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Physical Reality: different processes/threads share the 
same hardware à need to multiplex
• CPU (temporal)
• Memory (spatial)
• Disk and devices (later)

Why worry about memory sharing?
• Complete working state of process and/or kernel is 

defined by its data in memory (+ registers)
• Don’t want different threads to have access to each 

other’s memory (protection)

Can’t We All Just Get Along?
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Isolation
Don’t want distinct process states collided in physical memory
(unintended overlap à chaos)

Sharing
Want option to overlap when desired (for communication)

Virtualization
Want to create the illusion of more resources than exist in 
underlying physical system

Utilization
Want to best use of this limited resource

Aspects of Memory Multiplexing
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• Paged Translation
• Efficient Address Translation

All in the context of the OS

Address Translation
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A Day in the Life of a Program
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#include <stdio.h>

int max = 10;

int main () {
int i;
int sum = 0;
add(m, &sum);
printf(“%d”,i); 
...

}
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What’s wrong with this   
…in the context of: 

multiple processes? 
multiple threads?

Logical view of process memory
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TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation
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Divide:
• Physical memory into fixed-sized blocks called frames
• Logical memory into blocks of same size called pages

Management:
• Keep track of all free frames.
• To run a program with n pages, need to find n free 

frames and load program

Notice:
• Logical address space can be noncontiguous!
• Process given frames when/where available

Paging Overview
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Address Translation, Conceptually
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• Hardware device
• Maps virtual to physical address  

(used to access data)

User Process: 
• deals with virtual addresses
• Never sees the physical address

Memory Management Unit (MMU)
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red cube is 255th

byte in page 2.

Where is the red 
cube in physical 
memory?

High-Level Address Translation
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Page number – Upper bits
• Must be translated into a physical frame number

Page offset – Lower bits
• Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components
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High-Level Address Translation
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Simplified Page Table

Lives in Memory
Page-table base register (PTBR)
• Points to the page table 
• Saved/restored on context switch PTBR

Page-table



• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging
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Full Page Table

Meta Data about each frame
Protection R/W/X, Modified, Valid, etc.

PTBR

Page-table



• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging
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Dynamic Loading
• Routine is not loaded until it is called
• Better memory-space utilization; unused 

routine is never loaded
• No special support from the OS needed

Dynamic Linking
• Routine is not linked until execution time
• Locate (or load) library routine when called
• AKA shared libraries (e.g., DLLs)

Dynamic Loading & Linking
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• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging
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• P1 forks()
• P2 created with
- own page table
- same translations

• All pages 
marked COW    
(in Page Table) 

Copy on Write (COW)
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Option #1: Child 
keeps executing 

Upon page fault:
• Allocate new 

frame
• Copy frame
• Both pages no 

longer COW

COW, then keep executing
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Option #2: Child 
calls exec()

• Load new 
frames

• Copy frame
• Both pages now 

COW

COW, then call exec (before)
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stack

text
data

Option #2: Child 
calls exec()

• Load new frames
• Copy frame
• Both pages no 

longer COW

COW, then call exec (after)
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Memory Consumption:
• Internal Fragmentation

• Make pages smaller? But then…
• Page Table Space: consider 32-bit address space, 

4KB page size, each PTE 8 bytes
• How big is this page table?
• How many pages in memory does it need?

Performance: every data/instruction access 
requires two memory accesses:
• One for the page table
• One for the data/instruction

Downsides to Paging
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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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32-bit machine, 1KB page size
• Logical address is divided into:

– a page offset of 10 bits (1024 = 2^10)
– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit first index
– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
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+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!



Index is an index into:
• table of memory frames (if bottom level)
• table of page table frames (if multilevel page table)
• backing store (if page was swapped out)

Synonyms:
• Valid bit == Present bit
• Dirty bit == Modified bit
• Referenced bit == Accessed bit

Complete Page Table Entry (PTE)
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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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So many virtual pages…

… comparatively few physical frames

Traditional Page Tables:
• map pages to frames
• are numerous and sparse

Why not map frames to pages? (How?)

Inverted Page Table: Motivation
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Inverted Page Table: Implementation

Page-table Physical 
Memory

pid

frame page   pid

Not to scale! Page table << Memory

Implementation:
• 1 Page Table for entire system
• 1 entry per frame in memory
• Why don’t we store the frame #?

page # offset
Virtual address

frame

offset

pid page



Tradeoffs:
↓ memory to store page tables
↑ time to search page tables 

Solution: hashing
• hash(page,pid) à PT entry (or chain of entries)
• What about:

• collisions…
• sharing…

Inverted Page Table: Discussion
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• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation
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Cache of virtual to physical page translations
Major efficiency improvement
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Access TLB before you access memory.

Address Translation with TLB
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Process isolation
• Keep a process from touching anyone else’s memory, or 

the kernel’s
Efficient interprocess communication

• Shared regions of memory between processes
Shared code segments

• common libraries used by many different programs
Program initialization

• Start running a program before it is entirely in memory
Dynamic memory allocation

• Allocate and initialize stack/heap pages on demand

Address Translation Uses!
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Program debugging
• Data breakpoints when address is accessed

Memory mapped files
• Access file data using load/store instructions

Demand-paged virtual memory
• Illusion of near-infinite memory, backed by disk or 

memory on other machines
Checkpointing/restart

• Transparently save a copy of a process, without stopping 
the program while the save happens

Distributed shared memory
• Illusion of memory that is shared between machines

MORE Address Translation Uses!
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