
Main Memory:
Address Translation

(Chapter 8)
CS 4410

Operating Systems

Physical Reality: different processes/threads share the
same hardware à need to multiplex
• CPU (temporal)
• Memory (spatial)
• Disk and devices (later)

Why worry about memory sharing?
• Complete working state of process and/or kernel is

defined by its data in memory (+ registers)
• Don’t want different threads to have access to each

other’s memory (protection)

Can’t We All Just Get Along?

2

Isolation
Don’t want distinct process states collided in physical memory
(unintended overlap à chaos)

Sharing
Want option to overlap when desired (for communication)

Virtualization
Want to create the illusion of more resources than exist in
underlying physical system

Utilization
Want to best use of this limited resource

Aspects of Memory Multiplexing

3

• Paged Translation
• Efficient Address Translation

All in the context of the OS

Address Translation

4

A Day in the Life of a Program

5

sum.c

source files

...
0C40023C
21035000
1b80050c
8C048004
21047002
0C400020

...
10201000
21040330
22500102

...

0040 0000

1000 0000

.te
xt

.d
at

a
m

ai
n

max

#include <stdio.h>

int max = 10;

int main () {
int i;
int sum = 0;
add(m, &sum);
printf(“%d”,i);
...

}

Compiler
(+ Assembler + Linker)

executable
sum

“It’s alive!”
Loader

stack

text

data

heap

process

0x00000000

pid xxx

0x00400000

0x10000000

GP SPPC
0xffffffff

max

addi
jal

What’s wrong with this
…in the context of:

multiple processes?
multiple threads?

Logical view of process memory

6

0xffffffff

0x00000000

stack

text

data

heap

TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation

7

stack

text

data

heap

Processor’s
View

STACK 0

TEXT 0
DATA 0
HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Virtual
Page 0

Virtual
Page N

Frame 0

Frame M

No more
external

fragmentation!

Divide:
• Physical memory into fixed-sized blocks called frames
• Logical memory into blocks of same size called pages

Management:
• Keep track of all free frames.
• To run a program with n pages, need to find n free

frames and load program

Notice:
• Logical address space can be noncontiguous!
• Process given frames when/where available

Paging Overview

8

Address Translation, Conceptually

9

Translation

Physical
Memory

Virtual
Address

Raise
Exception

Physical
Address

Valid

Processor

Data

Data

Invalid

• Hardware device
• Maps virtual to physical address

(used to access data)

User Process:
• deals with virtual addresses
• Never sees the physical address

Memory Management Unit (MMU)

10

red cube is 255th

byte in page 2.

Where is the red
cube in physical
memory?

High-Level Address Translation

11

stack

text

data

heap

Processor’s
View

STACK 0

TEXT 0
DATA 0
HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Page 0

Page N

Frame 0

Frame M

Page number – Upper bits
• Must be translated into a physical frame number

Page offset – Lower bits
• Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components

12

page number page offset

m - n n

High-Level Address Translation

13

stack

text

data

heap

Virtual
Memory

STACK 0

TEXT 0
DATA 0
HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1

0x0000

0x1000

0x2000
0x3000

0x4000

0x5000

0x20FF

0x0000
0x1000
0x2000
0x3000
0x4000

0x5000

0x6000
0x????

Who keeps
track of the
mapping?

à Page Table
0
1
2
3
4
5…

-
3
6
4
8
5

14

Simplified Page Table

Lives in Memory
Page-table base register (PTBR)
• Points to the page table
• Saved/restored on context switch PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

15

16

Full Page Table

Meta Data about each frame
Protection R/W/X, Modified, Valid, etc.

PTBR

Page-table

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

17

Dynamic Loading
• Routine is not loaded until it is called
• Better memory-space utilization; unused

routine is never loaded
• No special support from the OS needed

Dynamic Linking
• Routine is not linked until execution time
• Locate (or load) library routine when called
• AKA shared libraries (e.g., DLLs)

Dynamic Loading & Linking

18

• Protection
• Dynamic Loading
• Dynamic Linking
• Copy-On-Write

Leveraging Paging

19

• P1 forks()
• P2 created with
- own page table
- same translations

• All pages
marked COW
(in Page Table)

Copy on Write (COW)

20

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

COW
X

X
X
X

X

X
X
X

Option #1: Child
keeps executing

Upon page fault:
• Allocate new

frame
• Copy frame
• Both pages no

longer COW

COW, then keep executing

21

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

stack

COW

X
X
X

X

X

X
X
X

Option #2: Child
calls exec()

• Load new
frames

• Copy frame
• Both pages now

COW

COW, then call exec (before)

22

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

stack

text
data
heap

P2 Virt Addr Space

BEFORE

stack

text
data
heap

P2 Virt Addr Space

COW
X

X
X
X

X

X
X
X

stack

text
data

Option #2: Child
calls exec()

• Load new frames
• Copy frame
• Both pages no

longer COW

COW, then call exec (after)

23

stack

text
data
heap

P1 Virt Addr Space

stack

text

data

heap

Physical
Addr Space

P2 Virt Addr Space

stack

text

data

AFTER

COW

Memory Consumption:
• Internal Fragmentation

• Make pages smaller? But then…
• Page Table Space: consider 32-bit address space,

4KB page size, each PTE 8 bytes
• How big is this page table?
• How many pages in memory does it need?

Performance: every data/instruction access
requires two memory accesses:
• One for the page table
• One for the data/instruction

Downsides to Paging

24

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation

25

26

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+ Allocate only PTEs in use
+ Simple memory allocation
−more lookups per memory reference

Multi-Level Page Tables to the Rescue!

index 1 | index 2 | offset

Frame | Access

Frame

32-bit machine, 1KB page size
• Logical address is divided into:

– a page offset of 10 bits (1024 = 2^10)
– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is
further divided into:
– a 12-bit first index
– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
27

index 1 index 2 offset

28

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!

Index is an index into:
• table of memory frames (if bottom level)
• table of page table frames (if multilevel page table)
• backing store (if page was swapped out)

Synonyms:
• Valid bit == Present bit
• Dirty bit == Modified bit
• Referenced bit == Accessed bit

Complete Page Table Entry (PTE)

29

Valid Protection	R/W/X Ref Dirty Index

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation

30

So many virtual pages…

… comparatively few physical frames

Traditional Page Tables:
• map pages to frames
• are numerous and sparse

Why not map frames to pages? (How?)

Inverted Page Table: Motivation

31

32

Inverted Page Table: Implementation

Page-table Physical
Memory

pid

frame page pid

Not to scale! Page table << Memory

Implementation:
• 1 Page Table for entire system
• 1 entry per frame in memory
• Why don’t we store the frame #?

page # offset
Virtual address

frame

offset

pid page

Tradeoffs:
↓ memory to store page tables
↑ time to search page tables

Solution: hashing
• hash(page,pid) à PT entry (or chain of entries)
• What about:

• collisions…
• sharing…

Inverted Page Table: Discussion

33

• Paged Translation
• Efficient Address Translation
• Multi-Level Page Tables
• Inverted Page Tables
• TLBs

Address Translation

34

Cache of virtual to physical page translations
Major efficiency improvement

35

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

Translation Lookaside Buffer (TLB)

Access TLB before you access memory.

Address Translation with TLB

36

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

Trick: access TLB
while you access the cache.

Process isolation
• Keep a process from touching anyone else’s memory, or

the kernel’s
Efficient interprocess communication

• Shared regions of memory between processes
Shared code segments

• common libraries used by many different programs
Program initialization

• Start running a program before it is entirely in memory
Dynamic memory allocation

• Allocate and initialize stack/heap pages on demand

Address Translation Uses!

37

Program debugging
• Data breakpoints when address is accessed

Memory mapped files
• Access file data using load/store instructions

Demand-paged virtual memory
• Illusion of near-infinite memory, backed by disk or

memory on other machines
Checkpointing/restart

• Transparently save a copy of a process, without stopping
the program while the save happens

Distributed shared memory
• Illusion of memory that is shared between machines

MORE Address Translation Uses!

38

