
A Process Semantics for BPMN

Peter Y.H. Wong Jeremy Gibbons

July 2007

Abstract

Business Process Modelling Notation (BPMN), developed by the Busi-
ness Process Management Initiative (BPMI), intends to bridge the gap
between business process design and implementation. However, the spec-
ification of the notation does not include a formal semantics. This paper
shows how a subset of the BPMN can be given a process semantics in
Communicating Sequential Processes. Such a semantics allows developers
to formally analyse and compare BPMN diagrams. Two simple examples
of business processes are included.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. BPMN [13] allows developers to take a process-oriented approach
to modelling of systems. There are currently around forty implementations of
the notation, but the notation specification developed by BPMI and adopted by
OMG does not have a formal behavioural semantics, which we believe is crucial
in behavioural specification and verification activities.

BPMN has been specified to map directly to the BPML standard, which
has subsequently been superceded by WS-BPEL [1]. To the best of our knowl-
edge the only previous attempt at defining a formal semantics for a subset of
BPMN [4, 5] did so using Petri nets. However, their semantics does not properly
model multiple instances, exception handling and message flows. A significant
amount of work has been done towards the mapping between WS-BPEL and
BPMN [14, 18, 15], and the formal semantics of WS-BPEL [9, 10, 12]. However,
as the use of graphical notations to assist the development process of complex
software systems has become increasingly important, it is necessary to define a
formal semantics for BPMN to ensure precise specification and to assist devel-
opers in moving towards correct implementation of business processes. A formal
semantics also encourages automated tool support for the notation.

The main contribution of this work is to provide a formal process semantics
for a subset of BPMN, in terms of the process algebra CSP [16]. By using the
language and the behavioural semantics of CSP as the denotational model, we
show how the existing refinement orderings defined upon CSP processes can be
applied to the refinement of business process diagrams, and hence demonstrate
how to specify behavourial properties using BPMN. Moreover, our processes
may be readily analysed using a model checker such as FDR [6]. Our seman-
tic construction starts from syntax expressed in Z [19], following Bolton and
Davies’s work on UML activity graphs [2].

1

This paper begins with an introduction to BPMN and the mathematical
notations, Z [19] and CSP [16], that are used throughout the document. Our
contribution starts in Section 3, with a Z model of BPMN syntax, and contin-
ues in Section 4 with a behavioural semantics in CSP. In Section 5 we give a
simple example to show how our semantics allows consistency between different
levels of abstraction may be verified. In Section 6 we present another simple ex-
ample to demonstrate how compatibility between the participants in a business
collaboration may be verified. We conclude this paper with a summary.

2 Notation

2.1 BPMN

States in our subset of BPMN [13] can either be pools, tasks, subprocesses,
multiple instances or control gateways; they are linked by sequence, exception
or message flows; sequence flows can be either incoming to or outgoing from
a state and have associated guards; an exception flow from a state represents
an occurrence of error within the state. Message flows represent directional
communication between states. A sequence of sequence flow represents a specific
control flow instance of the business process.

Figure 1: States of BPMN diagram

A table showing each type of state is presented in Figure 1. In the figure,
each of the xgate, agate and ogate state types has one or more incoming sequence
flows and one or more outgoing sequence flows. An xgate state is an exclusive
gateway, accepting one of its incoming flows and taking one of its outgoing flows;
the semantics of this gateway type can be described as an exclusive choice and
a simple merge. An agate state is a parallel gateway, which waits for all of its
incoming flows before initialising all of its outgoing flows. An ogate state is an
inclusive gateway, accepting one or more incoming sequence flows depending on
their associated guards and initialising one or more of its outgoing flows also
depending on their associated guards.

2

Also in Figure 1 there are graphical notations labelled task* and bpmn*,
which depict a task state and a subprocess state with an exception flow. Each
task and subprocess can also be defined as multiple instances. There are two
types of multiple instances in BPMN: The miseq state type represents serial
multiple instances, where the specified task is repeated in sequence; in the mipar
state type the specified task is repeated in parallel. The types miseqs and mipars
are their subprocess counterparts.

The graphical notation pool in Figure 1 depicts a participant within a busi-
ness collaboration involving multiple business processes. Each pool forms a
container for some business processes; only one process instance is allowed at
any one time. While sequence flows are restricted to an individual pool, message
flows represent communications between pools. An illustration of message flow
between activities across pools is shown in Figure 2. In the figure, task A sends

Figure 2: Interaction via message flows

a message; this is received by task B , which triggers the start of its activity. As
task B completes the necessary activity for A it replies with a message for A to
accept ; such message might break A’s activity flow. Note that each task in the
figure is contained in a separate pool.

2.2 Z

The Z notation [19] has been widely used for state-based specification. It is
based on typed set theory coupled with a structuring mechanism: the schema.
A schema is essentially a pattern of declaration and constraint. Schemas may
be named using the following syntax:

Name
declaration

constraint

or equivalently

Name =̂ [declaration | constraint]

If S is a schema then θS denotes the characteristic binding of S in which
each component is associated with its current value. Schemas can be used as

3

declarations. For example, the lambda expression λS • t denotes a function
from the schema type underlying S , a set of bindings, to the type of term
expression t .

The mathematical language within Z provides a syntax for set expressions,
predicates and definitions. Types can either be basic types, maximal sets within
the specification, each defined by simply declaring its name, or be free types,
introduced by identifying each of the distinct members, introducing each element
by name. An alternative way to define an object within an specification is by
abbreviation, exhibiting an existing object and stating that the two are the
same.

Type ::= element1 | ... | elementn [Type] symbol == term

By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying predicate p.

x : S

p

2.3 CSP

In CSP [16], a process is a pattern of behaviour; a behaviour consists of events,
which are atomic and synchronous between the environment and the process.
The environment in this case can be another process. Events can be compound,
constructed using the dot operator ‘.’; often these compound events behave as
channels communicating data objects synchronously between the process and
the environment. Below is the syntax of the language of CSP.

P ,Q ::= P ||| Q | P |[A]| Q | P |[A | B]| Q | P \ A | P 4 Q |
P 2 Q | P u Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P and
Q . Process P |[A]| Q denotes the partial interleaving of processes P and Q
sharing events in set A. Process P |[A | B]| Q denotes parallel composition, in
which P and Q can evolve independently but must synchronise on every event
in the set A ∩ B ; the set A is the alphabet of P and the set B is the alphabet
of Q , and no event in A and B can occur without the cooperation of P and Q
respectively. We write ||| i : I • P(i), ‖[A] i : I • P(i) and ‖ i : I • A(i) ◦ P(i)
to denote an indexed interleaving, partial interleaving and parallel combination
of processes P(i) for i ranging over I .

Process P \ A is obtained by hiding all occurrences of events in set A from
the environment of P . Process P 4 Q denotes a process initially behaving as P ,
but which may be interrupted by Q . Process P 2 Q denotes the external choice
between processes P and Q ; the process is ready to behave as either P or Q . An
external choice over a set of indexed processes is written 2 i : I • P(i). Process
P u Q denotes the internal choice between processes P or Q , ready to behave
as at least one of P and Q but not necessarily offer either of them. Similarly
an internal choice over a set of indexed processes is written u i : I • P(i).

Process P o
9 Q denotes a process ready to behave as P ; after P has success-

fully terminated, the process is ready to behave as Q . Process e → P denotes a

4

process capable of performing event e, after which it will behave like process P .
The process Stop is a deadlocked process and the process Skip is a successful
termination.

CSP has three denotational semantics: traces (T), stable failures (F) and
failures-divergences (N) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable
failures model. The traces model is insufficient for our purposes, because it
does not record the availability of events and hence only models what a process
can do and not what it must do [16]. Notable is the semantic equivalence of
processes P 2 Q and P u Q under the traces model. In order to distinguish
these processes, it is necessary to record not only what a process can do, but
also what it can refuse to do. This information is preserved in refusal sets, sets
of events from which a process in a stable state can refuse to communicate no
matter how long it is offered. The set refusals(P) is P ’s initial refusals. A failure
therefore is a pair (s ,X) where s ∈ traces(P) is a trace of P leading to a stable
state and X ∈ refusals(P/s) where P/s represents process P after the trace
s . We write traces(P) and failures(P) as the set of all P ’s traces and failures
respectively.

We write Σ to denote the set of all event names, and CSP to denote the
syntactic domain of process terms. We define the semantic function F to return
the set of all traces and the set of all failures of a given process, whereas the
semantic function T returns solely the set of traces of the given process.

F : CSP → (P seqΣ × P(seq Σ × P Σ))
T : CSP → P seqΣ

These models admit refinement orderings based upon reverse containment; for
example, for the stable failures model we have

vF : CSP ↔ CSP

∀P ,Q : CSP •
P vF Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

While traces only carry information about safety conditions, refinement under
the stable failures model allows one to make assertions about a system’s safety
and availability properties. These assertions can be automatically proved using
a model checker such as FDR [6], exhaustively exploring the state space of
a system, either returning one or more counterexamples to a stated property,
guaranteeing that no counterexample exists, or until running out of resources.

3 Syntactic Description of BPMN

In this section we describe the abstract syntax of BPMN using Z schemas and
the set theory, and use an example in Section 3.2 to show how the syntax can
be applied on a given BPMN diagram.

3.1 Abstract Syntax

We intially define the following basic types:

[CName,PName,Task ,Line,Channel ,Guard ,Message]

5

We then derive subtypes BName and PLName, InMsg, OutMsg, EndMsg and
LastMsg axiomatically.

InMsg,OutMsg,EndMsg,LastMsg : P Message
BName,PLName : PPName

〈InMsg,OutMsg,EndMsg,LastMsg〉 partition Message
〈BName,PLName〉 partition PName

Each type of state shown in Figure 1 is defined syntactically as follows:

Type ::= agate | xgate | ogate | start | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
bpmn〈〈BName〉〉 | pool〈〈PLName〉〉 | miseq〈〈Task × N〉〉 |
miseqs〈〈BName × N〉〉 | mipar〈〈Task × N〉〉 | mipars〈〈BName × N〉〉

According to the specification [13], each BPMN state type has associated at-
tributes describing its properties; our syntactic definition has included some
of these attributes. For example, the number of loops of a sequence multiple
instance state type is recorded by the natural number in the constructor func-
tion miseq. We define abbreviations Inputs , NoEnds , Tasks , Subs and Mults as
follows to assist our specification.

Inputs == InMsg ∪ EndMsg ∪ LastMsg
NoEnds == InMsg ∪ LastMsg
Tasks == ran task ∪ ranmiseq ∪ ranmipar
Subs == ran bpmn ∪ ranmiseqs ∪ ranmipars
Mults == ranmiseqs ∪ ranmipars ∪ ranmiseq ∪ ranmipar

In this paper we call both sequence flows and exception flows ‘transitions’; states
are linked by transition lines representing flows of control, which may have
associated guards. We give the type of a sequence flow or an exception flow by
the following schema definition.

Transition =̂ [guard : Guard ; line : Line]

and we give the type of a message flow by the following schema definition.

Messageflow =̂ [message : Message; channel : Channel]

If the sequence flow has no guard or the message flow contains an empty message,
then the schemas Transition and Messageflow record the default values tt and
empty respectively.

tt : Guard ; empty : Message

Each state records the type of its content, the sets of incoming, outgoing and er-
ror transitions and in the case of a subprocess state, a set of number-transition
pairs to align the outgoing transitions of the subprocess within the outgoing
transitions within the subprocess. There are also the five sets of message flows;
their informal meanings are illustrated by the simple BPMN diagram in Fig-
ure 2. Each state also incorporates the variable loopMax to limit the number of
state instances each process instance can invoke; the schema State records the
default value 0 if there is no limit to the number of state instances. The schema

6

component link pairs each incoming message flow which initialises or interrupts
the execution of the state with either an incoming transition or an exception
flow; the component depend pairs each incoming message flow which initialise
the state’s execution with its corresponding outgoing message flow.

State =̂ [type : Type; in, out , error : PTransition; exit : P(N × Transition);
send , receive, reply, accept , break : P Messageflow ;
link : P(Transition × Messageflow);
depend : P(Messageflow × Messageflow); loopMax : N]

The schema WFS describes a subset of well-formed states in BPMN.

WFS
State

∃mct : N • (mct = #(
⋃
{ send , receive, reply, accept , break }) + #link + #depend

∧ type ∈ ran pool ⇔ #(
⋃
{ in, out , error }) + mct = 0

∧ type /∈ Tasks ∪ Subs ⇒ (loopMax + mct + #error = 0))
type = start ⇔ (in = ∅ ∧ #out = 1)
type ∈ (ran end ∪ ran abort) ⇔ (#in = 1 ∧ out = ∅)
(type /∈ Subs ⇔ exit = ∅) ∧ (type ∈ Subs ⇔ { e : exit • second(e) } = out)
type ∈ Subs ⇒ send ∪ accept = ∅
(#receive = #reply ∧ #send = #accept)
({ e : link • second(e) } = (receive ∪ break)) ∧ ({ e : link • first(e) } ⊆ (in ∪ error))
({ e : depend • first(e) } = receive) ∧ ({ e : depend • second(e) } = reply)
∀ t1, t2 : out ∪ in • t1.line 6= t2.line
∀ms : send ; ns : reply • (ms .message ∈ InMsg ∧ ns .message ∈ OutMsg)
∀ms : receive ∪ accept ; e : error • (ms .message = empty ∧ e.guard = tt)

We introduce the notion of well-configured set by first defining functions isStart
and isEnd , which decide respectively whether a state within a well-configured
set is reachable from some start state and reaches to some end or abort state.
The function fSeq returns a finite sequence upon some finite set, containing
exactly those elements in the set.

[X]
fSeq : PX → (seqX)

∀ xs : P X • dom (fSeq xs) = 1 . . #xs ∧ ran (fSeq xs) = xs

The functions findBState and findFState recursively locate the state which con-
nects the incoming and outgoing tranitions of the argument state from the input
sequence of states respectively.

7

findBState,findFState : WFS 7→ seqWFS 7→ seqWFS

∀w : WFS ; ws : seqWFS •
findBState w ws =

if (ws = 〈〉) then 〈〉
else (if (((head ws).out ∪ (head ws).error) ∩ w .in) 6= ∅

then 〈head ws〉 else findBState w (tail ws))
∧ findFState w ws =

if (ws = 〈〉) then 〈〉
else (if ((head ws).in ∩ (w .out ∪ w .error)) 6= ∅

then 〈head ws〉 else findFState w (tail ws))

isStart , isEnd : WFS 7→ seqWFS 7→ N

∀w : WFS ; ws : seqWFS •
isStart w ws =

if (w .type = start) then 1
else if (ws = 〈〉) then 0

else if (findBState w ws = 〈〉) then 0
else isStartm (findBState w ws) (squash (ws −B {w }))

∧ isEnd w ws =
if (w .type ∈ ran end ∪ ran abort) then 1
else if (ws = ∅) then 0

else if (findFState w (fSeq ws) = 〈〉) then 0
else isEndm (findFState w ws) (squash (ws −B {w }))

isStartm, isEndm : seqWFS 7→ seqWFS 7→ N

∀ws , xs : seqWFS •
isStartm ws xs =

if (ws = 〈〉) then 0
else if ((isStart (head ws) xs) = 1) then 1

else isStartm (tail ws) xs
∧ isEndm ws xs =

if (ws = 〈〉) then 0
else if ((isEnd (head ws) xs) = 1) then 1

else isEndm (tail ws) xs

The set of well-configured sets of well-formed states WCF is hence defined ax-
iomatically as follows:

WCF : P(P State)

WCF = {C : P State | (C ∈ F
1
WFS

∧ { s : State | s .type ∈ ran pool } ∩ C = ∅
∧ { s : State | s .type = start } ∩ C 6= ∅
∧ { s : State | s .type ∈ (ran end ∪ ran abort) } ∩ C 6= ∅
∧ (∀ a : State • a ∈ C ∧ (a.type /∈ (ran end ∪ ran abort) ⇔ isEnd a (fSeq (C \ { a })) = 1))
∧ (∀ a : State • a ∈ C ∧ (a.type 6= start ⇔ isStart a (fSeq (C \ { a })) = 1))
∧ (∀ s , t : State • { s .type, t .type } ⊆ ran end ⇒ end∼s .type 6= end∼t .type)
∧ (∀ s , t : State • { s .type, t .type } ⊆ ran abort ⇒ abort∼s .type 6= abort∼t .type)) }
∧ (∀ s , t : State • s 6= t ⇒ (s .in ∩ t .in = s .out ∩ t .out = ∅))

8

Each BPMN diagram encapsulated by a pool represents an individual partici-
pant in a collaboration, built up from a well-configured finite set of well-formed
states. We do not allow local states to have type pool , since this represents
a boundary of a business domain. The function Local represents the environ-
ment of the local specification and maps each name of a BPMN diagram to its
associated diagram. However, a collaboration is built up from a finite set of
names, each of the names is associated with a BPMN diagram and as such the
function Global represents the environment of a global specification and maps
each collaboration name to its associated diagram’s name.

BPD ::= states〈〈WCF 〉〉 Local == PName 7→ BPD
Chor ::= bpmns〈〈F PLName〉〉 Global == CName 7→ Chor

3.2 An Example

We present an example of a business process of an airline reservation system
shown in Figure 3, this example has been taken from the WSCI specification [17].
It could be assumed to have been constructed during the development of the
business process. We have abstracted message flows, as there is only one business
participant in the example. We use this example to illustrate how a BPMN
diagram can be translated into a well-configured set of states describing the
diagram’s syntax.

Figure 3: A BPMN diagram describing the workflow of a airline reservation
application.

We observe that the airline reservation business process is initiated by ver-
ifying seat availability, after which seats may be reserved. If the reservation
period elapses, the business process will cancel the reservation automatically
and notify the user. The user might decide to cancel her reservation, or proceed
with the booking. Upon a successful booking, tickets will be issued.

Given the business process name airline, the following shows a set of well-
formed states translated from the diagram describing the reservation part of
business process. We have omitted details of the bindings of Transition and
Messageflow . We write a1 . .an ; ∅ inside some schema binding s to specify the
components s .a1 . . s .an to be empty. The syntactic detail of the subprocesses
Reserve and Booking are also omitted.

9

airline : PName; book , reserve : BName; verify, timeout ,notify : Task

∃ local : Local ; t1, t2, t3, t4, t5, t6, t7, t8 : Transition; i , j , k , l ,m,n : N •
states∼(local airline) =

{ 〈|type ; start , out ; { t1 }, in, error , exit ; ∅|〉,
〈|type ; mipar verify n, in ; { t1 }, out ; { t2 }, error , exit ; ∅|〉,
〈|type ; bpmn reserve, in ; { t2 }, out ; { t3 }, error ; ∅, exit ; { (m, t3) }|〉,
〈|type ; bpmn book , in ; { t3 }, out ; { t4, t5 }, error ; { t6 },

exit ; { (k , t4), (l , t5) }|〉,
〈|type ; task timeout , in ; { t6 }, out ; { t7 }, error , exit ; ∅|〉,
〈|type ; task notify, in ; { t5, t7 }, out ; { t8 }, error , exit ; ∅|〉,
〈|type ; end i , in ; { t4 }, out , error , exit ; ∅|〉,
〈|type ; abort j , in ; { t8 }, out , error , exit ; ∅|〉 }

4 Behavioural Semantics of BPMN

Section 3 presented an abstracted syntax for BPMN in Z. In this section, we
define a semantic function which takes the syntactic description of a BPMN di-
agram and returns the CSP process that models the behaviour of that diagram.
That is, the function returns the parallel composition of processes correspond-
ing to the states of the diagram, each synchronising on its own alphabet, which
represents its transition events to ensure the correct order of control flow. In
Section 4.1 we define functions to associate each transition, messageflow, state
and diagram with their set of events. Section 4.2 presents the overall seman-
tic functions for mapping each BPMN diagram to its process describing its
behaviour and each set of BPMN diagrams to its process describing the dia-
grams’ behaviour and interconnection; in Section 4.3 we define the functions
for mapping each type of multiple instance states to its process describing its
behaviourn; in Section 4.4 we present the CSP processes corresponding to the
behaviour of each gateways and message flows; and in Section 4.5 we define
processes corresponding to the behaviour of each state types and transitions,
and the general functions for mapping each BPMN states to its CSP process
describing its behaviour.

4.1 Alphabets

First we define the basic types Process and Event which correspond to CSP
processes and events. We define the basic type Data to represent the data
which are communicated along CSP channels. The basic type Channel in this
paper also denotes the set of CSP channels, hence a data object d communicated
along a channel c is denoted by the compound event c.d .

[Process ,Event ,Data]

We define the partial injective function εtrans which maps each transition to a
pair of a CSP event and a guard. We insist that each transition maps to a
unique CSP event. The functions εtask and εpname map each task and process
name to a unique event respectively. The function εmsg maps each message flow
to its set of events. The notation {|c1 . . cn |} forms the appropriate set of events
from channels c1 . . cn , so {|c|} where c communicates data object of type D
forms the set { d : D • c.d }.

10

εline : Line 7� Event
εtask : Task 7� Event
εpname : PName 7� Event
εmg : Message 7� Data
εtrans : Transition 7� (Event × Guard)
εmsg : Messageflow 7� (Channel × Data)

disjoint 〈ran εpname , ran εtask , ran εline〉
εtrans = λTransition • (εline line, guard)
εmsg = λMessageflow • (channel , εmg message)
∀ t1, t2 : Transition • (εtran t1).1 = (εtran t2).1 ⇔ t1 = t2⋃
{ (m,n) : ran εmsg • {|m|} } ∩ (ran εtask ∪ ran εline) = ∅

In order to define the alphabet for each state, corresponding to the events on
which each state must synchronise, we must consider the events associated with
each transition, type and messageflow. We define the functions αtrans and αmsg

which map each set of transitions and message flows to the set of associated
events respectively. We also define the function αchn which map each set of
message flows to its corresponding channels.

αtrans : P Transition � P Event
αmsg : PMessageflow � P Event
αchn : PMessageflow � P Channel

∀mf : P Messageflow ; ts : PTransition •
αtrans ts = { cp : εtrans(| ts |) • cp.1 }
∧ αmsg mf =

⋃
{ cd : (εmsg(| mf |)) • {|cd .1|} }

∧ αchn mf = { cd : εmsg(| mf |) • cd .1 }

The alphabet of a given state is the set of events associated with a state
with which it must synchronise. A state’s alphabet is the union of the events
mapped from all the incoming and outgoing transitions, type, exception and
message flows. We define αstate to be a function mapping each state into its
alphabet.

αstate : State 7→ Local 7→ PEvent

αstate = (λ State • (λ local : Local •
if (type ∈ (Tasks ∪ Subs))
then ((if (type ∈ ranmipar ∪ ranmipars) then

⋃
{ (t , u) : mipartst s • αtrans { t , u } }

else (if (type ∈ ranmiseq ∪ ranmiseqs) then αtrans { (miseqtst s).1, (miseqtst s).2 } else ∅))
∪ (if (type ∈ Subs) then

⋃
{ s : State | s ∈ states∼(local(bpmn∼type)) • αstates local}

else (if (type ∈ Tasks) then { εtask(task∼type) } else ∅))
∪ αtrans (out ∪ in ∪ error) ∪ αmsg(send ∪ receive ∪ reply ∪ accept ∪ break))

else (if (type /∈ ran pool) then αtrans(out ∪ in)
else

⋃
{ s : State | s ∈ states∼(local(pool∼type)) • αstate s local })))

We also define the function αprocess to map each diagram to the set of all pos-
sible events performed by the process describing an individual local diagram’s
behaviour.

αprocess : PName 7→ Local 7→ PEvent

∀ p : PName; local : Local •
αprocess =

⋃
{ s : states∼(local p) • αstate s local }

11

4.2 Processes corresponding to Local and Global Diagrams

Our semantics abstracts the internal flow of individual task states and only
models the sequence of task initialisations and terminations within a business
process. Our semantic function bsem takes a syntactic description of a BPMN
diagram encapsulated by a state of type pool or a BPMN subprocess and returns
a parallel composition of processes, each corresponding to one of the diagram’s
or process’s states. The parallel composition, defined by the function bsm,
is conjoined via partial interleaving with process X to ensure that the business
process either terminates successfully or deadlocks because of an exception flow.
We define compound events fin.i and abt .i where i ranges over N to denote the
successful completion and the abortion of a business process.

bsem : PName 7→ Local 7→ Process
hide : PName 7→ Local 7→ P Event

∀ p : PName; local : Local ; c : CName; global : Global •
bsem p local =

let AE = αprocess p local ∪ {a : εabort p local ; e : εend p local • fin.e, abt .a }
X = 2 i : αprocess p local •

(i → X 2 (2 e : εabort p local • abt .e → Stop)
2 (2 e : εend p local • fin.e → Skip))

within (bsm p local |[AE]| X) \ hide p local
∧ hide p local =

⋃
{ s : states∼(local p) • αtrans(s .in ∪ s .out ∪ s .error) }

bsm : PName 7→ Local 7→ Process

∀ p : PName; local : Local ; c : CName; global : Global •
bsm p local = (‖ s : { s : (states∼(local p)) | s .type 6= start } •

(αstate s local ∪ { i : εend p local • fin.i } ∪
(if (s .type ∈ ran abort) then { abt .(abort∼s .type) } else ∅)) ◦
if (s .type ∈ ran end)
then ((ρstate s o

9 fin.(end∼s .type) → Skip)
2 (2 e : εend p local \ { end∼s .type } • fin.e → Skip))

else if (s .type ∈ ran abort)
then ((ρstate s o

9 abt .(abort∼s .type) → Stop) 2 ρend p local)
else let X = ((ρstate s 2 ρextmsg s .receive EndMsg o

9 X) 2 ρend p local)
within (if (s .loopMax = 0) then X

else (X |[αmsgtype s .receive NoEnds
∪ αtrans s .in ∪ { i : εend p local • fin.i }]|

ρloop p s local))))
|[αstart p local ∪ { i : εend p local • fin.i }]|
2 s : { s : states∼(local p) | s .type = start } • (ρstate s o

9 ρend p local))

We define the function csem, which takes a syntactic description of one or more
states of type pool , each encapsulating a separate BPMN diagram representing
an individual participant within a business collaboration, and returns a parallel
composition of processes, each corresponding to an individual participant.

12

csem : CName 7→ Global 7→ Local 7→ Process
chide : CName 7→ Global 7→ Local 7→ PEvent

∀ local : Local ; c : CName; global : Global •
csem c global local =

(‖ ps : { b : bpmns∼(global c) } • αprocess ps local ◦ bsem ps local)
\ chide c global local

∧
chide c global local =⋃

{ ps : bpmns∼(global c); s : states∼(local ps) •
αmsg(s .send ∪ s .receive ∪ s .reply ∪ s .accept ∪ s .break) }

We observe that the processes corresponding to a start, an end or an abort
state are the only non-recursive processes; a start, an end or an abort activity
can occur only once, while it is possible for all other states to occur many
times within a single process instance. The function εend returns the set of
numbers defined by each of the end states within the diagram’s syntax, while
εabort returns the set of numbers defined by each of the abort states. We apply
external choice over the processes corresponding to states with a terminating
process synchronising on all end states. This ensures that all processes terminate
at the end of the business process execution. The function αstart returns the
set of events corresponding to all outgoing transitions of all start states within
the diagram’s syntax.

αstart : PName 7→ Local 7→ PEvent
εend : PName 7→ Local 7→ P N

ρend : PName 7→ Local 7→ Process
εabort : PName 7→ Local 7→ P N

∀ p : PName; local : Local •
αstart p local =

⋃
{ s : states∼(local p) | s .type = start • αtrans(s .out) }

∧ εend p local = { s : states∼(local p) | s .type ∈ ran end • end∼s .type }
∧ ρend p local = (2 e : εend p local • fin.e → Skip))
∧ εabort p local =

{ s : states∼(local p) | s .type ∈ ran abort • abort∼s .type }
∪

⋃
{ s : states∼(local p) | s .type ∈ ran bpmn •

εabort (bpmn∼s .type) local }

The function ρloop maps each state of type task and bpmn to a process which
limits the number of iterations of the state.

ρloop : PName 7→ State 7→ Local 7→ Process

∀ p : PName; s : State; local : Local •
ρloop p s local =

let Y = 2 i : αtrans s .in • i → Skip
M = ρextmsg s .in NoEnds
X (n) = n > 0 & (Y o

9 X (n − 1) 2 (M o
9 Y o

9 X (n − 1)) 2 ρend p local)
2 n ≤ 0 & ρend p local

within X (loopMax)

13

4.3 Processes corresponding to Multiple Instances

We define the function ρmipar which return the process corresponding to the
behaviour of the state of type mipar or mipars .

ρmipar : State 7→ Local 7→ Process

∀ s : State; local : Local • ∃ ts : P(Transition × Transition) •
ts = mipartst s
∧ ρmipar s local =

let

miparSet =
⋃
{ { i : αchn

⋃
{ s .send , s .break , s .receive }; j : NoEnds • i .j },

αtrans (s .out ∪ s .error), { (i , j) : TP • i , j } }
TP = { (i , j) : ts • ((εtrans i).1, (εtrans j).1) }
Con = s .receive = ∅ & (ρintermsg s .send EndMsg o

9 XS (s .out))
2 (Cn(TP , s) 4 (if s .break = ∅ then AJ (s .error) else ρmierror s))

within

XJ (s .in) o
9 (MTask(ts , s , local) |[miparSet]| Con)

The function ρmipar is constructed by partially interleaving the control pro-
cess Con and the process MTask , where MTask is the partial interleaving of n
copies of processes each corresponding to an instance of a task or a subprocess
specified by the constructor function. Each copy of the processes in MTask is
synchronised on the outgoing transitions of the multiple instance state.

MTask(ts , s , l) =

‖ [αtrans s .out] (i , j) : ts •
(ρdepend s |[αmsg(s .receive ∪ s .reply)]|
(((ρstate 〈|in ; { i }, type ; s .type, out ; { j }, exit ; s .exit , send ; s .send ,

error ; s .error , reply ; s .reply, accept ; s .accept , break ; s .break ,
receive, link , depend ; ∅|〉 l) o

9 XS (s .out)) 2 XS (s .out)))

On receiving a trigger by one of the incoming transitions, the control process
Con either decides not to execute any instance, if there is no message flow
dependency from another state, or behaves like process Cn.

Cn(T , s) =
(s .receive = ∅ & (#T > 1 & IC (T , true, s) 2 #T = 1 & EC (T , s) 2 s .send = ∅ & XS (s .out))
2 (ρextmsg s .receive EngMsg o

9 ρintermsg s .send EndMsg o
9 XS (s .out))

2 ((ρextmsg s .receive LastMsg o
9 EC (T , s)) 2 (ρextmsg s .receive InMsg o

9 IC (T , false, s))))

The process Cn takes the set of event-pairs, each corresponding to the incom-
ing and outgoing transitions of an instance defined in MTask , and returns the
process that controls the multiple instances in MTask . If the multiple instance
state’s receive component is empty, then it internally controls the number of
instances to trigger, otherwise it controls the number of instances according to
the message received through the set of message flows specified by the compo-
nent receive. The control process keeps a counter of the number of instances
triggered.

The process CL takes a set of transition-pairs and a set of message flows
specified in send and recursively sends messages of type either InMsg or LastMsg
along the channels specified by the component send . If all of the messages are

14

of type LastMsg, then CL triggers one of the outgoing transitions and the whole
multiple instance state terminates, otherwise it behaves as the process Cn.

CL(T ,D , s) = if D = ∅ then XS (s .out)
else ((ρextmsg D InMsg o

9

(||| q : ((αchn D) \ { r }) • q?i : εmg(| NoEnds |) → Skip) o
9 Cn(T))

2 (ρextmsg D LastMsg o
9 CL(T , (D \ { r }))))

The process EC triggers one instance of a task or subprocess, during which
it sends a message of type LastMsg along each of the message flow channels
specified in send . It then triggers one of the outgoing transitions. The process
IC triggers one instance of a task or subprocess by synchronising on its incoming
and outgoing transitions, during which it behaves as process CL to monitor the
type of messages sent along each of the message flow channels specified in send .

EC (T , s) = 2(i , j) : T • (i → ρintermsg s .send LastMsg o
9 j → XS (s .out))

IC (T , b, s) = 2(i , j) : T • i → (j → Skip |||
(if (b ∧ s .send 6= ∅) then CL((T \ { (i , j) }), s .send , s)

The following is a set of rules which governs how the control process triggers
the multiple instances process.

• The control process can trigger up to N processes, where N is a natural
number specified by the constructor function argument.

• If the state schema component receive is empty, then the control process
triggers up to N instances nondeterministically.

• If the state schema component receive is not empty and the message re-
ceived is of type LastMsg, then the control process must only trigger one
more instance.

• If the state schema component send is not empty, then during the execu-
tion of the last instance the control process must send a message of type
LastMsg along each of the message flow channels specified in send .

• If the state schema component receive is not empty and the message re-
ceived is of type EndMsg, then the control process must send a message
of type EndMsg along each of the message flow channels specified in send ,
and terminate.

• After all triggered multiple instances have terminated, the whole multiple
instance state terminates and triggers one of its outgoing transitions.

• On receiving an error message flow specified in the component error , the
control process triggers an exception flow and the whole multiple instance
state deadlocks.

• If the state schema component error is not empty, the control process can
trigger an exception flow from the set error at any time, and the whole
multiple instance state deadlocks.

15

We define the function αmsgtype , which returns the set of events correspond-
ing to the given message flows passing the given messages. The functions
ρintermsg and ρextmsg return the process corresponding to the interleaving and
exclusive choice of the given set of message flows passing the given set of mes-
sages.

ρintermsg , ρextmsg : P Messageflow 7→ P Message 7→ Process
αmsgtype : PMessageflow 7→ P Message 7→ P Event

∀mf : P Messageflow ; ms : P Message •
ρintermsg = ||| r : αchn mf • r?x : ms → Skip
∧ ρextmsg = 2 r : αchn mf • r?x : ms → Skip
∧ αmsgtype = { c : αchnmf ; d : εmg(| ms |) | c.d ∈ {|c|} • c.d }

The function ρmierror returns the process that synchronises with the exception
flows of individual instances of the multiple instances states.

ρmierror : State 7→ Process

ρmierror = (λ State •
(2(i , j) : { (e, f) : link | e ∈ error • ((εtrans e).1, (εmsg f).1) } • j?x : InMsg → i → Stop)
2 (2 i : { g : error | g /∈ { (e, f) : link • e } • (εtrans g).1 } • i → Stop))

The function mipartst maps each state of type mipar or mipars to a set of
transition pairs used to connect the state’s parallel instances of task or subpro-
cess state. The function miseqtst maps each state of type miseq or miseqs to a
transition pair used to connect the state’s task or subprocess state.

mipartst : State 7� P(Transition × Transition)
miseqtst : State 7� (Transition × Transition)

∀ s : State • ∃n : N; t1, t2 : Transition; ts : P(Transition × Transition) •
((s .type ∈ ranmipar ⇒ n = (mipar∼s .type).2
∧ s .type ∈ ranmipars ⇒ n = (mipars∼s .type).2)
∧ ((#ts = #{ (i , j) : ts • i } = #{ (i , j) : ts • j } = n)
∧ ({ (i , j) : ts • i } ∩ { (i , j) : ts • j } = ∅))
∧ mipartst s = ts) ∧ miseqtst s = (t1, t2)

The function ρmiseq returns the process corresponding to the behaviour of
the state of type miseq or miseqs .

ρmiseq : State 7→ Local 7→ Process

∀ s : State; local : Local • ∃ t1, t2 : Transition; e1, e2 : Event ; n : N •
(t1, t2) = miseqtst s ∧ (e1, e2) = ((εtrans t1).1, (εtrans t2).1)
∧ (if s .type ∈ ranmiseq then n = (miseq∼s .type).2 else n = (miseqs∼s .type).2)
∧ ρmiseq s local =
let

SY =
⋃
{αtrans(s .out ∪ s .error), { e1, e2 }, { i : αchn s .receive; j : NoEnds • i .j },
{ i : αchn(s .send ∪ s .break); j : InMsg • i .j } }

within

(Cq(n,n, s , e1, e2) 4 (if s .break = ∅ then AJ (s .error) else ρmierror s))
|[SY]| Seq(n, s , local)

16

Similar to ρmipar the function ρmiseq is constructed by partially interleaving a
control process Cq with process Seq, which models the multiple instances of
task or subprocess, specified by the contructor function, executing sequentially.

Seq(i , s , l) = i > 0 &
((ρstate 〈|receive ; s .receive, in ; { t1 }, type ; s .type, out ; { t2 }, send ; s .send ,

accept ; s .accept , reply ; s .reply, error ; s .error , break ; s .break ,
link ; s .link , depend ; s .depend |〉 l) o

9 Seq(i − 1, s , l)) 2 XS (s .out)

The process Cq is triggered initially by one of the incoming transitions of the
multiple instance state. Similar to the control process of ρmipar , the interaction
between the control process and the multiple instance process is governed by
the same set of rules. However, whereas the control process for ρmipar triggers
instances in parallel, process Cq triggers instances in sequence.

Cq(n,nm, s , e, f) =
((XJ (s .in) 2 f → Skip) o

9

((ρextmsg s .receive EndMsg o
9 ρintermsg s .send EndMsg o

9 XS (s .out))
2 (ρextmsg s .receive InMsg o

9 e → ρintermsg s .send InMsg o
9 Cq(n − 1,nm, s , e, f))

2 (ρextmsg s .receive LastMsg o
9 e → ρintermsg s .send LastMsg o

9 f → XS (s .out))
2 s .receive = ∅ &

((n > 1) & (e → (if s .send = ∅ then Cq(n − 1,nm, s , e, f) else CLs(s .send ,n,nm, s , e, f)))
2 n = 1 & (e → (if s .send = ∅ then Skip else ρintermsg s .send LastMsg) o

9 f → XS (s .out))
2 s .send = ∅ & XS (s .out)
2 n = nm & (ρintermsg s .send EndMsg o

9 XS (s .out)))))

The process CLs behaves similarly to CL in that it recursively sends messages
of type either InMsg or LastMsg along the channels specified by the component
send . If all of the messages are of type LastMsg then CLs triggers one of the
outgoing transitions and the whole multiple instance state terminate, otherwise
it behaves as the process Cq.

CLs(S ,n,nm, s , e, f) =
if S = ∅ then f → XS (s .out)
else ρextmsg S InMsg) o

9

(||| q : (S \ { r }) • q?i : εmg(| NoEnds |) → Skip) o
9 Cq(n − 1,nm, s , e, f)))

2 (ρextmsg S LastMsg o
9 CLs(S \ { r },n,nm, s , e, f))

4.4 Processes corresponding to Gateways and Message

flows

We now define some CSP processes that correspond to the behaviour of each of
the gateway states.

4.4.1 Exclusive Choice Gateway

Processes XS (tn) and XJ (tn) model the behaviour of outgoing and incoming
transitions of the state type xgate. Note although each outgoing transition of the
state type xgate is guarded, the choice of its incoming transitions is determined

17

by the behaviour of the preceding states.

XS (tn) = 2 e : εtrans(| tn |) • (if e.2 then e.1 → Skip else Skip)

XJ (tn) = 2 e : αtrans tn • e → Skip

We also define the process AJ (tn) to model the behaviour of incoming transi-
tions of the state type abort and exception flow within state of type task and
bpmn.

AJ (tn) = 2 e : αtrans tn • e → Stop

4.4.2 Parallel Gateway

Process ASJ (tn) models the behaviour of outgoing and incoming transitions
of the state type agate. Note that all outgoing transitions are enabled and all
incoming transition are required in this state type.

ASJ (tn) = ||| e : αtrans tn • e → Skip

4.4.3 Inclusive Choice Gateway

Process OSJ (tn) models the behaviour of outgoing and incoming transitions of
the state type ogate. Note that all outgoing transitions are guarded in the state
type ogate, one or more transitions are enabled and the choice of transitions is
based on the value of their guards. All its incoming transitions are also guarded;
the choice of transitions is based on the value of their guards.

OSJ (tn) = ||| e : εtrans(| tn |) • (if e.2 then e.1 → Skip else Skip)

We also define CSP processes that correspond to the behaviour of message flows.

4.4.4 Message Flow Interaction

Processes RC (ms), SD(ms), AC (ms) and RE (ms) model the behaviour of a
task or a subprocess receiving, sending, accepting and replying a message re-
spectively. While it only takes an activity to receive any one of the message
flows to initiate or to abort its execution and one corresponding message flow
to notify about its completion, other message flows within its execution must
all be completed.

RC (ms) = ρextmsg ms NoEnds
AC (ms) = ρintermsg ms OutMsg
SD(ms) = |||(s ,n) : { (p, k) : εmsg(| ms |) | k ∈ εmg(| NoEnds |) • (p, k) } • s !n → Skip
RE (ms) = 2(s ,n) : { (p, k) : εmsg(| ms |) | k ∈ εmg(| OutMsg |) • (p, k) } • s !n → Skip

4.5 Processes corresponding to Transitions, Types and

States

Functions ρout and ρin take a state and return the process describing the be-
haviour of all outgoing and incoming transitions, respectively.

18

ρout : State 7→ Process
ρin : State 7→ Process

ρout = (λ State •
if (type = asplit) then ASJ (out)
else if (type = osplit) then OSJ (out) else XS (out))

ρin = (λState •
if (type ∈ ran abort) then AJ (in)
else if (type = ajoin) then ASJ (in)

else if (type = ojoin) then OSJ (in) else XJ (in))

The function ρtype maps the type of a given state to its corresponding process.
Since our semantics abstracts internal flow of task states, we only model the
initialisation, the termination, message flows and any exception flow of each
task.

ρexit : State 7→ Process
ρtype : State 7→ Local 7→ Process

ρexit = (λState •
let X = (if reply = ∅ then Skip else RE (reply))

Y = { (e, f) : exit • (fin.e, (εtrans f).1) }
within (2(i , j) : Y • i → X o

9 j → Skip) 2 AJ (error))
ρtype = (λState • (λ local : Local •
if (type ∈ ran task)
then if (error = ∅)

then εtask (task∼type) → (SD(send) o
9 AC (accept) o

9 RE (reply))
else εtask (task∼type) → (((SD(send) o

9 AC (accept))
4 (if break = ∅ then AJ (error)

else (ρlink { (e, f) : link | e ∈ error } error
|[αtrans in ∪ αmsgtype break NoEnds]|
RC (break) o

9 AJ (error)))) o
9 RE (reply))

else if (type /∈ ran task ∪ ran bpmn) then Skip
else (if (error = ∅) then εpname(bpmn∼type) → bsem (bpmn∼type) local

else εpname(bpmn∼type) → (bsem (bpmn∼type) local
4 (if break = ∅ then AJ (error) else RC (break) o

9 AJ (error))))))

The function ρlink returns a process which pairs each incoming message flow
with its corresponding incoming transition or exception flow, according to the
component link of the schema State. The function ρdepend returns a process
which pairs each incoming message flow with its corresponding outgoing message
flow, according to the component depend of the schema State.

ρlink : P(Transition × Messageflow) 7→ PTransition 7→ Process ,
ρdepend : State 7→ Process

∀(t ,m) : P(Transition × Messageflow); ts : P Transition; s : State •
ρlink (t ,m) ts = ((2(i , j) : { (e, f) : t1 • ((εtrans e).1, (εmsg f).1) } •

j?x : NoEnds → i → Skip) 2 (2 i : ts • i → Skip)
∧ ρdepend s = (2(i , (j , k)) : { (e, f) : s .depend • ((εmsg e).1, εmsg f) } •

i?x : NoEnds → j .k → Skip) 2 s .depend = ∅ & Skip

We define the function ρstate which returns the process corresponding to the
behaviour of a given state; this function essentially maps each state to the

19

sequential composition of the processes corresponding to the state’s incoming
transitions, type, message flows and outgoing transitions.

ρstate : State 7→ Local 7→ Process

ρstate = (λ State • (λ local : Local •
if (type ∈ ran task)
then (ρdepend θState |[αmsgtype receive NoEnds ∪ αmsg reply]|

(ρlink { (e, f) : link | e ∈ in } in |[αtrans in ∪ αmsgtype receive NoEnds]|
(ρin θState o

9 ρtype θState local o
9 ρout θState)))

else if (type ∈ ran bpmn)
then (ρdepend θState |[αmsgtype receive NoEnds ∪ αmsg reply]|

(ρlink θState |[αtrans (in ∪ error) ∪ αmsgtype receive NoEnds]|
(ρin θState o

9 ((ρtype θState local |[{ e : exit • fin.(e.1) } ∪ αtrans error]|
ρexit θState local) |[{ o : out • (εtrans e).1 }]| ρout θState))))

else if (type ∈ ranmiseq ∪ ranmiseqs) then ρmiseq θState local
else if (type ∈ ranmipar ∪ ranmipars) then ρmipar θState local

else if (type = start) then ρout θState
else if (type ∈ ran end ∪ ran abort) then ρin θState

else ρin θState o
9 ρout θState))

5 Revisiting the Example

5.1 Semantics of the Airline Reservation Application

We use the example of an airline reservation system in Section 3.2 to demon-
strate how our semantic function may be applied to the syntactic definition
described in Section 3, and hence provide a semantics to support formal analy-
ses. We define set J to index the processes corresponding to the states in the
diagram.

J = { start , verify, reserve, booking,notify, timeout , end , abort }

By applying our semantic function to the diagram’s syntactic description, we
obtain the process corresponding to it.

Airline = let X = 2 i : (αY \ { fin.1, abt .1 }) •
(i → X 2 abt .1 → Stop 2 fin.1 → Skip)

Y = (‖ j : J • αP(j) ◦ P(j))
within (Y |[αY]| X) \ {|init |}

where for each j in J , the process P(j) is as defined below and αP(j) is the set
of possible events performed by P(j). We use n, ranging over N, to denote the
number of instances of the task verify, as specified by the second argument of
constructor function miseq.

20

P(verify) =
let

Ts = { i : { 1 . . n } • (in.i , out .i) }
IC (T) = 2(i , j) : T • i → (j → Skip ||| Cn(T \ { i , j }))
Cn(T) = #T = 1 & (2(i , j) : T • i → j → init .reserve → Skip)

2 #T > 1 & IC (T) 2 init .reserve → Skip
MTask = ‖[{ init .reserve }](i , j) : Ts •

((i → starts .verify → j → Skip o
9 init .reserve → Skip) 2 init .reserve → Skip)

within ((init .verify → Skip o
9

(MTask |[
⋃
{ (i , j) : Ts{ i , j } } ∪ { init .reserve }]|

(init .reserve → Skip 2 Cn(Ts)))) o
9 P(verify)) 2 fin.1 → Skip

P(start) = (init .verify → Skip) o
9 (fin.1 → Skip)

P(reserve) = (init .reserve → Skip o
9 (starts .reserve →

(Reserve |[{ fin.2 }]| fin.2 → init .booking → Skip)

|[{ init .booking }]| init .booking → Skip) o
9 P(reserve))

2 (fin.1 → Skip)

P(booking) = (init .booking → Skip o
9 (starts .booking → ((Booking 4 init .timeout → Stop)

|[{ fin.3,fin.4, init .timeout }]| (init .timeout → Stop

2 fin.3 → init .notify1 → Skip 2 fin.4 → init .end → Skip))

|[{ init .notify1, init .end }]| (init .notify1 → Skip 2 init .end → Skip)) o
9

P(booking)) 2 (fin.1 → Skip)

P(timeout) = (init .timeout → Skip o
9 starts .timeout → Skip o

9

init .notify2 → Skip o
9 P(notify)) 2 (fin.1 → Skip)

P(notify) = ((init .notify1 → Skip 2 init .notify2 → Skip) o
9

starts .notify → Skip o
9 init .abort → Skip o

9 P(notify)) 2 (fin.1 → Skip)

P(end) = (init .end → Skip o
9 fin.1 → Skip)

P(abort) = (init .abort → Skip o
9 abt .1 → Stop) 2 (fin.1 → Skip)

The process Reserve describes the semantics of the subprocess Reservation upon
its syntactic description. We define set J ′ to index the processes corresponding
to the states of the subprocess:

J ′ = { start1, reseat , end1 }

Reserve = let X = 2 i : (αY \ { fin.2 }) • (i → X 2 fin.2 → Skip)
Y = (‖ j : J ′ • αP(j) ◦ P(j))

within (Y |[αY]| X) \ {|init |}

21

where for each j in J ′, the process P(j) is as defined below, we write m, ranging
over N, to denote the number of iterations in the multiple instance Reserve Seat :

P(start1) = (init .rseat → Skip o
9 fin.2 → Skip)

P(reseat) =
let

X (n) = ((init .reseat → Skip 2 init .out → Skip) o
9

(n > 1 & init .in → X (n − 1)
2 n = 1 & init .in → init .out → init .end1 → Skip
2 init .end1 → Skip 2 n = m & init .end1 → Skip))

A(n) = n > 0 &
(init .in → Skip o

9 starts .reseat → Skip o
9 init .out → Skip o

9 A(n − 1))
2 init .end1 → Skip

within

((X (m) |[{ init .end1, init .in, init .out }]| A(m)) o
9 P(reseat)) 2 fin.2 → Skip

P(end1) = (init .end1 → Skip o
9 fin.2 → Skip)

The process Booking describes the semantics of the subprocess Booking upon
its the syntactic description. It is defined as follows, where we define set J ′′ to
index the processes corresponding to the states of the subprocess:

J ′′ = { start2, xs3, pbooking, cancel , ticket , end3, end4 }

Booking =
let

X = 2 i : (αY \ { fin.3,fin.4 }) •
(i → X 2 (fin.3 → Skip 2 fin.4 → Skip))

Y = (‖ j : J ′′ • αP(j) ◦ P(j))
within

(Y |[αY]| X) \ {|init |}

where for each j in J ′′, the process P(j) is as defined below:

P(start2) = (init .xs3 → Skip o
9 P(start4)) 2 (fin.3 → Skip 2 fin.4 → Skip)

P(xs3) = (init .xs3 → Skip o
9 (init .pbooking → Skip 2 init .cancel → Skip) o

9 P(xs3))

2 (fin.3 → Skip 2 fin.4 → Skip)

P(pbooking) = (init .pbooking → Skip o
9 starts .pbooking → Skip o

9 init .ticket → Skip o
9

P(pbooking)) 2 (fin.3 → Skip 2 fin.4 → Skip)

P(cancel) = (init .cancel → Skip o
9 starts .cancel → Skip o

9 init .end3 → Skip o
9

P(cancel)) 2 (fin.3 → Skip 2 fin.4 → Skip)

P(ticket) = (init .ticket → Skip o
9 starts .ticket → Skip o

9 init .end4 → Skip o
9

P(ticket)) 2 (fin.3 → Skip 2 fin.4 → Skip)

P(end3) = (init .end3 → Skip o
9 fin.3 → Skip) 2 fin.4 → Skip

P(end4) = (init .end4 → Skip o
9 fin.4 → Skip) 2 fin.3 → Skip

5.2 Verifying Consistency of the Airline Reservation Sys-

tem

CSP’s behavioural semantics admits refinement orderings under reverse contain-
ment, therefore a behavioural specification R can be expressed by constructing

22

the most non-deterministic process satisfying it, called the characteristic process
PR. Any process Q that satisfies specification R has to refine PR, denoted by
PR v Q . For example, Figure 4 is a specification of the diagram in Figure 3,
abstracting details of subprocesses Reserve and Booking in the original diagram
in Figure 3 into a task state.

Figure 4: A BPMN diagram describing behavioural property defined by process
Spec1.

Letting K = { start3, reserve2, booking2, timeout2,notify2, abort1, end1 }, the
process Spec2 is defined as follows:

Spec2 = let

X = 2 i : (αY \ {fin.1, abt .1 }) •
(i → X 2 (abt .1 → Stop) 2 (fin.1 → Skip))

Y = ‖ x : K • αP(x) ◦ P(x)
within (Y |[αY]| X) \ {|init |}

where for each x in X , the process P(x) is as defined below:

P(start3) = (init .reserve2 → Skip) o
9 (fin.1 → Skip)

P(reserve2) = ((init .reserve2 → Skip) o
9 starts .reserve → Skip o

9 init .booking2 → Skip o
9

P(reserve2)) 2 (fin.1 → Skip)

P(booking2) = (init .booking2 → Skip o
9 starts .booking → (Skip 4 init .timeout2 → Stop) o

9

(init .end1 → Skip 2 init .notify2 → Skip) o
9 P(booking2)) 2 (fin.1 → Skip)

P(timeout2) = ((init .timeout2 → Skip) o
9 starts .timeout → Skip o

9 init .notify3 → Skip o
9

P(timeout2)) 2 (fin.1 → Skip)

P(notify2) = ((init .notify2 → Skip 2 init .notify3 → Skip) o
9

starts .reserve → Skip o
9 init .abort1 → Skip o

9 P(notify2)) 2 (fin.1 → Skip)

P(end1) = (init .end1 → Skip o
9 fin.1 → Skip)

P(abort1) = (init .abort1 → Skip o
9 abt .1 → Stop) 2 (fin.1 → Skip)

As mentioned in Section 2.3 the CSP’s traces model is insufficient to verify our
models against formal specifications. If we insist on using the traces model,
then under traces refinement any process P that has the following trace-set will
refine and hence satisfy process Spec1.

traces(P) = { 〈〉 }

Any process which corresponds to a broken or an illegal BPMN diagram might
in fact have this trace-set; this demonstrates the inadequacy of the traces model.

23

We use the stable failures model to compare process Airline with Spec1.

Spec1 vF Airline \ (αAirline \ αSpec1)

This refinement check tells us that our semantic model is consistent with respect
to different levels of abstraction and Airline is indeed a refinement of the ab-
straction defined by Spec1. We have specifically defined our semantics to allow
refinement checks such as this one to be readily performed by a model checker
like FDR [6].

6 Business Collaboration

In previous sections we have demonstrated how consistency between different
levels of abstraction may be verified. In this section we show how our semantics
also allows formal reasoning about business-to-business collaboration, where
there are multiple business processes under consideration.

6.1 An Example: Airline Ticket Reservation

Consider, for instance, the simple example of an airline ticket reservation shown
in Figure 5.

Figure 5: A business collaboration of an airline ticket reservation.

The figure depicts the message flows between two participants, the trav-
eller and the travel agent, which are independent business processes and may
be assumed to have been constructed separately during the development pro-
cess. Clearly a necessary behavioural property for a successful collaboration
is compatibility between the participants: the mutually consistency of the as-
sumptions each makes about their interaction. For example, from the traveller
participant’s perspective, the behaviour of interest is the ability to cancel an

24

itinerary by sending a message to the travel agent participant prior to making
her ticket reservation, while from the travel agent participant’s perspective such
a sequence of tasks might not be allowed.

Given the business process name traveller , the following shows a set of well-
formed states translated from the diagram describing the traveller participant.
We have omitted details of the bindings of Transition and Messageflow . Similar
to Section 3.2, we write a1 . . an ; ∅ inside some schema binding s to specify
the components s .a1 . . s .an to be empty.

traveller : PName; order , change, cancel , reserve : Task

∃ local : Local ; t1, t2, t3, t4, t5, t6, t7 : Transition; i , j , k : N;
m1,m2,m3,m4,m5,m6,m7,m8 : Messageflow •
states∼(local traveller) =

{ 〈|type ; start , out ; { t1 }, loopMax ; 0,
break , send , receive, accept , reply, in, link , depend , error , exit ; ∅|〉,

〈|type ; task order , in ; { t1 }, out ; { t2 }, send ; {m1 },
accept ; {m2 }, break , receive, reply, error , exit , link , depend ; ∅,
loopMax ; 0|〉,

〈|type ; miseq change k , in ; { t2 }, out ; { t3 }, send ; {m3 },
accept ; {m4 }, break , receive, reply, error , exit , link , depend ; ∅,
loopMax ; 0|〉,

〈|type ; xs , in ; { t3 }, out ; { t4, t5 }, loopMax ; 0,
accept , send , break , receive, reply, error , exit , link , depend ; ∅|〉,

〈|type ; task cancel , in ; { t4 }, out ; { t6 }, send ; {m5 },
accept ; {m6 }, break , receive, reply, error , exit , link , depend ; ∅,
loopMax ; 0|〉,

〈|type ; task reserve, in ; { t5 }, out ; { t7 }, send ; {m7 },
accept ; {m8 }, break , receive, reply, error , exit , link , depend ; ∅,
loopMax ; 0|〉,

〈|type ; end i , in ; { t7 }, loopMax ; 0,
break , send , receive, accept , reply, out , link , depend , error , exit ; ∅|〉,

〈|type ; abort j , in ; { t6 }, loopMax ; 0,
break , send , receive, accept , reply, out , link , depend , error , exit ; ∅|〉 }

The syntactic description may be assumed to have been derived mechanically
from the diagram; a similar translation may be applied to the travel agent part of
the diagram. We may apply our semantic function to the syntax of the diagram
and mechanically obtain a parallel composition of processes, each corresponding
to a business participant. We denote the processes corresponding to the trav-
eller and the travel agent participants by the names Tr and Ag respectively. We
define set I to index the processes corresponding to the states of the traveller
participant.

I = { start , order , change, xs , cancel , reserve, end , abort }

We use channels init .a to denote transitions to states of participant a, and
starts .a to denote initiation of its tasks or subprocesses. We write msg.t .x to
denote communication of message x during task or subprocess t . The process Tr
mechanically obtained by the translation we have described above is as follows:

25

Tr = let X = 2 i : (αY \ {fin.1, abt .1 }) •
(i → X 2 fin.1 → Skip 2 abt .1 → Stop)

Y = (‖ i : I • αP(i) ◦ P(i))
within (Y |[αY]| X) \ {|init .tr |}

where for each i in I , the process P(i) is as defined below. We use p, ranging
over N, to denote the number of instances of the task change, as specified by
the second argument to constructor function miseq. We write αQ to denote the
set of possible events performed by process Q .

P(change) =
let A(i) = i > 0 &

(init .tr .change → Skip o
9

starts .tr .change → Skip o
9 msg.change!x : { in, last } → Skip o

9

msg.change.out → Skip o
9

init .tr .xs1 → Skip o
9 A(i − 1)) 2 init .tr .xs → Skip

X (n) = (init .tr .mchange → Skip 2 init .tr .xs1 → Skip) o
9

(n > 1 & (init .tr .change → (msg.change.in → X (n − 1)
2 msg.change.last → init .tr .xs1 → init .tr .xs → Skip))

2 n = 1 & (init .tr .change → msg.change.last →
init .tr .xs1 → init .tr .xs → Skip)

2 n = N & msg.change.end → init .tr .xs → Skip)
SynSet = {msg.change.in,msg.change.last , init .tr .change, init .tr .xs1, init .tr .xs }

within

((A(p) |[SynSet]| X (p)) o
9 P(change)) 2 fin.1 → Skip

P(start) = init .tr .order → Skip o
9 fin.1 → Skip

P(order) = (init .tr .order → Skip o
9 starts .tr .order → Skip o

9

msg.order !x : { in, last } → Skip o
9 msg.order .out → Skip o

9

init .tr .mchange → Skip o
9 P(order)) 2 fin.1 → Skip

P(xs) = (init .tr .xs → Skip o
9

(init .tr .cancel → Skip 2 init .tr .reserve → Skip) o
9 P(xs .3))

2 fin.1 → Skip

P(cancel) = (init .tr .cancel → Skip o
9

starts .tr .cancel → msg.cancel !x : { in, last } → Skip o
9

msg.cancel .out → Skip o
9 init .tr .abort → Skip o

9

P(cancelit)) 2 fin.1 → Skip

P(abort) = (init .tr .abort → Skip o
9 abt .tr .1 → Stop) 2 fin.1 → Skip

P(reserve) = (init .tr .reserve → Skip o
9 starts .tr .reserve → Skip o

9

msg.reserve!x : { in, last } → Skip o
9 msg.reserve.out → Skip o

9

init .tr .end → Skip o
9 P(reserve)) 2 fin.1 → Skip

P(end) = init .tr .end → Skip o
9 fin.1 → Skip

The process Ag can similarly be obtained mechanically using the semantic
function. Their collaboration hence is the parallel composition of processes Tr
and Ag.

Collab = (Tr |[αTr || αAg]| Ag) \ {|msg|}

26

6.2 Verifying Compatibility of Business Collaboration

The admission of refinement means that a CSP process can be a specification as
well as a model of an implementation; hence it is possible to design and compare
specifications using BPMN. For example, to check whether both the traveller
and the travel agent participants in the reservation system, shown in Figure 5,
are compatible, we first construct CSP process Spec, a high-level specification
corresponding to the traveller participant without message flows, which can also
be derived mechanically:

I ′ = { st , or , ch, x1, ca, re, en, ab }

Spec = let X = 2 i : (αY \ {fin.1, abt .1 }) •
(i → X 2 fin.1 → Skip 2 abt .1 → Stop)

Y = (‖ i : I ′ • αP(i) ◦ P(i))
within (Y |[αY]| X) \ {|init .tr |}

For each i in I ′, the process P(i) is as defined below

P(ch) =
let A(i) = i > 0 & (init .tr .change → Skip o

9 starts .tr .change → Skip o
9

init .tr .xs1 → Skip o
9 A(i − 1)) 2 init .tr .xs → Skip

X (n) = (init .tr .mchange → Skip 2 init .tr .xs1 → Skip) o
9

(n > 1 & (init .tr .change → X (n − 1))
2 n = 1 & (init .tr .change → init .tr .xs1 → init .tr .xs → Skip)
2 init .tr .xs → Skip

within

((A(N) |[{ init .tr .change, init .tr .xs1, init .tr .xs }]| X (N)) o
9

P(ch)) 2 fin.1 → Skip

P(st) = init .tr .order → Skip o
9 fin.1 → Skip

P(or) = (init .tr .order → Skip o
9

starts .tr .order → Skip o
9

init .tr .mchange → Skip o
9 P(order)) 2 fin.1 → Skip

P(x1) = (init .tr .xs → Skip o
9

(init .tr .cancel → Skip 2 init .tr .reserve → Skip) o
9 P(xs .3))

2 fin.1 → Skip

P(ca) = (init .tr .cancel → Skip o
9

starts .tr .cancel → Skip o
9 init .tr .abort → Skip o

9

P(cancelit)) 2 fin.1 → Skip

P(ab) = (init .tr .abort → Skip o
9 abt .tr .1 → Stop) 2 fin.1 → Skip

P(re) = (init .tr .reserve → Skip o
9 starts .tr .reserve → Skip o

9

init .tr .end → Skip o
9 P(reserve)) 2 fin.1 → Skip

P(en) = init .tr .end → Skip o
9 fin.1 → Skip

We use stable failures refinement to compare Spec with Collab.

Spec vF (Collab \ (αCollab \ αSpec))

27

This expression asserts that the collaboration behaves as specified by the
traveller participant; in order for this to happen, both participants must be
compatible with respect to their collaboration. We have specifically defined our
semantics to allow refinement assertions such as this one to be automatically
checked by a model checker such as FDR [6]. In this particular example, we
find that the refinement assertion above does not hold; this means that the
participants in the collaboration described in Figure 5 are incompatible. When
we ask FDR to verify the assertion above, the following counterexample in the
form of a failure is given, where Σ denotes the set of all event names.

(〈starts .tr .order , starts .tr .cancel〉, Σ)

This counterexample tells us that a deadlock has occurred while the traveller
is cancelling her itinerary: after the order and cancel events, the collaboration
may refuse to engage in any further activity. A more detailed analysis of the
counterexample may be carried out by looking at the failures of processes Tr
and Ag separately:

(〈starts .tr .order ,msg.order .in,msg.order .out ,msg.change.end ,

starts .tr .cancel〉, ref 1)

(〈msg.order .in, starts .ag.order ,msg.order .out ,msg.change.end〉, ref 2)

where msg.cancel .in /∈ ref 1 and msg.cancel .in ∈ ref 2. The failures inform us
that while the process Traveller is willing to only perform the event msg.cancel .in,
the process Agent is not, and this leads to a deadlock. This means that while
the traveller may cancel her itinerary before deciding to reserve her ticket, and
hence send a message to the travel agent about the cancellation, the travel agent
may only carry out her cancellation after entering the reservation phase, and
hence may not send a reply message back to the traveller. This discrepancy
might have been deliberate due to the internal policies of different business do-
main, or it might just be a human error. There are two ways to correct this
collaboration, either by changing the traveller’s or the travel agent’s internal
process description. We have chosen the latter; a compatible collaboration with
a modified travel agent participant is shown in Figure 6. Note the change in the
travel agent participant, allowing the task state Cancel Itinerary to be triggered
before the subprocess state Receive Reservation.

By applying our semantic function to the syntax of this diagram we ob-
tain the following parallel composition of processes, each corresponding to a
participant.

Collab2 = (Tr |[αTr || αAg2]| Ag2) \ {|msg|}

To check for compatibility, we ask FDR to verify the following refinement as-
sertion. This time, the verification is successful.

Spec vF (Collab2 \ (αCollab2 \ αSpec))

To generalise the notion of compatibility we first formalise incompatibility with
respect to a collaboration as follows:

Definition 1 Given some collaboration C = (‖ i : { 1 . . n } • αP(i) ◦ P(i)) \
M where n ranges over N and M is the set of events corresponding to the

28

Figure 6: A BPMN diagram describing a compatible business collaboration for
airline ticket reservation.

message flows between participants P(i), particpants P(i) are incompatible with
respect to C iff the following statement holds. Note in CSP the event X denotes
successful termination.

(∃ i , j : N; tr , t , u : seqΣ; m, r , s : P Σ •
(tr , Σ) ∈ failures(C) ∧ last tr /∈ ({|abt |} ∪ {X })
∧ { i , j } ⊆ { 1 . . n } ∧ (t , r) ∈ failures(P(i)) ∧ (u, s) ∈ failures(P(j))
∧ t � M = tr � αP(i) ∧ u � M = tr � αP(j) ∧ m ∈ (M ∩ (r \ s ∪ s \ r)))

On the other hand, participants P(i) are compatible with respect to the collab-
oration C if they are not incompatible.

7 Conclusion

In this paper, we have presented a process semantics in the language of CSP for
a subset of BPMN. We have illustrated by examples how this semantic model
may be used to verify consistency and compatibility between business processes
specified in BPMN. Our semantic model makes it possible to formally analyse
and compare BPMN diagrams, and to assert correctness conditions that can be
verified using a model checker. Like any development of a complex system, the
application of refinement in business process design means that development
from an abstract design into an implementation becomes incremental.

Our semantic model also allows compatibility of collaboration between mul-
tiple business processes to be verified. To the best of our knowledge, no work
has been done towards the compatibility verification of business collaborations
described in a graphical modelling notation like BPMN; other approaches have
mainly focused on the compatibility problem of web services choreographies

29

described in XML-based languages such as WS-BPEL [1, 7], WSCI [17, 3] and
WS-CDL [11, 8]. While the language WSCI [3] has been succeeded by WS-CDL,
WS-CDL has been implemented as an interaction model and BPMN models
only the interconnection between participants. Furthermore whereas they fo-
cus on compatibility at the implementation level, we have moved it forward to
the design level, allowing collaboration to be verified and agreed upon before
implementation.

The CSP process semantics of a BPMN workflow can be constructed auto-
matically from a simple syntactic presentation of the diagram. We have used
Z as a syntactic vehicle, but something like XMI would work too. We do not
expect the designer to write in this syntax directly, but to generate it from
the diagrammatic notation, annotated with attribute values such as guards and
multiplicities.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services version 1.1. BEA
Systems, International Business Machines Corporation, Microsoft Corpo-
ration, SAP AG and Siebel Systems, May 2003. Available at ftp://www6.
software.ibm.com/software/developer/library/ws-bpel.pdf.

[2] C. Bolton and J. Davies. Activity graphs and processes. In IFM ’00:
Proceedings of the Second International Conference on Integrated Formal
Methods, pages 77–96, 2000.

[3] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Ser-
vices Choreographies. In Electronic Notes in Theoretical Computer Science
105, pages 73–94, 2004.

[4] R. M. Dijkman. Choreography-Based Design of Business Collaborations.
BETA Working Paper WP-181, Eindhoven University of Technology, 2006.

[5] R. M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and auto-
mated analysis of BPMN process models. Technical Report Preprint 5969,
Queensland University of Technology, 2007.

[6] Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2
User Manual, 1998. www.fsel.com.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification
for web service choreography. In IEEE International Conference on Web
Services, 2004.

[8] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-Based Analysis of
Obligations in Web Service Choreography. In IEEE International Confer-
ence on Internet and Web Applications and Services, 2006.

[9] H. Foster. Mapping BPEL4WS to FSP. Technical report, Imperial College,
London, 2003.

30

[10] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo. Formalizing WSBPEL
Business Processes using Process Algebra, Aug. 2005. CONCUR’2005
Workshop on the Foundations of Coordination Languages and Software
Architectures.

[11] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web
Services Choreography Description Language 1.0, 2005. W3C Candidate
Recommendation.

[12] M. Koshkina. Verification of business processes for web services. Master’s
thesis, York University, Toronto, Oct. 2003.

[13] OMG. Business Process Modeling Notation (BPMN) Specification, Feb.
2006. www.bpmn.org.

[14] C. Ouyang, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede.
Translating BPMN to BPEL. Technical Report BPM-06-02, BPM Center,
2006.

[15] J. Recker and J. Mendling. On the Translation between BPMN and BPEL:
Conceptual Mismatch between Process Modeling Languages. In Proceed-
ings 18th International Conference on Advanced Information Systems En-
gineering, pages 521–532, 2006.

[16] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

[17] W3C. Web Service Choreography Interface (WSCI) 1.0, Nov. 2002. www.

w3.org/TR/wsci.

[18] S. White. Using BPMN to Model a BPEL Process. BPTrends, 2005.
Available at www.bptrends.com.

[19] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refine-
ment. Prentice Hall International Series in Computer Science, 1996.

31

