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Abstract

In 1996, Krivine applied Friedman’s A-translation in order to get an intuitionistic version
of G�odel completeness result for �rst-order classical logic and (at most) countable languages
and models. Such a result is known to be intuitionistically underivable (see J. Philos. Logic 25
(1996) 559), but Krivine was able to derive intuitionistically a weak form of it, namely, he
proved that every consistent classical theory has a model. In this paper, we want to analyze the
ideas Krivine’s remarkable result relies on, ideas which where somehow hidden by the heavy
formal machinery used in the original proof. We show that the ideas in Krivine’s proof can be
used to intuitionistically derive some (suitable variants of) crucial mathematical results, which
were supposed to be purely classical up to now: the Ultra�lter Theorem for countable Boolean
algebras, and the maximal ideal theorem for countable rings.
c© 2004 Elsevier B.V. All rights reserved.

1. Intuitionistic model theory

The �rst step in presenting Krivine’s result is explaining what we mean by “intu-
itionistic proof of �rst-order classical completeness in the countable case”. Thus, in this
section, we outline an intuitionistic version of �rst-order model theory, following the
ideas introduced in [1]. At the end of this section we will be able to state Krivine’s
completeness theorem.
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Let L be a �rst-order countable language over some (classically) complete subset
of the set

{∀;→;⊥;¬;&;∨;∃}
of the �rst-order connectives. In the following, we will consider only the subset {∀;→;⊥}
which is clearly complete (however, see Section 1.2).
As in [4], we assume that L includes a �xed set of function symbols and a �xed

set of predicate symbols which, for the sake of simplicity, are supposed to include at
least the equality predicate.
As logical rules, we consider the intuitionistic �rst-order logical rules for equality,

stating that the equality is an equivalence relation compatible with all function symbols
and predicates, and the standard rules of introduction and elimination for each connec-
tive in {∀;→;⊥}. We include in the logical rules the double-negation axiom schema,
saying that, for each formula A, (¬¬A→A) holds. As usual, for any formula B, by
¬B we mean (B→⊥).
In the metatheory we use the same rules, except the double-negation axiom schema.

That is, we reason intuitionistically.
We prefer speaking of the set M of closed formulas true in a model rather than

of the model itself. In this way, we avoid dealing with many details about structures.
Thus, we call “model” what in fact is the set of closed formulas satis�ed by a standard
model. We �rst introduce “model” axiomatically and then we explain how to turn a
model in our sense into a model in the Tarski’s sense of the word, and vice versa.
Unless otherwise speci�ed, from now on we will consider only closed formulas, only
set of closed formulas, and only closed terms.

De�nition 1.1 (Classical model). Let L be any �rst-order language, and M any set
of closed formulas of L.

(1) We say that M satis�es:
(a) (⊥-faithfulness) if ⊥ =∈M;
(b) (double negation) if for all closed A, (¬¬A→A) ∈M;
(c) (→-faithfulness) if for all closed A and B, (A→B)∈M if and only if A∈M

yields B∈M;
(d) (∀-faithfulness) if for all A with only x free, ∀x:A∈M if and only if, for all

closed terms t of L, A[x : = t]∈M.
(e) (equality axioms) if for all closed instances E of an axiom for equality,

E ∈M;
(2) A classical model for the language L is any set M of closed formulas, whose

language L(M) is some extension of L with one or more fresh constants, and
which satis�es all conditions above.

For any countable Tarski structure U (see [4]), we can de�ne a classical model M
by setting L(M)=L plus all names of elements of U, and M=Th(U) (the set of
closed A in the language L(M) which are true in U). Conversely, for any classical
model M, we can build a Tarski structure U such that M=Th(U). The elements of
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U are the closed terms of the language L(M) of M, under the equivalence relation
a≡ b⇔(a= b∈M). U is not empty because L(M) includes some fresh constant.
A notion that will be useful later, when discussing Krivine’s completeness result, is

that of minimal model, which is a slight variation of the notion of classical model.

De�nition 1.2 (Minimal model). Let L be a �rst-order countable language. Then a
minimal model is any set M of formulas of some extension of L with one or more
fresh constant, which is required to enjoy all of the conditions for a classical model
but ⊥-faithfulness.

Thus, any classical model is a minimal model but a minimal model also satis-
�es the formula ⊥. Let L′=L plus some fresh constant. Since in the next validity
Theorem 1.4, we will show that a minimal model is closed under the ⊥-elimination
rule, it is immediate to see that there is at least one (and, classically, exactly one)
minimal model with language L′ which is not a classical model, and hence is not
a structure in Tarski standard sense. This is the all-true model, de�ned by setting
M≡{A |A closed formula of L′}. The structure U associated to the all-true minimal
model M is a singleton, and the only n-ary predicate de�nable in U by some formula
of L′ is the all-true predicate. In any Tarski structure, instead, at least the all-true and
the all-false predicates are de�nable.
We can introduce now the notion of truth for a (closed) formula and a sequent in

a minimal and a classical model.

De�nition 1.3 (Interpretation of a formula). Let A be a closed formula, � 	A be a
closed sequent, and M be any set of closed formulas. Then

(1) A is true in M (notation M�A) if and only if A∈M;
(2) � is true in M (notation M��) if and only if �⊆M;
(3) � 	A is true in M if and only if M�� yields M�A;
(4) � 	A is minimally (classically) valid (notations ��minA and ��classA) if and only

it is true in all minimal (classical) models.

It is not di�cult to check that any minimal model M, and hence any classical one,
is closed under all of the rules of classical logic, namely, if the sequent(s) in the
premise(s) of a rule are true in M then also the sequent in the conclusion is.

Theorem 1.4 (Validity theorem). Let � 	A be any closed sequent. Then, if � 	A is
provable in classical logic, then ��minA (� �class A).

Proof. We argue by induction over the length of the proof of � 	A, that is, we prove
that any minimal (classical) model M is closed under all classical rules. Let us show
here just a few rules which are not completely trivial.

• (⊥-Elimination) By →-faithfulness applied twice and the de�nition of negation, it is
not di�cult to see that ⊥→¬¬A≡⊥→((A→⊥)→⊥)∈M. By double negation,
(¬¬A→A)∈M. Hence, we conclude ⊥→A∈M, by using again →-faithfulness.
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• (→-Introduction) Suppose that �; A	B is true in M, that is, M��; A yields M�B.
Then we want to prove that � 	A→B is true in M. So, let us assume that M��
in order to prove that M�A→B, that is, A→B∈M. Then, by →-faithfulness, it
is su�cient to prove that if A∈M then B∈M. So, let us assume that A∈M. Then
M�� and M�A. Hence, the hypothesis yields that M�B, that is, B∈M.

• (∀-Introduction) Suppose that � 	A is derivable. According to the restriction to
the ∀-introduction, � is closed, while A has at most x free. Assume that M��,
that is, �⊆M. Then, for every closed term t, the closed sequent � 	A[x : = t] is
also derivable with a proof of the same length than the proof of � 	A. Then, by
inductive hypothesis, A[x : = t]∈M. We conclude ∀x:A∈M by ∀-faithfulness, that
is, M�∀x:A.

Let X be any set of closed formulas, A any closed formula. From now on, we write
X	A to mean that there is a proof of A with assumptions in X.

De�nition 1.5 (Consistency). Let X and X′ be any sets of closed formulas. Then

(1) X is consistent if X0⊥, inconsistent if X	⊥;
(2) X and X′ are equiconsistent if and only if X	⊥⇔X′ 	⊥.

We are now able to state the notion of completeness for a classical logic. Here, we
propose three di�erent de�nitions which are (only) classically equivalent.

De�nition 1.6 (Classical completeness). Classical logic is classically complete if
��classA yields � 	A, for all closed � 	A.

De�nition 1.7 (Minimal completeness). Classical logic is minimally complete if
��minA yields � 	A, for all closed � 	A.

De�nition 1.8 (Maximal extension). Classical logic is enjoys the maximal extension
property if any consistent set of closed formulas X is true in some classical model.

Classical completeness is known to be classically, yet not intuitionistically, deriv-
able (for the �rst result see for instance [4] while, the second can be found in [3]).
However, Krivine was able to prove intuitionistically maximal extension and minimal
completeness, which are, classically, just minor variants of classical completeness.
Let us call a closed classical theory T, or just theory for short, any set of closed

formulas closed under derivation. That is, T	A holds if and only if A∈T, for all
closed A. Any classical theory satis�es ⊥-elimination, and hence it is inconsistent if
and only if it contains all closed formulas.
There is a clear connection between a minimal model M in our sense and a theory.

Indeed, the validity theorem above shows that any minimal model M is a theory. 1 On
the other hand, it is not true that a theory T forms a minimal model since it is well

1 Note that when a set of formulas M is a minimal model, then both M�A and M�A mean A∈M.
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possible that it does not enjoy →-faithfulness or ∀-faithfulness. In fact, we will prove
minimal completeness by showing how to extend a theory T to a minimal model and
maximal extension by showing how to extend a consistent theory T to a classical
model.

1.1. The intuitionistic completeness proof

In this section we re-organize the proof of Krivine’s completeness result, in order to
stress the principle it relies on. First of all, we need to de�ne formally some well-known
concepts. So, let us sum up some trivialities about the constant ⊥ and negation.

De�nition 1.9 (Meta-DN and completeness). Let T be a classical theory and A be
closed. Then

(1) (Meta-DN) T satis�es metalinguistic double negation for A if and only if
[(T	¬A)⇒(T	⊥)]⇒(T	A). And T satis�es meta-DN if and only if T sat-
is�es meta-DN for all closed A.

(2) (Completeness) T is complete for A or, equivalently, T decides A, if and only
if T	A or T	¬A. And T is complete if and only if it is complete for all
closed A.

Note that, if T	A, then T trivially satis�es meta-DN and completeness for A.
Hence, any inconsistent classical theory satis�es trivially both meta-DN and complete-
ness.
We can think of completeness as a sort of meta-linguistic excluded middle for a class-

ical theory. Classically, meta-DN and completeness are equivalent, while intuitioni-
stically it is only possible to prove that meta-DN is a consequence of completeness.

Lemma 1.10. Any classical theory T satis�es meta-DN for a closed A if and only
if it is complete for the same A.

Proof (Classical). Assume that eitherT	A or T	¬A holds, and suppose thatT	 ¬A
implies T	⊥ in order to prove that T	A. Now, if T	A we are done. On the other
hand if T	¬A then T	⊥ follows. In this case, we get T	A by closure of T
under derivation. This part of the proof is intuitionistic.
The converse is valid only classically. Suppose that meta-DN for T and A holds, and

assume for contradiction that both T0A and T0¬A hold. From the latter it follows
(T	¬A)⇒ (T	⊥) and so, by meta-DN for A, we obtain T	A, contradiction.

In order to gain a better comprehension of the meaning of meta-DN let us consider
the following equivalent formulation of meta-DN, which will be useful in Section 2.

Lemma 1.11 (Reformulation of meta-DN). Let T be a theory and A be closed. Then
meta-DN for A holds if and only if, whenever T∪{A} is equiconsistent with T, then
T	A.
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Proof. Observe that T∪{A} is equiconsistent with T if and only if T∪{A} 	⊥ im-
plies T	⊥. And T∪{A} 	⊥ if and only if T	¬A. Thus, T∪{A} is equiconsistent
with T if and only if T	¬A implies T	⊥.

Thus, being T∪{A} equiconsistent with T and the hypothesis of meta-DN are
equivalent; since the conclusion is the same, the two principles are clearly equivalent.
The key property in (Henkin’s version of) G�odel’s classical completeness proof is

the following.

Lemma 1.12 (G�odel’s lemma). Let T be a classical theory and A be closed. Then

(1) there is a classical theory T′ extending T, complete for A and equiconsistent
with T;

(2) being complete for A is a monotonic property, that is, if T is complete for A
and T′ extends T, then T′ is complete for A.

Proof (Classical). (1) If T derives ¬A, we set T′≡T. Then T′ decides A and it is
equiconsistent with T. If T does not derive ¬A, we de�ne T′ as the theory whose
axioms are all the formulas in T∪{A}. Then T and T′ are equiconsistent because
both of them is consistent. Since T′ 	A, clearly T′ decides A.
(2) Obvious.

This lemma is not derivable intuitionistically. Indeed, we cannot decide in general
whether T derives ¬A. Still, switching between completeness for A and the less
informative property of meta-DN for A is su�cient in order to obtain a constructive
version of G�odel’s lemma (and, eventually, of minimal completeness).

Lemma 1.13 (meta-DN and monotonicity). Let T be a classical theory and A a for-
mula. Then

(1) there is a classical theory T′ extending T, equiconsistent with T and meta-DN
for A;

(2) being meta-DN for A is a monotonic property for equiconsistent classical theories.

Proof. (1) Call HA= [(T	¬A) ⇒ (T	⊥)] the hypothesis of meta-DN for A. Let
T0 be the set of closed formulas of T, and T′ be the classical theory whose axioms
set T1 is de�ned by setting:

B ∈T1 if and only if (B ∈T0) or (B = A and HA holds):

Note that we cannot, in general, e�ectively list the elements of T1, because we do not
know whether HA holds. All we do know is that if HA holds, then T1 =T0 ∪{A}.
We have to prove that T′ is equiconsistent with T and that T′ satis�es meta-DN
for A.
Equiconsistency: Every �nite subset of T1 is either included in T0, or it is included

in T0 ∪{A}, in which case HA holds (proof by induction over the �nite subset). Each
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proof in T′ uses �nitely many elements of T1 as assumptions. Therefore, either all
assumptions of the proof are in T0, and the proof itself is in T, or some assumption
is A, and the proof is in T′, and HA holds. Assume now that we have a proof of ⊥
in T′. Then either we have a proof of ⊥ in T, and we are done, or we have a proof
of ⊥ in T′, and HA holds. By de�nition of T′, from T′ 	⊥ we get T	¬A. And
from this latter and HA we conclude again T	⊥.
Meta-DN for A: Assume (T′ 	¬A) ⇒ (T′ 	⊥). Then by equiconsistency of T

and T′ we obtain (T′ 	¬A)⇒(T	⊥). Hence (T	¬A)⇒ (T	⊥) follows, since
T is included in T′ and so if T	¬A then T′ 	¬A. Thus, HA holds. We conclude
that T1 =T0 ∪{A}, and that T′ derives A.
(2) Suppose that meta-DN holds for T and A, that T is equiconsistent with T′ and

that T⊆T′. Now, assume that T′ 	¬A⇒T′ 	⊥ holds in order to prove that T′ 	A.
Then, T	¬A ⇒ T′ 	⊥ follows because T ⊆ T′. Thus, we get T	¬A⇒T	⊥
by equiconsistency between T and T′. Eventually, we obtain T	A by meta-DN for
T. Now T′ 	A follows from T⊆T′.

The rest of the proof works essentially as in G�odel–Henkin, but for a metalinguistic
property stating that for classical theories, →-faithfulness is a consequence of meta-DN.

Lemma 1.14 (Meta-DN and →-faithfulness). Let T be any classical theory that sat-
is�es meta-DN. Then T is →-faithful, and conversely.

Proof. Assume that T	A yields T	B in order to prove T	A→B. By meta-DN,
it is enough to prove that T	¬(A→B) yields T	⊥. Now, from T	¬ (A→B)
and classical logic, we get T	A and T	¬B. So, from the assumption that T	A
yields T	B, we obtain T	B. Eventually, from T	B and T	¬B we get T	⊥,
as wished.
For the converse, assume →-faithfulness, and that T	¬A implies T	⊥, in order

to prove T	A. By →-faithfulness we deduce T	¬¬A. Since T is a classical theory,
we have T	¬ ¬A→ A. By closure of T under modus ponens, we conclude T	A.

Lemma 1.15 (→-faithfulness Lemma). For any classical theoryT, there is a classical
theory U, extending T, equiconsistent with T and →-faithful.

Proof. Let A0, A1; A2; : : : be a list of all closed formulas of L. De�ne a sequence
T0;T1;T2; : : : of theories, such that T0 =T and each theory Tn+1 is constructed
as in Lemma 1.13 like a theory including Tn, equiconsistent with it, and meta-DN
for An. Finally, set U=

⋃
n∈! Tn. Then, U is a classical theory because it is union

of a chain of classical theories. Moreover, all theories Tn are equiconsistent each
other by construction and U, being the union of a family of equiconsistent theories, is
equiconsistent with each of them. Finally, for each An, U includes some equiconsistent
theory meta-DN for An. By monotonicity and equiconsistency, U is meta-DN for all
An. Hence, by the previous Lemma 1.14, for any formulas A and B, U	A→B if and
only if U	A yields U	B.
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Theorem 1.16 (Krivine completeness theorem). Let T be a classical theory. There
exists a minimal model U which both extends T and is equiconsistent with T. If T
is consistent, then U is a classical model.

Proof (Intuitionistic). For each T, we can constructively de�ne a conservative (and
hence equiconsistent) extension H of T, having in�nitely many new constants, and
which is Henkin complete. By this we mean: H contains, for each closed universal
formula in L(H), (the dual of) a Henkin axiom: A[x : = c]→∀x · A, where c is the
Henkin constant for ∀x:A. Such a (constructive) proof can be found in any textbook
(for instance, see [4]). Then, by the previous Lemma 1.15, there is some →-faithful
extension U of H which is equiconsistent with H, and hence with T. Moreover,
U is still Henkin complete since it includes all Henkin axioms in H. By Henkin
completeness, U	∀x:A if and only if U 	 A[x : = t] for all (closed) terms t in L(U).
Therefore U is →-faithful by construction, and ∀-complete because it is a Henkin
theory. Finally, U includes all equality and double-negation axioms because it is a
classical theory. Moreover, if T is consistent then also U is. Thus, if T is consistent
then U is a classical model.

The previous Theorem 1.16 shows how to build a classical model for any consistent
theory, that is, it shows that maximal extension holds. But we can strengthen this
result and show how to build an actual proof of � 	A when this sequent is true in all
minimal models.
To obtain this result, let T be the classical theory with axiom set is �∪¬{A}. By

the previous Theorem 1.16, we can extend T to a minimal model M including T and
equiconsistent with T. Since M is a minimal model, by the assumption that � 	A is
true in all minimal models and the fact that �⊆T⊆M we obtain that A∈M. So,
the fact that ¬A∈T⊆M yields ⊥∈M by →-faithfulness. Thus, we deduce T	⊥
by equiconsistency of M and T. By de�nition of T, we conclude �;¬A	⊥, and,
eventually, � 	A by classical logic. So we proved that also Minimal completeness
holds.
It is useful to stress that the whole proof that � 	A is provable whenever it is true in

all minimal models is intutionistic. Hence, it de�nes, through realizability interpretation,
an algorithm turning a model-theoretical proof of � �min A into a classical proof of
� 	A. Krivine proposed to call this algorithm a “decompiler”, because it recovers a �rst
order formal proof out of an informal proof which uses set theory; here we think of
informal proofs as “compilations”, in set theory, of formal proofs. It is a bit puzzling
that, even if Krivine’s algorithm was recently implemented by Ra�alli, no explicit
description of it is currently available.

1.2. About faithfulness for logical connectives

It is interesting to note that, when the theory T we start with is consistent, the
classical model U that we build according to Theorem 1.16 is not only ⊥-faithful,
→-faithful and ∀-faithful but also faithful with respect to all the other connectives but
disjunction (for an introduction to the notion of faithfulness for a connective see [1]).
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Indeed, if T is consistent, then also U is consistent and hence U�⊥ is logically
equivalent to falsum. Then, U is ¬-faithful, that is, U�¬A if and only if U1A.
Indeed, ¬A ≡ A→⊥; therefore U�¬A if and only if U�A→⊥ if and only if
U�A yields U�⊥ if and only if U�A yields falsum if and only if U1A.
Moreover, U is &-faithful, that is, U�A&B if and only if U�A and U�B. Indeed,

A&B≡ (A→ (B→⊥))→⊥ and, by using ⊥-faithfulness, meta-DN for U, and →-
faithfulness, it is not di�cult to see that U� (A→ (B→⊥))→⊥ if and only if U�A
and U�B.
Finally, U is ∃-faithful, namely U�∃ x:A if and only if there exists a closed term t

such that U�A[x : = t], because it is a Henkin model. Indeed, ∃ x:A stays for ¬∀x:¬A.
Moreover, for some Henkin constant c, both U�¬A[x : = c]→∀x:¬A and U�∀x:¬
A→¬A[x : = c] are valid since the �rst is a Henkin axiom and the second follows
by →;∀-faithfulness of U. Hence, by →-faithfulness, U�∀x:¬A if and only if U�¬
A[x : = c]. So, U�∃ x:A if and only if U�¬∀x:¬A if and only if U�∀x:¬A yields
U�⊥ if and only if U�∀x:¬A yields false if and only if U�¬A[x : = c] yields false
if and only if U�A[x : = c] (by meta-DN for U).
Our model, however, is not intuitionistically faithful for disjunction. Indeed, suppose

that we can prove that for all A, from U�A∨¬A we get U�A or U�¬A. Using
realizability interpretation of intuitionism, from such a proof we can de�ne a recursive
map deciding whether U�A or U�¬A, i.e., U1A. Therefore, U would be a recursive
consistent complete extension of the original consistent theory T. When T is Peano
arithmetic, this is in contradiction with G�odel incompleteness theorem.

2. The ultra�lter theorem

In this section we try to isolate the constructive principle making a constructive proof
of completeness possible, with the hope of applying them to other results as well. The
main principle we used seems to have been the fact every �lter over a countable
Boolean algebra can be extended to a maximal equiconsistent �lter; in fact, we applied
this result to a classical theory, which is a particular case of Boolean algebra. A main
consequence of this fact is that any consistent �lter of a countable Boolean algebra
can be extended to an ultra�lter. This theorem is well-known, but it was considered
purely classical up to now.

De�nition 2.1. Let B≡ (B;∧; 1B;∨; 0B;¬) be a Boolean algebra. Then

(1) a �lter F over B is a non-empty subset of B closed upwards and under �nite
intersection;

(2) If X ⊆B, then
↑ (X ) ≡ {z ∈B|∃y1; : : : ; yk ∈ X:y1 ∧ · · · ∧ yk 6 z}

is the smallest �lter including X . If F is a �lter and x is an element in B, then
by (F; x) we mean ↑(F ∪{x});

(3) a �lter F is consistent if it does not include 0B, inconsistent if it does;
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(4) two �lters F and G are equiconsistent when F is inconsistent if and only if G is
inconsistent;

(5) a �lter F is complete for an element x∈B if and only if, whenever F and (F; x)
are equiconsistent, x∈F .

(6) a �lter F is complete if it is complete for any element x∈B;
(7) a �lter F is an ultra�lter if and only if it a maximal consistent �lter, that is, F is

consistent and if G is a consistent �lter which includes F then G=F .

All de�nitions above are taken from standard mathematics textbook, but for com-
pleteness for a �lter F , which is usually stated as: for all x, either x∈F or ¬x∈F .
After Lemmas 1.10 and 1.11 it is easy to check that the de�nition of completeness
that we chosen is classically equivalent to the standard one, even if it is intuitionis-
tically weaker. The fact that it is weaker is essential in order to prove constructively
the ultra�lter theorem for countable Boolean algebra; in fact, it cannot be proved with
the original de�nition.

Theorem 2.2. Let F be any �lter over a countable Boolean algebra B. Then F can
be extended to a complete �lter Z equiconsistent with F .

Proof (Intuitionistic). Let x1; : : : ; xn; : : : be any enumeration of the elements of B and
de�ne a �lter chain Fn, by setting

F0 = F;

Fn+1 = ↑ (Fn ∪ {y ∈ B | (y = xn) ∧ Hn});
where Hn is a shorthand for “Fn and (Fn; xn) are equiconsistent”, that is, the hypothesis
of the condition of completeness of Fn for xn.
Note that the set {y∈B | (y= xn)∧Hn} is included in {xn}, but we cannot, in gen-

eral, e�ectively list its elements, because we do not know whether Hn holds.
Finally set Z ≡ ⋃

n∈! Fn. Our thesis is that Z is a complete �lter equiconsistent
with F .
Equiconsistency: We prove �rst by induction on n that all Fn are equiconsistent

with F (and hence also one each other). For n=0 this holds trivially since F0 =F .
Suppose now that Fn is equiconsistent with F . Assume that Fn+1 is inconsistent, that
is, (y1 ∧ · · · ∧yk) 6 0B for some y1, . . . , yk generators of Fn+1. We have to prove
that 0B is in Fn, and hence in F . By induction we can prove that any �nite intersection
of generators of Fn+1 is either in Fn, or it has the shape y∧ xn for some y∈Fn, in
which case Hn holds. In the �rst case, 0B is in Fn and we are done. In the latter case
Hn holds, and y∧ xn60B for some y∈Fn. Therefore we obtain y6(xn→ 0B)=¬ xn
since B is a Boolean algebra. But Fn is a �lter and thus ¬ xn is in Fn. So, we deduce
that (Fn; xn) is inconsistent. Thus, by Hn we conclude again that also Fn is inconsistent.
On the other hand, if Fn is inconsistent also Fn+1 is inconsistent since Fn⊆Fn+1.
We can now conclude that Z , being a union of equiconsistent �lters, is a �lter

equiconsistent with each of them.
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Completeness: Take any x∈B, and assume that Z and (Z; x) are equiconsistent. We
want to prove that x∈Z . Observe that x= xn, for some n∈!. If we manage to prove
that Fn and (Fn; xn) are equiconsistent, then we will conclude that xn ∈Fn+1 and hence
x∈Z since Fn+1⊆Z . So, let us assume that (Fn; xn) is inconsistent; then also (Z; x)
is inconsistent since Fn is included in Z and hence (Z; x)⊇ (Fn; xn). Therefore the
assumption that (Fn; xn) is inconsistent and the equiconsistency of Z and (Z; x) yield
that Z is inconsistent. Hence, Fn is inconsistent by equiconsistency of Z and Fn. On
the other hand, if we assume that Fn is inconsistent we immediately obtain that (Fn; xn)
is inconsistent since Fn⊆ (Fn; xn).

The following corollary is now immediate.

Corollary 2.3 (The countable ultra�lter theorem). Let F be a consistent �lter over a
countable Boolean algebra. Then F can be extended to an ultra�lter.

Proof. By the previous theorem, F can be extended to a consistent and complete �lter
Z . Suppose now that G is a consistent �lter including Z . Then we have to prove that
G⊆Z . So, let us assume that x∈G in order to prove that x∈Z . Since Z is complete
this amounts to prove that Z is equiconsistent with (Z; x), that is, to prove that (Z; x)
is consistent since we already know that Z is consistent. But Z ⊆ G and x∈G and so
(Z; x) is included in the consistent �lter G and hence it is consistent.

2.1. Some comments from a constructive viewpoint

Consider the case the �lter F is consistent. The main problem, from a constructive
viewpoint, in the de�nition of the ultra�lter Z in the Corollary 2.3 above is that, for all
x∈B, ¬ x∈Z if and only if (Z;¬ x) is consistent if and only if x =∈Z . This means that
membership to Z is a non-informative predicate since it is equivalent to a negation. So,
any hypothetical proof for an assumption of the form a∈Z does not depend on a. Thus,
we wonder if the ultra�lter theorem can be considered, from a constructive standpoint
something more than a (nice) curiosity. Still, if one is trying to prove constructively
that a �lter F is inconsistent, to extend it to an ultra�lter can be the right way to
obtain the result.
Notice that, on the other hand, the statement “F is inconsistent” means that 0B ∈F .

Thus “F is inconsistent” can be an informative statement, that is, it can be associated
to a witness. In Krivine’s proof of completeness, inconsistency of the �lter associated
to the classical theory with axioms �∪¬{A} carried, in fact, a witness, in form of
a syntactic object, that is, a proof of �∪¬{A} 	⊥, and, from it, it was possible to
obtain a classical proof of T	A.

3. The maximal ideal theorem

Some results, which are in classical mathematics easy consequences of some equiv-
alent formulation of the ultra�lter theorem for Boolean algebras, can be taken into the
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realm of constructive mathematics as they are. Some others require more detailed con-
structions. We devote this section to an example of the �rst kind: the maximal ideal
theorem for countable rings.

3.1. The maximal ideal construction

Let us begin by recalling some standard de�nitions about ideals of a ring. An ideal
I of a ring A≡ (A;+; ·;−; 0A; 1A) is a subset closed under 0A, opposite, sum, and such
that x∈ I and a∈A yield ax∈ I . Let us call inconsistent any ideal I of A including 1A,
that is, I is inconsistent if and only if I =A. Let consistent mean “not inconsistent”,
that is, I is consistent if it does not include 1A. Let equiconsistent for two ideals I
and J means that 1A ∈ I if and only if 1A ∈ J . Let us denote by (X ) the minimal ideal
including the subset X of A, and by (I; x) the minimal ideal including the ideal I and
the element x, that is, (I; x)= (I ∪{x}).

Lemma 3.1 (Construction of (X )). Let X be a subset of the ring A. Then

(X ) = {a1y1 + · · ·+ akyk |y1; : : : ; yk ∈X; a1; : : : ; ak ∈A}
is the minimal ideal containing X .

Let us call complete for x an ideal I such that if (I; x) is consistent, then x∈ I
and complete an ideal which is complete for all x∈A. Note that an inconsistent ideal
is trivially complete. Let us call maximal any consistent ideal which is maximal by
inclusion.

Lemma 3.2 (Maximality). An ideal M is maximal if and only if it is complete and
consistent.

Proof. From left to right. Let M be maximal. Then M is consistent by de�nition.
In order to prove completeness, let x be an element of A. Then (M; x) includes M .
Suppose now that (M; x) is consistent. Then, by maximality, M =(M; x) and hence x
belongs to M .
From right to left. Assume that M is consistent and complete and suppose that I is a

consistent ideal including M . Then, we have to prove that I =M , namely, that I ⊆M .
Assume that x∈ I in order to prove that x∈M . To this aim, consider the ideal (M; x).
Since M ⊆ I and x∈ I , (M; x) is included in I and therefore it is consistent. Thus, by
completeness of M , (M; x) is included in M and hence x∈M .

It is possible to prove also that completeness is monotone.

Lemma 3.3 (Monotonicity). Let I and J be ideals such that I ⊆ J . Then, for any
x∈A, if I is complete for x then also J is.

Proof. Since I is a subset of J , (I; x) is a subset of (J; x) and hence if (J; x) is
consistent then also (I; x) is consistent. Assume now that (J; x) is consistent in order
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to show that x∈ J . Then (I; x) is consistent and hence, by completeness of I for x, we
get x∈ I . Now x∈ J follows from I ⊆ J .

We are now ready to prove the main theorem of this section.

Theorem 3.4 (The countable maximal ideal theorem). Let A be a countable ring and
suppose that I is one of its consistent ideals. Then there is a maximal ideal M in A
such that I ⊆M .

Proof. Let xn be any surjective enumeration of A and let us de�ne a countable chain
(Mn)n∈! of ideals. To begin with, set M0 = I . Suppose now that we have already
de�ned Mn and de�ne Mn+1≡ (Xn+1) as the minimal ideal containing the set

Xn+1 = {x | (x ∈ Mn) ∨ ((Mn; x) is consistent & x= xn)}:

Finally, set M ≡ ⋃
n∈! Mn. Note that M , being the union of a chain of ideals, is also

an ideal. Moreover, I ⊆M trivially holds. So we have only to prove that M is maximal.
First observe that, for any n∈!, an element m of Mn+1 is equal to a1y1+ · · ·+akyk ,

for some y1; : : : ; yk ∈Xn+1 and a1; : : : ; ak ∈A. Then, by induction over k, it is possible
to see that either m∈Mn, or it has the form m1 + axn, for some m1 ∈Mn and a∈A;
and in the latter case Mn+1 = (Mn; xn) and (Mn; xn) is consistent.
Now, we prove by induction on n that, for any n¿0, Mn is both consistent and

complete for xn−1.
This result holds by hypothesis if n=0 since M0 = I . Then, let us consider the case

n is a successor.
Consistency: We have to prove that 1A =∈Mn+1. Assume 1A ∈Mn+1, in order to obtain

a contradiction. Then either 1A is in Mn, and we found a contradiction, or 1A=m1+axn
for some m1 ∈Mn and a∈A, and (Mn; xn) is consistent. But 1A=m1 +a · xn means that
(Mn; xn) is inconsistent and so we found a contradiction.
Completeness: We have to prove that Mn+1 is complete for xn. Assume (Mn+1; xn)

is consistent. Then (Mn; xn) is consistent since it is a subset of (Mn+1; xn). Thus, by
de�nition of Mn+1, we conclude xn ∈Mn+1.
Thus, we checked that all the ideals Mn are consistent. Therefore, also M is consis-

tent, being the union of a chain of consistent ideals. Finally, by monotonicity, M is
complete over each xn, since it includes Mn+1 which is complete over xn.

So, M is a complete consistent ideal, that is, a maximal extension of I .

3.2. Some comments on the result

Also here, like in the previous cases, membership to M is a negated predicate. Thus,
also the last construction is non-informative. We proved no more than the maximal
ideal M exists, and that we can use such an existence in constructive reasoning. But
from the statement x∈M we get no witness. And no extra information about M is
available.
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The previous result can be easily strengthened to: “every ideals can be extended to
a complete ideal equiconsistent with it”. This yields the previous result as a particular
case when the ideal is consistent. As we already pointed out in the case of �lters, this
result is more interesting from a constructive viewpoint, since “inconsistency” can be a
positive information. To prove this new result we only have to replace, in the previous
proof, all conditions of the form “(J; x) is consistent” with the weaker condition: “if
(J; x) is inconsistent, then also J is”. Such replacement is routine, and we decided to
omit all details.
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