge 1. With respect to
effectiveness, we found that our methods outperformed all the other methods on most tested
datasets. With respect to efficiency, we show for the first time that global optimization with
hierarchies and graphs can be efficiently computed for the largest datasets such as wikipedia
with 300,000 classes and 2 Million training instances in a matter of 37 hours. Experiments
showed state-of-the-art results on multiple benchmark datasets which are orders of magnitudes
(∼ 1000x) larger than what the most existing methods have been scaled to [Tsochantaridis
et al., 2006],[Cai and Hofmann, 2004], [Rousu et al., 2006], [Dekel et al., 2004], [Cesa-Bianchi
et al., 2006], [Widmer et al., 2010].

Indirectly related to our paper are a few works in multitask learning [Evgeniou and Pontil,
2004], [Argyriou et al., 2008],[Argyriou et al., 2007], [Widmer et al., 2010] where regular-
ization was used as a tool to share information between tasks. However, their focus is not
scalability and their techniques cannot be directly applied to to problems with hundreds of
thousands of class-labels. Other works include regularization on graphs such as [Zhang et al.,
2006], [Smola and Kondor, 2003], but the focus is on graphical dependencies between the
instances and not between class-labels.

3.2 Recursive Regularization Framework

The key idea in recursive regularization is to incorporate the class-label dependencies into the
regularization structure of the parameters. To formulate the regularization framework, we
resort to the Structural Risk Minimization framework which prescribes choosing a prediction
function to minimize a combination of the empirical risk on the training dataset and a regu-
larization term to penalize the complexity of the function. We first describe the framework for
hierarchies and then extend it to graphs. We reuse the notation from chapter 2 where a hierar-

1http://lshtc.iit.demokritos.gr/

26

3.2. Recursive Regularization Framework

chy is defined over a set of nodes N = {1, 2...} using a parent relationship π : N → N where
π(n) is the parent of node n ∈ N and let T ⊂ N denote the set of leaf nodes in the hierarchy
labeled from 1 to |T |. Let xi ∈ Rd denote the i’th training instance and yin ∈ {+1,−1} denote
the label of xi w.r.t node n, i.e. whether xi belongs to node n or not. Note that unlike HBLR,
each instance can belong to one or more leaf nodes in the hierarchy.

The prediction function in the context of hierarchies is parameterized by W = {wn : n ∈ N}
and the empirical risk is defined to be the loss incurred by the instances at the leaf-nodes of the
hierarchy using a loss function L. The parameters are estimated by minimizing,

arg min
W

λ(W) + C
∑
n∈T

N∑
i=1

L(yin, xi, wn) (3.1)

where λ(W) denotes the regularization term and C is a parameter that controls how much to
fit to the training data. We propose to use the hierarchy in the learning process by incorporating
a recursive structure into the regularization term for W. More specifically, the regularization
term is

λ(W) = arg min
W

∑
n∈N

1

2
||wn − wπ(n)||2

This recursive form of regularization enforces the parameters of the node to be similar
to the parameters of its parent under euclidean norm. Intuitively, it models the hierarchical
dependencies in the sense that it encourages parameters which are nearby in the hierarchy to
be similar to each other. This helps classes to leverage information from nearby classes while
estimating model parameters and helps share statistical strength across the hierarchy. In the
case of graphs, the parameters of each node in the graph is regularized towards each of its
neighbours (instead of its parent and children). Specifically, given a graph with a set of edges
E ⊆ {(i, j) : i, j ∈ N}, the regularization term is given by

λ(W) =
∑

(i,j)∈E

1

2
||wi − wj ||2

By defining L to be the hinge-loss, we get a large-margin framework (RR-SVM) 2 and by
defining L to be the logistic loss, we get the probabilistic framework (RR-LR). The key advantage
of RR-{SVM,LR} over other hierarchical models such as [Tsochantaridis et al., 2006], [Cai and
Hofmann, 2004], [Zhou et al., 2011] is that there are no constraints that maximizes the margin

2In our previous work [Gopal and Yang, 2013b],[Gopal et al., 2012], the methods were denoted by HR-
{SVM,LR}. Here we will use the notation RR-{SVM,LR} for convenience.

27

3.3. Large-scale Training of RR Models

between correct and incorrect predictions. This keeps the dependencies between the parameters
minimal and in turn enables us to develop a parallel-iterative method to optimize the objective
thereby scaling to very large problems.

3.3 Large-scale Training of RR Models

3.3.1 RR-SVM

The primary optimization problem in RR-SVM is to estimate the parameter W,

min
W

∑
n∈N

1

2
||wn − wπ(n)||2 + C

∑
n∈T

N∑
i=1

(1− yinw>n xi)+ (3.2)

We resort to an iterative approach where we update the parameters associated with each
node n iteratively by fixing the rest of the parameters. To tackle the non-differentiability in
some of the updates (i.e. the updates at the leaf-nodes), we convert these sub-problems into
their dual form which is differentiable and optimize it using coordinate descent. For each non-
leaf node n /∈ T , differentiating the objective of eq (3.2) w.r.t wn yields a closed-form update
for wn given by,

wn =
1

|Cn|+ 1

(
wπ(n) +

∑
c∈Cn

wc

)
(3.3)

For each leaf node n ∈ T , the objective cannot be differentiated due to a discontinuous
hinge loss function. By isolating the terms that depend on wn and introducing slack variables
ξin, the primal objective of the subproblem for wn is given by,

min
wn

1

2
||wn − wπ(n)||2 + C

N∑
i=1

ξin

subject to ξin ≥ 0 ∀i = 1..N

ξin ≥ 1− yinw>n xi ∀i = 1..N

The dual problem of the above primal subproblem (by introducing appropriate dual vari-
ables αi , i = 1..N) is

28

3.3. Large-scale Training of RR Models

Algorithm 1 Optimization of RR-SVM and RR-LR
Input : D, C, π,T, N
Result : weight vectors W∗

While Not Converged
For each n ∈ N

If n /∈ T
Update wn of the non-leaf node using equation (3.3)

Else
If solving RR-SVM

1. Solve the dual optimization problem (3.4)
2. Update the primal parameters wn using equation (3.5)

Else If solving RR-LR
1. Solve optimization problem (3.8) using LBFGS

End
End

End

min
α

1

2

N∑
i=1

N∑
j=1

αiαjyinyjnx
>
i xj −

N∑
i=1

αi(1− yinw>π(n)xi) (3.4)

0 ≤ αi ≤ C

To solve this subproblem, one can try to use second order methods such as interior-point
methods etc. The downside of such solvers is that it takes a long time even for a single iteration
and requires the entire kernel matrix of size O(N2) to be stored in memory. Typical large-scale
problems have at least hundreds of thousands of instances and the memory required to store
the kernel matrix is in the order of hundreds of gigabytes for each class thereby rendering it
impractical. Instead we propose a coordinate descent approach which has minimal memory
requirements and converges quickly even for large problems. Our work is based on the dual
coordinate descent developed in [Hsieh et al., 2008].

The core idea in coordinate descent is to iteratively update each dual variable αi. In the
objective function eq (3.4), the update for each dual variable has a simple closed form solution.
To derive the update for the ith dual variable αi given by αi + d, we solve the following one-
variable problem,

29

3.3. Large-scale Training of RR Models

min
d

1

2
d2(x>i xi) + d

(
N∑
i=1

αiyinxi

)>
xi − d(1− yinw>π(n)xi)

subject to 0 ≤ αi + d ≤ C

Basically, we substituted αi by αi+d in (3.4) and discarded all the terms that do not depend
on d. This one-variable problem can be solved in closed form by considering the gradient of the
objective and appropriately updating αi to obey the constraints. The gradient G for the above
objective and the corresponding update for αi is given by,

G = a′>xi − 1 + yinw
>
π(n)xi

αnewi = min

(
max

(
αoldi −

G

x>i xi
, 0

)
, C

)

where a′ =
N∑
i=1

αiyinxi is an auxilary variable maintained and updated throughout the op-

timization of the subproblem. The time complexity for each αi update is O(#nnz in xi) - the
number of non-zero dimensions in xi and the memory requirement for solving the entire sub-
problem is O(N) - far more efficient than that O(N2) compared to the second order methods.
From the solution of the dual subproblem, the update for wn in the primal form can be derived
from the K.K.T conditions for the subproblem,

wn = wπ(n) +
N∑
i=1

αiyinxi (3.5)

Note that the convergence of the above optimization method can be derived by viewing
the procedure as a block coordinate descent scheme on a convex function where the blocks
corresponds to parameters at each node of the hierarchy [Luo and Tseng, 1992], [Tseng, 2001].

For graphs, we employ a similar block coordinate descent algorithm by iteratively optimizing
each parameter wn. The optimization subproblem at node n is given by,

min
wn

1

2

∑
j:(n,j)∈E

||wn − wj ||2 + C

N∑
i=1

(1− yinw>n xi)+ (3.6)

In order to derive the dual of the above subproblem, we first re-write it by expanding the
regularization term and discarding all terms that do not depend on wn,

30

3.3. Large-scale Training of RR Models

min
wn

1

2
Sn||wn||2 − Snw>nm+ C

N∑
i=1

(1− yinw>n xi)+

where Sn denotes the number of neighbors for node n and m denotes the mean of neighbors
m = 1

Sn

∑
j:(n,j)∈E

wj . We now add a constant term 1
2Sn||m||

2 (constant w.r.t this optimization

subproblem) and divide by constant Sn and rewrite the optimization problem as,

min
wn

1

2
||wn −m||2 +

C

Sn

N∑
i=1

(1− yinw>n xi)+ (3.7)

Now, we solve (3.7) using the same coordinate descent technique as described earlier and
recover the optimal wn.

3.3.2 RR-LR

We follow a similar iterative strategy for optimizing RR-LR, i.e. we update the parameter wn
of each node n iteratively by fixing the rest of the parameters. Unlike RR-SVM, the objective
function in RR-LR is convex and differentiable, therefore we can directly use quasi newton
methods such as LBFGS for each inner optimization.

The update for each non-leaf node is given in eq (3.3). For each leaf node n, isolating the
terms that depend on wn, the objective and the corresponding gradient G can be written as

min
wn

1

2
||wn − wπ(n)||2 + C

M∑
i=1

log(1 + exp(−yinw>n xi)) (3.8)

G = wn − wπ(n) − C
M∑
i=1

1

1 + exp(yinw>n xi)
yinxi (3.9)

In the case of graphs, the only change is that instead of a single parent node, we subtract
the difference from each neighbor,

G =
∑

j:(n,j)∈E

(wn − wj)− C
M∑
i=1

1

1 + exp(yinw>n xi)
yinxi (3.10)

Note that although HBLR and RR-LR seem like two very different models, RR-LR can be viewed
a successively simplified version of HBLR. If we replace the multiclass logistic function in HBLR

31

3.4. Experimental Setting

with multiple binary logistic functions and have a single common fixed α for all the nodes
without any gamma prior, the HBLR model becomes identical to the RR-LR model - the only
difference being the inference. Furthermore, if we estimate the parameters of HBLR using the
posterior mode i.e MAP estimate instead of the posterior mean, even the training procedures
become identical.

These connections also highlight the fundamental theme in all our proposed HBLR, RR-SVM
and RR-LR models i.e. to enforce similarity between model parameters based on the hierarchical
or graphical dependencies between the class labels. In the HBLR models, we enforce it by
propagating a Bayesian prior over the hierarchical structure whereas in RR models we enforce
it via regularization of parameters over the hierarchical or graphical structure.

3.3.3 Parallelization

On hierarchies, we can parallelize the optimization of the parameters exactly as discussed in
section 2.4.3. For graphs however, parallelization is a little tricky. The ideal parallelization on
graphs involves finding the chromatic number of the graph - which is the smallest K such that
each node of the graph is assigned one of K different colors from 1 to K and no two adjacent
nodes have the same color. Once the nodes have been assigned colors, we can repeatedly pick a
color and parallely optimize the parameters of the nodes which have been assigned that color.
However, finding the chromatic number of the graph is a NP-hard problem, therefore, we can
only resort to approximate schemes to find the chromatic number. The degree of parallelization
in graphs is given by |N |K which is in contrast to |N |2 for hierarchies. Note that the minimum
coloring needs to be solved only to achieve the best possible parallelization; in practice any
reasonable greedy coloring achieves good parallelization.

Alternatively, one could also resort to other schemes such as performing multiple iterations
of optimizing all nodes in parallel (although convergence is not guaranteed in theory). Fur-
thermore, to aid in convergence, we also used other tricks such as warm starting with the
previously found dual solution and random permutation of subproblems in coordinate descent
method [Hsieh et al., 2008].

3.4 Experimental Setting

3.4.1 Datasets

We used the datasets outlined in section 2.6.1 (CLEF, NEWS20, IPC, LSHTC-small, DMOZ-
2010) along with four other additional large-scale benchmark datasets. All dataset statistics

32

3.4. Experimental Setting

Table 3.1: Dataset Statistics

Dataset #Training #Testing #Class-Labels #Leaf-labels Depth #Features
Avg #labels
per instance

CLEF 10,000 1,006 87 63 4 89 1
NEWS20 11260 7505 27 20 3 53975 1
RCV1 23,149 784,446 137 101 6 48,734 3.18
IPC 46,324 28,926 552 451 4 541,869 1
LSHTC-small 4,463 1,858 1,563 1,139 6 51,033 1
DMOZ-2010 128,710 34,880 15,358 12,294 6 381,580 1
DMOZ-2012 383,408 103,435 13,347 11,947 6 348,548 1
DMOZ-2011 394,756 104,263 35,448 27,875 6 594,158 1.03
SWIKI-2011 456,886 81,262 50,312 36,504 11 346,299 1.85
LWIKI 2,365,436 452,167 478,020 325,056 - 1,617,899 3.26

are tabulated in Table 3.1. To maintain comparability with previously published evaluations,
we used the conventional train-test splits where-ever available.

1. RCV1 [Lewis et al., 2004] A collection of Reuters News from 1996-1997. We used the
topic-based classification as it has been most popular in evaluations.

2. LSHTC-small, DMOZ-2010, DMOZ-2012 and DMOZ-2011 Multiple web-page collec-
tions released as a part of the LSHTC (Large-Scale Hierarchical Text Classification) evalu-
ation during 2010-12 3. It is essentially a subset of the web pages from the Open Directory
Project.

3. SWIKI-2011, LWIKI Two subsets (small and large, respectively) of Wikipedia pages with
human-generated topic class-labels. The dependencies between the class labels in SWIKI-
2011 are given as links in a directed acyclic graph while in LWIKI they are given as links
in a undirected graph.

Note that RCV1, DMOZ-2011, SWIKI-2011, LWIKI are multi-label datasets, meaning that an
instance may have multiple correct labels; the other datasets only have one correct label per
instance. For all the text datasets, we did the standard preprocessing steps of removing stop
words, stemming followed by Tf-Idf (ltc) term weighting [Manning et al., 2008].

3http://lshtc.iit.demokritos.gr/node/3

33

3.5. Results

3.4.2 Methods for Comparison

For evaluations, we compare the following methods

1. RR models: Our proposed methods, i.e., RR-SVM and RR-LR;

2. HBLR models: The Hierarchical Bayesian models developed in chapter 2 using partial
MAP inference - M1-map, M2-map and M3-map;

3. Flat baselines: One-versus-rest classifiers BSVM, BLR and multiclass classifiers MSVM
and MLR (described in section 2.6.2).

4. Hierarchical baselines: We used the hierarchical baselines described in section 2.6.2.

For all the above methods we tuned the regularization parameter using cross-validation
with a range of values from 10−3 to 103. To scale up to the larger datasets, for the HBLR and
RR models we used the approximate parallelization as discussed in sections 2.4.3, 3.3.3. The
parallelization for the flat one-versus rest baselines (BSVM and BLR) is straightforward, i.e.,
simply learn the models for all the class-labels in parallel. Among the hierarchical baselines,
only TD can be easily parallelized as the class models can be trained independently. It is not
known how to parallelize the rest of the methods - MSVM, HSVM and OT and hence they cannot
be scaled to the larger datasets. Therefore, we only report the results of these methods on the
smaller datasets where they scaled.

On the multi-label datasets, to make the baselines as competitive as possible, we used an
instance-based cut-off strategy as used in [Gopal and Yang, 2010]. This provided a better
performance than using the usual cut-off of zero as well as other threshold methods like rcut or
scut [Yang, 2001].

Note that HSVM, OT, MLR, MSVM and HBLR (with soft-max logistic function) are inher-
ently multiclass methods and are not applicable in multilabeled scenarios. To enable HBLR
models to be applicable on multilabel datasets, we replace the soft-max function with multiple
binary logistic functions and use the same instance-based cut-off strategy. The prior parameters
for HBLR was set as discussed in 2.5; to enable faster convergence on the larger datasets we
estimated p̂ in eq (2.13) using the parameters learnt by BLR.

3.5 Results

We evaluate the results using standard classification metrics - Micro-F1 and Macro-F1 (described
in section B). We present comparisons with hierarchical and flat baselines as well well estab-
lished results on large-scale benchmark datasets.

34

3.5. Results

Table 3.2: Comparison against flat baselines: Macro-F1 and Micro-F1 on 10 datasets. Bold
faced number indicates best performing method. NS denotes method does not scale to the
dataset, NA denotes the method is not applicable since the dataset is multilabeled or has graph-
based dependencies. The significance-test results between RR-SVM and BSVM;RR-LR and BLR
on the first five datasets are denoted ∗for a p-value less than 5% and †for p-value less than 1%.

BSVM BLR MSVM MLR RR-SVM RR-LR HBLR
(M3-map)

CLEF
Macro-F1 48.59 53.26 54.33 54.76 53.92† 55.83∗ 59.65
Micro-F1 77.53 79.92 80.02 80.52 80.02† 80.12∗ 81.41
RCV1
Macro-F1 54.72 53.38 NA NA 56.56† 55.81∗ 56.08
Micro-F1 80.82 80.08 81.66† 81.23† 81.98
NEWS20
Macro-F1 82.32 82.17 81.73 81.82 82.00 82.06 81.69
Micro-F1 83.10 82.97 82.47 82.56 82.78 82.86 82.56
IPC
Macro-F1 45.71 48.29 NS NS 47.89∗ 49.60 51.06
Micro-F1 53.12 55.03 54.26† 55.37∗ 56.02
LSHTC-small
Macro-F1 28.62 28.12 28.34 28.38 28.94 28.48 30.81
Micro-F1 45.21 44.94 45.62 45.20 45.31 45.11 46.03
DMOZ-2010
Macro-F1 32.64 31.58 NS NS 33.12 32.42 31.88
Micro-F1 45.36 45.40 46.02 45.84 45.64
DMOZ-2012
Macro-F1 31.59 14.18 NS NS 33.05 20.04 27.19
Micro-F1 56.44 52.79 57.17 53.18 53.15
DMOZ-2011
Macro-F1 24.34 21.67 NA NA 25.69 23.90 23.46
Micro-F1 42.88 41.29 43.73 42.27 41.35
SWIKI-2011
Macro-F1 26.57 19.51 NA NA 28.72 24.26 NA
Micro-F1 40.87 37.65 41.79 40.99
LWIKI
Macro-F1 19.89 18.65 NA NA 22.31 20.22 NA
Micro-F1 37.66 36.96 38.08 37.67

35

3.5. Results

3.5.1 Comparison against Flat Baselines

Table 3.2 reports the results of our proposed models and against the flat baselines - BSVM,
MSVM, BLR and MLR. The former two baselines are based on hinge-loss while the latter two
methods are based on the logistic loss. On all the datasets except NEWS20, our proposed models
perform better. To validate the results, we conducted pairwise significance tests between the
RR and non-RR counterparts, i.e. between SVM and RR-SVM; LR and RR-LR. We used the
sign test for Micro-F1 and wilcoxon rank test for Macro-F1. We show the results on the CLEF,
IPC, LSHTC-small, NEWS20 and RCV1 datasets. We are unable to conduct significance tests on
the other datasets since we did not have access to class-wise performance scores and true-test
labels - our reported evaluation measures on these datasets are from the output of an online
evaluation system which does not reveal classwise performance measures nor true test labels.
The results of the significance tests on the five datasets show that the RR-models significantly
outperform the non-RR models on three out of the five tested datasets.

Comparing the HBLR and RR models, on the smaller datasets like CLEF, RCV1, NEWS20
and IPC, the HBLR model M3-map offers the best performance, while on the larger datasets
like DMOZ and Wikipedia, RR-SVM gives the best performance. This observation suggests that
the choice of loss function affects the performance; hinge-loss seems to work better on the
larger datasets (with high dimensions and skewed class-label distributions), while logistic loss
is suited to datasets with balanced class distributions. Between HBLR and RR-LR, HBLR works
better because it is a more expressive model than RR-LR. Moreover, we also see some correlation
between the performance of HBLR and RR-LR; whenever HBLR performs best, RR-LR is second-
best.

3.5.2 Comparison against Hierarchical Baselines

Table 3.3 compares the performance of our proposed methods against three hierarchical base-
lines - TD, HSVM and OT. On all the datasets, the proposed methods are able to leverage the
hierarchy better and outperform existing hierarchical methods. On some datasets like LSHTC-
small, there is a 16% relative improvement in performance. We conducted pairwise significance
tests between the most scalable hierarchical baseline TD against our proposed methods - HBLR
and RR. We used the setup as described in the section 2.7.1, sign test for Micro-F1 and wilcoxon
rank test for Macro-F1. All the results are statistically significant.

3.5.3 Comparison against Benchmarks

Table 3.4 compares the results of our proposed models with the well established results on the
large-scale datasets released by the LSHTC community. We focus on only those datasets for

36

3.5. Results

Table 3.3: Comparison against hierarchical baselines: Macro-F1 and Micro-F1 on 10 datasets.
Bold faced number indicates best performing method. NS denotes method does not scale to the
dataset, NA denotes the method is not applicable since the dataset is multilabeled or has graph-
base dependencies. The significance test results are between RR-SVM, RR-LR and HBLR against
the scalable hierarchical baseline - TD on the first five datasets (†denotes significance at 1%
level)

TD HSVM OT RR-SVM RR-LR HBLR
(M3-map)

CLEF
Macro-F1 32.32 57.23 37.12 53.92† 55.83† 59.65†

Micro-F1 70.11 79.72 73.84 80.02† 80.12† 81.41†

RCV1
Macro-F1 34.15 NA NA 56.56† 55.81† 56.08†

Micro-F1 71.34 81.66† 81.23† 81.98†

NEWS20
Macro-F1 80.86 80.04 81.20 82.00† 82.06† 81.69†

Micro-F1 81.20 80.79 81.98† 82.78† 82.86† 82.56†

IPC
Macro-F1 42.62 NS NS 47.89† 49.60† 51.06†

Micro-F1 50.34 54.26† 55.37† 56.02†

LSHTC-small
Macro-F1 20.01 21.95 19.45 28.94† 28.48† 30.81†

Micro-F1 38.48 39.66 37.12 45.31† 45.11† 46.03†

DMOZ-2010
Macro-F1 22.30 NS NS 33.12 32.42 31.88
Micro-F1 38.64 46.02 45.84 45.64
DMOZ-2012
Macro-F1 30.01 NS NS 33.05 20.04 27.19
Micro-F1 55.14 57.17 53.18 53.15
DMOZ-2011
Macro-F1 21.07 NA NA 25.69 23.90 23.46
Micro-F1 35.91 43.73 42.27 41.35
SWIKI-2011
Macro-F1 17.39 NA NA 28.72 24.26 NA
Micro-F1 36.65 41.79 40.99

37

3.6. Further Experimental Analysis

Table 3.4: Comparison against established benchmark results Macro-F1 and Micro-F1 of
benchmark results established by the LSHTC challenge (we excluded our own submissions to
the system). Bold faced number indicates best performing method. NA denotes that the method
is not applicable on that dataset due to graph based dependencies between class labels.

LSHTC Published
Results

RR-SVM RR-LR HBLR
(M3-map)

DMOZ-2010
Macro-F1 34.12 33.12 32.42 31.88
Micro-F1 46.76 46.02 45.84 45.64
DMOZ-2012
Macro-F1 31.36 33.05 20.04 27.19
Micro-F1 51.98 57.17 53.18 53.15
DMOZ-2011
Macro-F1 26.48 25.69 23.90 23.46
Micro-F1 38.85 43.73 42.27 41.35
SWIKI-2011
Macro-F1 23.16 28.72 24.26 NA
Micro-F1 37.39 41.79 40.99
LWIKI
Macro-F1 18.68 22.31 20.22 NA
Micro-F1 34.67 38.08 37.67

which benchmark evaluations were available on the website4. Table 3.4 shows that the our
proposed models are able to perform better than the state-of-the-art results reported so far on
most of these datasets. In fact, on four out of the five datasets, RR-SVM shows a consistent 10%
relative improvement than the currently published results.

3.6 Further Experimental Analysis

3.6.1 Efficiency Analysis

Table 3.5 reports the training times taken for all the methods. Among the flat baselines, the
multiclass classifiers - MLR and MSVM cannot even be scaled to datasets with a moderate
number of class labels. The one-versus-rest baselines on the other hand are very scalable and

4http://lshtc.iit.demokritos.gr/

38

3.6. Further Experimental Analysis

Table 3.5: Computational efficiency: The training time (in mins) for all the methods. NA
denotes that the method is not applicable and NS denotes that the method is not scalable on
that dataset.

Flat baselines Hierarchical Baselines Proposed methods

BSVM BLR MSVM MLR TD HSVM OT RR-SVM RR-LR HBLR
(M3-map)

CLEF .15 .24 .20 1.92 .13 3.19 1.31 .42 1.02 3.05

RCV1 .273 2.89 NA NA .213 NA NA .55 11.74 12.11

NEWS20 .04 .11 .07 .352 .04 2.31 .98 .14 .52 1.06

IPC 3.12 4.17 NS NS 2.21 NS NS 6.81 15.91 31.2

LSHTC-small .31 1.93 1.65 3.63 .11 289.60 132.34 .52 3.73 5.2

DMOZ-2010 5.12 97.24 NA NA 3.97 NS NS 8.23 123.22 151.67

DMOZ-2012 22.31 95.38 NA NA 12.49 NS NS 36.66 229.73 331.96

DMOZ-2011 39.12 101.26 NA NA 16.39 NA NA 58.31 248.07 224.33

SWIKI-2011 54 99.46 NA NA 21.34 NA NA 89.23 296.87 NA

LWIKI 1114.23 2134.46 NA NA NA NA NA 2230.54 7282.09 NA

faster than our proposed models. BSVM is on average 1.92x faster than RR-SVM, BLR is on
average 2.87x faster than RR-LR, and BLR is on average 4.89x faster than M3-map. This is not
suprising - the better performance of our models comes at the cost of increased computational
time. However even on the largest dataset LWIKI, RR-SVM takes about 37 hours, although
slower than BSVM, the computation time certainly falls within the tractable range.

Among the hierarchical baselines, TD is the only one that can be scaled to the larger datasets,
although with a low performance. HSVM and OT could only scale to the smallest datasets
(CLEF and LSHTC-small) and both of them are orders of magnitude slower than our proposed
methods. On the rest of the datasets neither of them could be tested succesfully either due to
scalability issues or modelling (inability to handle multilabel data or graph-based dependencies)
issues.

Between HBLR and RR-LR there is an efficiency vs effectiveness tradeoff. Although HBLR
achieves a better performance than RR-LR with a 7% and .5% improvement in Macro-F1 and
Micro-F1, it is 1.62x slower than RR-LR. The choice of the method depends on the user’s pref-
erence between performance and scalability.

39

3.7. Summary

Table 3.6: The Macro-F1 of BSVM, RR-SVM at various levels of the hierarchy along with the
number of nodes at each level. The improvement in percentage of RR-SVM over BSVM is shown
in parenthesis.

Level BSVM RR-SVM # Nodes
Macro-F1 Macro-F1 Improvement

in Macro-F1

1 100.0 100.0 (0.00%) 1
2 71.43 72.50 (1.50%) 11
3 41.62 42.93 (3.12%) 342
4 25.71 26.73 (3.93%) 3376
5 26.54 27.27 (3.03%) 8858
6 13.06 16.72 (28.08%) 549

3.6.2 Performance across Training-set Sizes and Levels of Hierarchy

We present detailed analysis of the results of RR-SVM on two different fronts (a) the perfor-
mance improvement at various levels of the hierarchy and (b) the performance improvement
on across classes with varying number of positive training instances. Due to the lack of test-set
labels (see section 3.5.1), we partitioned the training data from one of the datasets (DMOZ-
2012) with a 50%-50% train-test split.

Table 3.6 reports the Macro-averaged F1-score at various levels of the hierarchy. On all
the levels our proposed RR-SVM performs better than SVM. The improvement seems to be
particularly high at the lower levels (4, 5 and 6) where the leaf nodes are located.

Table 3.7 reports the Macro-averaged F1-score for classes with different training set sizes.
The improvement is highest in classes with moderately small number of positive training in-
stances (6-50 training instances). The improvement seems to be smaller when the number of
training instances is too low (1-5) or higher (> 100). This is expected because, in the former
case, learning a good classifier is generally very hard, and in the latter case, the amount of
training data is already adequate and the hierarchy does not help further.

3.7 Summary

In this chapter, we proposed a unified framework that can leverage hierarchical and graphical
dependencies between class-labels for improving classification. Our proposed two methods
RR-SVM and RR-LR, rely on enforcing similarity between the model parameters based on the

40

3.7. Summary

Table 3.7: The Macro-F1 of BSVM, RR-SVM across classes with different training set sizes.
The number of classes in each range of training set size is also shown. The improvement in
percentage of RR-SVM over BSVM is shown in parenthesis.

Positive BSVM RR-SVM # Classes
Instances Macro-F1 Macro-F1 Improvement

in Macro-F1

1-5 20.24 20.62 (1.86%) 7952
6-10 24.84 26.59 (6.57%) 1476

11-20 32.16 34.08 (5.63%) 1089
21-50 39.94 41.23 (3.12%) 680

51-100 49.25 50.26 (1.99%) 262
> 100 59.81 60.64 (1.38%) 278

proximity of the classes in the provided structure. For improving the scalability of training, we
developed fast and efficient parallel iterative optimization procedures.

Our proposed models achieved state-of-the-art results on multiple benchmark datasets and
showed a consistent improvement in performance over both flat as well as other hierarchical
methods.

41

Large-scale Multiclass Logistic
Regression 4

4.1 Introduction

In this chapter, we develop a distributed approach to train Regularized Multinomial Logistic
Regression (RMLR) model that can significantly increase the scalability of training when faced
with very large number of classes and high dimensions.

RMLR is one of the fundamental tools to model the the probability of occurrence of one of
many discrete outcomes or class-labels. With the increasing availability of data, there is grow-
ing interest in enabling such fundamental models to cope up with large-scale factors such as
large number of class-labels and high dimensionality of the input space. To quantify the scale
of data we are interested in, let us consider the DMOZ-2010 dataset studied in the previous
chapter (section 3.4.1). It is a web-scale data collection with about 100,000 webpages orga-
nized into one of approximately 12,000 classes and each instance is represented by a sparse
vector of 350,00 word-level features. To train a RMLR model, one would need to learn approx-
imately 12000 × 350000 = 4.2 billion parameters which close to 17GB of parameters. Even if
we overcome the hurdle of storing such large number of parameters in memory, it would still
take significant amount of time to even perform a single iteration over all parameters. It is
practically infeasible to learn a RMLR model with such large number of parameter on a single
computer. In this chapter, we will address the issue of how to cope up with the computational
and memory requirements of training RMLR models under such large-scale scenarios.

We propose a distributed approach to train RMLR models where the main chunk of the com-
putation is accomplished by optimizing sets of parameters parallely across different computing
units thereby gaining two big advantages (a) Faster computation - we can use the resources
from multiple computing units to solve different parts of the same optimization problem (b)
Distributed Memory - parameters can now be spread across multiple computing units simulta-

42

4.2. Related Work

neously. Our approach relies on replacing the log partition function of the multinomial logit
with a convex and parallelizable upper-bound based on the concavity of the log function. We
prove that our new convex upper bound shares the same minimum as the original RMLR ob-
jective. We also explore several existing bounds to the log-partition function and discuss the
applicability to the problem at hand. We additionally formulate an alternating direction method
of multipliers (ADMM) [Boyd et al., 2011] version of the RMLR objective, a relatively recent
technique where redundant constraints are added to the model to enable parallelization. We
tested all the approaches on multiple datasets and found that our proposed convex upper bound
offers the best trade-off between convergence and training time when the number of classes is
large. To our knowledge, this is the first work that shows that RMLR models can be scaled to
datasets with tens of thousands of class-labels and billions of parameters in a matter of several
hours.

4.2 Related Work

To our knowledge, there is no directly related work that addresses the problem of training
RMLR models for large number of classes, especially to the scale we are interested in. However
we outline some of the most commonly used methods to train RMLR models and discuss the
limitation of such models in large-scale settings.

The simplest approach to fit RMLR models are first order methods such as gradient descent.
However, the problem with gradient methods is that they require careful tuning of the step-size
and are generally slow to converge. Second order methods such as Newton’s method improve
over gradient methods in the sense that the descent direction provides a natural unit step-length
and provide exponential convergence near the optimal solution. An efficient implementation
of newton’s method known as iterated reweighted least squares [Holland and Welsch, 1977]
is widely used to fit logistic models. However second order methods fail to be useful in high
dimensional settings as the calculation of descent direction involves a high dimensional matrix
inversion (inverse of the Hessian) which is computationally intensive. Quasi newton methods
such as BFGS [Shanno, 1985] and its limited memory variant LBFGS [Liu and Nocedal, 1989]
are second order methods which overcome this problem of matrix inversion by continually
updating an approximate inverse of the Hessian - although at a slower convergence rate. Re-
cently, multiple studies [Sha and Pereira, 2003], [Schraudolph et al., 2007], [Daumé III, 2004]
have shown that LBFGS methods offer the best trade-off between convergence and computa-
tional requirements and authors have often adopted it as the standard choice to train logistic
models. However, in the large-scale setting we have at hand, even LBFGS does not meet the
computational challenges. Firstly, LBFGS is not an inherently parallelizable (across parameters)

43

4.3. Parallel Training by Decoupling Log-Normalization Constant

algorithm. Secondly, due to the requirement of repeated line-searches and function value eval-
uation, the parameters to be learnt typically have to be stored in memory (reading and writing
17GB of parameters of DMOZ-2010 to disk is expensive). Thirdly, LBFGS requires storing the
gradient values from the last few iterations which further increase the memory requirements;
for example if the gradient from the last 5 iterations is stored, the memory requirement shoots
upto 17× 5 ∼ 85GB making it practically infeasible.

Other ways to train RMLR are using iterative scaling [Darroch and Ratcliff, 1972], conjugate
gradient [Lin et al., 2008] and dual methods [Yu et al., 2011]. To our knowledge, there has
been no work on large-scale distributed RMLR training using these methods particularly to the
scale we are interested in. Also refer [Minka, 2003] for an excellent comparison between the
different existing approaches for binary logistic regression.

Indirectly related to this work are a few works in stochastic gradient descent [Zhang, 2004],
[Bottou, 2010] and online learning [Bottou, 1998]. Stochastic and online approaches address
scalability issues when the number of training instances is large. This is very different from our
goal where the focus is large number of classes rather than large number of training instances.
Moreover, unlike stochastic approaches our aim is not to provide guarantees on expected (ex-
pectation w.r.t data) error of the model but training a RMLR model on a fixed dataset.

4.3 Parallel Training by Decoupling Log-Normalization

Constant

Let {xi, ti}i=Ni=1 denote the set of training instances where each xi ∈ RD and ti ∈ {1, 2, ..K}
and K denotes the number of class labels. Define the indicator yik = I(ti = k) which denotes
whether the ith training example belongs to class k or not. Let the probability of a given instance
x to have a class-label k be modelled as,

P (y = k|x) =
exp(w>k x)
K∑
k′=1

exp(w>k′x)

where W = {w1, w2, ..wK} denote the set of parameters. The training objective of RMLR
can be written as,

44

4.3. Parallel Training by Decoupling Log-Normalization Constant

[OPT 1] min
W

GD(W)

where GD(W) =
λ

2

K∑
k=1

‖wk‖2 −
K∑
k=1

N∑
i=1

yikw
>
k xi +

N∑
i=1

log

(
K∑
k′=1

exp(w>k′xi)

)

The most natural way to parallelize is to optimize each class-level parameter wk in parallel.
However this is not directly possible due to the presence of the log partition function which
couples all the class-level parameters together inside a log-sum-exp function. This makes the
objective non decomposable across the wk ’s. This leads to the question - can we replace the log-
partition function by a parallelizable function ? Secondly, can this parallelizable function also be
an upper-bound to the log-partition function as this would guarantee that true-minimum is at
most as high as the minimum of the upper bounded objective. And finally, the introduction of
this parallelizable function must not make the problem harder to solve (like for example make
it non-differentiable or multiple local minima etc).

To this end, we explore 3 different bounds for the log partition function and their applica-
bility to the problem at hand.

4.3.1 Piecewise Bound

One of the properties of convex functions is that they can be approximated by piece-wise linear
functions to any degree of precision just by increasing the number of pieces. This property can
be used to upper and lower-bound the log-sum-exp function [Hsiung et al., 2008]. The idea is
to find a set of variational parameters a, b, c, d such that

max
j
{a>j γ + bj} ≤ log

(
K∑
k=1

exp(γk)

)
≤ max

j′
{c>j′γ + dj′}

a, c ∈ RK b, d ∈ R

A similar idea was also used in [Marlin et al., 2011] to approximate a binary logistic func-
tion but with a quadratic function instead of linear functions. However there a few problems
associated with such piecewise bounds. Firstly, finding the variational parameters a, b, c, d is
not easy. Till date a constructive solution for arbitrary precision for the log-sum-exp function
has been established only for K = 2 [Hsiung et al., 2008]. Without a constructive solution
one needs to resort to derivative free optimization methods like Nelder Mead method etc to fix
the value of the variational parameters. More over the number of such variational parameters
also grows linearly with the number of classes K, therefore for datasets with a large number

45

4.3. Parallel Training by Decoupling Log-Normalization Constant

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04
Efficiency of Bound

True Objective

Upper Bound of Objective

Iteration

F
u

n
ct

io
n

-v
al

u
e

Figure 4.1: The figure shows the difference between the true minimum attained by the function
and the upper bound using double majorization.

of classes, finding the variational parameters through derivative free methods would be even
harder. Secondly, even if one were to find such parameters, the objective function is still not
parallelizable across the class-level parameters. Thirdly, using this bound would introduce non-
differentiability in the objective i.e. the log-sum-exp function would be replaced by a max over
linear functions, thereby rendering the objective non-differentiable. Due to the above issues,
piece-wise linear bounds do not help us parallelize the training procedure for RMLR models.

4.3.2 Double Majorization Bound

This bound was proposed in [Bouchard, 2007] to enable variational inference for logit models
with Gaussian priors. The bound is given by,

log

(
K∑
i=1

exp(w>k xi)

)
≤ ai +

K∑
k=1

log(1 + ew
>
k xi−ai) (4.1)

where the variational parameters ai ∈ R.

Firstly, note that the bound is parallelizable as it splits as sum of functions of class-wise
parameters wk and each wk can be optimized as,

arg min
wk

λ

2
‖wk‖2 −

N∑
i=1

yikw
>
k xi +

N∑
i=1

log(1 + ew
>
k xi−ai) (4.2)

Secondly, it is differentiable and thirdly and importantly the upper bound is still convex.
Although this bound seems to possess all the properties we need, the problem is that the bound

46

4.3. Parallel Training by Decoupling Log-Normalization Constant

is not tight enough. In our initial experiments we found that the gap between the log-sum-exp
function and this upper bound is large. Figure 4.1 shows the gap between the true objective and
the upper-bounded objective. The graph was generated by training two RMLR on the 20 news
group dataset using the LBFGS optimization algorithm [Liu and Nocedal, 1989] and plotting the
function-value after each iteration. The blue line shows the function-value using log-sum-exp
and the red line shows the function-value by using the upper-bound. Since the gap is relatively
large, we do not recommend using this bound.

4.3.3 Log-concavity Bound

This is a well known bound that exploits the first order concavity property of the log-function.
It has been used in many works including [Blei and Lafferty, 2006a], [Bouchard, 2007]. The
bound is as follows,

log(γ) ≤ aγ − log(a)− 1 ∀γ, a > 0 (4.3)

where a is a variational parameter. Minimizing the RHS over a gives a = 1
γ and makes the

bound tight. To incorporate this into the objective, we introduce variational parameters ai for
each training instance i. We have the log-partition function for instance i bounded as,

log

(
K∑
k=1

exp(w>k xi)

)
≤ ai

K∑
k=1

exp(w>k xi)− log(ai)− 1

Firstly, note that incorporating this into the objective makes the objective parallelizable
across wk ’s. That is, for a given fixed value of the variational parameter ai, the optimization
over W splits into a sum of K different objectives. Specifically, the class-level parameter for
class k i.e. wk can be estimated by solving,

arg min
wk

λ

2
‖wk‖2 −

N∑
i=1

yikw
>
k xi +

N∑
i=1

ai exp(w>k xi) (4.4)

Secondly, note that finding the variational parameter is an easy problem because optimizing
over ai in (4.3) has a closed form solution. Thirdly note that the combined objective (as given
below), is still differentiable.

min
A>0,W

λ

2

K∑
k=1

‖wk‖2 +
N∑
i=1

[
−

K∑
k=1

yikw
>
k xi + ai

K∑
k=1

exp(w>k xi)− log(ai)− 1

]
(4.5)

The only down-side of this bound is that the convexity of the original objective is now lost
due to the presence of a product of linear and exponential function i.e. ai exp(w>k xi). This

47

4.3. Parallel Training by Decoupling Log-Normalization Constant

introduces the possibility of potentially multiple local minima in the objective and hence the
upper-bound could be potentially loose. In our previous work [Gopal and Yang, 2013a] we
show that these problems can be alleviated and develop a block coordinate descent approach
that still converges to the optimal solution.

In this chapter, we take an alternative route, and show that a simple change of variables
in (4.5) results in an unconstrained convex optimization problem which is also parallelizable
and importantly shares the same minimum as the true RMLR objective. More specifically, by
introducing ξi = −log(ai), we can rewrite (4.5) as the following optimization problem,

[OPT 2] min
ξ,W

FD(W, ξ)

where FD(W, ξ) =
λ

2

K∑
k=1

‖wk‖2 +

N∑
i=1

[
−

K∑
k=1

yikw
>
k xi +

K∑
k=1

exp(w>k xi − ξi) + ξi − 1

]
Note that FD(W, ξ) is a convex function; the non-convexity due to multiplication of a linear

and a exponential is now an exponential of a linear function which is convex, all the other terms
are also individually convex.

To show that we can recover the original RMLR solution from OPT2, consider the optimal
solution {W∗, ξ∗} of OPT2. By setting the partial gradients of each parameter to zero,

ξ∗i = log

(
K∑
k=1

exp(w∗k
>xi)

)

λ

K∑
k=1

w∗k +

N∑
i=1

xi

(
exp(w∗k

>xi)

exp(ξ∗i)
− yik

)
= 0

It it easy to see that the optimality conditions of W above is identical to the optimality
conditions for GD(W) in OPT1 i.e. any optimal W of OPT2 is also an optimal solution to OPT1.
Since OPT1 is strongly convex, there is exactly one optimal solution to OPT1. Therefore, OPT2
has exactly one optimal solution {W∗,ξ∗} which is the same as OPT1 (note that ξ∗ is uniquely
determined by W ∗)

At this point we can use any off the shelf convex optimization routine to solve OPT2. How-
ever, since we are interested in parallelizing the objective across parameters, we use a simple
block coordinate method to solve OPT2 (outlined in Algorithm 2). Note that this block coordi-
nate descent is identical to the one in [Gopal and Yang, 2013a] and leads to the same updates.e

We can use the norm of the gradient as the convergence criteria. The norm of the gradient
can be easily calculated between steps 1 and 2 of Algorithm 2 as follows,

‖∇FD(W t+1, ξt)‖ =

∥∥∥∥∥
N∑
i=1

[
1− 1

exp(ξti)

K∑
k=1

exp(w
(t+1)>
k xi)

]∥∥∥∥∥
48

4.4. Parallel Training by ADMM

Algorithm 2 Block coordinate descent algorithm
Initialize : t← 0, ξ0 ← log(K),W0 ← 0.
Result : Wt

While : Not converged
1. In parallel : Wt+1 ← arg minW FD(W, ξt)
2. In parallel ξt+1 ← arg minξ FD(Wt+1, ξ)
3. t← t+ 1

Note that the objective FD(W , ξ) is strictly convex function, w.r.t [W, ξ] as well strongly
strongly convex w.r.t W with parameter λ (for a fixed ξ). We also know that there exists a finite
solution W∗, ξ∗ , as well a unique solution for steps 2 and 3 in algorithm 2. Convergence for
such methods has been established by [Tseng, 2001].

Regarding rates of convergence, previous works have established linear convergence rate
for randomized coordinate descent [Nesterov, 2012],[Richtárik and Takáč, 2014]. Recently
[Beck and Tetruashvili, 2013] have shown sublinear convergence rates for two-block coordi-
nate minimization for smooth convex functions with lipschitz continuous gradients. Note that
our objective FD(W, ξ) does not have gradients which are globally lipschitz due to the presence
of the exponential function but are however locally lipschitz. Convergence rates for complete
minimization of blocks of coordinates for general convex function is still an active area of re-
search.

4.4 Parallel Training by ADMM

Alternating direction method of multipliers (ADMM) is a relatively new technique that enables
reformulating simple convex optimization problems in a manner that can be easily parallelized.
The key idea in ADMM is to introduce redundant linear constraints into the problem such that
the optimization of the objective can be parallelized. In [Boyd et al., 2011], the authors show
how ADMM can enable distributed computing for many machine learning models by either
splitting across examples or splitting across parameters. Since we are particulary interested in
parallelizing across class-parameters, we will adapt the ADMM formulation for splitting across
features. For a problem of the form

min
V

K∑
k=1

fk(vk) + g(
K∑
k=1

vk)

49

4.4. Parallel Training by ADMM

the corresponding ADMM formulation is given by,

min
V,Z

K∑
k=1

fk(vk) + g(
K∑
k=1

zk)

subject to vk − zk = 0, k = 1, ..K.

Here vk are the parameters in the original problem and the zk are the additional parameters
introduced to enable distributed computing. f and g are both convex functions. The optimiza-
tion problem is first solved by optimizing for each of the vk in parallel. In the second step,
to solve for z, instead of solving the problem as an optimization problem over k variables, we
reduce it to an optimization problem over a single variable z̄ by re-writing g as g(Kz̄). This neat
trick enables efficient parallelization (refer [Boyd et al., 2011] pgs 56-57, 67-68)

However, this technique does not given any benefit when applied to RMLR model. For
simplicity, consider a RMLR formulation with just one example x and λ = 0. The optimization
problem for RMLR is given by

min
W

−
K∑
k=1

ykw
>
k xi + log

(
K∑
k=1

exp(w>k x)

)

To formulate the corresponding ADMM problem, it is clear that vk needs to be set to class-
level parameter wk and fK(wk) = −ykw>k xi and g refers to the log-sum-exp function. Next we
introduce redundant variables zk such that zk = w>k xi for k = 1, ..K (note that the redundant
constraints in ADMM should be linear). Now applying the ADMM formulation for N examples,
we need to introduceN×K redundant variables i.e. zik variables which represent the prediction
of training instance i w.r.t class k. This is given by,

min
W

−
K∑
k=1

(
N∑
i=1

ykw
>
k xi

)
+

N∑
i=1

log-sum-exp(zi)

subject to w>k xi − zik = 0, i = 1, ..N k = 1, ..K.

For solving, in each iteration, we need to solve K optimization problems of D (dimension)
variables (i.e. for each wk) and N optimization of K variables each (i.e. for each {zik}Kk=1).
There are several problems in using this approach for training RMLR models. Firstly, the above
requires much more computation than the log-concavity bound which requires solving only K
optimization problems of D (dimension) variables (i.e. for each wk) in each iteration. Secondly,
the introduction of Z variable increases memory by O(NK) as opposed to O(N) variational
parameters using the log-concavity bound . Lastly, as noted in [Boyd et al., 2011] (pg 17),
ADMM exhibits very slow convergence properties. As we will see in the next section, it takes

50

4.5. Experiments

orders of magnitudes more computation (even after parallelization) to reach the same accuracy
of optimization as log-concavity bound or LBFGS.

4.5 Experiments

Throughout our experiments, we consider 4 different datasets with increasing number of pa-
rameters to learn - CLEF 1, NEWS-20 2, LSHTC-small, DMOZ-2010 3 (An outline of the various
characteristics of the dataset is given in Table 3.1).

We compare the following methods for distributed training of RMLR models,

1. ADMM: The alternating direction method of multipliers discussed in section 4.4. We tried
multiple values of the ρ parameter [Boyd et al., 2011] and chose the one that offered the
fastest convergence.

2. LC: The log-concavity bound in section 4.3.3.

3. LBFGS: The standard quasi-newton methods widely used to train logistic models [Liu and
Nocedal, 1989]. All the parameters of the model are optimized simultaneously. We use
the previous 5 gradients to update the approximate hessian matrix. Furthermore, in order
to make LBFGS as competitive as possible, the dot-product of an instance xi with the class
parameters wk are computed in parallel (i.e. enables parallel computation of gradient).

4. DM: The Double Majorization in section 4.3.2.

For each inner problem in LC (4.4), DM (4.2) and ADMM we use LBFGS for optimization
(other solvers can also be used, but LBFGS was chosen to maintain comparability). All methods
were tested on a 48 core AMD Opteron Processor with 32GB RAM. For the largest DMOZ-
2010 dataset, a map-reduce based Hadoop 20.2 cluster with 64 worker nodes with 8 cores
and 16GB RAM (cluster has 220 mappers and 196 reducers) was used. Only the LC method
could be scaled on this dataset. In each iteration of LC, the class parameters are parallely
optimized in the map-phase and the variational parameters are updated in the reduce phase.
Note that Hadoop in not a requirement, we chose to use it because the cluster could only be
interfaced through Hadoop. Infact, other alternatives such as Peregrine 4, Haloop 5 , Twister
6 or non-hadoop alternatives such as MPI might be better choices as they can be customized

1http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://lshtc.iit.demokritos.gr/
4http://peregrine_mapreduce.bitbucket.org/
5http//code.google.com/p/haloop/
6http://www.iterativemapreduce.org/

51

4.5. Experiments

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Iterations

NEWS-20 Dataset

ADMM
LC

LBFGS
DM

1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05

1 10 100 1000 10000 100000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Iterations

CLEF Dataset

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000 10000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Iterations

LSHTC-small Dataset

Figure 4.2: The difference from the true optimum as a function of number of iterations

for iterative parallelizable computations. The λ parameter for the datasets was selected using
cross-validation using a one-versus rest logistic regression; for NEWS20 and CLEF, λ = 1, for
LSHTC-small, λ = .001 and DMOZ-2010, λ = .01.

Figures 4.2 show the difference from the optimal solution as the number of iteration in-
creases for the first three smaller datasets. In all the graphs, we see a common pattern : LBFGS
takes the fewest number of iterations to converge to the optimal solution, followed by LC,
ADMM and DM. This is not surprising because quasi-newton methods like LBFGS store some
approximation of the Hessian which helps to achieve faster convergence in fewer steps than
other methods. LC although being a block coordinate descent method seems to offer a much
better convergence compared to ADMM or DM. ADMM as noted by the authors exhibits very
slow convergence [Boyd et al., 2011] (pgs 6-7) to accurate solutions. DM does not even reach
the optimal solution since the DM bound (4.1) is not tight.

Figures 4.3 show the difference from the optimal solution as a function of time taken. In
this case, there is considerable shift in results. Among the four methods, only two of them

52

4.5. Experiments

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Time Taken (secs)

NEWS-20 Dataset

ADMM
LC

LBFGS
DM

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000 10000 100000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Time Taken (secs)

CLEF Dataset

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000 10000 100000

D
if

fe
re

n
ce

 f
ro

m
 O

p
ti

m
um

Time Taken (secs)

LSHTC-small Dataset

Figure 4.3: The difference from the true optimum as a function of time in seconds.

seem to show reasonable convergence with time - LBFGS and LC. Comparing the 2 methods
on the smallest dataset NEWS20, there does not seem to much difference between the them.
But as the number of classes gets larger like the CLEF and LSHTC-small datasets, LC seems to
perform significantly faster than LBFGS (and the other methods). Although LBFGS takes fewer
iterations, each iteration is very computationally intensive and takes a long time, therefore
each step of LBFGS is time consuming. This in contrast to LC where the cost per iteration is
very cheap since the parameters are optimized independently.

Infact on the largest DMOZ-2010 dataset, it is not even possible to run LBFGS due to the
extreme memory requirements (17GB of parameters + 85GB of past gradient values need to be
stored simultaneously in main memory). However, LC overcomes this difficulty by iteratively
solving multiple subproblems and distributing the parameters across several computing units.
Figure 4.4 shows the progress of LC on DMOZ-2010 as the number of iterations/time progresses.
Most iterations of LC takes less than 6 minutes: around 3-4 minutes for optimizing the class-
parameters and 2 minutes to update the variational parameters. This includes the time taken

53

4.6. Summary

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

4.5E+04

1 50 100 150

O
b

je
ct

iv
e

Iterations

DMOZ-2010 Dataset

LC

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

4.5E+04

0 20000 40000 60000 80000 100000 120000 140000

O
b

je
ct

iv
e

Time Taken (secs)

DMOZ-2010 Dataset

Figure 4.4: The progress of LC on the DMOZ-2010 dataset

to start the hadoop job and transfer the parameters etc. Note that it is possible to train RMLR
using ADMM or DM on this dataset, but we did not pursue this since neither of them showed
reasonable convergence on the other datasets.

4.6 Summary

In this chapter, we developed four ways to parallelize the training of RMLR models. Our analysis
and experiments establish that on datasets with larger number of parameters, ADMM offers
very slow convergence rate, DM has a loose upper bound, LBFGS is too memory intensive and
LC being the most effective method. Unlike other methods, LC is able to succesfully exploit
parallelization and achieve ∼10x speedup in training time.

54

Clustering on Unit-spheres with
von Mises-Fisher Mixtures 5

5.1 Introduction

Unit normalized data representation is a standard way of representing data in many fields such
as information retrieval, text classification [Salton and McGill, 1986], image classification etc,
and has often achieved better performance than typical bag-of-counts representation [Robert-
son, 2004],[Joachims, 2002]. Existing popular methods for clustering such as mixture of Multi-
nomial distributions, Latent Dirichlet Allocation [Blei et al., 2003] (LDA) with its variants and
the popular Gaussian mixtures, although very flexible, are not suitable for modelling such unit
normed data. The former methods cannot even be applied on continuous real values while
the latter Gaussian distribution wastes probability mass in modelling instances outside the unit
sphere domain.

In this chapter, we develop a suite of clustering models that retain the flexibility of existing
graphical models but at the same time are particularly suited to unit normalized data. Our
models are based on the von Mises-Fisher distribution (a probability density on unit spheres)
and have the ability to extract a flat set of clusters, a hierarchically coherent set of clusters, or
time-varying clusters from the data. More specifically, we propose the following models,

1. The full Bayesian vMF Mixture Model (B-vMFmix) - a mixture model based on the von
Mises-Fisher (vMF) distribution for clustering data on unit sphere. The Bayesian model
describes a generative process where each instance is drawn from one of many vMF dis-
tributions (clusters) and the parameters of the clusters are themselves drawn from a com-
mon prior which helps the clusters to share information among each other.

2. The Hierarchical vMF Mixture Model (H-vMFmix): When the data we want to analyze is
huge, one of the efficient means of browsing is by means of a hierarchy [Cutting et al.,

55

5.2. Related Work

1992]. We extend B-vMFmix to H-vMFmix, to enable partitioning the data into increasing
levels of specificity as defined by a given input hierarchy. To our knowledge, this is the
first hierarchical Bayesian model for vMF-based clustering.

3. The Temporal vMF Mixture Model (T-vMFmix): For temporal data streams, analyzing how
the latent clusters in the data evolve over time is naturally desirable. We augment B-
vMFmix to the first temporal vMF-based model that accommodates changes in cluster
parameters between adjacent time-points. For example, in a corpus of documents, this
could reflect the changing vocabulary within a cluster of documents.

The key difficulty that we address in these models is in developing efficient numerical tech-
niques that can estimate the resulting posterior distribution of the model parameters. Specifi-
cally, we present three methods for posterior estimation,

• A full variational inference algorithm.

• A partial variational inference with sampling step.

• A Collapsed Gibbs sampling algorithm.

We conducted thorough experiments on a wide variety of text data and evaluated the clus-
tering models on two fronts - Recoverability, the ability to generate clusters that match the
ground-truth and Generalizability, the ability to generalize well to unseen test data. In terms of
recoverability we found that vMF based models significantly outperform other popular non-vMF
clustering models including mixture of Multinomials, K-means, LDA etc. In terms of generaliz-
ability we demonstrate the ability of our models to fit better to unseen data than existing vMF
based models.

5.2 Related Work

The von Mises-Fisher (vMF) distribution defines a probability density over points on a unit-
sphere. It is parameterized by mean parameter µ and concentration parameter κ - the former
defines the direction of the mean and the latter determines the spread of the probability mass
around the mean. The density function for x ∈ RD, ‖x‖ = 1 is,

f(x|µ, κ) = CD(κ) exp(κµ>x) where CD(κ) =
κ.5D−1

(2π).5DI.5D−1(κ)
, ‖µ‖ = 1, κ > 0

where Iν(a) is the modified bessel function of first kind with order ν and argument a. Note that
µ>x is the cosine similarity between x and mean µ and that κ plays the role of the inverse of
variance.

56

5.2. Related Work

vMF distributions have been long studied in the directional statistics community [Fisher,
1953, Jupp and Mardia, 1989]. They model distances between instances using the angle of sep-
aration i.e. cosine similarity. Early work in vMF focused on low-dimensional problems (2D or
3D spaces) to maintain tractability and relied on auxiliary Gibbs sampling for inference which
is generally difficult to scale in higher dimensions [Mardia and El-Atoum, 1976] [Guttorp and
Lockhart, 1988] [Bangert et al., 2010]. More recent studies include spherical topic models
[Reisinger et al., 2010] that mimics LDA with a Bayesian inference for learning the mean pa-
rameters in vMF but leave the crucial concentration parameters to be set manually and the text
clustering work by [Banerjee et al., 2006] [Banerjee et al., 2003] where an EM-based algorithm
without Bayesian inference was used for parameter estimation. In the simplest vMF mixture
model as described in [Banerjee et al., 2006] each instance is assumed to be drawn from one
of the K vMF distributions with a mixing distribution π, where K is a prespecified constant,
and the parameters of the vMF distributions correspond to the underlying themes (clusters) in
the data. The cluster assignment variable for instance xi is denoted by zi ∈ {1, 2, ..K} in the
probabilistic generative model given below,

zi ∼ Categorical(.|π) i = 1, 2..N

xi ∼ vMF(.|µzi , κ) i = 1, 2..N

The k’th cluster is defined by mean parameter µk and concentration parameter κ. The
parameters P = {µ,κ, π} are treated as fixed unknown constants and Z = {zi}Ni=1 are treated
as a latent variables. To train the model, the familiar EM algorithm was used to iterate between
calculating the E[Z] in the E-step and optimizing P to maximize the likelihood in the M-step.
In the E-step, the expected cluster membership is,

E[zik] =
πkvMF(xi|µk, κ)
K∑
j=1

πjvMF(xi|µj , κ)

The M-step update of parameters is,

πk =

N∑
i=1

E[zik] , Rk =

N∑
i=1

E[zik]xi , µk =
Rk
‖Rk‖

The optimal κ lacks a closed form solution, but a very good approximation with a closed form
expression was developed in [Banerjee et al., 2006],

r̄ =

K∑
k=1

‖Rk‖

N
, κ =

r̄D − r̄3

1− r̄2

57

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

5.3 Bayesian von Mises-Fisher Mixtures (B-vMFmix)

Given data X = {xi}Ni=1 and a fixed number of clusters K, the generative model for the Bayesian
von Mises-Fisher mixture model is as follows,

π ∼ Dirichlet(.|α)

µk ∼ vMF(.|µ0, C0) k = 1, 2, ..K

κk ∼ logNormal(.|m,σ2) k = 1, 2, ..K

zi ∼ Categorical(.|π) i = 1, 2...N

xi ∼ vMF(.|µzi , κzi) i = 1, 2, ..N

In this model, each instance xi is assigned to cluster zi, which is drawn from a multino-
mial distribution over K clusters with a parameter π. The parameters of the k’th cluster are
denoted by a vMF distribution with mean parameter µk and concentration parameter κk. The
cluster mean parameters µ = {µk}Kk=1 are commonly drawn from a prior vMF distribution
with parameters {µ0, C0}. The mixing distribution π is drawn from a symmetric dirichlet with
parameter α. The cluster concentration parameters κ = {κk}Kk=1 are commonly drawn from
a log-normal prior with mean m and variance σ2 (one could also choose a gamma prior, but
lognormal was chosen due to the availability of more easily interpretable mean and variance
parameter and also their closed form Empirical Bayes estimates). The prior parameters in this
model are {α, µ0, C0,m, σ

2} - which we learn using Empirical Bayes (see 5.3.1.3).

This bayesian model improves over the simple vMF mixture in multiple ways; firstly we
share statistical strength by shrinking the cluster mean parameters towards a common µ0, sec-
ondly there is flexibility to learn cluster-specific concentration parameters κk without the risk
of overfitting if the priors are appropriately set, thirdly the posterior distribution over the pa-
rameters gives a measure of uncertainty of the parameters unlike point estimates in simple vMF
mixtures. These advantages are evident in our experimental section (in section 5.7).

The likelihood of the data and the posterior of the parameter is given by,

P (Z,µ,κ, π|m,σ2, µ0, C0, α,X) ∝ P (X|Z,µ,κ, π)P (Z,µ,κ, π|m,σ2, µ0, C0, α)

where

P (X|Z,µ,κ, π) =
N∏
i=1

Mult(zi|π)vMF(xi|µzi , κzi)

P (Z,µ,κ, π|m,σ2, µ0, C0, α) = P (π|α)

K∏
k=1

vMF(µk|µ0, C0)logNormal(κk|m,σ2)

58

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

Since the posterior distribution of the parameters cannot be calculated in closed form, we need
to resort to other ways to estimate the approximate like variational inference (5.3.1) or sampling
techniques (5.3.2).

5.3.1 Variational Inference

As described in section 2.4, variational inference tries to find a distribution among a class of
simple distributions that is closest in KL divergence to the true posterior. We assume that this
class of simple distributions is a product of independent distributions over the parameters.
Specifically, we assume the following factored form for the approximate posterior,

q(π) ∼ Dirichlet(.|ρ)

q(µk) ∼ vMF(.|ψk, γk) k = 1, 2..K

q(zi) ∼ Categorical(.|λi) i = 1, 2..N

q(κk) ≡ Discussed later k = 1, 2..K

The goal is to estimate the parameters of this factored form such that it is closest in KL diver-
gence to the true posterior. Following standard variational inference techniques (see section 2.4
or [Wainwright and Jordan, 2008]) the parameters are estimated by solving the following opti-
mization problem,

max
q

Eq
[
logP (X,Z,µ,κ, π|m,σ2, µ0, C0, α)

]
− Eq[log(q)] (5.1)

To solve the optimization problem, we use a coordinate ascent approach, where we iteratively
update each parameter to maximize the objective.

logP (X,Z,µ,κ, π|m,σ2, µ0, C0, α) = log

[
Dirichlet(π|α)

N∏
i=1

Mult(zi|π)vMF(xi|µzi , κzi)

]

= − logB(α) +
K∑
k=1

(α− 1) log(πk) +
N∑
i=1

K∑
k=1

zik log πk +
N∑
i=1

K∑
k=1

zik

(
logCD(κk) + κkx

>
i µk

)
+

K∑
k=1

(
logCD(C0) + C0µ

>
k µ0

)
+

K∑
k=1

(
−log(κk)−

1

2
log(2πσ2)− (log(κk)−m).2

2σ2

)
The expectation under q of the terms above are,

Eq[zi,k] = λi,k , Eq[log(πk)] = Ψ(ρk)−Ψ

∑
j

ρj

 , Eq[µk] = Eq

[
ID

2
(γk)

ID
2
−1(γk)

]
µk

where Ψ(.) is the digamma function.

59

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

Optimizing 5.1 w.r.t ρ,

ρk = α+
N∑
i=1

λik (5.2)

Optimizing 5.1 w.r.t λ

λik ∝ exp(Eq[log vMF(xi|µk, κk)] + Eq[log(πk)])

where

Eq[log vMF(xi|µk, κk)] = Eq[logCD(κk)] + Eq[κk]x
>
i Eq[µk] (5.3)

Optimizing 5.1 w.r.t posterior parameters of µ

µk ∝ exp

(
Eq[κk]

(
N∑
i=1

Eq[zik]xi

)
+ C0µ0

)

⇒ γk =

∥∥∥∥∥Eq[κk]
(

N∑
i=1

Eq[zik]xi

)
+ C0µ0

∥∥∥∥∥
ψk =

Eq[κk]

(
N∑
i=1

Eq[zik]xi

)
+ C0µ0

γk

where

Eq[zik] = λik

Estimating the posterior of the concentration parameters is not straightforward because of
the presence of the log-bessel function in logCD(κ). The difficulty in estimation arises because
we need to define q(κk) such that Eq(κk)[logCD(κk)] (eq (5.3)) can be calculated either in closed
form or numerically. However, we are not aware of any distribution for which this is possible.
Therefore, we present two ways of estimating the posterior q(κk) which rely on approximating
Eq[logCD(κk)] in two ways - (a) Sampling scheme (b) Bounding scheme.

5.3.1.1 Sampling scheme

For the sampling scheme we assume no specific distribution for q(κk),

q(κk) ≡ No-specific form k = 1, 2..K

We estimate the posterior of κk ’s (and related quantities such as logCD(κk)) by drawing samples
of κk instead of maintaining a specific distribution. To draw samples we need the conditional
distribution for κk. In typical MCMC or Gibbs sampling this is not a problem since the condi-
tional distribution for κk is expressed in terms of samples of the other parameters. However, the

60

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

variational inference in the previous step does not maintain samples but instead maintains only
posterior distributions. Therefore we need to express the conditional distribution of κk not in
terms of samples but in terms of the posterior distribution of the other parameters. We achieve
this by introducing a series of approximations to the true conditional distribution of κk.

The true conditional distribution of κk is given by,

P (κk|X,m, σ2, µ0, C0, α) =
P (κk,X|m,σ2, µ0, C0, α)

P (X|m,σ2, µ0, C0, α)

∝ P (κk,X|m,σ2, µ0, C0, α)

∝
∫

Z

∫
π

∫
µ

∫
κ−k

P (κk,X,Z,µ,κ
−k, π|m,σ2, µ0, C0, α)

≈ Eq
[
P (κk,X,Z,µ,κ

−k, π|m,σ2, µ0, C0, α)
]

(5.4)

Using Jensen inequality, we have,

Eq

[
P (κk,X,Z,µ,κ

−k|m,σ2, µ0, C0, π)
]
≥ exp

(
Eq

[
logP (κk,X,Z,µ,κ

−k|m,σ2, µ0, C0, π)
])

(5.5)

where the inner expectation (after discarding terms which do not depend on κk) is

Eq

[
logP (κk,X,Z,µ,κ

−k|m,σ2, µ0, C0, π)
]

=[
N∑
i=1

λik

(
logCD(κk) + κkx

>
i Eq[µk]

)]
− log(κk)−

(log(κk)−m)2

2σ2
+ constants ..

= nk logCD(κk) + κk

(
N∑
i=1

λikx
>
i Eq[µk]

)
− log(κk)−

(log(κk)−m)2

2σ2
+ constants ..

(5.6)

where

nk =
N∑
i=1

λik

Combining (5.4), (5.5), (5.6) the approximate conditional distribution of κk is

P (κk|X,m, σ2, µ0, C0, π) ∝ exp

(
nk logCD(κk) + κk

(
N∑
i=1

λikx
>
i Eq[µk]

))
logNormal(κk|m,σ2)

(5.7)

Having identified the proportionality of the conditional distribution of κk in terms of the
distribution of the other parameters, we can use MCMC sampling with a suitable proposal dis-
tribution to draw samples. Based on the above expression, it is easy to see that computation

61

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

becomes easier if we use the logNormal(.|m,σ2) as the proposal distribution for MCMC sam-
pling i.e. the logNormal likelihood terms cancel. However, we still recommend using a different
proposal distribution such as logNormal or Normal around the current value of the parameter
for convergence reasons (note that the κ’s are relative large positive values, therefore using a
Normal Proposal distribution works fine). This is because the posterior of κk ’s are reasonably
concentrated around a small region and since the prior distribution is reasonably vague, sim-
ply using logNormal(.|m,σ2) as the proposal distribution increases the number of iterations for
convergence.

The MCMC sampling step for the posterior of κ introduces flexibility into the model as the
samples are now from the true posterior (given the rest of the parameters). The downside is that
the variational bound is no longer guaranteed to be a valid lower-bound since Eq[logCD(κk)]

and Eq[κk] are estimated through the samples. However, we observed that the posterior dis-
tribution of the κk ’s was reasonably concentrated around the mode and the estimates from
samples gave good empirical performance in terms of predictive power.

This partial MCMC sampling does not increase computational costs much since there are
only K variables to be estimated and the major computational bottleneck is in updating λ.
Another alternative to repeated sampling is to use grid search, where we break down the con-
tinuous posterior distribution of κk across a finite set of points, and use this discrete distribution
to estimate the expectation of various quantities.

Note that the same model with an unnormalized prior for κ was used in [Bangert et al.,
2010]. However since κ is not a natural parameter of the vMF distribution, it is not clear
whether the unnormalized prior results in a valid posterior distribution.

5.3.1.2 Bounding Scheme

The core problem in doing full variational inference for the model is the computation of the
Eq[logCD(κk)] in (5.1), more specificallyEq[log I.5D−1(κk)]. In the bounding scheme, we upper-
bound the log bessel function using a Turan type inequality [Baricz et al., 2011] followed by
an approximation using the delta method. More specifically, the growth of the modified bessel
function of first kind with order v and argument u i.e. Iv(u) can be lower-bounded by [Baricz
et al., 2011],

u
Iv(u)′

Iv(u)
≤
√
u2 + v2 ⇒ Iv(u)′

Iv(u)
≤
√

1 +
v

u

2

Integrating over u > 0,

log(Iv(u)) ≤
√
u2 + v2 − v log

(
v
√
v2 + u2 + v2

)
− v log(u)

62

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

Eq[log(Iv(u))] ≤ Eq[
√
u2 + v2]− vEq[log

(
v
√
v2 + u2 + v2

)
]− vEq[log(u)] (5.8)

We assume that posterior distribution for the cluster concentration parameters (κk ’s) is log-
normally distributed,

q(κk) ≡ logNormal(.|ak, bk)

In order to find the parameters of the posterior of the k′th cluster, i.e. ak, bk, we optimize (5.1),

nkEq[logCD(κk)] + Eq[κk]
∑
i

λikx
>
i Eq[µk]− Eq[log(κk)]− Eq

[
(log(κk)−m)2

2σ2

]
−H(q)

where

Eq[κk] = exp(ak + .5 ∗ b2k)

Eq[log(κk)] = ak

Eq

[
(log(κk)−m)2

2σ2

]
=

1

2σ2
(
Eq[log(κk)

2]− 2mEq[log(κk)] +m2
)

Eq[log(κk)
2] = a2k + b2k

H(q(κk)) = .5 + .5 log(2πb2k) + ak

Eq[logCD(κk)] = (.5D − 1)Eq[log(κk)]− .5D log(2π)− Eq[log I.5D−1(κk)] (5.9)

To calculate Eq[log I.5D−1(κk)] we first apply the bound in eq (5.8) followed by the applica-
tion of delta approxmiation method (note that all the expressions on the RHS of eq (5.8) are
twice differentiable). The expectation of a function g over a distribution q is given by

Eq[g(x)] ≈ g(Eq[x]) + g′′(Eq[x])
V arq[x]

2
(5.10)

Combining (5.9), (5.10) and (5.1), we can estimate the posterior parameters ak, bk us-
ing gradient descent . Although it is tempting to directly apply the delta method to calculate
Eq[log I.5D−1(κk)], this leads to expressions that are not computable directly as well as numeri-
cally unstable.

5.3.1.3 Empirical Bayes estimate for prior parameters

In many cases the end user might not have a good idea on how to set the prior parameters
{m,σ, µ0, C0} of the model. In such situations we can use the parametric Empirical Bayes (EB)
estimation technique [Casella] for estimating the prior parameters from the data itself. Using
the variational lower bound as a surrogate to the marginal likelihood of the parameters, the EB

63

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

estimate for m,σ is obtained by maximizing the VLB,

maxm,σ2 −
K

2
log(σ2)− 1

2σ2

K∑
k=1

(Eq[log(κk)
2]− 2mEq[log(κk)] +m2)

⇒ m =
1

K

∑
Eq[log(κk)], σ2 =

1

K

K∑
k=1

Eq[log(κk)
2]−m2

The empirical bayes estimate for µ0, C0 is given by,

max
µ0,C0

K logCD(C0) + C0µ
>
0

(
K∑
k=1

Eq[µk]

)

Following [Sra, 2012], the updates are given by,

µ0 =

K∑
k=1

Eq[µk]∥∥∥∥ K∑
k=1

Eq[µk]

∥∥∥∥ , C0 =
r̄D − r̄3

1− r̄2
where r̄ =

∥∥∥∥ K∑
k=1

Eq[µk]

∥∥∥∥
K

The empirical bayes estimate for α is given by,

max
α>0
− logB(α) + (α− 1)s

where s =
K∑
k=1

Eq[log πk]

B(α) =
Γ(α)K

Γ(Kα)

Since there is no closed-form solution, we need to apply a numerical optimization like gradient
descent or newton’s method to find the estimate for α.

5.3.2 Collapsed Gibbs Sampling

Sampling techniques, unlike variational inference estimate the posterior by repeatedly drawing
samples from the conditional distribution of the parameters. The main advantage of sampling
methods over variational inference is that they are guaranteed to converge to the true posterior
if sufficient number of samples are drawn, however, the downside is that it is often difficult to
judge whether sufficiency has been achieved or not.

For our models, we can develop efficient collapsed Gibbs sampling techniques for the model
by using the fact that vMF distributions are conjugate w.r.t each other. This enables us to

64

5.3. Bayesian von Mises-Fisher Mixtures (B-vMFmix)

completely integrate out {µk}Kk=1 and π and update the model by maintaining only the clus-
ter assignment variables {zi}Ni=1 and the concentration parameters {κk}Kk=1. The conditional
distributions is as follows,

P (zi = t|Z−i,X,κ,m, σ2, µ0, C0) =∫
π

∫
µ
P (xi|zi, µk, κk)P (zi|π)P (π|α)

∏
j 6=i

P (zj |π)P (xj |µzj , κzj)
K∏
k=1

P (µk|µ0, C0)logNormal(κk|m,σ2)

∝
∫
π
P (π|α)P (zi|π)

∏
j 6=i

P (zj |π) .
K∏
k=1

∫
µk

P (xi|zi, µk, κk)
∏

j 6=i,zj=k
P (xj |µk, κk)

P (µk|µ0, C0)

∝
Γ(Kα)

K∏
k=1

Γ(α+ nk,−i + I(t = k))

Γ(Kα+N)
K∏
k=1

Γ(α)

K∏
k=1

CD(κk)
nk,−i+I(k=t)CD(C0)

CD

(∥∥∥∥∥κk
(
I(t = k)xi +

∑
j 6=i,zj=k

xj

)
+ C0µ0

∥∥∥∥∥
)

∝ (α+ nt,−i)CD(κt)

CD

(∥∥∥∥∥κt ∑
j 6=i,zj=t

xj + C0µ0

∥∥∥∥∥
)

CD

(∥∥∥∥∥κt
(∑
j:zj=t

xj

)
+ C0µ0

∥∥∥∥∥
)

Similarly, we derive the conditional distribution for κk,

P (κk|..) ∝
∫
µk

∏
zi=k

P (xi|µk, κk)P (µk|µ0, C0)logNormal(κk|m,σ2)

∝ CD(κk)
nkCD(C0)

CD

(∥∥∥∥∥κk ∑
j:zj=k

xj + C0µ0

∥∥∥∥∥
) logNormal(κk|m,σ2)

The conditional distribution of κk is again not of a standard form and as before, we use a
step of MCMC sampling (with log-normal proposal distribution around the current iterate) to
sample κk.

The empirical bayes estimation in the context of MCMC sampling can be done as described
in [Casella, 2001]. The prior parameters are estimated by maximizing the sum of the marginal
likelihood of all the samples.

65

5.4. Hierarchical Bayesian von Mises-Fisher Mixtures

5.4 Hierarchical Bayesian von Mises-Fisher Mixtures

We assume that the user wants to organize the data into a given fixed hierarchy of nodes N .
The hierarchy is defined by the parent function pa(x) : N → N which denotes the parent of the
node x in the hierarchy. The generative model for H-vMFmix is given by,

π ∼ Dirichlet(.|α)

µk ∼ vMF(.|µpa(k), κpa(k)) k ∈ N

κk ∼ logNormal(.|m,σ2) k ∈ N

zi ∼ Categorical(.|π), zi ∈ {Leaf nodes of hierarchy }
xi ∼ vMF(.|µzi , κzi) i = 1, 2..N

The user specified parameters are {µ0, C0} - parameters at the root-node and {m,σ2, α}. Each
node n is equipped with a vMF distribution with parameters µn, κn. The mean parameters of
the sibling nodes are drawn from a common prior defined by their parent vMF distribution. The
concentration parameters for all the nodes are commonly drawn from a log normal distribution
with mean m and variance σ2. The instance xi is drawn from the one of the leaf-nodes zi
(Note that the data X resides on the leaf-nodes). By drawing the parameters of siblings from a
common parent node, we are forcing the nodes which are closer to each other in the hierarchy
to have similar model parameters. Our hope is that this would enable data to be organized
into the appropriate levels of granularity as defined by the hierarchy. For inference, we can
develop similar variational inference methods with Empirical Bayes step to estimate the prior
parameters. The updates for all the parameters are similar except for the posterior distribution
of cluster mean parameter µk,

For leaf nodes

γk =

∥∥∥∥∥Eq[κk]
(

N∑
i=1

Eq[zik]xi

)
+ Eq[κpa(k)]Eq[µpa(k)]

∥∥∥∥∥
ψk =

Eq[κk]

(
N∑
i=1

Eq[zik]xi

)
+ Eq[κpa(k)]Eq[µpa(k)]

γk

For non-leaf nodes

γk =

∥∥∥∥∥∥Eq[κk]
N∑

c:pa(c)=k

Eq[µc] + Eq[κpa(k)]Eq[µpa(k)]

∥∥∥∥∥∥
ψk =

Eq[κk]
N∑

c:pa(c)=k

Eq[µc] + Eq[κpa(k)]Eq[µpa(k)]

γk

66

5.5. Temporal Bayesian von Mises-Fisher Mixtures

5.5 Temporal Bayesian von Mises-Fisher Mixtures

We present Temporal vMF mixture(T-vMFmix), a state-space model based on the vMF distribu-
tion where the parameters of a cluster at a given time point have evolved from the previous
time point. Given data across T time-points, X = {{xt,i}Nti=1}Tt=1 and a fixed number of clusters
K, the generative model is given by,

π ∼ Dirichlet(.|α)

µ1,k ∼ vMF(.|µ−1, C0) k = 1, 2, 3..K

µt,k ∼ vMF(.|µt−1,k, C0) t = 2...T, k = 1, 2, 3..K

κk ∼ logNormal(.|m,σ2) k = 1, 2..K

zt,i ∼ Mult(.|π) t = 1, 2...T ; i = 1, 2, ..Nt,

xt,i ∼ vMF(.|µzt,i , κzt,i) t = 1, 2..T ; i = 1, 2, ...Nt

The prior parameters in this model are {µ−1, C0, α,m, σ
2}. The cluster specific concentration

parameters κk ’s are commonly drawn from a log-Normal distribution with meanm and variance
σ2. The mean parameters of the clusters at time t are drawn from a vMF distribution centered
around the previous time t − 1 with a concentration C0. This time-evolution of the cluster
parameters introduces a layer of flexibility and enables T-vMFmix to accommodate changes in
the mean parameter within a given cluster. The C0 parameter controls the sharpness of time-
evolution; having a large value of C0 ensures that cluster parameters are more or less the same
over time whereas a low value of C0 enables the cluster parameter to fluctuate wildly between
adjacent time points.

ηt ∼ N (.|ηt−1,Σ−1), αt,k = exp(ηt,k)/

K∑
j=1

exp(ηt,j)

πt ∼ Dirichlet(.|αt)

For inference, we can develop a similar variational methods and Empirical Bayes step for
estimating the prior parameters. The updates for the mean parameters at time t and cluster k
are

γt,k =

∥∥∥∥∥Eq[κk]
Nt∑
i=1

Eq[zt,ik]xi + C0Eq[µt−1,k] + I(t < T)C0Eq[µt+1,k]

∥∥∥∥∥
ψt,k =

Eq[κk]
Nt∑
i=1

Eq[zt,i,k]xi + C0Eq[µt−1,k] + I(t < T)C0Eq[µt+1,k]

γt,k

67

5.6. Experimental Setting

Table 5.1: Dataset Statistics

Dataset #Instances #Training #Testing #True Clusters #Features
TDT4 622 311 311 34 8895
TDT5 6366 3183 3183 126 20733
CNAE 1079 539 540 9 1079
K9 2340 1170 1170 20 21839

For the partial MCMC sampling for κk, the approximate likelihood in (5.6) is

Eq[logP (κk,X,Z,µ,κ−k,η|..)] =

− log(κk)−
(log(κk)−m)2

2σ2
+

(
T∑
t=1

Nt∑
i=1

Eq[zt,ik]

)
logCd(κk) +

T∑
t=1

Nt∑
i=1

Eq[zt,ik]x
>
i Eq[µk] + constants

The Empirical Bayes estimate of C0 can be computed as follows,

max
C0

KT logCD(C0) + C0

T∑
t=1

K∑
k=1

Eq[µt,k]
>Eq[µt−1,k]

⇒s =

T∑
t=1

K∑
k=1

Eq[µt,k]
>Eq[µt−1,k]

KT

r̄ = ||s||

C0 =
r̄D − r̄3

1− r̄2

Note that C0 determines the level of influence of the previous time-step to the next time-
step. In some sense it acts as a regularization term forcing the parameters of the next time-step
to be similar to the previous one. We recommend that this be set manually than being learnt
from the data. The reason is that since the estimation is done through maximizing the marginal
likelihood, C0 typically tends to 0, i.e. towards no regularization.

5.6 Experimental Setting

5.6.1 Datasets

Throughout our experiments we used several popular benchmark datasets (Table 5.1),

68

5.6. Experimental Setting

1. TDT-{4,5} [Allan et al., 1998] : A corpus of reuters news articles over different spans of
time. The news articles are labeled to denote different events that transpired during that
time. We used only those subset of documents for which labels were available.

2. CNAE1: A collection of 1080 small-text documents of business descriptions of Brazilian
companies categorized into a subset of 9 categories like medical, legal, industrial etc.

3. K9 2: A collection of webpages that appeared on Yahoo! news portal over several days
under 20 different topics.

All datasets (except NIPS) have associated class-labels and are single-labeled i.e. each instance
is assigned to exactly one class-label. For all the datasets, we performed standard stopword
removal and stemming, followed by Tf-Idf weighting and normalization to a unit-sphere.

5.6.2 Evaluation Metrics

Analysing the effectiveness of clustering algorithms is a difficult problem. Although clustering
tries to achieve high intra-cluster similarity and low inter-cluster similarity, this in itself might
not lead to good clusters with respect to the end application. Due to the inherent subjectivity,
conclusive comparisons between clustering algorithms often involve user studies which are time
consuming and not always be feasible. Despite our reservations, we will attempt to evaluate
the clustering algorithms using two commonly used types of metrics,

1. Recoverability: In scenarios where we have a fixed set of instances and we are confident
that the clustering algorithm has the right modelling assumptions and can ideally recover
the ground-truth clusters, recoverability tells us how well the predicted clusters match
with the ground-truth clusters.

We choose two popularly used recoverability metrics - Normalized Mutual Information
and Adjusted Rand Index (more details in Appendix B).

2. Generalizability (or Predictive power): Generalizability measures how well does the clus-
tering algorithms generalize to new unseen data. We used likelihood on a held-out test-set
to compare clustering algorithms. A better clustering algorithm is the one that is able to
explain the data better and assigns a higher likelihood to unseen data.

Both the measures have been widely used (although previous work have rarely reported both).
It is possible that generalizability and recoverability might in itself be two conflicting goals i.e. a
clustering method that has high recoverability need not generalize well and vice versa.

1http://archive.ics.uci.edu/ml/datasets/CNAE-9
2http://www-users.cs.umn.edu/boley/ftp/PDDPdata/

69

5.6. Experimental Setting

The validity of evaluating models like H-vMFmix or D-vMFmix is particularly questionable
as their goal is to provide some insightful view of the data and not necessarily generalize to new
data or recover existing clusters. However, following previous works [Blei et al., 2004],[Blei and
Lafferty, 2007] we present the predictive power of these methods on held out test-set for the
sake of completeness.

5.6.3 Description of Baselines

We compared our proposed models against the following baselines,

1. vMFmix: A mixture of vMF distributions described in Section 5.2. Note that this is similar
to the model developed in [Banerjee et al., 2006], except that all clusters share the same
κ. Using the same κ for all clusters performed significantly better than allowing cluster-
specific κk ’s - this may be due to the absence of Bayesian prior.

2. K-means (KM): The standard k-means with euclidean distance and hard-assignments.

3. Gaussian Mixtures (GM): A mixture of Gaussian distributions with the means commonly
drawn from a Normal prior and a single variance parameter for all clusters - using cluster
specific variances performed worse (even with an Inverse gamma prior).

4. Multinomial Mixture (MM): A graphical model where each instance is represented as a
vector of feature counts, drawn from a mixture of K Multinomial distributions.

5. Latent Dirichlet Allocation (LDA) [Blei et al., 2003] An admixture model where the
words in an instance are drawn from an instance-specific mixture of K multinomials.
Note that LDA may not be a good choice to ensure a single label for an instance, however
we still present the results for the sake of completeness.

We used the Tf-Idf normalized data representation for vMFmix, KM and GM, and feature counts
representation (without normalization) for MM and LDA. For all the methods, every instance
is assigned to the cluster with largest probability before evaluation. Also, for the sake of a
fair comparison, we started all the clustering algorithms with the same random initial cluster-
assignment variables Z. All the results presented in this chapter are averaged over 10 different
runs. Note that the kmeans++ initialization helped in increasing robustness to local maxima
(in most cases, all the 10 runs lead to very similar clustering objectives).

5.6.4 Convergence Criterea and Other Details

We used the following convergence criteria for the inference procedures,

70

5.7. Results

1. The increase in objective was less than .1.

2. The difference in norm between adjacent iterations was less than .01 successively for 3
iterations.

3. The number of iterations reached 200.

For sampling the concentration parameters, we used a log-normal proposal distribution with
mean as the current iterate and variance 1.0. The first 300 iterations were used for burn in and
the last 200 iterations was used to estimate the samples (500 iterations seemed to be good
enough). Since there are only K concentration parameters this does not affect the computa-
tional complexity at all.

Since all the algorithms are EM based algorithms and the objective is not convex, it is nec-
essary to initialize the variables appropriately. For all the vMF mix models we initialized the
concentration parameters with relative low values like 5 or 10 which implies that the initial
spread of the clusters are very broad. Similarly the variance parameter of the Gaussian mixture
was set to a very high value to make the initial distribution very broad. This performed much
better than setting the initial value of the variance parameters to the MLE of all the data.

Naively calculating Iν(a) is not possible because of the presence of ratio of factorial terms
in the bessel function, which causes numerical overflow issues for even relatively small ν ∼ 15.
Therefore, we used the log approximation given in [Hornik and Grün] and exponentiated it,

log Iν(a) ≈
√
a2 + (ν + 1)2 + (ν +

1

2
) log

a

ν + 1
2 +

√
a2 + (ν + 1)2

− 1

2
log(

a

2
)

+ (ν +
1

2
) log

2ν + 3
2

2(ν + 1)
− 1

2
log(2π)

Iν(a) = exp(log Inu(a))

5.7 Results

We first present a full fledged comparison between the various clustering methods based on
recoverability, followed a within vMF family comparison based on generalizability metrics. We
finally present some more experimental analysis such as the effect of normalization and the
ability to detect out-of-sample data of the clustering methods.

5.7.1 Recoverability

First and the most natural question that we would like to answer is ‘are vMF mixtures any
better than standard Gaussian or Multinomial mixtures?’. Table 5.2 shows the results for B-

71

5.7. Results

Table 5.2: Recoverability of the various clustering algorithms on five datasets using 20 clusters.
Each result is averaged over 10 different runs of the EM algorithm.

Dataset Metric B-vMFmix vMFmix Kmeans GM MM LDA

CNAE NMI 0.748 0.650 0.605 0.620 0.726 0.320

ARI 0.669 0.426 0.357 0.311 0.528 0.169

K9 NMI 0.551 0.543 0.482 0.487 0.487 0.269

ARI 0.352 0.350 0.293 0.264 0.321 0.110

TDT4 NMI 0.900 0.880 0.857 0.842 0.720 0.841

ARI 0.799 0.729 0.693 0.675 0.467 0.692

TDT5 NMI 0.860 0.851 0.833 0.827 0.796 0.776

ARI 0.710 0.676 0.617 0.591 0.580 0.501

CITESEER NMI 0.401 0.403 0.402 0.408 0.271 0.033

ARI 0.141 0.141 0.136 0.134 0.052 0.000

vMFmix, vMFmix, KM, GM, MM and LDA on five datasets data sets with 20 clusters using two
recoverability metrics - NMI and ARI. The full set of results with varying clusters and metrics
can be found in [Gopal and Yang, 2014b]. Note that no separate test set is needed for this type
of evaluation, i.e., all the data (but the labels) are used for training the models and the labels
are used for evaluating the resulting clusters. For all the methods, we used the MAP estimate of
the parameters to ensure a fair comparison.

Both the vMF based models, vMF-mix and B-vMFmix perform better than the the non-vMF
clustering algorithms on almost all datasets and metrics. The conclusions and differences in
performance are similar even with varying number of clusters. Despite the reservations that
we might have about the clustering metrics, a superior performance on most datasets certainly
provides evidence of superiority of vMF based methods.

5.7.2 Generalizability

We present the results of likelihood based evaluation only within the vMF family. We do not
compare outside the vMF family since the support of the models are different (vMF models are
defined on unit spheres, Multinomial models are defined on non-negative integers, etc) and the
resulting likelihoods are not numerically comparable.

72

5.7. Results

8.150E+06
8.200E+06
8.250E+06
8.300E+06
8.350E+06
8.400E+06
8.450E+06
8.500E+06
8.550E+06
8.600E+06
8.650E+06

 10 20 30 40 50

L
og

-L
ik

el
ih

oo
d

Clusters

B-vMF-mix
vMF-mix

2.305E+08
2.310E+08
2.315E+08
2.320E+08
2.325E+08
2.330E+08
2.335E+08
2.340E+08
2.345E+08
2.350E+08
2.355E+08

 10 20 30 40 50

L
og

-L
ik

el
ih

oo
d

Clusters

B-vMF-mix
vMF-mix

9.300E+05

9.320E+05

9.340E+05

9.360E+05

9.380E+05

9.400E+05

9.420E+05

9.440E+05

9.460E+05

 10 20 30 40 50

L
og

-L
ik

el
ih

oo
d

Clusters

B-vMF-mix
vMF-mix

9.300E+05

9.320E+05

9.340E+05

9.360E+05

9.380E+05

9.400E+05

9.420E+05

9.440E+05

9.460E+05

 10 20 30 40 50

L
og

-L
ik

el
ih

oo
d

Clusters

B-vMF-mix
vMF-mix

Figure 5.1: The Likelihood on the held out test-set (averaged over 10 runs) assigned by B-vMFmix and
vMFmix for varying number of clusters on 4 datasets - TDT4 (top left), TDT5 (top right), K9 (bottom
left), CNAE (bottom right).

5.7.2.1 Comparison of B-vMFmix and vMFmix

We compare the performance of the basic vMF mixture (vMFmix) and the fully Bayesian vMF
mixture model (B-vMFmix) on four data sets by varying the number of clusters from 10 to 30
respectively. The better model will be able to assign higher likelihood for the test data. The
train-test splits are shown in Table 5.1. The B-vMFmix is trained through variational inference
(using Sampling method for the concentration parameters) and vMFmix is trained through the
EM algorithm. In our experiments, the sampling method performed better than the bounding
method with an insignificant difference in running time, we therefore report all results using
the sampling based method. All the prior parameters are learned from the data using Em-
pirical Bayes. The results are averaged over 10 runs with different initial values. The results
(Figure 5.1) show that B-vMFmix is able to assign a higher likelihood for unseen data on all 4
datasets.

73

5.7. Results

7.900E+06

8.000E+06

8.100E+06

8.200E+06

8.300E+06

8.400E+06

8.500E+06

8.600E+06

8.700E+06

27 (3,3) 64 (3,4) 81 (4,3) 100 (2,10) 125 (3,5)

L
og

-L
ik

el
ih

oo
d

Clusters

H-vMF-mix
B-vMF-mix

vMF-mix
2.280E+08

2.290E+08

2.300E+08

2.310E+08

2.320E+08

2.330E+08

2.340E+08

2.350E+08

2.360E+08

27 (3,3) 64 (3,4) 81 (4,3) 100 (2,10) 125 (3,5)

L
og

-L
ik

el
ih

oo
d

Clusters

H-vMF-mix
B-vMF-mix

vMF-mix

9.000E+07
9.020E+07
9.040E+07
9.060E+07
9.080E+07
9.100E+07
9.120E+07
9.140E+07
9.160E+07
9.180E+07

27 (3,3) 64 (3,4) 81 (4,3) 100 (2,10) 125 (3,5)

L
og

-L
ik

el
ih

oo
d

Clusters

H-vMF-mix
B-vMF-mix

vMF-mix
9.250E+05
9.300E+05
9.350E+05
9.400E+05
9.450E+05
9.500E+05
9.550E+05
9.600E+05
9.650E+05
9.700E+05

27 (3,3) 64 (3,4) 81 (4,3) 100 (2,10) 125 (3,5)

L
og

-L
ik

el
ih

oo
d

Clusters

H-vMF-mix
B-vMF-mix

vMF-mix

Figure 5.2: Average Likelihood of H-vMFmix, B-vMFmix and vMFmix for different input hierarchies.
The number of clusters for B-vMFmix, vMFmix is set to number of leaf nodes in the hierarchy - TDT4
(top left), TDT5 (top right), K9 (bottom left), CNAE (bottom right).

5.7.2.2 Comparison of H-vMFmix against B-vMFmix and vMFmix

Figure 5.2 compares the performance of the hierarchical vMF mixture model (H-vMFmix) with
vMFmix and B-vMFmix. We test H-vMFmix on 5 different hierarchies with varying depth of
hierarchy and branch factor (branch factor is the #children under each node). For example
(height h=3,branching factor b=4) is a hierarchy 3 levels deep where the zeroth level is the
root-node under which there are 4 children which forms the first level, each of these 4 children
in turn have 4 children each leading to 16 nodes in the second level, each of these 16 children
have 4 children each which forms 64 children at the third level. We present on the results
on (h=3,b=3),(h=3,b=4),(h=4,b=3),(h=2,b=10),(h=3,b=5) for H-vMFmix. We also plot
the performance of the corresponding vMFmix and B-vMFmix; the number of clusters was set
equal to the number of leaf nodes in the hierarchy. The results show that H-vMFmix is able to
offer better predictive power than vMFmix and B-vMFmix.

74

5.7. Results

0.000E+00
1.000E+04
2.000E+04
3.000E+04
4.000E+04
5.000E+04
6.000E+04
7.000E+04
8.000E+04
9.000E+04

1988 1990 1992 1994 1996 1998 2000 2002

Im
pr

ov
em

en
t i

n
L

og
-L

ik
el

ih
oo

d

Year

T-vMF-mix
B-vMF-mix

0.000E+00

1.000E+05

2.000E+05

3.000E+05

4.000E+05

5.000E+05

6.000E+05

Apr 03 May June July Aug Sept

Im
pr

ov
em

en
t i

n
L

og
-L

ik
el

ih
oo

d

Months (Year 2003)

T-vMF-mix
B-vMF-mix

-1.000E+05
-5.000E+04
0.000E+00
5.000E+04
1.000E+05
1.500E+05
2.000E+05
2.500E+05
3.000E+05
3.500E+05
4.000E+05

1996 1998 2000 2002 2004 2006

Im
pr

ov
em

en
t i

n
L

og
-L

ik
el

ih
oo

d

Year

T-vMF-mix
B-vMF-mix

-1.000E+05

-5.000E+04

0.000E+00

5.000E+04

1.000E+05

1.500E+05

2.000E+05

2.500E+05

3.000E+05

1996 1998 2000 2002 2004 2006

Im
pr

ov
em

en
t i

n
L

og
-L

ik
el

ih
oo

d

Year

T-vMF-mix
B-vMF-mix

Figure 5.3: Relative improvement in likelihood of T-vMFmix, B-vMFmix models over vMFmix across
time (with 30 clusters) - NIPS dataset (top left), TDT5 (top right), NYTC-politics (bottom left) and
NYTC-elections (bottom right).

5.7.2.3 Comparison of T-vMFmix against B-vMFmix and vMFmix

We compare the predictive power of T-vMFmix against B-vMFmix and the baseline vMFmix on
the following four temporal datasets which have time-stamps associated with instance,

1. NIPS : This dataset has 2483 research papers from the proceedings of the NIPS conference
spread over a span of 17 years. The collection was divided into 17 time-points based on
year of publication of each paper.

2. TDT5 : This dataset has 6636 news stories over a span of few months (Apr 03 to Sept 03).
The collection was divided into 22 time-points where each time-point corresponds to one
week of news. Note that we selected only those news stories which have been judged by
humans to belong to one or more preselected news ‘events’ [Allan et al., 1998].

75

5.7. Results

Table 5.3: Comparison of different data representations using vMFmix and K-means using 30
clusters. Bold face numbers indicate best performing data representation.

Dataset CNAE TDT5
Method Representation/Metric NMI ARI NMI ARI
vMFmix Tf-Idf normalization .650 .426 .851 .676

Tf normalization .553 .310 .827 .657
K-means Tf-Idf normalization .605 .311 .827 .591

Tf normalization .536 .288 .799 .551

3. NYTC-{politics,elections}: This is a collection of New York Times news articles from the
period 1996-2007. We formed two different datasets - the first one being more general
than the second one. The first subset consist of all news articles which have been tagged
as politics and the second subset consists of articles which have been tagged elections. For
computational reasons, we removed all words which occurred less than 50 times and news
stories which have less than 50 words. This leads to the nytc-politics dataset consisting of
48509 news articles with 16089 words and the nytc-elections dataset consisting of 23665
news articles and 10473 words.

We test the methods by predicting the likelihood of the data of the next time-point given all
the articles from the beginning using 30 topics. For ease of visualization, we plot the relative
improvement in log-likelihood of the B-vMFmix and T-vMFmix models over the simple vMFmix
model (This is because the log-likelihood from adjacent time-points are not comparable and
fluctuate wildly). The results (Figure 5.3) suggests that T-vMFmix by taking the temporal nature
into account, is able to always assign a higher likelihood to the next time-point than B-vMFmix
and vMFmix.

5.7.3 Analysis of Tf-Idf Weighting

In order to fully understand the benefits of inverse document frequency scaling, we compared
the performance of representing the data using plain Tf normalization against Tf-Idf normaliza-
tion with ‘ltc’ 3 based term weighting. The results of experiments on TDT5 and CNAE datasets
using vMFmix and K-means (as reported in Table 5.3) show that on both the datasets repre-
senting the data using Tf-Idf normalization gives significant performance benefits.

3http://nlp.stanford.edu/IR-book/html/htmledition/
document-and-query-weighting-schemes-1.html

76

5.7. Results

Table 5.4: Accuracy of in-sample vs out-of-sample prediction of the various models.

Method Accuracy
BvMFmix 0.612
vMFmix 0.558
GM 0.582
MM 0.552
LDA 0.601

5.7.4 In-sample vs Out-sample Detection

The likelihood based comparisons in the previous section can be essentially viewed as a density
estimation task where the goal of the clustering algorithm is to estimate a density function that
can assign probabilities to unseen data. One of the side-effects of this model is that it can be
used to distinguish between in-sample and out-of-sample data. One way to do this is as follows
- given a new instance, we compute the likelihood of this instance and check if it is inside
or outside the 95% confidence interval of the average likelihood of in-sample instances; if it
is inside, we consider it as an in-sample instance, otherwise it is considered an out-of-sample
instance.

In this subsection, we particularly analyze the ability of the clustering models to make such
distinctions. We used 5,529 research articles from the Arxiv computer science field to build a den-
sity estimation model and tested the ability of the model to correctly predict the membership of
a test set of 11,131 research articles from both Arxiv computer science and quantitative biology
fields. We trained five models - BvMFmix, vMFmix, GM, MM and LDA using 20 clusters. For all
the models other than MM and LDA, we used Tf-Idf normalization followed by dimension re-
duction using SVD to 50 dimensions and unit normalization. For MM and LDA, we removed all
words that occurred less than 20 times. Note that we performed dimension reduction/feature
selection step because it improved the results of detection (not because of computational rea-
sons). The results of the predictions, tabulated in Table 5.4, show that B-vMFmix offers the best
detection accuracy followed by LDA.

5.7.5 Sampling vs Bounding Concentration parameters

In this subsection we compare the two ways of estimating the posterior distribution of κ’s int the
variational inference algorithm - the sampling based method and the bounding based method.
In theory, the sampling based method should be more accurate in estimating the posterior
distribution but taking a longer time than the bounding based method. However, in practice

77

5.8. Summary

Table 5.5: Sampling vs Bounding method for estimating posterior - Likelihood and computa-
tional time taken on the K9 dataset using 20 clusters (averaged over 10 runs).

Method Likelihood Time (in secs)
Sampling 91683824.75 25.44
Bounding 91509341.59 24.58

(Table 5.5) we found that the sampling based method gives better likelihood in approximately
the same time as the bounding based method. This is because bulk of the computation time
of the variational algorithm is spent in computing the updates for λ and µ. Although just
between sampling and bounding, the former is slower than latter; the benefit of using bounding
is masked by time taken in performing the other updates.

5.8 Summary

In this chapter we developed a suite of Bayesian vMF models that are better alternatives to
the existing approaches based on multinomial or Gaussian distributions. We developed a flat
Bayesian vMF mixture and extended to it a hierarchical and a temporal vMF mixture models.
Our models are analagous to existing topic models based on multinomial distributions, but
specifically suited to unit-normalized data (especially arising in text and image data).

The fast variational/sampling algorithms make the methods scalable to reasonably large
data volumes with high-dimensional feature spaces. The experiments provide strong empirical
support for the effectiveness of our approaches - all our models outperformed strong baselines
(k-means, Multinomial Mixtures and Latent Dirichlet Allocation) by a large margin on most
data sets.

78

Transformation-based Clustering
with Supervision 6

6.1 Introduction

One of the fundamental problems of unsupervised clustering algorithms such as K-means, Gaus-
sian mixtures, von Mises-Fisher mixtures, etc the is that they do not take into account the user
expectations or preferences over different views of the data.

In this chapter we address this issue by developing methods that can inject such supervision
into the clustering process. The task is as follows - the user provides supervision by revealing
the cluster assignments for some subset of ground-truth clusters, the goal is to design a system
which uses this supervision to understand user expectations i.e. the view the user is interested
in, and discover similar unobserved clusters in the unlabeled data. The key idea in our solution
is to learn a transformation of the data such that the clusters in the transformed data space
match the given supervision (i.e. user expectations/preferences). This learnt transformation
is then applied on the unlabeled data thereby folding them into space where the unobserved
clusters are consistent with user expectations. We propose two novel ways of learning the
transformation -

1. Conditional Probability Maximization (CPM) We learn a transformation of data under
a generative model for the instances. The generative process used is the standard proba-
bilistic clustering assumption that each instance is drawn from one of the latent clusters
with the specified probability density, for e.g. Gaussian. The transformation function G

is learnt from the supervision in a discriminative manner by maximizing the conditional
probability of the cluster label given the transformed instance.

The framework is generally applicable to any probabilistic clustering model as long as a
suitable a suitable G can be defined. In this chapter we will focus on its particular appli-

79

6.2. Related Work

cation to Gaussian mixtures (GM) and von Mises-Fisher mixtures (VM). In the GM case,
we define G to be a linear transformation matrix, and for VM G is a linear transformation
followed by projection to unit-sphere. For both models, we develop techniques to estimate
G and related parameters.

2. Cluster Separability Criterion (CSC) In this framework we do not make any parametric
assumptions about the class conditional densities of the instances. We setup a constrained
optimization problem to estimate a linear transformation of the data such that every pair
of clusters are adequately separated. Specifically, we introduce constraints that every pair
of cluster means be separated by a margin proportional to the radius of the cluster. The
hope is that the estimated linear transformation would preserve similar properties for the
unobserved clusters and making them easily separable.

In both cases, we use the given supervision (in the form of labeled instances instances and
true cluster labels for some subset of ground-truth clusters) to estimate the transformation. We
then apply the learned transformation function to the unlabeled data for clustering in the next
step. Since our proposed methods rely on using a transformation function as bridge to reshape
the discovery of unobserved clusters, we call our framework Transformation-based Clustering
with Supervision - TCS framework.

We conducted thorough evaluations and tested our framework on 23 data sets from different
application domains such as time-series, text, handwriting recognition, face recognition, etc.
We have observed substantial and consistent improvement in performance (in five clustering
metrics) over other competing methods.

6.2 Related Work

There are two primary areas of related work that use supervision to improve clustering of unla-
beled data - Probabilistic Constrained Clustering (PCC) and Distance Metric Learning (DML).

PCC methods [Wagstaff et al., 2001, Basu et al., 2002] try to inject supervision using a
probabilistic generative model for the instances. The instances X consists of both the labeled
part XL,the unlabeled part XU and the cluster assignments Z = {ZU ∪ZL}. The observed cluster
assignments ZL ⊂ Z is used as supervision, i.e., the constraints. The model parameters θ and
the latent cluster assignments ZU are estimated by maximizing the likelihood of the data X
subject to the fixed ZL,

max
θ,ZU

logP (X|ZL,ZU ,θ) (6.1)

80

6.2. Related Work

However, when the task is to detect previously unobserved cluster, this optimization reduces
to plain clustering. This can be seen by rewriting the objective as a sum of the labeled objective
(which is constant) and the unlabeled objective (which is just standard clustering) as:

max
θL

logP (XL|ZL,θL) + max
θU ,ZU

logP (XU |ZU ,θU)

Clearly, there is no learning nor transfer of information from the observed clusters to the
unobserved clusters. There are other works in PCC where supervision is represented in the
form of pairwise constraints instead of cluster labels, i.e. the constraints are defined as whether
two instances should be put in the same cluster or not. These methods optimize eq (6.1) with
an additional penalty term if the constraints are not obeyed. The penalty is introduced in
the form of priors [Lu and Leen, 2005], [Basu et al., 2006] or explicitly modeled using some
loss function [Basu et al., 2004], [Bilenko et al., 2004]. Despite the different variations in
formulating the constraints, PCC methods [Wagstaff et al., 2001, Basu et al., 2002, 2004, 2006,
Lu and Leen, 2005] have the same fundamental limitation, i.e., the supervised information from
the observed clusters is not used to reshape the discovery of unobserved clusters. The clustering
of the unlabeled part of the data reduces to standard unsupervised clustering.

A natural extension of PCC that addresses some of its limitations is to use a more Bayesian
approach of sharing parameters across clusters. For example, one could use a Gaussian mixture
model where each cluster k has its own mean parameter θk, but all clusters share a common
covariance matrix Σ. Here the covariance matrix serves as the bridge to transfer information
from the observed clusters to the unobserved clusters. One can envision more sophisticated
models with common hyperpriors, e.g. a Gaussian hyperprior for the means and an Inverse
Wishart hyperprior for the covariances. To our knowledge, such Bayesian revisions of PCC have
not been studied in the context of discovering new clusters in unlabeled data (which is the focus
of this chapter). As we will show in our experiments (where we implemented such a Bayesian
PCC model as a baseline), this way of sharing information is not as effective as directly fitting
for the cluster labels in the transformed space, which we propose in the TCS framework.

In DML [Blitzer et al., 2005, Xing et al., 2002, Goldberger et al., 2004] the objective is to
learn a distance metric that respects the supervision which is provided in the form pairwise
constraints. More specifically, given a set of labeled clusters, the distance metric is estimated
such that it pulls the within-cluster pairs towards each other and pushes the cross-cluster pairs
away from each other. DML methods differ from each other in how the loss functions are defined
over the pairwise constraints such as the hinge loss [Blitzer et al., 2005], Euclidean-distance loss
[Xing et al., 2002], log loss [Goldberger et al., 2004], etc.

81

6.3. The Need for Supervision

DML has been typically used in the context of nearest-neighbor classification but not in the
context of discovering unobserved clusters. We argue that existing DML methods have two prob-
lems w.r.t to discovering unobserved clusters: Firstly, DML optimizes for pairwise distances and
is therefore ‘unaware’ of the clustering criterion (the objective function for clustering) used.
This can lead to overfitting, for example, even if the data is optimally clustered, DML would still
try to increase inter-cluster distances and decrease intra-cluster distances. Secondly, optimizing
for different loss functions (e.g., hinge loss or Euclidean loss) do not necessarily yield a metric
that is also optimal for clustering. Explicitly fitting for the cluster-labels (or maximizing the mar-
gin between clusters) without resorting to surrogate measures like pairwise constraints between
instances is the fundamental difference between our TCS models and other DML methods.

Indirectly related to our work are a few works in discriminative clustering [Krause et al.,
2010], [Xu et al., 2004] and constrained spectral clustering [Rangapuram and Hein, 2012],
[Wang and Davidson, 2010], [Lu and Carreira-Perpinán, 2008]. These former methods use a
discriminative objective like that of SVM for clustering, but do not handle supervision. The latter
methods incorporate supervision in a spectral clustering framework, but cannot scale beyond a
few thousands of instances. For a thorough discussion of the drawbacks of spectral clustering
framework see [Nadler and Galun, 2007] and reference therein. It is also worth mentioning
that some other work like [Joulin et al., 2010], [Finley and Joachims, 2005] reformulate the
classification problem as a clustering one, but however cannot discover previously unobserved
clusters in data.

6.3 The Need for Supervision

Any typical clustering task involves making atleast two assumptions - number of clusters (or
the prior parameters if using Bayesian non-parametric methods) and the distance measure,
both of which determine the type of clusters generated. In a probabilistic model, the distance
measure is determined by the choice of the distribution for e.g. Euclidean distance corresponds
to Gaussian with Identity covariance matrix, cosine-similarity corresponds to von Mises-Fisher
distribution etc. Typically, the user’s subjective choice of the distance measure (or probability
distribution) does not match the ground-truth and the generated clusters do not match user
expectations.

To demonstrate this, we ran two popular clustering algorithms - the Gaussian Mixture model
(GM) and the von Mises-Fisher mixture model (VM), which use different probability distribu-
tions and optimize different likelihoods, on the 20newsgroups dataset 1 with 20 clusters using

1qwone.com/ jason/20Newsgroups/

82

6.4. Learning Transformations by CPM

Table 6.1: Likelihood at Local optimum reached by EM vs Likelihood at ground-truth (Local optimum
is better!)

Algorithm→ GM VM

Local optimum -18115 4.09965e+09
Ground-truth -18168 4.09906e+09

the EM algorithm. We compared the likelihoods (the clustering objective) of the algorithms
under two settings,

1. The likelihood at a local optimum reached by EM 2.

2. The likelihood when the true labels are given, i.e. cluster assignments fixed to the ground-
truth.

As table 6.1 shows, the likelihood obtained at a local optimum is better than ground-truth -
the ground-truth is suboptimal ! The clustering algorithm is optimizing for something else other
than ground-truth. This means that the user expected clusters can never be recovered by these
clustering algorithms. This is a clear case of mismatch between what the user expects and the
user specified distance measure. It is precisely this mismatch that we hope to reduce by using
some partial supervision from the user.

6.4 Learning Transformations by CPM

We are provided supervised training data from K clusters, S = {xi, ti}Ni=1 where xi ∈ X ,
ti ∈ {1, 2...K} and unlabeled examples U . For convenience define yik = I(ti = k). Given
a probabilistic generative model using a mixture of K distributions {f(x|Ck)}Kk=1 where Ck

denotes the parameters of cluster K, CPM estimates the transformation function G as follows,

arg max
G

logP (Y|Cmle(G), G(X))

where Cmle(G) = arg max
C

P (G(X)|C,Y),

P (Y|G(X),Cmle(G)) =
N∏
i=1

K∏
k=1

 f(G(xi)|Cmlek (G))
K∑
k′=1

f(G(xi)|Cmlek′ (G))


yik

2The EM algorithm was intialized with the ground-truth cluster assignments

83

6.4. Learning Transformations by CPM

Here Cmle denotes the maximum likelihood estimates of the cluster parameters in the trans-
formed space i.e the cluster parameters that best explain the transformed data G(X). G on
the other hand is estimated by maximizing the conditional likelihood of the cluster-labels given
Cmle i.e. the transformation that best explains the cluster-labels. Together this ensures that
we learn G such that the optimal cluster parameters Cmle also optimally fit the cluster-labels
Y. The transformation G is then applied to U thereby folding it into a space where hopefully
the clusters match user expectations. Note it would be easy to incorporate uncertainty or con-
fidence scores in the supervision by appropriately weighting the probability of each instance to
the corresponding cluster.

Unlike typical clustering algorithms, our TCS framework has a learning component as well
i.e. we learn how to discover unobserved clusters from supervision. Since any learning algo-
rithm has chances of overfitting, we add an additional regularization term. Together,

[OPT1] max
G,C

logP (Y|C(G), G(X))− γλ(G)

s.t
∂ logP (G(X)|C,Y)

∂C
= 0

where γ is the regularization parameter and λ is the regularization function. Note that
the second constraint is another way to say C is the MLE estimate of G(X). In the following
subsections, we discuss how to estimate G with two choices for f(x|Ck) - Gaussian and von
Mises-Fisher. In Appendix C, we also discuss the estimation procedure for Gamma distributions
as well as outline the general procedure for any mixture distribution.

6.4.1 Gaussian Mixtures (TCS-GM)

We define a simple mixture of K Gaussians with unit variance and cluster means {θk}Kk=1 over
RP where

f(x|θk) =
1√
2π

exp(−‖x− θk‖2)

The transformation function is defined as G(x) = Lx, a linear transformation using matrix
L ∈ RP×P . The parameters {θk}Kk=1 and transformation L is estimated by solving OPT1.

[OPT1] max
L,θ

logP (Y|θ, LX)− γλ(L) (6.2)

s.t − 1

2

∂
N∑
i=1

yik‖Lxi − θk‖2

∂θk
= 0 (6.3)

84

6.4. Learning Transformations by CPM

where,

P (yik = 1|θk, Lxi) =
e−

1
2
(Lxi−θk)>(Lxi−θk)

K∑
k′=1

e−
1
2
(Lxi−Lθk′)>(Lxi−Lθk′)

and logP (Y|θ, LX) = −1

2

N∑
i=1

[
K∑
k=1

yik‖Lxi − θk‖2
]
−

N∑
i=1

log

(
K∑
k=1

exp(−1

2
‖Lxi − θk‖2)

)

If mk denotes the mean of all instances which belong to cluster k, the equality constraint in
OPT1 is simply θk = Lmk. Substituting this into the optimization problem and rewriting as a
minimization problem,

min
L

γλ(L) +
1

2

N∑
i=1

[
K∑
k=1

yik‖Lxi − Lmk‖2
]

+
N∑
i=1

log

(
K∑
k=1

exp(−1

2
‖Lxi − Lmk‖2)

)

This is a nonconvex function in L. However, it can be rewritten as a convex optimization
problem in terms of A = L>L with a positive definite constraint on A. Assuming the regularizer
is convex, this leads to a convex semidefinite program,

min
A

F (A) = γλ(A) +
1

2

N∑
i=1

[
K∑
k=1

yikdA(xi,mk)

]
+

N∑
i=1

log

(
K∑
k=1

exp(−1

2
dA(xi,mk)

)
s.t A � 0

where dA(a, b) = (a− b)>A(a− b).
For the regularizer λ(A), we tried different choices

1. ‖A− I‖2 (Frobenius Norm from Identity)

2. ‖A‖22 (Frobenius Norm from zero)

3. ‖A‖∗ (Nuclear Norm)

4. trace(A)− log(det(A)) (Log-det divergence)

5. ‖A− I‖1 (Entrywise-L1 Norm)

Different regularizers favor different kinds of linear transformations, for e.g., Nuclear norm
[Ma et al., 2011] favours lower rank solutions, Entrywise-L1 norm favours sparser transfor-
mations, the log-det regularlizer also prefers lower rank solutions but penalizes sum of log of

85

6.4. Learning Transformations by CPM

Algorithm 3 Accelerated gradient descent for TCS-GM.

1: Input: {X,Y}, step-length sequence St
2: Initialize: Define Ht = I, βt = 1
3: while not converged do
4: At = PSD(Ht − st∇F (Ht))

5: βt+1 =
1+
√

1+4β2
t

2

6: Ht+1 = At + βt−1
βt

(At −At−1)
7: end while
8: Output: At
9: PSD denotes projection to the positive semidefinite cone

eigenvalues instead [Davis et al., 2007] etc. The choice of the regularizer ultimately depends
on the data and kind of clusters the user seeks.

For differentiable regularizers, the optimization can be solved using projected gradient de-
scent where we take a step along the direction of the negative gradient (with the stepsize deter-
mined by backtracking line search) and then project the update back into the positive semidef-
inite cone. We observed that we could significantly improve the speed by using accelerated
gradient descent [Beck and Teboulle, 2009] instead (Algorithm 3). For the non-differentiable
regularizers we can use projected subgradient instead. These algorithms provably converge to
the optimal solution if the step size is appropriately set [Boyd and Vandenberghe, 2004]. The
gradient of the objective can be succintly written as,

∇F (A) = γλ′(A) +
N∑
i=1

K∑
k=1

(yik − pik(A))dikd
>
ik

where pik(A) = P (yik|Lxi, θk)

We found that our customized parallel solver using accelerated projected gradient descent
worked much faster than existing SDP solvers. The solution in A recovers L upto any rotation
matrix. This is because A = L>L can always be rewritten using A = L>(Q>Q)L, for any
rotation matrix Q−1 = Q>. However rotating the data corresponds to changing the basis and
does not affect the clustering algorithm.

Note that A is very different from the seemingly similar covariance matrix of a Gaussian
distribution. Firstly, unlike the covariance matrix, A is not parameter of the distribution and
does not make the distribution sum to 1. Secondly, covariance matrices are typically estimated
by maximizing P (X|Y), this includes supervised versions such as linear discriminant analysis
(LDA) and Fisher LDA [Hastie et al., 2009]. The transformation matrix A on the other hand, is

86

6.5. Learning Transformations by CSC

optimized to fit the labels P (Y|LX, θ) and therefore unlike LDA, A does not have a closed form
solution.

6.4.2 von Mises-Fisher Mixtures (TCS-VM)

The density function of a von Mises-Fisher distribution is defined over X ≡ {x : ‖x‖ = 1, x ∈
RP } and is given by

f(x|µ, κ) =
κ(.5P−1)

(2π).5PI.5P−1(κ)
exp(κµ>x)

where Iν(a) is the modified bessel function of first kind with order ν and argument a.

As in the Gaussian mixtures case, we consider a mixture of K vMF distributions with mean
parameters {µk}Kk=1 and unit concentration parameter where

f(x|µk) =
exp(µ>k x)

(2π).5PI.5P−1(1)

Since the support of vMF is only over the unit-sphere, any transformation function should
ensure the transformed space still lies on the unit-sphere. Therefore we define the transforma-
tion function G as a linear transformation with matrix L ∈ RP×P with normalization,

G(x) =
Lx

‖Lx‖

With this transformation function, the optimization problem OPT1 is a non-convex function in
L. Note that the cluster mean parameters {µk}Kk=1 have a closed form expression for the MLE
estimate in terms of L and X. However unlike the GM case, we do not recommend substituting it
into the objective of OPT1 as it leads to computationally intensive expressions. We instead resort
to an alternating optimization between µk ’s and L as shown in Algorithm 4. The optimization
step in line 5 is nonconvex in L and can solved using gradient descent to converge to a locally
optimal solution. We found that in practice it gave good empirical results.

6.5 Learning Transformations by CSC

In the CSC framework we do not make any parametric assumptions about the conditional distri-
bution of the cluster-labels. The transformation function G(x) = Lx is a linear transformation
matrix which is estimated directly by enforcing cluster separability conditions.

More specifically, we formulate an optimization problem where every pair of cluster means
is constrained to be separated by margin proportional to the sum of the trace of covariance

87

6.5. Learning Transformations by CSC

Algorithm 4 Optimizing L, {µk}Kk=1 for TCS-VM.

1: Input: {X,Y}, T iterations
2: Initialize: L
3: for t = 1, ..T do

4: update µk =

N∑
i=1

yikni

‖
N∑
i=1

yikni‖
where ni = Lxi

‖Lxi‖

5: update L = arg minL

γλ(L) +
N∑
i=1

K∑
k

yik

[
x>i L

>µk
‖Lxi‖ − log

(
K∑
j=1

exp(
x>i L

>µj
‖L>xi‖

)

)]
6: end for

matrices of the respective clusters. The optimization problem is parameterized in terms of
A = L>L as follows,

min ‖A− I‖2

s.t (mi −mj)
>A(mi −mj) ≥ γ(trace(ACi) + trace(ACj)) ∀i, j = 1..K, i 6= j

A � 0

Here mk and Ck denote the mean and covariance of instances assigned to cluster k. The trace
of a matrix is the sum of its eigenvalues; trace(ACi) intuitively captures the total spread of
the cluster along its basis eigenvectors. The constraints mean that the distance between the
cluster means should be separated by a distance proportional to the sum of volumes of the two
clusters. The γ parameter is a user-specified proportionality constant to control the degree to
which the separability constraints must be enforced; for e.g. γ = 0 would mean all constraints
are satisfied by default and the optimal solution is A∗ = I. Similar to TCS-GM one can also use
different regularizers instead of ‖A− I‖2 such as log-det divergence etc.

To solve this optimization problem one can use interior point methods which has become the
defacto method for solving constrained SDPs. In this we work, we used the SeDuMi3 package
which solves the equality constrained dual problem using the barrier method. Note that our
separability constraints is partially inspired by some of the assumptions that previous work
[Dasgupta, 1999],[Kannan et al., 2005] have made for providing some provable guarantees on
recovering clusters.

3sedumi.ie.lehigh.edu/

88

6.6. Experimental Setting

6.6 Experimental Setting

For all the experiments, we consider the class-labels associated with the dataset to be the user
expected ground-truth clusters. We randomly partitioned the classes into three sets - training,
validation and testing. The methods TCS-GM, TCS-GM-L2, TCS-CS and LMNN use the valida-
tion set for tuning the regularization parameter.

We assume the number of clusters in the unlabeled data is known, if not, well established
techniques like AIC, BIC or nonparametric versions of clustering using dirichlet process priors
can be used. All the results are averaged over 50 different restarts with Kmeans++ initialization
[Arthur and Vassilvitskii, 2007].

As in any matrix learning method, for high dimensional datasets, learning (or even storing)
a full matrix L is computationally intensive. Previous literature have identified three ways to
tackle this issue,

1. Learn a diagonal L instead of full matrix L. This drastically improves the scalability, but
at the cost of flexibility in the set of transformations [Weinberger and Saul, 2009].

2. Directly learn a low rank transformation, i.e. L ∈ Rr×P where r � P instead of a full
rank matrix. However, the optimization problem now becomes nonconvex in terms of this
low rank L (see [Journée et al., 2010]).

3. Reduce the dimension of the data using Singular Value Decomposition (SVD), followed
by learning a full rank matrix on the low dimensional data.

In our experiments, we found that solution (3) worked best. Infact dimension reduction using
SVD sometimes improved the clustering performance on multiple datasets since it removes
the intrinsic noise in the data. This is agreement with several observations in practice [Zha
et al., 2001], [Drineas et al., 2004] and in theory [Ding and He, 2004],[Kannan et al., 2004].
Therefore, on datasets with more than 200 dimensions, we used SVD to fold the data into a 30
dimensional space (refer Section 6.8.4 for detailed experiments on how SVD affects clustering).

6.6.1 Description of Baselines

1. GM: A mixture of K Gaussian distributions which share a single common variance param-
eter. All parameters are estimated using EM algorithm. Note that this model is unsuper-
vised and cannot use supervision.

2. TCS-GM : Our proposed conditional probability maximization technique with Gaussian
mixture model as discussed in section 6.4.1. The regularizer was ‖A− I‖2.

89

6.6. Experimental Setting

3. TCS-CS : Our proposed cluster separability criterion where the linear transformation is
estimated using a constrained optimization framework as discussed in section 6.5.

4. TCS-GM-L2 : Our proposed TCS technique using Gaussian mixture model as discussed in
section 6.4.1. The regularizer was plain L2 regularization - ‖A‖2. Note this regularizer
favors lower dimensional spaces than TCS-GM.

5. LMNN (Large margin Nearest Neighbor): [Weinberger and Saul, 2009] A distance metric
learning technique which aims to learn a metric such that each instance’s neighborhood
contains only instances from the same class. If not, the closest same class neighbors
are pulled and imposter classes are pushed out. The distances are penalized based on a
hinge-loss. To ensure competitive performance, the number of target neighbors was set
to high value - 50. This is followed by GM on the linearly transformed unlabeled data.
Note that LMNN is a stronger baseline than other DML methods like Relevant Component
Analysis [Shental et al., 2006], Neighborhood Component Analysis [Goldberger et al.,
2004], Linear Discriminant Analysis [Fisher, 1936], etc.

6. PCC (Probabilistic Clustering with Constraints): [Bilenko et al., 2004] A metric learning
approach which pulls within cluster elements towards each other and pushes out of cluster
elements away each other. To enable sharing of information, we parameterize the metric
by a single A which is estimated as follows,

min
A
f(A) =

∑
i,k

yik‖xi − θk‖A +
∑

i,j,ti=tj

‖xi − xj‖A −
∑

i,j,ti 6=tj

‖xi − xj‖A

A � 0

As formulated, it is a non-convex minimization with a positive-semi-definite constraint on
A. Note that without the positive-definite constraint, this problem has a closed-form ex-
pression. We used the authors proposed strategy of starting from the closed-form solution
and adding the smallest εI to make it positive-definite.

7. BP (Bayesian Prior Model): This is our proposed Bayesian model for TCS where there
is sharing of information between the parameters. We assume the following generative
process for the data,

θk ∼ N (θ0, σ
2
0I)

zi ∼ Categorical(
1

K
,

1

K
, ..,

1

K
)

xi ∼ N (θzi ,Σ)

90

6.6. Experimental Setting

Here θ0, σ
2
0,Σ are shared between all the clusters. We assume that the hidden cluster

assignments for some of the data is given as supervision. We used the familiar constrained
EM algorithm [Basu et al., 2002] to derive point estimates for the unknown parameters.
We also tried other variants such as cluster-specific covariance matrices with a shared
Inverse Wishart hyperprior, but it did not yield any appreciable improvements.

8. FD [Fisher, 1936],[Fukunaga, 1990] (Fisher Discriminant analysis): We use the multiclass
extension to the standard two class fisher discriminant analysis. The rows of the transfor-
mation matrix are the eigenvectors e of the following generalized eigenvalue problem,

SBe = λSW e

where SB =
K∑
k=1

nk(mk −m)(mk −m)> (6.4)

SW =

K∑
k=1

nkCk + γI

Here nk, mk and Ck refer to the number of instances, the mean and the covariance of clus-
ter k respectively; m denotes the overall mean of all the instances. Following [Friedman,
1989] we introduce a regularization term γ to ensure that the covariance matrices have
full rank. Note that rank of SB is K, therefore only atmost K dimensions are meaningful.

6.6.2 Description of Datasets

We extensively tested our proposed methods on a wide range of datasets from several applica-
tion domains such as text, time-series, speech, character recognition, face recognition etc. We
provide a brief description about the datasets from each domain.

6.6.2.1 Time-series datasets

Dataset Name #Instances #Dimension #Classes

Australian Signs (Aussign) 2565 352 95
Character Trajectory (Char) 2858 192 20
Daily and Sports Activity (DSPA) 152 1440 19
Libras 360 90 15

91

6.6. Experimental Setting

1. Australian Signs 4 The data consists of sample of hand movements to denote Australian
Sign Language signs. There are 27 examples of each of 95 signs, each of which were
captured from a signer using position trackers and instrumented gloves. There were 22
features such as x-position, y-position, etc measured over time. We used Fast Fourier
Transform (FFT) to extract the first 16 important dimensions for each feature. We repre-
sented each instance using a 16x22 = 352 dimensional feature space.

2. Character Trajectory 5 Each instance represents the pentip trajectory (defined by the posi-
tion and velocity of the pentip) over time to draw a character. We used FFT to extract the
first 64 dimensions for each of the 3 directions of the pentip’s velocity profile. The classes
refer to the character drawn.

3. Daily and Sports Activity Recognition [Altun and Barshan, 2010] This datasets consists of
19 activities performed by humans in a sports hall, like walking, running etc. Each of the
19 activities is repeated multiple times by different people. Each instance represents a
sequence of sensor measurements over time while the activity was performed. The goal
is to cluster the sensor measurement profile according to the activity performed. We used
FFT on each of the sensor and extracted a 32 dimensional vector, which was concatenated
across all sensors leading to 1440 dimensional space.

4. Libras 6 The data set is similar to Aussign but the classes are from the brazilian sign
language instead of australian. The data contains 15 signs of 24 instances each.

6.6.2.2 Text data

Dataset Name #Instances #Dimension #Classes

CNAE 1079 856 9
K9 2340 21839 20
TDT4 622 8895 34
TDT5 6355 20733 125

4http://www.cse.unsw.edu.au/ waleed/phd/
5http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
6http://archive.ics.uci.edu/ml/datasets/Libras+Movement

92

6.6. Experimental Setting

1. CNAE 7 A collection of 1080 small-text documents of business descriptions of Brazilian
companies categorized into a subset of 9 categories like medical, legal, industrial etc.

2. K9 8 This is a collection of 2340 web pages which appeared in the Yahoo news hompage.
The webpages were categorized into one of 20 broad news topics which was defined by
Yahoo!.

3. TDT-4,TDT-5 9 These articles were collected from Reuters over a period of several months.
The news stories were categorized into one of many news ‘events’ which happened at that
time. We selected only those news articles which had relevance judgements.

Note that all the text datasets were subjected to standard stopword removal, stemming and
‘ltc’ term weighting [Manning et al., 2008].

6.6.2.3 Handwriting Recognition

Dataset Name #Instances #Dimension #Classes

Penbased Recognition (Penbased) 10992 16 10
Letter Recognition (Letter) 20000 16 26
USPS 9298 1984 10
Binary Alpha Digits (Binalpha) 1404 2480 36
Optical Recognition (Optrec) 5620 496 10
MNIST 70000 6076 10

1. Penbased Recognition Each instance represents a digit from 1 to 10 drawn on a Wiacom
tablet. The features are constructed by resampling the positions of the Wiacom pen and
normalizing them. Refer to website 10 on how exactly the features are constructed.

2. Letter Recognition 11 Each instance is a black-and-white rectangular pixel display of one
of the 26 capital letters in the English alphabet. The features are different statistical
moments of the image such as mean, variance, correlation etc.

7http://archive.ics.uci.edu/ml/datasets/CNAE-9
8http://www-users.cs.umn.edu/boley/ftp/PDDPdata/
9http://www.itl.nist.gov/iad/mig/tests/tdt/

10http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
11http://archive.ics.uci.edu/ml/datasets/Letter+Recognition

93

6.6. Experimental Setting

3. USPS 12 The dataset refers to numeric data obtained from the scanning of handwritten
digits from envelopes by the U.S. Postal Service. Each instance is represented by a 16x16
grayscale image. We extracted HOG features from each pixel with a patchsize of 2x2 and
concatenated to form a 1984 dimensional space.

4. Binary Alpha Digits 13 These are 20x16 grayscale images of 26 alphabets + 10 numbers.
We extracted HOG features from each pixel with a patchsize of 2 and concatenated them.

5. Optical Recognition 14 Each instace represents a number from 0 to 9. The 32x32 bitmaps
are divided into nonoverlapping blocks of 4x4 and the number of ‘on’ pixels are counted
in each block. We then used the HOG features with a patchsize of 2 leading to a 496
dimensional feature space.

6. MNIST 15 It is one of the most popular handwritten digits recognition datasets. Each image
is a number from 0 to 9 and is represented by a 28x28 bitmap with every pixel taking a
value from 0 to 255. We extracted HOG features from each bitmap with a patchsize of 2.
This leads to a 6076 dimensional feature-space.

6.6.2.4 Face Recognition

Dataset Name #Instances #Dimension #Classes

AT&T faces 400 19964 40
UMIST 575 10304 20
Faces96 3016 19375 151
Labeled Faces in Wild (LFW) 29791 4324 158

1. AT & T Faces 16 A set of face images of 40 distinct subject, with ten different images of
each subject. The size of each image is 112x92 pixels with 256 grey levels per pixel. We
extracted HOG features from each pixel with a patchsize of 4 and concatenated them.

2. UMIST Faces 17 Consists of 564 cropped grayscale images of size 112x92 of 20 people.
The images covers a range of poses from profile to frontal views, and a range of subjects

12http://statweb.stanford.edu/ tibs/ElemStatLearn/data.html
13http://www.cs.nyu.edu/ roweis/data.html
14http://archive.ics.uci.edu/ml/machine-learning-databases/optdigits/
15http://www.cs.nyu.edu/ roweis/data.html
16http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
17http://www.cs.nyu.edu/ roweis/data.html

94

6.6. Experimental Setting

from different race/sex/appearance. We extracted HOG features from each pixel with a
patchsize of 4 and concatenated them.

3. Faces96 dataset 18 This is another face recognition dataset with 20 196x196 grayscale
images with different variations in the subject profile. We extracted HOG features with a
patchsize of 4.

4. Labeled Faces in Wild 19 This is one of the largest collection of faces of popular people
with 13233 images of 5749 people. We did some filtering and removed all subjects with
less than 10 images, this leaves with 29791 images of 158 people. We then used HOG
features to represent each image.

6.6.2.5 Speech/Speaker Recognition

Dataset Name #Instances #Dimension #Classes

Isolet 7797 617 26
Wall Street Journal (WSJ) 34942 25 131

1. Isolet 20 This is a collection of speech recordings from 152 people who spoke the name of
each alphabet twice. The classes here denote the alphabet that was spoken. The features
include spectral coefficients; contour features, sonorant features, pre-sonorant features,
and post-sonorant features.

2. Wall Street Journal 21 This is a database of oral narration by 131 people of 34942 passages
from the wall street journal. Each recording is sampled and 25 MFCC’s extracted and
averaged over time.

6.6.2.6 Other datasets

Note that the results of the models on these datasets are presented in the Appendix.

1. Image 22 Each instance is a 3x3 image patch denoting one of the 7 outdoor scenes in
the image database. The features represent properties of the patch such region centroid,
mean color, saturation etc.

18http://cswww.essex.ac.uk/mv/allfaces/faces96.html
19http://vis-www.cs.umass.edu/lfw/
20http://archive.ics.uci.edu/ml/datasets/ISOLET
21http://catalog.ldc.upenn.edu/LDC95S23
22http://archive.ics.uci.edu/ml/datasets/Image+Segmentation

95

6.6. Experimental Setting

Dataset Name #Instances #Dimension #Classes

Image 2310 18 7
Vowel 990 10 11
Leaves 1599 192 100

5 10 15 20 25 30 35 40
−8

−6

−4

−2

0

2

4

6

8

RAW DATA SUPERVISION

(a) Data from of a mixture of six bimodal Gaussians

4 6 8 10 12 14 16 18 20 22
−6

−4

−2

0

2

4

6

(b) Clusters generated by GM on raw data. The gen-
erated clusters do not match ground-truth.

−30 −25 −20 −15 −10 −5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Clusters generated by TCS-GM on raw data using
supervision. The generated clusters match ground-
truth

Figure 6.1: The benefits of using supervision when the data does not match user expectations.

2. Vowel 23 is popular dataset which contain speech utterances from 48 speakers. The 11
classes denote different vowel sounds.

3. Leaves [Mallah et al., 2013] The instances are pictures of 100 different types of leaves
described by three sets of 64 dimensional vectors - shape, texture, margin, which we
concatenated to form a single 192 dimensional feature space.

23http://archive.ics.uci.edu/ml/machine-learning-databases/ undocumented/connectionist-
bench/vowel/vowel.names

96

6.7. Results

Table 6.2: The performance (in terms of NMI and ARI) of the methods on the time-series
datasets

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 FD LMNN PCC BP GM

Aussign NMI 0.890 0.910 0.925 0.931 0.937 0.775 0.838 0.817

ARI 0.694 0.742 0.764 0.768 0.809 0.473 0.588 0.546

Char NMI 0.752 0.782 0.754 0.668 0.671 0.690 0.737 0.687

ARI 0.648 0.687 0.652 0.505 0.572 0.588 0.622 0.568

DSPA NMI 0.685 0.768 0.734 0.739 0.597 0.668 0.642 0.678

ARI 0.406 0.488 0.518 0.468 0.253 0.392 0.340 0.398

Libras NMI 0.608 0.660 0.642 0.649 0.498 0.599 0.592 0.512

ARI 0.474 0.537 0.540 0.522 0.375 0.474 0.454 0.376

Average NMI 9.54% 16.85% 14.16% 11.74% −0.58% 2.70% 5.04%

Improvement ARI 17.32% 30.57% 32.12% 21.50% 3.04% 3.68% 5.84%

6.7 Results

6.7.1 Analysis on Synthetic Dataset

First, we show how supervision can be helpful using a small synthetic dataset. We generated
data from a mixture of six clusters, where each cluster is a bimodal Gaussian distribution. The
clusters lie along the x-axis, where as the modes of the Gaussians are stretched out on the Y-axis
(Figure 6.1a). These are the clusters the user expects to see in the data.

Consider the task of clustering the raw data from first 3 clusters - the darkblue, cyan and
purple clusters. Without any supervision, using unsupervised GM results in a clustering show
in Figure 6.1b. Clearly there is confusion between clusters 2 and 3 and the user expectations
are not met. On the other hand, if we use TCS-GM with clusters 4, 5, 6 as supervision, we learn
a transformation that successfully captures user expectations i.e. the transformation simply
collapses all points to the X-axis. When we apply this learnt transformation to the raw data and
cluster using GM, we can accurately recover the ground-truth (Fig 6.1c)

6.7.2 Results on Real-world Data

We present only a part of the results in this section (using the NMI and ARI metric) and leave
the complete set of results to the appendices. For ease of presentation, we tabulate the results

97

6.7. Results

Table 6.3: The performance (in terms of NMI and ARI) of the methods on the Text datasets

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 FD LMNN PCC BP GM

CNAE NMI 0.608 0.528 0.239 0.401 0.314 0.431 0.481 0.485

ARI 0.574 0.405 0.202 0.384 0.194 0.285 0.355 0.359

K9 NMI 0.581 0.562 0.405 0.410 0.375 0.562 0.510 0.561

ARI 0.615 0.384 0.456 0.185 0.178 0.367 0.259 0.365

TDT4 NMI 0.905 0.902 0.689 0.892 0.900 0.891 0.894 0.898

ARI 0.826 0.824 0.441 0.808 0.807 0.794 0.798 0.809

TDT5 NMI 0.699 0.696 0.695 0.697 0.675 0.692 0.694 0.692

ARI 0.198 0.200 0.199 0.198 0.192 0.193 0.196 0.194

Average NMI 7.68% 2.52% −25.34% −11.05% −17.66% −2.93% −2.52%

Improvement ARI 33.14% 5.74% −15.43% −10.10% −24.62% −5.61% −7.62%

of the models domain-wise. Overall, across all domains, we found that our proposed TCS based
models achieved the best performance in 19 out of the 23 datasets.

In the time-series domain TCS-CS and TCS-GM-L2 perform the best by showing a 16.85%

and 32.12% average improvement over unsupervised GM in NMI and ARI respectively. On all the
text-based datasets, only TCS-GM and TCS-CS show any improvement at all. The rest are mostly
negatively impacted by supervision. In the handwritten characters domain (Penbased, Letter,
USPS, Binalpha, Optrec and MNIST), TCS-GM and TCS-GM-L2 achieve the best performance;
TCS-GM seems to be more suited to HOG based features whereas TCS-GM-L2 works better
with pixel-based statistical features. The improvement of TCS-GM is particularly higher than
the rest in the handwritten characters and text datasets indicating that probably the Gaussian
assumptions were suitable in these domains.

In the face clustering tasks (AT & T, Umist, Faces96 and LFW) both TCS-CS and FD show
good performance with 26.93% and 46.98% improvement in NMI and ARI respectively. However,
we believe that images from most of the datasets except LFW are highly contrived as they
were captured in ideal lighting and posing conditions. The LFW dataset, on the other hand,
represents a more realistic distribution of images as found on the web. On this dataset, TCS-CS
works best with a 36.1% improvement.

In the speech domain, on both the datasets TCS-CS achieves the best performance. The
results on WSJ particularly highlight the importance of having supervision with a 46% improve-
ment over unsupervised GM.

98

6.8. Further Experimental Analysis

Table 6.4: The performance (in terms of NMI and ARI) of the methods on the Handwritten
Character datasets.

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 FD LMNN PCC BP GM

Penbased NMI 0.556 0.572 0.604 0.464 0.571 0.401 0.487 0.522

ARI 0.509 0.501 0.504 0.395 0.531 0.362 0.417 0.454

Letter NMI 0.478 0.484 0.504 0.549 0.434 0.265 0.373 0.351

ARI 0.301 0.301 0.329 0.385 0.245 0.116 0.193 0.175

USPS NMI 0.845 0.81 0.455 0.444 0.785 0.807 0.786 0.815

ARI 0.829 0.776 0.427 0.38 0.757 0.776 0.725 0.784

Binalpha NMI 0.794 0.755 0.703 0.734 0.703 0.725 0.68 0.719

ARI 0.669 0.607 0.55 0.599 0.567 0.559 0.509 0.545

Optrec NMI 0.936 0.727 0.727 0.392 0.905 0.864 0.914 0.912

ARI 0.956 0.719 0.791 0.377 0.939 0.88 0.929 0.924

MNIST NMI 0.842 0.832 0.701 0.366 0.717 0.553 0.741 0.83

ARI 0.885 0.877 0.719 0.276 0.724 0.508 0.740 0.875

Average NMI 10.15% 5.30% −3.82% −18.51% 2.12% −14.41% −3.32%

Improvement ARI 19.54% 11.79% 3.70% −10.38% 6.99% −16.52% −4.48%

6.7.3 Performance of von Mises-Fisher Mixtures

Normalization to a unit sphere has often shown to work very well for text data, especially
vMF-based models have been particularly effective in generating good clusters (see chapter 5)
than the typical Gaussian mixtures. We present a subset of results of the vMF model outlined
in section 6.4.2 on the text domain24 in Table 6.7 On all tested datasets, TCS-VM performs
significantly better than the other competing methods.

6.8 Further Experimental Analysis

6.8.1 Effect of Amount of Supervision

We analyze how the quality of clusters generated depend on the amount of supervision pro-
vided. We used a subset of the WSJ dataset with 25 training and 25 testing clusters for this
task.

24Refer the supplementary material of [Gopal and Yang, 2014a] for complete set of results on Normalized data

99

6.8. Further Experimental Analysis

Table 6.5: The performance (in terms of NMI and ARI) of the methods on Face clustering
datasets.

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 FD LMNN PCC BP GM

AT & T NMI 0.843 0.918 0.879 0.862 0.842 0.822 0.852 0.834

ARI 0.627 0.758 0.692 0.692 0.652 0.59 0.640 0.613

Umist NMI 0.588 0.806 0.739 0.826 0.792 0.569 0.563 0.554

ARI 0.355 0.593 0.548 0.676 0.600 0.355 0.332 0.322

Faces96 NMI 0.922 0.944 0.929 0.942 0.939 0.887 0.894 0.886

ARI 0.728 0.789 0.752 0.783 0.771 0.662 0.673 0.663

LFW NMI 0.388 0.415 0.415 0.414 0.331 0.312 0.297 0.285

ARI 0.081 0.095 0.089 0.089 0.040 0.030 0.026 0.021

Average NMI 11.86% 26.93% 22.31% 26.01% 16.51% 2.71% 2.22%

Improvement ARI 7.45% 42.27% 32.17% 46.98% 36.33% 2.12% 3.01%

Table 6.6: The performance (in terms of NMI and ARI) of the methods in the Speech domain.

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 FD LMNN PCC BP GM

Isolet NMI 0.834 0.853 0.796 0.818 0.812 0.747 0.829 0.816

ARI 0.707 0.733 0.669 0.725 0.667 0.632 0.693 0.682

WSJ NMI 0.813 0.837 0.811 0.831 0.810 0.521 0.707 0.555

ARI 0.369 0.385 0.362 0.371 0.361 0.177 0.278 0.200

Average NMI 24.35% 27.67% 21.84% 24.99% 22.73% −7.29% 14.49%

Improvement ARI 44.08% 49.98% 39.55% 45.90% 39.15% −9.42% 20.31%

Figure 6.2 plots the improvement in NMI achieved by TCS-GM over baseline GM as we
increase the number of training clusters from 3 to 25. Initially there is no improvement in
performance, but as training clusters increase, there is a gradual improvement in performance,
until it reaches a saturation level. This shows that (a) there is some minimum amount of
supervision needed to see any improvement (b) providing more supervision does not increase
performance indefinitely but saturates at certain level. This kind of curve is typical of most
machine learning algorithms.

100

6.8. Further Experimental Analysis

Table 6.7: The performance (in terms of NMI and ARI) of TCS-VM in the Text domain (with
unit normalized data). For an informative comparison results of TCS-GM, TCS-CS are also
tabulated.

Dataset Metric Supervised Learning Unsupervised

Proposed Methods Existing Baselines

TCS-VM TCS-GM TCS-CS FD LMNN PCC BP GM VM

CNAE NMI 0.916 0.815 0.803 0.204 0.692 0.614 0.693 0.792 0.909

ARI 0.95 0.826 0.812 0.174 0.694 0.539 0.646 0.795 0.932

K9 NMI 0.638 0.621 0.620 0.351 0.479 0.617 0.584 0.616 0.615

ARI 0.514 0.527 0.463 0.189 0.274 0.453 0.357 0.452 0.456

TDT4 NMI 0.936 0.916 0.915 0.895 0.923 0.914 0.911 0.915 0.933

ARI 0.871 0.827 0.825 0.955 0.847 0.825 0.807 0.821 0.857

TDT5 NMI 0.781 0.750 0.756 0.760 0.707 0.750 0.756 0.755 0.766

ARI 0.393 0.255 0.269 0.272 0.241 0.255 0.265 0.260 0.276

Table 6.8: The performance (in terms of NMI and ARI) of TCS-CS and GM in the presence
of multiple valid clusterings. The percentage improvement of TCS-CS over GM is shown in
parenthesis.

Metric Content-based Clustering Speaker-based Clustering

GM TCS-CS GM TCS-CS

NMI 0.750 0.773 (3.06%) 0.0373 0.402 (986%)

ARI 0.527 0.556 (5.50%) 0.0003 0.238 (∼ 80, 000%)

6.8.2 Effect on Multiview Clustering

In this subsection we analyze how the supervision can help uncover multiple valid clusterings
in the data. A typical unsupervised clustering algorithm will not know which view the user
prefers, whereas our proposed TCS models should be able to align the instances to the user
preferred view based on limited supervision.

We choose the Isolet dataset for this analysis because the dataset has two valid views - (a)
clustering by content i.e. the alphabet uttered or (b) clustering by the speaker. There are a total
of 26 alphabets and 150 speakers, 10% of which is set aside as supervision. As the results show
(Table 6.8), the unsupervised GM model by default favors clusters by content and does a poor
job when the user is interested in speaker based clustering. Our TCS-CS on the other hand, can
succesfully detect which type of clustering is preferred and improve over GM by a significant
margin.

101

6.8. Further Experimental Analysis

0 10 20 30 40 50 60 70 80 90 100
-1

10

21

32

43

Amount of Supervision (%)

Im
pr

ov
em

en
t

in
 N

M
I

(%
)

Figure 6.2: The Improvement in NMI on the test-set as the amount of training data (i.e. clusters)
is increased on the WSJ dataset

6.8.3 Exploiting Unlabeled Data

Using available unlabeled data along with the labeled data has shown to improve supervised
tasks such as label propagation [Zhu and Ghahramani, 2002], transductive SVMs [Joachims,
1999], certain regression tasks [Liang et al., 2007] etc. However, our setting is a little different
in the sense that our final goal is not a supervised task, it is an unsupervised task of clustering
the unlabeled data. Nevertheless, one can still try to use the unlabeled data while estimating
the transformation function. Specifically, we employ a procedure similar to transductive SVM;
first we use the labeled data to do an initial estimate of the transformation A, we then apply this
transformation on the unlabeled data and cluster them. Now we assume that the new clusters
in the unlabeled data are a part of ground-truth and re-estimate the transformation matrix.
This can be iterated over multiple times and slowly increasing the contribution of the unlabeled
examples in each iteration.

Let {XL, YL} and XU denote the labeled and the unlabeled data respectively. YU denotes
the cluster assignments of the unlabeled data and CL, CU are the cluster parameters of the
labeled and unlabeled data respectively. To estimate the unknowns {YU , CU , CL} we repeat

102

6.8. Further Experimental Analysis

Table 6.9: The performance (in terms of NMI and ARI) of using just unlabeled data without
supervision (GM), using supervision (TCS-GM) and using supervision with additional unlabeled
data (TCS-GM-UL), on a few datasets. Using unlabeled data improves the performance.

Dataset Metric GM TCS-GM TCS-GM-UL

Aussign NMI 0.470 0.591 0.611

ARI 0.296 0.853 0.858

AT& T NMI 0.803 0.803 0.831

ARI 0.468 0.468 0.549

Vowel NMI 0.274 0.309 0.314

ARI 0.134 0.157 0.163

K9 NMI 0.523 0.559 0.571

ARI 0.218 0.281 0.518

the following 3 steps starting with µ = 0,

STEP 1

{L,CL} = arg min
L,CL

γλ(L)− logP (YL|LXL,CL)− µ logP (YU |LXU ,CU)

s.t CL = arg maxP (LXL|YL,CL)

A � 0

STEP 2

{YU , CU} = arg max
YU ,CU

P (LXU |YU ,CU) [clustering of unlabeled data]

STEP 3

Increase µ slightly

The YU obtained is the cluster assignments of the unlabeled data. Preliminary analysis (Ta-
ble 6.9) on a few datasets shows encouraging results, however a more thorough exploration is
required to establish meaningful conclusions, especially with regards to the sensitivity to the
parameter µ.

6.8.4 Effect of SVD on Clustering

One possible concern in reducing the dimension of the training data using SVD is that it could
potentially lead to lower clustering performance. In order to understand the effect of SVD,

103

6.9. Summary

Table 6.10: Tabulates the results of using a Gaussian mixture clustering on the Full dataset (no
dimension reduction) vs SVD based dimension reduced dataset.

Dataset Metric Full SVD

GM GM

Leaves NMI 0.787 0.787

ARI 0.438 0.438

Aussign NMI 0.774 0.774

ARI 0.400 0.408

Char NMI 0.760 0.759

ARI 0.593 0.600

DSPA NMI 0.678 0.695

ARI 0.298 0.320

Libras NMI 0.578 0.581

ARI 0.294 0.297

CNAE NMI 0.389 0.389

ARI 0.206 0.206

K9 NMI 0.542 0.548

ARI 0.331 0.268

TDT4 NMI 0.854 0.885

ARI 0.646 0.704

TDT5 NMI 0.834 0.797

ARI 0.395 0.293

Dataset Metric Full SVD

GM GM

Penbased NMI 0.684 0.684

ARI 0.550 0.550

Letter NMI 0.364 0.364

ARI 0.133 0.133

USPS NMI 0.800 0.793

ARI 0.740 0.732

Binalpha NMI 0.668 0.690

ARI 0.378 0.422

Optrec NMI 0.777 0.753

ARI 0.713 0.685

AT & T NMI 0.724 0.810

ARI 0.357 0.504

Umist NMI 0.646 0.647

ARI 0.323 0.326

Faces96 NMI 0.873 0.842

ARI 0.548 0.495

LFW NMI 0.304 0.362

ARI 0.009 0.009

we compare the performance of GM on the full dataset without dimension reduction against a
SVD-based dimension reduced dataset. Table 6.10 tabulates the results by averaging over 10
different runs with Kmeans++ initialization.

On most datasets, there is no appreciable change in performance. In fact on some datasets
- TDT4, AT & T, LFW there was a gain in performance by using SVD. There was a loss of
performance only on two datasets - Faces96 and TDT5.

6.9 Summary

In this chapter we presented two ways of exploiting supervision to generate better clustering
of unlabeled data. The first approach used a probabilistic framework that made parametric as-

104

6.9. Summary

sumptions about the distribution of the class conditional probabilities and the second approach
used a non-probabilistic constrained optimization framework. Both our approaches rely on
learning a transformation function that can capture the user expectations better. The transfor-
mation function is the key idea that helps us generalize the supervision in the form of observed
clusters to discover similar unobserved clusters in the unlabeled data.

The results of our extensive testing on 23 datasets provide strong empirical support in favour
of our proposed models against existing solutions and unsupervised baselines.

105

Future Work 7
There are several interesting directions for future research in each part of the thesis.

7.1 Large-Scale Classification with Structures

In chapters 2 and 3 we enforce similarity between parameters to model dependencies between
class-labels. It would be interesting to see if more sophisticated ways of enforcing similarity
between model parameters would be effective; for example,

1. In HBLR, one can incorporate hierarchical dependencies not just between the means of
the Gaussians but also between the covariance matrices. One way to do this would be to
have a hierarchical gamma prior for the variance terms (with a fixed shape parameter).
This would try to capture how the variance of a parameter at a node is distributed among
the children nodes.

2. In RR it would be interesting to learn a node specific linear transformation that is common
to all the children nodes. One can envision enforcing a low rank structure as we go deeper
into the hierarchy and a full rank structure at the higher levels of the hierarchy. It would
be challenging to develop such models without loss in the scalability.

Another interesting direction would be to exploit the hierarchy or graph to subsample a
node-specific training set. Since the relatedness of various class-labels is encoded in the hierar-
chy (or graph), we could develop ways to sub-sample the set of training data that is closest to
the decision bounday of the particular class. For example the most naive way of doing this is
the top down classifier which neglects all the training data except at sibling nodes. It would be
interesting to see if there are more principled approaches that, for a given class, samples more

106

7.2. Unsupervised Structure Extraction

data from the confusable classes and less data from the less-confusable classes. The downside
of the sampling is that is that some of the standard guarantees of risk minimization will be lost
because the training sample is no longer from the true distribution. Some work along this direc-
tion has been done by [Gupta et al., 2014] where negative examples for a class are generated
by first picking a class with equal probability followed by picking a random example.

7.2 Unsupervised Structure Extraction

In chapter 5 we developed our vMF models by assuming a single concentration parameter that
determines the spread of the data. For low dimensional datasets, one can afford to have a full
covariance structure between the parameters; this leads to the kent distribution [Mardia and
Jupp, 2009]

f(x|µ, κ,Σ) =
1

C(κ,Σ)
exp

(
κµ>x+ x>Σx

)
It would be intresting to extend the models and inference procedures to the kent distribution
and see how modelling the covariance structures on unit-spheres improves the clustering re-
sults.

Another interesting direction would be to develop non-parametric Bayesian versions of the
vMF models (useful when the number of clusters is not known apriori). This can be done by
placing a dirichlet process prior on the means and the concentration parameter. The generative
process is as follows,

G ∼ DP (.|G0, α)

{µi, κi} ∼ G(.)

xi ∼ vMF(.|µi, κi)

The base measureG0 is the product space vMF(.|µ0, C0)logNormal(.|m,σ2) and µ0, C0,m, σ
2 are

the prior parameters that one needs to specify. One could perform MCMC sampling to estimate
the posterior or use variational inference techniques by using the stick breaking process version
of generating clusters. The extension to hierarchical clusters would be similar.

7.3 Semi-supervised Structure Expansion

7.3.1 Hierarchical Structures

It would be interesting to extend the TCS models to cases where there are hierarchical rela-
tions between classes in the supervision. More generally, given a partially labeled hierarchy as

107

7.3. Semi-supervised Structure Expansion

supervision, the task is to complete the hierarchy based on the pool of unlabeled data.
The simplest way to do this would be apply either TCS or CSC (chapter 6) at each node

of the hierarchy individually i.e. a node specific transformation matrix that all the children
share. However this is not very effective because of two reasons - firstly, this would require
some supervision under each node of the hierarchy (a few labeled nodes under each node) and
secondly, we cannot use supervision to expand into an entirely new subtree, and to do so we
must fallback to existing unsupervised hierarchical clustering methods.

Another way to expand the hierarchy is to enforce some structural dependencies between
the transformation matrices at each node. For example, we can enforce that the parent and
children transformation matrices must be close in most dimension except for a few; or that all
the sibling transformation matrices have disjoint subspaces, etc. These structural dependencies
can help exploit supervision even when creating an entirely new subtree.

7.3.2 Learning Transformation by Max-margin Formulation (TCS-MM)

Another way to learn a transformation function is by formulating an optimization problem
similar to the SVM struct [Tsochantaridis et al., 2006]. Here the the target of interest is the
cluster labels. The score of a set of labels is defined as the objective of the clustering algorithm
when the instances are assigned to clusters based on the given labels. Denote Y as the space of
all possible assignments of instances to clusters. Given one ground-truth clustering y ∈ Y, we
formulate the optimization problem as follows,

min
A

γλ(A) + Cξ

s.t FA(y) ≥ FA(z) + ξ ∀z ∈ Y, z 6= y

A � 0

Here FA(z) denotes the clustering objective with labeling z. For example with simple Kmeans
clustering,

FA(z) = −
K∑
k=1

∑
i:zi=k

(xi −mk)
>A(xi −mk) where k’th cluster mean mk =

1∑
i
I(zi = k)

∑
i:zi=k

xi

In short, the constraints ensure that we estimate a transformation matrix such that ground-truth
clustering has a better clustering objective than all possible clusterings by a margin ξ.

Typically such problems can be solved by using a constraint generation method where we
rely on a subroutine (separation oracle) that is able to find the most violated constraint. Un-
fortunately, in our case finding the most violated constraint involves finding a z that maximizes
FA(z) - which is the NP-hard clustering problem.

108

7.3. Semi-supervised Structure Expansion

Table 7.1: The performance (in terms of NMI and ARI) of TCS-MM on all datasets.

Dataset Metric TCS-MM Best other

Aussign NMI 0.864 0.937 (LMNN)

ARI 0.630 0.809

Char NMI 0.728 0.782 (TCS-CS)

ARI 0.609 0.687

DSPA NMI 0.702 0.768 (TCS-CS)

ARI 0.407 0.488

Libras NMI 0.675 0.660 (TCS-CS)

ARI 0.518 0.537

Penbased NMI 0.656 0.604 (TCS-GM

ARI 0.623 0.504 -L2)

Letter NMI 0.512 0.549 (FD)

ARI 0.359 0.385

USPS NMI 0.822 0.845 (TCS-GM)

ARI 0.792 0.829

Binalpha NMI 0.801 0.794 (TCS-GM)

ARI 0.673 0.669

Optrec NMI 0.725 0.936 (TCS-GM)

ARI 0.733 0.956

MNIST NMI 0.651 0.842 (TCS-GM)

ARI 0.857 0.885

Dataset Metric TCS-MM Best other

CNAE NMI 0.634 0.608 (TCS-GM)

ARI 0.570 0.574

K9 NMI 0.557 0.581 (TCS-GM)

ARI 0.359 0.615

TDT4 NMI 0.902 0.905 (TCS-GM)

ARI 0.817 0.826

TDT5 NMI 0.698 0.699 (TCS-GM)

ARI 0.196 0.198

AT& T NMI 0.836 0.918 (TCS-CS)

ARI 0.615 0.758

Umist NMI 0.614 0.826 (FD)

ARI 0.387 0.676

Faces96 NMI 0.910 0.944 (TCS-CS)

ARI 0.709 0.789

LFW NMI 0.433 0.415 (TCS-CS)

ARI 0.109 0.095

Isolet NMI 0.856 0.855 (TCS-CS)

ARI 0.757 0.733

WSJ NMI 0.810 0.837 (TCS-CS)

ARI 0.359 0.385

It would be interesting to see how an approximate constraint generator (i.e. generates a vi-
olated constraint instead of the most violated constraint) would work. We did some preliminary
experiments where the constraints were generated using a simple clustering algorithm (initial-
ized using kmeans++). The results for some of the datasets are shown in Table 7.1. Overall,
the results mixed, sometimes there an impressive gain in performance for e.g. on LFW, CNAE,
Isolet; whereas for most datasets there is not much more improvement than the other methods.
The lack of a good constraint generator makes it difficult to understand the performance of the
approach. It would be interesting to see if better methods can be designed for finding the most
violated constraints for this problem.

109

Bibliography

James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and Yiming Yang. Topic
detection and tracking pilot study final report. 1998. 69, 75

Kerem Altun and Billur Barshan. Human activity recognition using inertial/magnetic sensor
units. In Human Behavior Understanding, pages 38–51. Springer, 2010. 92

A. Argyriou, C.A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for
multi-task structure learning. 2007. 26

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
73(3):243–272, 2008. 26

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–
1035. Society for Industrial and Applied Mathematics, 2007. 89

Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra. Generative model-based
clustering of directional data. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 19–28. ACM, 2003. 57

Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, and Suvrit Sra. Clustering on the unit
hypersphere using von mises-fisher distributions. The Journal of Machine Learning Research,
6(2):1345, 2006. 57, 70

Mark Bangert, Philipp Hennig, and Uwe Oelfke. Using an infinite von mises-fisher mixture
model to cluster treatment beam directions in external radiation therapy. In Machine Learn-
ing and Applications (ICMLA), 2010 Ninth International Conference on, pages 746–751. IEEE,
2010. 57, 62

110

Bibliography

Árpád Baricz, Saminathan Ponnusamy, and Matti Vuorinen. Functional inequalities for modified
bessel functions. Expositiones Mathematicae, 29(4):399–414, 2011. 62

S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In International
Conference in Machine Learning, Workshop, pages 19–26, 2002. 80, 81, 91

S. Basu, M. Bilenko, and R.J. Mooney. A probabilistic framework for semi-supervised clustering.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 59–68. ACM, 2004. 81

S. Basu, M. Bilenko, A. Banerjee, and R.J. Mooney. Probabilistic semi-supervised clustering with
constraints. Semi-supervised learning, pages 71–98, 2006. 81

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 86

Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 23(4):2037–2060, 2013. 49

Paul N Bennett and Nam Nguyen. Refined experts: improving classification in large taxonomies.
In Proceedings of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, pages 11–18. ACM, 2009. 2, 9

M. Bilenko, S. Basu, and R.J. Mooney. Integrating constraints and metric learning in semi-
supervised clustering. In Proceedings of the twenty-first international conference on Machine
learning, page 11. ACM, 2004. 81, 90

Christopher M Bishop and Michael E Tipping. Bayesian regression and classification. Nato
Science Series sub Series III Computer And Systems Sciences, 190:267–288, 2003. 11

Christopher M Bishop et al. Pattern recognition and machine learning, volume 1. springer New
York, 2006. 16

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd international
conference on Machine learning, pages 113–120. ACM, 2006a. 4, 5, 47

David M Blei and John D Lafferty. A correlated topic model of science. The Annals of Applied
Statistics, pages 17–35, 2007. 4, 70

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. The Journal of
machine Learning research, 3:993–1022, 2003. 4, 55, 70

111

Bibliography

David M Blei, T Griffiths, M Jordan, and J Tenenbaum. Hierarchical topic models and the nested
chinese restaurant process. Advances in Neural Information Processing Systems, 16:106–114,
2004. 4, 5, 70

MD Blei and JD Lafferty. Correlated topic models. In Advances in Neural Information Processing
Systems, pages 147–155. Citeseer, 2006b. 4

John Blitzer, Kilian Q Weinberger, and Lawrence K Saul. Distance metric learning for large
margin nearest neighbor classification. In NIPS, pages 1473–1480, 2005. 81

Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online
Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998. URL http:

//leon.bottou.org/papers/bottou-98x. revised, oct 2012. 44

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lecheval-
lier and Gilbert Saporta, editors, Proceedings of the 19th International Conference on Compu-
tational Statistics (COMPSTAT’2010), pages 177–187, Paris, France, August 2010. Springer.
URL http://leon.bottou.org/papers/bottou-2010. 44

Guillaume Bouchard. Efficient bounds for the softmax function and applications to approximate
inference in hybrid models. In NIPS 2007 Workshop for Approximate Bayesian Inference in
Continuous/Hybrid Systems. Citeseer, 2007. 46, 47, 123

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R© in
Machine Learning, 2011. 43, 49, 50, 51, 52

Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 86

Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with support vector
machines. In Proceedings of the thirteenth ACM international conference on Information and
knowledge management, pages 78–87. ACM, 2004. 9, 26, 27

George Casella. Empirical bayes method - a tutorial. Technical report, Cornell University and
Purdue University. 15, 63

George Casella. Empirical bayes gibbs sampling. Biostatistics, 2(4):485–500, 2001. 65

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical classifica-
tion. The Journal of Machine Learning Research, 7:31–54, 2006. 9, 26

112

http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-2010

Bibliography

Douglass R Cutting, David R Karger, Jan O Pedersen, and John W Tukey. Scatter/gather: A
cluster-based approach to browsing large document collections. In Proceedings of the 15th
annual international ACM SIGIR conference on Research and development in information re-
trieval, pages 318–329. ACM, 1992. 55

J.N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. The annals of
mathematical statistics, 43(5):1470–1480, 1972. 44

Sanjoy Dasgupta. Learning mixtures of gaussians. In Foundations of Computer Science, 1999.
40th Annual Symposium on, pages 634–644. IEEE, 1999. 88

H. Daumé III. Notes on cg and lm-bfgs optimization of logistic regression. 2004. 43

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine learning, pages
209–216. ACM, 2007. 86

C. DeCoro, Z. Barutcuoglu, and R. Fiebrink. Bayesian aggregation for hierarchical genre classi-
fication. In Proceedings of the International Conference on Music Information Retrieval, pages
77–80, 2007. 9

Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classification. In
Proceedings of the twenty-first international conference on Machine learning, page 27. ACM,
2004. 9, 26

Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo Džeroski. Hierarchical annotation
of medical images. Pattern Recognition, 44(10):2436–2449, 2011. 17, 22

Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 29. ACM, 2004.
89

C.B. Do, C.S. Foo, and A.Y. Ng. Efficient multiple hyperparameter learning for log-linear models.
In Neural Information Processing Systems, volume 21, 2007. 10

Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay. Clustering large
graphs via the singular value decomposition. Machine learning, 56(1-3):9–33, 2004. 89

Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the
23rd annual international ACM SIGIR conference on Research and development in information
retrieval, pages 256–263. ACM, 2000. 9, 18

113

Bibliography

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi-task learning. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 109–117. ACM, 2004. 26

T. Finley and T. Joachims. Supervised clustering with support vector machines. In Proceedings
of the 22nd international conference on Machine learning, pages 217–224. ACM, 2005. 82

Ronald Fisher. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 1953. 57

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936. 90, 91

Jerome H Friedman. Regularized discriminant analysis. Journal of the American statistical
association, 84(405):165–175, 1989. 91

Keinosuke Fukunaga. Introduction to statistical pattern recognition. Academic press, 1990. 91

A. Gelman. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis,
2006. 16

Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis, and Ruslan Salakhutdinov. Neighbourhood
components analysis. In NIPS, pages 513–520, 2004. 81, 90

S. Gopal and Y. Yang. Multilabel classification with meta-level features. In Proceeding of the
33rd international ACM SIGIR conference on Research and development in information retrieval
(SIGIR), pages 315–322. ACM, 2010. 34

S. Gopal and Y. Yang. Transformation-based probabilistic clustering with supervision. In Pro-
ceeding of the 30th conference on Uncertainty in Artificial Intelligence (UAI), 2014a. 99

Siddharth Gopal and Yiming Yang. Distributed training of large-scale logistic models. In Pro-
ceedings of the 30th International Conference on Machine Learning (ICML-13), pages 289–297,
2013a. 48

Siddharth Gopal and Yiming Yang. Recursive regularization for large-scale classification with
hierarchical and graphical dependencies. In Special Interest Group in Knowledge Discovery and
Datamining (KDD), 2013b. 27

Siddharth Gopal and Yiming Yang. Von mises-fisher clustering models. In Proceedings of the
30th International Conference on Machine Learning (ICML-13), 2014b. 72

114

Bibliography

Siddharth Gopal, Yiming Yang, and Alexandru Niculescu-Mizil. Regularization framework for
large scale hierarchical classification. Workshop in Large-scale Hierarchical Text Classification
ECML, 2012. 27

Nico Gornitz, Christian K Widmer, Georg Zeller, Andre Kahles, Gunnar Ratsch, and Soren Son-
nenburg. Hierarchical multitask structured output learning for large-scale sequence segmen-
tation. In Advances in Neural Information Processing Systems, pages 2690–2698, 2011. 9

Maya R Gupta, Samy Bengio, and Jason Weston. Training highly multiclass classifiers. Journal
of Machine Learning Research, 15:1–48, 2014. 107

Peter Guttorp and Richard A Lockhart. Finding the location of a signal: A bayesian analysis.
Journal of the American Statistical Association, 83(402):322–330, 1988. 57

Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tibshirani. The
elements of statistical learning, volume 2. Springer, 2009. 86

Paul W Holland and Roy E Welsch. Robust regression using iteratively reweighted least-squares.
Communications in Statistics-Theory and Methods, 6(9):813–827, 1977. 43

Kurt Hornik and Bettina Grün. movmf: An r package for fitting mixtures of von mises-fisher
distributions. 71

C.J. Hsieh, K.W. Chang, C.J. Lin, S.S. Keerthi, and S. Sundararajan. A dual coordinate descent
method for large-scale linear svm. In ICML, pages 408–415. ACM, 2008. 29, 32

K.L. Hsiung, S.J. Kim, and S. Boyd. Tractable approximate robust geometric programming.
Optimization and Engineering, 9(2):95–118, 2008. 45

T. Jebara and A. Choromanska. Majorization for CRFs and latent likelihoods. In Neural Infor-
mation Processing Systems, 2012. 123

Thorsten Joachims. Transductive inference for text classification using support vector machines.
In ICML, volume 99, pages 200–209, 1999. 102

Thorsten Joachims. Learning to classify text using support vector machines: Methods, theory and
algorithms. Kluwer Academic Publishers, 2002. 4, 55

Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for image co-
segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 1943–1950. IEEE, 2010. 82

115

Bibliography

Michel Journée, Francis Bach, P-A Absil, and Rodolphe Sepulchre. Low-rank optimization on
the cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351,
2010. 89

PE Jupp and KV Mardia. A unified view of the theory of directional statistics, 1975-1988.
International Statistical Review/Revue Internationale de Statistique, 1989. 57

Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
Journal of the ACM (JACM), 51(3):497–515, 2004. 89

Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method for general
mixture models. In Proceedings of the 18th annual conference on Learning Theory, pages 444–
457. Springer-Verlag, 2005. 88

R.E. Kass and R. Natarajan. A default conjugate prior for variance components in generalized
linear mixed models. Bayesian Analysis, 2006. 16

D. Koller and M. Sahami. Hierarchically classifying documents using very few words. 1997. 9,
18

Andreas Krause, Pietro Perona, and Ryan G Gomes. Discriminative clustering by regularized
information maximization. In NIPS, pages 775–783, 2010. 82

David D Lewis, Robert E Schapire, James P Callan, and Ron Papka. Training algorithms for
linear text classifiers. In Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 298–306. ACM, 1996. 127

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection for
text categorization research. The Journal of Machine Learning Research, 5:361–397, 2004. 33

Feng Liang, Sayan Mukherjee, and Mike West. The use of unlabeled data in predictive modeling.
Statistical Science, pages 189–205, 2007. 102

C.J. Lin, R.C. Weng, and S.S. Keerthi. Trust region newton method for logistic regression. The
Journal of Machine Learning Research, 9:627–650, 2008. 44

D.C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989. 14, 43, 47, 51

Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma. Support
vector machines classification with a very large-scale taxonomy. ACM SIGKDD Explorations
Newsletter, 7(1):36–43, 2005. 2, 9, 18

116

Bibliography

Z. Lu and T. Leen. Semi-supervised learning with penalized probabilistic clustering. Advances
in neural information processing systems, 17:849–856, 2005. 81

Zhengdong Lu and Miguel A Carreira-Perpinán. Constrained spectral clustering through affinity
propagation. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008. 82

Z.Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differ-
entiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.
15, 30

Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and bregman iterative methods for
matrix rank minimization. Mathematical Programming, 128(1-2):321–353, 2011. 85

Charles Mallah, James Cope, and James Orwell. Plant leaf classification using probabilistic
integration of shape, texture and margin features, 2013. 96

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information
retrieval, volume 1. Cambridge University Press Cambridge, 2008. 17, 33, 93

Kanti V Mardia and Peter E Jupp. Directional statistics, volume 494. Wiley, 2009. 107

KV Mardia and El-Atoum. Bayesian inference for the vmf distribution. Biometrika, 1976. 57

B. Marlin, M.E. Khan, and K. Murphy. Piecewise bounds for estimating bernoulli-logistic latent
gaussian models. In Proceedings of the international conference on Machine learning, 2011. 45

A. McCallum, R. Rosenfeld, T. Mitchell, and A.Y. Ng. Improving text classification by shrinkage
in a hierarchy of classes. In Proceedings of the international conference on Machine learning,
pages 359–367, 1998. 9

T.P. Minka. A comparison of numerical optimizers for logistic regression. Unpublished draft,
2003. 44

Boaz Nadler and Meirav Galun. Fundamental limitations of spectral clustering. NIPS, 19:1017,
2007. 82

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012. 49

Anthony O’Hagan, Jonathan Forster, and Maurice George Kendall. Bayesian inference. Arnold
London, 2004. 4

117

Bibliography

Syama S Rangapuram and Matthias Hein. Constrained 1-spectral clustering. In International
Conference on Artificial Intelligence and Statistics, pages 1143–1151, 2012. 82

Joseph Reisinger, Austin Waters, Bryan Silverthorn, and Raymond Mooney. Spherical topic
models. In Proceedings of the international conference on Machine learning, 2010. 57

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,
2014. 49

Stephen Robertson. Understanding inverse document frequency: on theoretical arguments for
idf. Journal of documentation, 60(5):503–520, 2004. 4, 55

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical
multilabel classification models. The Journal of Machine Learning Research, 7:1601–1626,
2006. 9, 26

Gerard Salton and Michael J McGill. Introduction to modern information retrieval. 1986. 4, 55

N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-newton method for online convex
optimization. 2007. 43

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 134–141. Association for Compu-
tational Linguistics, 2003. 43

B. Shahbaba and R.M. Neal. Improving classification when a class hierarchy is available using
a hierarchy-based prior. Bayesian Analysis, 2(1):221–238, 2007. 10, 11, 19, 22, 25

D.F. Shanno. On broyden-fletcher-goldfarb-shanno method. Journal of Optimization Theory and
Applications, 46(1):87–94, 1985. 43

Noam Shental, Tomer Hertz, Daphna Weinshall, and Misha Pavel. Adjustment learning and
relevant component analysis. In Computer VisionâĂŤECCV 2002, pages 776–790. Springer,
2006. 90

A. Smola and R. Kondor. Kernels and regularization on graphs. Learning theory and kernel
machines, pages 144–158, 2003. 26

Suvrit Sra. A short note on parameter approximation for von mises-fisher distributions: and a
fast implementation of i s (x). Computational Statistics, 27(1):177–190, 2012. 64

118

Bibliography

Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of document clustering
techniques. In KDD workshop on text mining, volume 400, pages 525–526. Boston, 2000. 5

M.E. Tipping. Sparse bayesian learning and the relevance vector machine. The Journal of
Machine Learning Research, 1:211–244, 2001. 11

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109(3):475–494, 2001. 30, 49

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured
and interdependent output variables. The Journal of Machine Learning Research, 6(2):1453,
2006. 9, 18, 26, 27, 108

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering
with background knowledge. In Proceedings of the 17th Annual International Conference on
Machine Learning, volume 1, pages 577–584, 2001. 80, 81

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008. 13,
59

Chong Wang, David Blei, and David Heckerman. Continuous time dynamic topic models. arXiv
preprint arXiv:1206.3298, 2012. 4

Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
563–572. ACM, 2010. 82

Xuerui Wang and Andrew McCallum. Topics over time: a non-markov continuous-time model of
topical trends. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 424–433. ACM, 2006. 4

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. The Journal of Machine Learning Research, 10:207–244, 2009. 89, 90

C. Widmer, J. Leiva, Y. Altun, and G. Rätsch. Leveraging sequence classification by taxonomy-
based multitask learning. In Research in Computational Molecular Biology, pages 522–534.
Springer, 2010. 9, 26

IPC WIPO. http://www.wipo.int/classifications /ipc/en/support/. 17

119

Bibliography

Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart Russell. Distance metric learning, with
application to clustering with side-information. Advances in neural information processing
systems, 15:505–512, 2002. 81

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clustering. In
NIPS, pages 1537–1544, 2004. 82

Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. Deep classification in large-scale text
hierarchies. In Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 619–626. ACM, 2008. 9

Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching using
sparse coding for image classification. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009. CVPR 2009, pages 1794–1801. IEEE, 2009. 4

Yiming Yang. An evaluation of statistical approaches to text categorization. Information re-
trieval, 1(1):69–90, 1999. 127

Yiming Yang. A study of thresholding strategies for text categorization. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 137–145. ACM, 2001. 34

Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of classifiers in text categoriza-
tion. In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 96–103. ACM, 2003. 2, 9

H.F. Yu, F.L. Huang, and C.J. Lin. Dual coordinate descent methods for logistic regression and
maximum entropy models. Machine Learning, 85(1):41–75, 2011. 44

Hongyuan Zha, Xiaofeng He, Chris Ding, Ming Gu, and Horst D Simon. Spectral relaxation for
k-means clustering. In NIPS, volume 1, pages 1057–1064, 2001. 89

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learning,
page 116. ACM, 2004. 44

Tong Zhang, Alexandrin Popescul, and Byron Dom. Linear prediction models with graph regu-
larization for web-page categorization. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 821–826. ACM, 2006. 26

D. Zhou, L. Xiao, and M. Wu. Hierarchical classification via orthogonal transfer. Technical
report, MSR-TR-2011-54, 2011. 9, 18, 21, 27

120

Bibliography

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label prop-
agation. Technical report, Technical Report CMU-CALD-02-107, Carnegie Mellon University,
2002. 102

121

Variational Inference for
Hierarchical Bayesian Logistic
Regression A

A.1 Variational Inference for model M2

For HBLR model discussed in section 2.4, the parameters of the approximate posterior are
estimated by solving the following optimization problem

max
q(W,α)∈Q

Eq [logP (W,α,D)]− Eq [log q(W,α)] (A.1)

We use a coordinate ascent approach by maximizing the ELBO (A.1) w.r.t each posterior param-
eter. For example, to optimize the ELBO w.r.t wn, we first identify the terms that depend on wn
and set the gradient to zero.

ELBO(wn) =

∫
q(wn|µn,Ψn)

[
q(W−wn, α) log p(W,α,D)dWdα

]
−
∫
q(wn|µn,Ψn) log q(wn|µn,Ψn)dwn

where W−wn denotes all w except wn. Setting the gradient w.r.t q(wn) to zero yields,

log q∗(wn|µn,Ψn) = Eq−wn [log p(W,α,D)] + constant

q∗(wn|µn,Ψn) ∝ exp
(
Eq−wn [log p(W,α,D)]

)
(A.2)

Similarly, to update αn,

log q∗(αn|τn, υn) = Eq−αn [log p(W,α,D)] + constant

q∗(αn|τn, υn) ∝ exp
(
Eq−αn [log p(W,α,D)]

)
(A.3)

For both the parameters, the updates rely on the ability to calculate Eq [log p(W,α,D)] effi-
ciently.

Eq[log p(W,α,D)] = Eq [logP (D|W,α)] + Eq [logP (W,α)]

122

A.1. Variational Inference for model M2

Where,

Eq [logP (W,α)] =
∑
n∈N
−1

2
Eq

[
(wn − wπ(n))>Σ−1π(n)(wn − wπ(n))

]

−
∑
n∈N

1

2
Eq [log |Σn|]−

∑
n∈N/T

d∑
i=1

Eq

[
α(i)
n

]
bn + Eq

[
(a(i)n − 1) log(α(i)

n)
]

Eq [logP (D|W,α)] =
∑

(x,t)∈D

Eq[wn]>x−
∑

(x,t)∈D

Eq

[
log

(∑
n∈T

exp(w>n x)

)]
(A.4)

The expectations of all the parameters except the log normalization in (A.4) are easy to com-
pute. The log normalization constant involves the convolution of a normally distributed wn

with the soft-max function of wn which has no closed form solution. The hardness of calculat-
ing this expectation has been well studied in previous literature [Bouchard, 2007], [Jebara and
Choromanska, 2012]. We use the method proposed in [Bouchard, 2007] and lower bound the
normalization constant with a quadratic function of wn - a function whose expectation is easier
to compute.

log

(∑
n∈T

exp(w>n x)

)
≤βx +

∑
n∈T

(w>n x− βx − ξxn)

2
+
∑
n∈T

log
(
1 + ξ2xn

)
+
∑
n∈T

λ(ξxn)

((
w>n x− βx

)2
− ξ2xn

)

=− (
|T |
2
− 1)βx +

∑
n∈T

w>n x

2
−
∑
n∈T

ξxn
2

+
∑
n∈T

log(1 + eξxn)

+
∑
n∈T

λ(ξxn)
(
w>n (xx>)wn − 2βx(w>n x)λ(ξxn) + β2x − ξ2xn

)
(A.5)

where

λ(ξxn) =
1

2ξxn

(
1

1 + exp(−ξxn)
− 1

2

)

Note that we have introduced variational parameter βx and ξxn for every x ∈ D,n ∈ N . These
variation parameters are free parameters that we can optimize over to get the tightest possible
bound. The expected log-sum-exp function can be computed as follows,

123

A.1. Variational Inference for model M2

To compute the update for wn (A.2)

Eq−wn [logP (W,α)] = Eq−wn

[
−1

2
(wn − wπ(n))>Σ−1π(n)(wn − wπ(n))

]
+
∑
c∈Cn

Eq−wn

[
−1

2
(wc − wn)>Σ−1n (wc − wn)

]
+ constants.. (A.6)

Eq−wn [logP (D|W,α)] ≥
∑

(x,t)∈D

I(t = n)Eq−wn [wn]>x

−
∑

(x,t)∈D

w>n x

2
+ λ(ξxn)

(
w>n>xx>wn − 2βxw

>
n x
)

+ constants.. (A.7)

Putting together (A.6), (A.7) and (A.2), this implies that the mean µn and the covariance Ψn of
the posterior normal distribution of wn are given by,

Ψ−1n = I(n ∈ T)
∑

(x,t)∈D

2λ(ξxn)xx> + diag(
τπ(n)

υπ(n)
) + |Cn|diag(

τn
υn

) (A.8)

µn = Ψn

I(n ∈ T)
∑

(x,t)∈D

(I(t = n)− 1

2
+ 2λ(ξxn)βx)x+ diag(

τπ(n)

υπ(n)
)µπ(n) + diag(

τn
υn

)
∑
c∈Cn

µc


(A.9)

where we have used the fact that

Eq−wn [wc] = µc

Eq−wn
[
Σ−1n′

]
= diag

(
Eq−wn

[
α
(1)
n′

]
, Eq−wn

[
α
(2)
n′

]
, . . . , Eq−wn

[
α
(d)
n′

]
)
)

= diag

(
τ
(1)
n′

υ
(1)
n′

,
τ
(2)
n′

υ
(2)
n′

, . . . ,
τ
(d)
n′

υ
(d)
n′

)

)
∀n′ 6= n

For updating αn,

Eq−αn [log p(W,α,D)] = −
∑
c∈Cn

α
(i)
n

2
Eq

[
(w(i)

n − w(i)
c)2

]
+

(∑
c∈Cn

log(α
(i)
n)

2

)
− α(i)

n b
(i)
n + (a(i)n − 1) log(α(i)

n)

= −α(i)
n

(
b(i)n +

∑
n∈Cn

1

2

(
(µ(i)c − µ(i)n)2 + Ψ(i,i)

n + Ψ(i,i)
c

))

+ (a(i)n +
|Cn|

2
− 1) log(α(i)

n) + constant (A.10)

124

A.2. Variational Inference for model M1

Combining equations (A.10), (A.3) implies that the posterior parameters of αn are given by,

υ(i)n = b(i)n +
∑
c∈Cn

Ψ(i,i)
n + Ψ(i,i)

c + (µ(i)n − µ(i)c)2 (A.11)

τ (i)n = a(i)n +
|Cn|

2
(A.12)

Note that at each step of optimization, the local variational parameters are also optimized to
give the tightest possible bound. The variational parameters ξxn, βx are updated by maximizing
(A.5).

ξ2xn = x> diag(
τn
υn

)x+ (βx − µ>n x)2 (A.13)

βx =

(
1
2

(
1
2 |T | − 1

)
+
∑
n∈T

λ(ξxn)µ>n x

)
∑
n∈T

λ(ξxn)
(A.14)

The full variational algorithm simply involes optimizing each of the variables as outlined in
(A.8), (A.9), (A.11), (A.12), (A.13) and (A.14).

A.2 Variational Inference for model M1

Most of the derivation simply goes through changed except that α(1)
n = α

(2)
n = . . . = αn. The

parameters are iteratively updated as follows,

Ψ−1n =
∑

(x,t)∈D

2λ(ξxn)xx> + Eq−wn
[
Σ−1π(n)

]
+ +|Cn|Eq−wn

[
Σ−1n

]

µn = Ψn

 ∑
(x,t)∈D

(I(t = n)− 1

2
+ 2λ(ξxn)βx)x+ Eq−wn

[
Σ−1π(n)

]
µπ(n) + Eq−wn

[
Σ−1n

] ∑
c∈Cn

µc



υn = bn +
∑
c∈Cn

trace(Ψn) + trace(Ψc) + (µn − µc)>(µn − µc)

τn = an +
|Cn|d

2

where

Eq−wn
[
Σ−1n

]
= diag

(
τn
υn
,
τn
υn
, . . . ,

τn
υn

)

)

125

A.3. Variational Inference for model M3

A.3 Variational Inference for model M3

The extension to HBLR-M3 follows along similar lines.

If n ∈ T Ψ−1n =
∑

(x,t)∈D

2λ(ξxn)xx> + Eq−wn
[
Σ−1n

]

µn = Ψn

 ∑
(x,t)∈D

(I(t = n)− 1

2
+ 2λ(ξxn)βx)x+ Eq−wn

[
Σ−1n

]
µπ(n)



If n /∈ T

Ψ−1n = Eq−wn
[
Σ−1n

]
+
∑
c∈Cn

Eq−wn
[
Σ−1c

]
µn = Ψn

(
Eq−wn

[
Σ−1n

]
µπ(n) +

∑
c∈Cn

Eq−wn
[
Σ−1c

]
µc

)
υn = bn + trace(Ψπ(n)) + trace(Ψn) + (µn − µπ(n))>(µn − µπ(n))

τn = an +
d

2

126

Evaluation Metrics B
B.1 Classification Metrics

We use the most popular Micro-F1 and Macro-F1 evaluation measures.

1. Micro-averaged F1 (Micro-F1) is a conventional metric for evaluating classifiers [Lewis
et al., 1996] [Yang, 1999]. The system-made decisions on test set with respect to a specific
category c ∈ C ≡ {c1, ..., cm} can be divided into four groups: True Positives (TPc),
False Positives (FPc), True Negatives (TNc) and False Negatives (FNc), respectively. The
corresponding evaluation metrics are defined as:

P =

∑
c∈C

TPc∑
c∈C

(TPc + FPc)
, R =

∑
c∈C

TPc∑
c∈C

(TPc + FNc)
, Micro-F1 =

2PR

P +R

2. Macro-averaged F1 (Macro-F1) defined as:

Pc =
TPc

TPc + FPc
, Rc =

TPc
TPc + FNc

, Macro-F1 =
1

m

∑
c∈C

2PcRc
Pc +Rc

Both micro-averaged and macro-averaged are informative metrics. The former gives the
performance on each instance an equal weight in computing the average; the latter gives the
performance on each category an equal weight in computing the average.

B.2 Clustering Recoverability Metrics

The six clustering measures we used for ground-truth based evaluations are Normalized Mutual
Information (NMI), Mutual Information (MI), Rand Index (RI), Adjusted Rand Index (ARI),

127

B.2. Clustering Recoverability Metrics

Purity and Macro-F1. Following standard notation1, given a collection of N instances, we let
Ω = {ω1, ω2, ..., ωK} denote predicted clusters and C = {c1, c2, ..cJ} denote the true clusters.

1. MI: The standard definition of mutual information is

MI(Ω, C) = I(Ω, C) =
∑
k,j

|ωk ∩ Cj |
N

log

(
N |ωk ∩ cj |
|ωk||cj |

)

2. NMI: NMI is the normalized variant of MI, where we normalize MI by the sum of the
entropies of the two random variables. This quantity always lies between 0 and 1, 0
indicating independence and 1 indicating complete dependence.

NMI(Ω, C) =
I(Ω, C)

H(Ω) +H(C)
where H(Ω) =

∑
K

|ωk|
N

log(
|ωk|
N

) , H(C) =
∑
J

|cj |
N
log(
|cj |
N

)

3. RI: We can view clustering as predicting a {0, 1} decision for all N(N − 1)/2 pairs of
instances, where 1 indicates the pair of instances belong to the same cluster, and 0 indi-
cates different clusters. Given the ground-truth decisions for the pairs, we can define the
standard TP , TN , FP and FN for the predicted decisions. The rand index is defined as,

RI =
TP + TN

TP + TN + FP + FN

4. ARI: ARI is the corrected-for-chance version of the Rand index. Define nj. =
∑
k

|cj ∩ ωk|

and n.k =
∑
j
|ck ∩ ωk|, and nij = |ck ∩ ωk|.

ARI =

∑
k,j

(nij
2

)
−

[∑
j

(nj.
2

)∑
k

(
n.k
2

)]
/
(
N
2

)
1
2

[∑
j

(nj.
2

)
+
∑
k

(
n.k
2

)]
−

[∑
j

(nj.
2

)∑
k

(
n.k
2

)]
/
(
N
2

)
5. Purity: Each cluster is assigned to the class which is most frequent in the cluster, and

purity is the accuracy of this assignment,

Purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj |

6. Macro-F1: Each cluster is assigned to the class which is most frequent in the cluster. Now
we can compute any classification measure including accuracy (Purity) or Macro-F1.

1http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

128

Learning Transformation by CPM C
C.1 General Mixture Model

We discuss how to estimate a generic transformationG(x) for x ∈ X given a mixture ofK densi-
ties f(x|Ck) over X , where Ck denotes the parameters of cluster k (k ∈ {1, 2, ..K}). We assume
that we are given supervised information S = {xi, ti}Ni=1 where xi ∈ X and ti ∈ {1, 2..K}. For
convenience define yik = I(ti = k). Note that the transformation G(x) needs to appropriately
defined such that the transformation still lies within the support of the distribution.

The conditional distribution for class k given an instance x is defined as, (note that k is also
overloaded to represent class k)

P (k|C, xi) =
f(x|Ck)
K∑
j=1

f(x|Cj)

The transformationG is estimated by maximizing the conditional distribution of the labels given
the transformed instances G(X).

logP (Y|G(X),Cmle(G)) =
N∑
i=1

K∑
k=1

yik

log f(G(xi)|Cmlek (G))− log

 K∑
j=1

f(G(xi)|Cmlej (G))


Here Cmlek (G) denotes the MLE estimate of the k’th cluster parameter under the transformation
G.

Since we doing supervised learning, there is a good chance that the transformation will
overfit the training data. We therefore add a regularizer λ(G) with a regularization constant γ.

129

C.2. Gamma Mixtures

Putting everything together, the optimization problem to solve is,

max
G,C

γλ(G) +

N∑
i=1

[
K∑
k=1

yik log f(G(xi)|Ck)

]
−

N∑
i=1

log

(
K∑
k=1

f(G(xi)|Ck)

)

s.t. Ck = arg max
C′k

N∑
i=1

yik log f(G(xi)|C ′k) (i.e. C is the MLE estimate)

The argmax constraint can be succintly rewritten as equalitys for each Ck constraint. Rewrit-
ing as a minimization problem,

min
G,C

γλ(G)−
N∑
i=1

[
K∑
k=1

yik log f(G(xi)|Ck)

]
+

N∑
i=1

log

(
K∑
k=1

f(G(xi)|Ck)

)
(C.1)

s.t.
∂

N∑
i=1

yik log f(G(xi)|C ′k)

∂Ck
= 0 (C.2)

For arbitrary distributions, there is no general recipe to solve this problem. However for
certain distributions, closed form expressions to the equality constraint are available, which can
substituted directly into the minimization problem (C.1). Sometimes this can lead to a convex
optimization problem (for e.g. in the case of Gaussian distribution).

Note at the optimal solution Cmle, the gradient w.r.t G satisfies the following,

γλ′(G) +

N∑
i=1

K∑
k=1

[
yik − P (k|Cmlek , G(xi))

] ∂ log f(G(xi)|Cmlek)

∂G
= 0

C.2 Gamma Mixtures

Gamma distribution is defined over X ≡ R+. We consider a multivariate version of gamma
distribution where each dimension is independently drawn. In a P dimensional space, the
density for a point x ∈ RP+ is given by,

P (xi|α,β) =

P∏
p=1

β
αp
p

Γ(αp)
x
αp−1
ip e−βpxip

We consider a mixture of gamma distributions where each cluster is associated with cluster
parameter {αk, βk}Kk=1 where αk, βk ∈ RP+. We define a transformation,

G(xi) = Lxi , L ∈ RP×P+

130

C.2. Gamma Mixtures

The log probability of the transformed point Lxi from cluster k is given by,

logP (Lxi|k) =

P∑
p=1

αpk log(βpk)−
P∑
p=1

log Γ(αpk) +

P∑
p

(αpk − 1) log(LTp xi)−
P∑
p=1

βpk(LTp xi)

where Lp is row p in L

Note that the MLE constraint for αk, βk are given by (mk denotes the mean of all instances
assigned to cluster k)

βpk =
αpk

L>pmk

log(βpk)− ψ(βpk) = log(L>pmk)−
1

nk

N∑
i=1

log(L>p xi)

Since the MLE estimate of βpk is relatively simple, we substitute it into the optimization prob-
lem (??) with the gamma density defined above. We follow a similar strategy like vMF where
alternatively optimize αpk and L. In the first step, we find the αpk that satisfies the MLE constraint
using newton’s method, and in the second step we fix the αk ’s and optimize for L.

The derivative of above w.r.t row Lp is given by,
N∑
i=1

K∑
k=1

(yik − pik)
∂ logP (Lxi|αk, βk)

∂Lp

Considering summation with just class K, the derivative w.r.t Lp (the pth row) is given by,

Gradient =

(
αpkmk

(L>pmk)

∑
i=1

(yik − P (k|Lxi))

)
+

(
(αpk − 1)

N∑
i=1

(yik − P (k|Lxi))
1

L>p xi
xi

)

−

(
αpk

L>pmk

N∑
i=1

(yik − p(k|Lxi))xi

)
+

(
mk

(L>pmk)2

N∑
i=1

(yik − P (k|Lxi))L>p xi)

)
This can be rewritten as,

Define nk =

N∑
i=1

yik , zk =

N∑
i=1

P (k|Lxi) , Jikp =
(yik − p(k|Lxi))

L>p xi

Jkp =
N∑
i=1

Jikpxi , sk =
N∑
i=1

(yik − p(k|Lxi))xi

Gradient =

(
αpk

L>pmk
(nk − zk)mk

)
+ (αpk − 1)Jkp −

(
αpk

L>pmk
sk

)
+

(
L>p sk

(L>pmk)2
mk

)

131

C.2. Gamma Mixtures

We follow a similar procedure like vMF models. Note that things can simply a lot if we
assume that the shape parameter is known or can be estimated from all the data initially.

132

Detailed Results of TCS Models D
D.1 Comparison of TCS models with Baselines

The following tables all the complete results of all the models on all the datasets using 5 clus-
tering recoverability metrics. We also include the results of additional TCS-FS method which is
a small tweak to Fisher discriminant analysis FD. TCS-FS is essentially the same as FD except
the the SB (in eq (6.4)) is defined slightly differently as below,

SB =

K∑
i=1

K∑
j=i+1

(mi −mj)(mi −mj)
>

Here we try to find a subspace where the distance between every pair of clusters is maximized
and within cluster distances are minimized. Unliked FD, we completely remove the effect of
any within cluster similarity in the computation of SB matrix.

133

D.1. Comparison of TCS models with Baselines

Table D.1: The performance of the methods on other datasets.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
Image NMI 0.836 0.836 0.399 0.375 0.369 0.495 0.601 0.699 0.780

MI 0.915 0.914 0.427 0.406 0.399 0.529 0.640 0.768 0.851
ARI 0.839 0.828 0.344 0.323 0.314 0.421 0.533 0.697 0.794

RI 0.928 0.923 0.700 0.694 0.690 0.735 0.785 0.865 0.906
Purity 0.939 0.937 0.715 0.699 0.691 0.727 0.720 0.878 0.908

Vowel NMI 0.414 0.403 0.394 0.401 0.361 0.346 0.135 0.235 0.253
MI 0.662 0.556 0.624 0.641 0.580 0.546 0.212 0.370 0.400

ARI 0.273 0.287 0.274 0.300 0.265 0.244 0.066 0.159 0.149
RI 0.766 0.764 0.760 0.774 0.766 0.749 0.686 0.718 0.720

Purity 0.521 0.536 0.522 0.556 0.534 0.479 0.325 0.450 0.396
Leaves NMI 0.824 0.876 0.822 0.903 0.902 0.852 0.767 0.815 0.778

MI 2.855 3.036 2.850 3.115 3.114 2.951 2.650 2.802 2.687
ARI 0.592 0.679 0.590 0.710 0.709 0.637 0.491 0.559 0.512

RI 0.975 0.980 0.975 0.982 0.982 0.978 0.968 0.972 0.970
Purity 0.725 0.783 0.725 0.795 0.796 0.751 0.650 0.702 0.665

134

D.1. Comparison of TCS models with Baselines

Table D.2: The performance of the methods in the Time-series domain.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
Aussign NMI 0.890 0.910 0.925 0.932 0.931 0.937 0.775 0.838 0.817

MI 3.048 3.123 3.173 3.191 3.189 3.229 2.634 2.856 2.780
ARI 0.694 0.742 0.764 0.768 0.768 0.809 0.473 0.588 0.546

RI 0.980 0.983 0.985 0.985 0.985 0.988 0.963 0.972 0.968
Purity 0.771 0.809 0.814 0.822 0.819 0.852 0.609 0.694 0.668

Char NMI 0.752 0.782 0.754 0.645 0.668 0.671 0.690 0.737 0.687
MI 1.532 1.592 1.540 1.323 1.370 1.375 1.409 1.507 1.405

ARI 0.648 0.687 0.652 0.563 0.505 0.572 0.588 0.622 0.568
RI 0.917 0.926 0.919 0.900 0.889 0.902 0.904 0.913 0.900

Purity 0.761 0.781 0.773 0.739 0.701 0.728 0.729 0.750 0.721
DSPA NMI 0.685 0.768 0.734 0.734 0.739 0.597 0.668 0.642 0.678

MI 1.231 1.433 1.367 1.323 1.335 0.968 1.204 1.124 1.219
ARI 0.406 0.488 0.518 0.319 0.468 0.253 0.392 0.340 0.398

RI 0.825 0.835 0.873 0.743 0.842 0.668 0.822 0.785 0.823
Purity 0.660 0.743 0.712 0.579 0.693 0.519 0.654 0.605 0.659

Libras NMI 0.608 0.660 0.642 0.664 0.649 0.498 0.599 0.592 0.512
MI 0.945 1.024 1.010 1.019 1.014 0.769 0.939 0.918 0.803

ARI 0.474 0.537 0.540 0.516 0.522 0.375 0.474 0.454 0.376
RI 0.821 0.843 0.849 0.830 0.838 0.781 0.825 0.814 0.794

Purity 0.693 0.737 0.736 0.726 0.731 0.623 0.687 0.681 0.631

Table D.3: The performance of the methods in the Text domain.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
CNAE NMI 0.608 0.528 0.239 0.435 0.401 0.314 0.431 0.481 0.485

MI 0.638 0.530 0.246 0.443 0.439 0.309 0.418 0.476 0.480
ARI 0.574 0.405 0.202 0.373 0.384 0.194 0.285 0.355 0.359

RI 0.800 0.703 0.626 0.712 0.726 0.598 0.630 0.674 0.676
Purity 0.807 0.720 0.566 0.714 0.675 0.611 0.649 0.684 0.684

K9 NMI 0.581 0.562 0.405 0.335 0.410 0.375 0.562 0.510 0.561
MI 0.952 0.894 0.654 0.552 0.704 0.605 0.901 0.780 0.889

ARI 0.615 0.384 0.456 0.097 0.185 0.178 0.367 0.259 0.365
RI 0.853 0.761 0.788 0.682 0.713 0.693 0.756 0.696 0.753

Purity 0.768 0.728 0.670 0.557 0.641 0.625 0.731 0.699 0.733
TDT4 NMI 0.905 0.902 0.689 0.898 0.892 0.900 0.891 0.894 0.898

MI 1.948 1.956 1.498 1.971 1.956 1.951 1.921 1.939 1.937
ARI 0.826 0.824 0.441 0.824 0.808 0.807 0.794 0.798 0.809

RI 0.959 0.959 0.869 0.960 0.956 0.954 0.949 0.952 0.954
Purity 0.926 0.924 0.735 0.920 0.920 0.923 0.907 0.915 0.914

TDT5 NMI 0.699 0.696 0.695 0.699 0.697 0.675 0.692 0.694 0.692
MI 2.159 2.150 2.146 2.156 2.149 2.085 2.135 2.127 2.135

ARI 0.198 0.200 0.199 0.197 0.198 0.192 0.193 0.196 0.194
RI 0.855 0.856 0.855 0.855 0.855 0.854 0.854 0.853 0.854

Purity 0.862 0.857 0.859 0.862 0.862 0.837 0.856 0.857 0.858
135

D.1. Comparison of TCS models with Baselines

Table D.4: The performance of the methods in the Handwritten Characters Domain.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
Penbased NMI 0.556 0.572 0.604 0.602 0.464 0.571 0.401 0.487 0.522

MI 0.753 0.775 0.796 0.820 0.625 0.769 0.550 0.658 0.707
ARI 0.509 0.501 0.504 0.562 0.395 0.531 0.362 0.417 0.454

RI 0.809 0.802 0.807 0.831 0.762 0.814 0.757 0.771 0.786
Purity 0.736 0.715 0.736 0.777 0.639 0.758 0.649 0.663 0.686

Letter NMI 0.478 0.484 0.504 0.540 0.549 0.434 0.265 0.373 0.351
MI 1.078 1.081 1.135 1.211 1.229 0.976 0.596 0.841 0.792

ARI 0.301 0.301 0.329 0.369 0.385 0.245 0.116 0.193 0.175
RI 0.867 0.861 0.867 0.877 0.878 0.854 0.828 0.843 0.841

Purity 0.501 0.497 0.525 0.550 0.554 0.459 0.307 0.390 0.369
USPS NMI 0.845 0.810 0.455 0.637 0.444 0.785 0.807 0.786 0.815

MI 1.129 1.084 0.594 0.861 0.604 1.050 1.075 1.043 1.088
ARI 0.829 0.776 0.427 0.628 0.380 0.757 0.776 0.725 0.784

RI 0.932 0.911 0.763 0.854 0.759 0.904 0.909 0.885 0.913
Purity 0.916 0.888 0.682 0.811 0.644 0.882 0.888 0.863 0.893

Binalpha NMI 0.794 0.755 0.703 0.731 0.734 0.703 0.725 0.680 0.719
MI 1.948 1.856 1.723 1.794 1.804 1.732 1.778 1.672 1.765

ARI 0.669 0.607 0.550 0.595 0.599 0.567 0.559 0.509 0.545
RI 0.947 0.938 0.928 0.936 0.937 0.931 0.930 0.923 0.928

Purity 0.795 0.742 0.715 0.754 0.741 0.731 0.682 0.666 0.677
Optrec NMI 0.936 0.727 0.727 0.410 0.392 0.905 0.864 0.914 0.912

MI 1.028 1.001 0.799 0.567 0.543 0.995 0.947 1.002 0.998
ARI 0.956 0.719 0.791 0.391 0.377 0.939 0.880 0.929 0.924

RI 0.981 0.893 0.907 0.772 0.765 0.973 0.946 0.968 0.965
Purity 0.985 0.872 0.926 0.669 0.667 0.979 0.955 0.973 0.968

MNIST NMI 0.842 0.832 0.701 0.549 0.366 0.717 0.553 0.741 0.830
MI 1.165 1.152 0.968 0.760 0.506 0.983 0.761 1.016 1.149

ARI 0.885 0.877 0.719 0.567 0.276 0.724 0.508 0.740 0.875
RI 0.957 0.954 0.894 0.837 0.728 0.893 0.813 0.899 0.953

Purity 0.955 0.951 0.883 0.793 0.523 0.860 0.731 0.877 0.950

136

D.1. Comparison of TCS models with Baselines

Table D.5: The performance of the methods on Face clustering datasets.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
AT & T NMI 0.843 0.918 0.879 0.892 0.862 0.842 0.822 0.852 0.834

MI 2.173 2.371 2.266 2.315 2.239 2.182 2.119 2.197 2.151
ARI 0.627 0.758 0.692 0.736 0.692 0.652 0.590 0.640 0.613

RI 0.948 0.966 0.957 0.965 0.959 0.953 0.943 0.950 0.946
Purity 0.755 0.847 0.794 0.842 0.813 0.784 0.726 0.772 0.746

Umist NMI 0.588 0.806 0.739 0.848 0.826 0.792 0.569 0.563 0.554
MI 1.180 1.603 1.491 1.715 1.681 1.574 1.153 1.129 1.112

ARI 0.355 0.593 0.548 0.685 0.676 0.600 0.355 0.332 0.322
RI 0.843 0.893 0.894 0.922 0.924 0.895 0.849 0.838 0.836

Purity 0.579 0.735 0.712 0.804 0.751 0.746 0.560 0.557 0.552
Faces96 NMI 0.922 0.944 0.929 0.942 0.942 0.939 0.887 0.894 0.886

MI 3.568 3.662 3.600 3.654 3.654 3.642 3.438 3.465 3.438
ARI 0.728 0.789 0.752 0.783 0.783 0.771 0.662 0.673 0.663

RI 0.989 0.991 0.990 0.991 0.991 0.991 0.986 0.987 0.986
Purity 0.794 0.839 0.810 0.836 0.836 0.834 0.747 0.756 0.745

LFW NMI 0.388 0.415 0.415 0.413 0.414 0.331 0.312 0.297 0.285
MI 1.456 1.556 1.557 1.550 1.555 1.239 1.168 1.115 1.070

ARI 0.081 0.089 0.095 0.089 0.089 0.040 0.030 0.026 0.021
RI 0.939 0.940 0.940 0.940 0.940 0.936 0.936 0.936 0.935

Purity 0.341 0.364 0.367 0.373 0.372 0.271 0.253 0.246 0.233

Table D.6: The performance of the methods in the Speech domain.

Dataset Metric Supervised Learning Unsupervised
Proposed Methods Existing Baselines

TCS-GM TCS-CS TCS-GM-L2 TCS-FS FD LMNN PCC BP GM
Isolet NMI 0.834 0.853 0.796 0.812 0.818 0.812 0.747 0.829 0.816

MI 1.878 1.922 1.803 1.843 1.861 1.831 1.700 1.874 1.846
ARI 0.707 0.733 0.669 0.714 0.725 0.667 0.632 0.693 0.682

RI 0.942 0.946 0.937 0.945 0.947 0.934 0.931 0.940 0.938
Purity 0.813 0.837 0.798 0.824 0.829 0.761 0.748 0.786 0.767

WSJ NMI 0.813 0.831 0.811 0.837 0.803 0.810 0.521 0.707 0.555
MI 2.678 2.740 2.674 2.753 2.651 2.672 1.742 2.356 1.856

ARI 0.369 0.371 0.362 0.385 0.348 0.361 0.177 0.278 0.200
RI 0.914 0.914 0.913 0.915 0.911 0.913 0.891 0.904 0.894

Purity 0.854 0.865 0.852 0.870 0.849 0.854 0.610 0.785 0.647

137

	1 Introduction
	1.1 Large-scale Classification with Structures
	1.2 Unsupervised Structure Extraction
	1.3 Semi-supervised Structure Expansion
	1.4 Key contributions of the thesis

	2 Bayesian Logistic Models for Hierarchical Classification
	2.1 Introduction
	2.2 Related Work
	2.3 Hierarchical Bayesian Logistic Framework
	2.4 Variational Inference
	2.4.1 Full Variational Inference
	2.4.2 Partial MAP Inference
	2.4.3 Parallel Inference

	2.5 Estimating Data-dependent Priors
	2.6 Experimental Settings
	2.6.1 Datasets
	2.6.2 Description of Baselines
	2.6.3 Evaluation Metrics

	2.7 Results
	2.7.1 Comparison with Flat Baselines
	2.7.2 Comparison with Hierarchical Baselines
	2.7.3 Comparison of Bayesian methods
	2.7.4 Effect of Training-set Sizes

	2.8 Summary

	3 Recursive Regularization for Graphical and Hierarchical Classification
	3.1 Introduction
	3.2 Recursive Regularization Framework
	3.3 Large-scale Training of RR Models
	3.3.1 RR-SVM
	3.3.2 RR-LR
	3.3.3 Parallelization

	3.4 Experimental Setting
	3.4.1 Datasets
	3.4.2 Methods for Comparison

	3.5 Results
	3.5.1 Comparison against Flat Baselines
	3.5.2 Comparison against Hierarchical Baselines
	3.5.3 Comparison against Benchmarks

	3.6 Further Experimental Analysis
	3.6.1 Efficiency Analysis
	3.6.2 Performance across Training-set Sizes and Levels of Hierarchy

	3.7 Summary

	4 Large-scale Multiclass Logistic Regression
	4.1 Introduction
	4.2 Related Work
	4.3 Parallel Training by Decoupling Log-Normalization Constant
	4.3.1 Piecewise Bound
	4.3.2 Double Majorization Bound
	4.3.3 Log-concavity Bound

	4.4 Parallel Training by ADMM
	4.5 Experiments
	4.6 Summary

	5 Clustering on Unit-spheres with von Mises-Fisher Mixtures
	5.1 Introduction
	5.2 Related Work
	5.3 Bayesian von Mises-Fisher Mixtures (B-vMFmix)
	5.3.1 Variational Inference
	5.3.2 Collapsed Gibbs Sampling

	5.4 Hierarchical Bayesian von Mises-Fisher Mixtures
	5.5 Temporal Bayesian von Mises-Fisher Mixtures
	5.6 Experimental Setting
	5.6.1 Datasets
	5.6.2 Evaluation Metrics
	5.6.3 Description of Baselines
	5.6.4 Convergence Criterea and Other Details

	5.7 Results
	5.7.1 Recoverability
	5.7.2 Generalizability
	5.7.3 Analysis of Tf-Idf Weighting
	5.7.4 In-sample vs Out-sample Detection
	5.7.5 Sampling vs Bounding Concentration parameters

	5.8 Summary

	6 Transformation-based Clustering with Supervision
	6.1 Introduction
	6.2 Related Work
	6.3 The Need for Supervision
	6.4 Learning Transformations by CPM
	6.4.1 Gaussian Mixtures (TCS-GM)
	6.4.2 von Mises-Fisher Mixtures (TCS-VM)

	6.5 Learning Transformations by CSC
	6.6 Experimental Setting
	6.6.1 Description of Baselines
	6.6.2 Description of Datasets

	6.7 Results
	6.7.1 Analysis on Synthetic Dataset
	6.7.2 Results on Real-world Data
	6.7.3 Performance of von Mises-Fisher Mixtures

	6.8 Further Experimental Analysis
	6.8.1 Effect of Amount of Supervision
	6.8.2 Effect on Multiview Clustering
	6.8.3 Exploiting Unlabeled Data
	6.8.4 Effect of SVD on Clustering

	6.9 Summary

	7 Future Work
	7.1 Large-Scale Classification with Structures
	7.2 Unsupervised Structure Extraction
	7.3 Semi-supervised Structure Expansion
	7.3.1 Hierarchical Structures
	7.3.2 Learning Transformation by Max-margin Formulation (TCS-MM)

	Bibliography
	Appendices
	A Variational Inference for Hierarchical Bayesian Logistic Regression
	A.1 Variational Inference for model M2
	A.2 Variational Inference for model M1
	A.3 Variational Inference for model M3

	B Evaluation Metrics
	B.1 Classification Metrics
	B.2 Clustering Recoverability Metrics

	C Learning Transformation by CPM
	C.1 General Mixture Model
	C.2 Gamma Mixtures

	D Detailed Results of TCS Models
	D.1 Comparison of TCS models with Baselines

