
LECTURE 12 Virtual Memory



VIRTUAL MEMORY

Just as a cache can provide fast, easy access to recently-used code and data, main 
memory acts as a “cache” for magnetic disk. 

The mechanism by which this is accomplished is known as virtual memory. There are 
two reasons for using virtual memory: 

• Support multiple processes sharing the same memory space during execution. 

• Allow programmers to develop applications without having to consider the size of 
memory available. 



VIRTUAL MEMORY

Recall that the idea behind a cache is to exploit locality by keeping relevant data 
and instructions quickly-accessible and close to the processor.

Virtual memory uses a similar idea. Main memory only needs to contain the active, 
relevant portions of a program at a given time. This allows multiple programs to 
share main memory as they only use a subset of the space needed for the whole 
program. 



VIRTUAL MEMORY

Virtual memory involves compiling each program into its own address space. This 
address space is accessible only to the program, and therefore protected from other 
programs. 

Virtual addresses have to be translated into physical addresses in main memory. 



VIRTUAL MEMORY TERMS

A lot of the concepts in virtual memory and caches are the same, but use different 
terminology.

• Just as we have blocks in a cache, we have pages in virtual memory.  

• A miss in virtual memory is known as a page fault. 

• The processor produces a virtual address, which must be translated into a physical 
address in order to access main memory. This process is known as address mapping or 
address translation. 



ADDRESS TRANSLATION

Pages are mapped from virtual 
addresses to physical addresses in
main memory.

If a virtual page is not present in main
memory, it must reside on disk. 

A virtual address can only translate to 
one physical (or disk) address, but 
multiple virtual addresses may translate 
to the same physical (or disk) address. 



ADDRESS TRANSLATION

The process of relocation simplifies the task of loading a program into main memory 
for execution. 

Relocation refers to mapping virtual memory to physical addresses before memory is 
accessed. 

We can load the program anywhere in main memory and, because we perform 
relocation by page, we do not need to load the program into a contiguous block of 
memory – we only need to find a sufficient number of pages.   



ADDRESS TRANSLATION

A virtual address is partitioned into 
a virtual page number and a page 
offset. 

To translate a virtual address, we 
need only translate the virtual page 
number into the physical page 
number. The page offset remains the 
same. 



ADDRESS TRANSLATION

This example contains a 12-bit page 
offset. The page offset determines 
the page size. This page size is

2"# = 4096	𝐵𝑦𝑡𝑒𝑠 = 4𝐾𝐵

Note that the page number of the 
physical address has 18 bits, while 
the virtual page number has 20 bits. 
How many pages are allowed in 
physical memory? What about 
virtual memory? 



ADDRESS TRANSLATION

There are 2"0 pages allowed in 
main memory, while 2#1 pages are 
allowed in virtual memory. 

So, we have way more virtual 
memory pages than we do physical 
memory pages – this is alright, 
however, as we want to create the 
illusion of having a larger physical 
address space than we actually 
have. 



DESIGN CHOICES

A lot of the design choices for virtual memory systems are driven by the high cost of a 
miss, also called a page fault. A page fault causes us to have to move a page from 
magnetic disk into main memory, which can take millions of clock cycles.

• Large page sizes are desirable in order to justify the large miss penalty. Page sizes 
of 32-64 KB are becoming the norm. x86-64 supports 4 KB, 2 MB, and 1 GB page 
sizes.

• Fully-associative placement of pages in main memory reduces conflict misses.

• Sophisticated miss and replacement policies are justified because a small reduction 
in the miss rate still creates a huge reduction in average access time. 

• Write-back is always used because write-through takes too long.  



PAGE TABLE

As we have discussed, the disadvantage of a fully-associative scheme is that finding 
an entry in main memory (or the cache) will be slow. 

To facilitate the lookup of a page in main memory, we use a page table. A page 
table is indexed with the virtual page number and contains the corresponding 
physical page number. 

Every process has its own page table that maps its virtual address space to the 
physical address space. 



PAGE TABLE

The address of the first entry in
the page table is given by the 
page table register. 

The valid bit indicates whether the
mapping is legal or not – that is, 
whether the page is in main 
memory. 

We do not need any notion of a
tag because every virtual page
number has its own entry. 



PAGE FAULTS

When page table entry has a de-asserted valid bit, a page fault occurs. 

Since the page must be retrieved from magnetic disk on a page fault, we must also 
find a way to associate virtual pages with a disk page. 

The operating system creates enough space on disk for all of the pages of a process 
(called a swap space) and, at the same time, creates a structure to record the 
associated disk page for each virtual page.

This secondary table may be combined with the page table or left separate.  



PAGE FAULTS

Here we have a single table 
holding physical page numbers or
disk addresses. 

If the valid bit is on, the entry is a 
physical page number. Otherwise, 
it’s a disk address. 

In reality, these tables are usually
separate – we must keep track of
the disk address for all virtual 
pages. 



PAGE FAULTS

When a page fault occurs, we 
must choose a physical page to
replace using LRU. 

If the evicted page is dirty, it must
be written back to disk. 

Finally, the desired page is read
into main memory and the 
page tables are updated. 



TRANSLATION LOOKASIDE BUFFERS

Because the page table for a process is itself stored in main memory, any access to 
main memory involves at least two references: one to get the physical address and 
the other to get the data. 

To avoid this, we can exploit both spatial and temporal locality by creating a special 
cache for storing recently used translations, typically called a translation lookaside 
buffer. 

Some portion of the virtual page number is used to index into the TLB. A tag is used 
to verify that the physical address entry is relevant to the reference being made.  



TLB

The TLB contains a subset of the 
virtual-to-physical page mappings in
the page table. 

Because not every virtual address has
its own entry in the TLB, we index into
the TLB using a lower portion of the virtual
page number and check the tag against the
higher portion. 



TLB

If there is no entry in the TLB for a virtual
page number, we must check the page
table. A TLB miss does not necessarily 
indicate a page fault.

The page table will either
provide a physical address in main 
memory or indicate that the page is on 
disk, which results in a page fault.



TLB

Note the three reference bits: 
• Valid – the entry in the TLB or page table

is legitimate. 
• Dirty – the page has been written and

is inconsistent with disk. Will need to be
written back upon replacement. 

• Reference – a bit indicating the entry
has been recently used. Periodically, all
reference bits are cleared. 



INTRINSITY FASTMATH



VIRTUAL OR PHYSICAL?

There’s something significant to notice about the Intrinsity example: the physical address is used to 
index into the cache, not the virtual address. So, which should we use? The virtual address or 
physical address? The answer is that it depends. 

• Physically indexed, physically tagged (PIPT) caches use the physical address for both the index and 
the tag.
• Simple to implement but slow, as the physical address must be looked up (which could involve a TLB miss and access to main 

memory) before that address can be looked up in the cache.

• Virtually indexed, virtually tagged (VIVT) caches use the virtual address for both the index and the 
tag. 
• Potentially much faster lookups.
• Problems when several different virtual addresses may refer to the same physical address -- addresses would be cached 

separately despite referring to the same memory, causing coherency problems. 
• Additionally, there is a problem that virtual-to-physical mappings can change, which would require clearing cache blocks.

• Virtually indexed, physically tagged (VIPT) caches use the virtual address for the index and the 
physical address in the tag. 



VIRTUALLY INDEXED, PHYSICALLY TAGGED

• Index into the cache using bits from the page offset.

• Do the tag comparison after obtaining the physical page number.

• Advantage is that the access to the data in the cache can start sooner.

• Limitation is that one size of a VIPT cache can be no larger than the page size. 



VIRTUAL MEMORY, TLB, AND CACHE



TLB AND PAGE TABLE EXAMPLE

Page size is 512 bytes. TLB is direct-mapped and has 64 sets.

Index Page Tag Valid

0 ? ? ?

… … … …

7 ? ? 0

8 2 0 1

… … … …

63 ? ? ?

Index Page Res Dirty Disk Addr …

0 ? ? ? ? …

… … … … … …

71 9 Yes ? ? …

.. … … … … …

Given virtual address 36831 (1000 1111 1101 1111), what is the physical address?
Given virtual address 4319 (1 0000 1101 1111), what is the physical address?

TLB

Page Table



TLB AND PAGE TABLE EXAMPLE

Page size is 512 bytes. TLB is direct-mapped and has 64 sets.

Index Page Tag Valid

0 ? ? ?

… … … …

7 ? ? 0

8 2 0 1

… … … …

63 ? ? ?

Index Page Res Dirty Disk Addr …

0 ? ? ? ? …

… … … … … …

71 9 Yes ? ? …

.. … … … … …

Given virtual address 36831, what is the physical address? 5087
Given virtual address 4319, what is the physical address? 1247TLB

Page Table



MULTIPROGRAMMING

• Multiprogramming is the ability of several processes to concurrently share a 
computer.

• A process is the code, data, and any state information used in the execution of a 
program.

• A context switch means transferring control of the machine from one process to 
another.

• On a context switch, we must change the page table register to point to the 
appropriate page table and either:
• the TLB must be cleared (could be very inefficient!)
• or tags in the TLB must be extended to include a PID (Process IDentifier).



PROCESS PROTECTION

• Proper protection must be provided to prevent a process from inappropriately affecting 
another process or itself.

• Page tables are kept in the address space of the operating system.

• Virtual memory systems keep bits in the page table and TLB entries to indicate the type of 
access that the process has to each of the pages.

• Two modes of execution are supported:
• User mode is used by the process.
• Kernel mode is used by the operating system. This mode can be used for updating page tables and 

accomplishing I/O.

• A switch from user to kernel mode is accomplished by a system call.

• A switch from kernel to user mode is accomplished by returning from an exception (system 
call). 



DESIGN PARAMETERS

Below are typical design parameters for different memory hierarchy levels in 2012.

Server processors also have L3 caches, which are not shown. 



ADDRESS TRANSLATION HARDWARE



EXAMPLE CACHES



DATA CACHE MISS RATES FOR THE ARM CORTEX-A8



AVG MEM ACCESS PENALTY PER ARM DATA REF



CACHE MISS RATES FOR THE INTEL I7 920


