Dependency Parsing 2

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Fig credits: Joakim Nivre, Dan
Jurafsky & James Martin

Dependency Parsing

* Formalizing dependency trees

* Transition-based dependency parsing
 Shift-reduce parsing
* Transition system
* Oracle
 Learning/predicting parsing actions

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs
Input: sentence
Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task
- very large output space
- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

Transition-based dependency parsing

 Builds on shift-reduce parsing

Input buffer
. - [Aho & Ullman, 1927]
e Configuration
» 1 e Stack
- f - Parser | Dependency * Input buffer of words
* Set of dependency relations
Stack | - P y
—
* Goal of parsing
on * find a final configuration where
- e all words accounted for
Basic transition-based parser. The parser examines the top two elements of the e Relations form dependency tree

stack and selects an action based on consulting an oracle that examines the current configura-
tion.

Transition operators

* Transitions: produce a new
configuration given current
configuration

* Parsing is the task of
* Finding a sequence of transitions

e That leads from start state to
desired goal state

e Start state
e Stack initialized with ROOT node

* Input buffer initialized with words
in sentence

* Dependency relation set = empty

e End state

e Stack and word lists are empty

» Set of dependency relations = final
parse

Arc Standard Transition System

* Defines 3 transition operators [Covington, 2001; Nivre 2003]

* LEFT-ARC:

* create head-dependent rel. between word at top of stack and 2" word
(under top)

e remove 2" word from stack

* RIGHT-ARC:

* Create head-dependent rel. between word on 2" word on stack and word on
top

 Remove word at top of stack
 SHIFT

 Remove word at head of input buffer
e Push it on the stack

Arc standard transition systems

* Preconditions
 ROOT cannot have incoming arcs
« LEFT-ARC cannot be applied when ROOT is the 2"9 element in stack
* LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

Transition-based Dependency Parser

e Assume an oracle

function DEPENDENCYPARSE(words) returns dependency tree

* Parsing complexity

state <— {[root], [words], [] } : initial configuration

while state not final e Linear in sentence
t < ORACLE(srate) ; choose a transition operator to apply |
state <— APPLY (1, state) ; apply it, creating a new state Iength .

return state

A generic transition-based dependency parser e Gree dy 3 I go rlth m

e Unlike Viterbi for POS
tagging

Transition-Based Parsing Illlustrated

roo l rm

t

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

IO BEN Trace of a transition-based parse.

Where to we get an oracle?

* Multiclass classification problem
 Input: current parsing state (e.g., current and previous configurations)
e Output: one transition among all possible transitions
* Q: size of output space?

* Supervised classifiers can be used
* E.g., perceptron

* Open questions
 What are good features for this task?
* Where do we get training examples?

Generating Training Examples

* What we have in a treebank * What we need to train an oracle
(o) * Pairs of configurations and
o ool predicted parsing action
det]| | ~casel—. |
- l.,]\ Step Stack Word List Predicted Action
Book the flight through Houston 0 [root] [book, the, flight, through, houston] SHIFT
] [root, book] [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the, flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston] SHIFT
5 [root, book, flight, through] [houston] SHIFT
6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [RIGHTARC
9 [root, book] [] RIGHTARC
10 [root] [] Done

IDPOICEER] Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Generating training examples

* Approach: simulate parsing to generate reference tree

* Given
* A current config with stack S, dependency relations Rc
* A reference parse (V,Rp)

* Do

LEFTARC(r): if (81 rS2) € R,

RIGHTARC(r): if (S2 rS)) € Ry and V', w s.t.(S) ' w) € R, then (5) ¥ w) €
R,

SHIFT: otherwise

Let’s try it out

LEFTARC(r): if (51 r5:) e R,

RIGHTARC(r): if (S2 rSy) € Ry and V', w s.0.(S) ' w) € R, then (S, ' w) €
R,

SHIFT: otherwise

I"-'Hiil

(—rdnhj If,ai nmed —_\1[
| (e —
|JL' | s

[g (—uﬂ |

¥ | i ¥ ¥ ¥

Book the flight through Houston

Features

* Configuration consist of stack, buffer, current set of relations

* Typical features
» Features focus on top level of stack
* Use word forms, POS, and their location in stack and buffer

Features example

* Given configuration

Stack

Word buffer

Relations

[root, canceled, flights]

[to Houston]

(canceled — United)
(flights — morning)
(flights — the)

* Example of useful features

(s1.w = flights,op = shift)
(s2.w = canceled,op = shift)
(s1.t = NNS,op = shift)

(s2.t = VBD, op = shift)
(by.w = to,op = shift)
(by.t =TO,o0p = shift)
(s1.wt = flightsNNS, op = shift)

(s1t.s2t = NNSVBD, 0p = shift)

Features example

Source Feature templates

One word s;.w S1.t S1.wt
Sy W §>.1 A 1%4
bi.w bi.w bo.wt
Two word s;{.wosy.w S1.1087.1 s1.toby.w
S1.1 08> Wt S1.WOSH.WOSy.t S].WOS{.10S87.1
S1.WOS1.108).1 S1.WwWOoS1.1

DTN ERY Standard feature templates for training transition-based dependency parsers.
In the template specifications s, refers to a location on the stack, b, refers to a location in the
word buffer, w refers to the wordform of the input, and ¢ refers to the part of speech of the
input.

Research highlight:
Dependency parsing with stack-LSTMs

* From Dyer et al. 2015: http://www.aclweb.org/anthology/P15-1033

e |dea
* Instead of hand-crafted feature

* Predict next transition using recurrent neural networks to learn
representation of stack, buffer, sequence of transitions

Research highlight:
Dependency parsing with stack-LSTMs

y 2& 2&

Yo Y1 Yo yi YO Y1 y2
f 1 pop 1 f push T 1 f

> = -

t t t t AN t 1

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the c;’s and h;’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

\ /

\J

Research highlight:
Dependency parsing with stack-LSTMs

N
N

S
S o, = B

T [amea | T T ! !

an (\ decision was made ROOT

overhasty Qz
I «— REDUCE-LEFT(amod)

A «— SHIFT
5

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReLU nonlinearity to produce the parser state embedding p;. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

Alternate Transition Systems

Note: A different way of writing arc-standard
transition system

» Transitions:
Left-Arcy:
(oli.j1B. A) = (0,18, AU{(j. i, k)})
Right-Arcy:
(o]i. 18, A) = (0,118, AU{(i. j. k)})
Shift:
(0,i|3,A) = (ali, 3, A)
» Preconditions:
Left-Arcy:
~[i = 0]
-3"3K'[(i", 1, k") € A]
Right-Arcy:
ﬁEI;"Ek’[(i’,j, k’) € Al

A weakness of arc-standard parsing

Right dependents cannot be attached to their head
until all their dependents have been attached

Stack

Word List

Predicted Action

Step
' 0
oot | |
p : . § 2
dobi}- (nmod}— 3
| re Bl e T 4

| |.|-"1 | o beallhy =, |

I_'k. - || | I ..I s - A4 II | 5
| ¥ L} 'I|' | L \ w 6
Book the flight through Houston 7
8
9

10

[root]

[root, book]

[root, book, the]

[root, book, the, flight]
[root, book, flight]

[root, book, flight, through]
[root, book, flight, through, houston]
[root, book, flight, houston]
[root, book, flight]
[root, book]

[root]

[book, the, flight, through, houston]
[the, flight, through, houston]
[flight, through, houston]
[through, houston]

[through, houston]

[houston |

[

[

[]

[

[

SHIFT
SHIFT
SHIFT
LEFTARC
SHIFT
SHIFT
LEFTARC
RIGHTARC
RIGHTARC
RIGHTARC
Done

AT MR Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Arc Eager Parsing

* LEFT-ARC:

. CreaI;ce head-dependent rel. between word at front of buffer and word at top of
stac

* pop the stack
* RIGHT-ARC:

. gr??te head-dependent rel. between word on top of stack and word at front of
uffer

e Shift buffer head to stack
e SHIFT

 Remove word at head of input buffer
* Push it on the stack

* REDUCE
* Pop the stack

Arc Eager Parsing Example

i |
TR
L A

,.—|..|,1| '.I"|::‘—x

|I :I'I'"“Il, I:! |I

| o

i o "\l
o~ TS .—_ |
A L T
| (!

I ¥ v ¥ L

Book the flight through Houston

Step Stack | Word List Action Relation Added
0 [root] | [book, the, flight, through, houston] | RIGHTARC (root — book)
1 [root, book] | [the, flight, through, houston] SHIFT
2 [root, book, the] | [flight, through, houston] LEFTARC (the < flight)
3 [root, book] | [flight, through, houston] RIGHTARC (book — flight)
4 [root, book, flight] | [through, houston] SHIFT
5 [root, book, flight, through] | [houston] LEFTARC | (through < houston)
6 [root, book, flight] | [houston] RIGHTARC | (flight — houston)
7 [root, book, flight, houston] | [] REDUCE
8 [root, book, flight] | [] REDUCE
9 [root, book] | [] REDUCE
10 [root] | [] Done

ISTUNCBERU] A processing trace of Book the flight through Houston using the arc-eager
transition operators.

Trees & Forests

* A dependency forest (here) is a dependency graph satisfying
* Root
* Single-Head
* Acyclicity
* but not Connectedness

Properties of this transition-based
parsing algorithm

- Correctness

- For every complete transition sequence, the resulting graph is a projective
dependency forest (soundness)

- For every projective dependency forest G, there is a transition sequence that
generates G (completeness)

- Trick: forest can be turned into tree by adding links to ROOTo

Dealing with
non-projectivity

Projectivity

* Arc from head to dependent is projective

* If there is a path from head to every word between head and
dependent

* Dependency tree is projective
* If all arcs are projective
* Or equivalently, if it can be drawn with no crossing edges

* Projective trees make computation easier

* But most theoretical frameworks do not assume projectivity
* Need to capture long-distance dependencies, free word order

Arc-standard parsing can’t produce non-
projective trees

AuxP
Pred
Sb
Atr ‘ AuxZ
root Z nich je jen jJedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

Atr

o

[root Z] nich [je jen jedna na kvalitu |
(out-of) (them) (is) (only) (one) (to) (quality)

How frequent are non-projective structures?

* Statistics from CoNLL shared task
* NPD = non projective dependencies
* NPS = non projective sentences

Language %NPD 9%NPS

Dutch 5.4 36.4
German 2.3 27.8
Czech 1.9 23.2
Slovene 1.9 22.2
Portuguese 1.3 18.9

Danish 1.0 15.6

How to deal with non-projectivity?
(1) change the transition system

Transition Preconditic
NP-Left, (o|wi|wk, wi|3,A) = (o|wk, wi| B, AU{(wj, r,w;)}) i #0
NP-Right, (o|wi|wk, wj|3,A) = (o|wi, wi|B, AU {(w;, r,w;)})

* Add new transitions
* That apply to 2"4 word of the stack
* Top word of stack is treated as context

[Attardi 2006]

How to deal with non-projectivity?
(2) pseudo-projective parsing

Solution:

* “projectivize” a non-projective tree by creating
new projective arcs

e That can be transformed back into non-projective
arcs in a post-processing step

How to deal with non-projectivity?
(2) pseudo-projective parsing

ROOT A hearing IS scheduled on the iIssue today

VC:TMP
PRED

sB):ATT PC
ATT

ROOT A hearing is scheduled on the issue today

Graph-based parsing

Graph concepts refresher

» A graph G = (V,A) is a set of verteces V and arcs (/,)) € A,
where i,j € V

» Undirected graphs: (i,j) e A< (J,i) €A

» Directed graphs (digraphs): (i,j) € A= (J,i) € A

O O

O/
AN

/O//O/O ;;o‘/[)

O

Directed Spanning Trees

» A directed spanning tree of a (multi-)digraph G = (V, A), is a
subgraph G’ = (V’, A) such that:
Vi =V
A CA and |A| = V| -1
G’ is a tree (acyclic)

» A spanning tree of the following (multi-)digraphs

O/\ “

= 7
e

Maximum Spanning Tree

* Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

* Chu-Liu-Edmonds algorithm can find the maximum spanning tree for
us!
* Greedy recursive algorithm
* Naive implementation: O(n”3)

Chu-Liu-Edmonds illustrated

P

root 10
9/ 20 ’“}wf‘m
7 NN

John __ 30 0 __ Mary

e

Chu-Liu-Edmonds illustrated

» Find highest scoring incoming arc for each vertex

root

D

r 7 N\

John __ 30 Mary

» If this is a tree, then we have found MST!!

Chu-Liu-Edmonds illustrated

» If not a tree, identify cycle and contract

» Recalculate arc weights into and out-of cycle

T0o0ot 40
\-—\
- /¥‘
_-7 _saw | 30
/// sz//// \
! John .- Mary

Chu-Liu-Edmonds illustrated

— 0 9 g
/rmt \ root 40 _
9 207 Tsquw 30 root - -“\ i Y 30
N VAN N\ e sau) \
John __ 30 0_ Mary 20 7 Tgqw 30 o e

“_11___,./" / / \ i John .-~ Mary
\3/ John __ 30 Mary \““"\ 21 _/

» QOutgoing arc weights

Equal to the max of outgoing arc over all vertexes in cycle
e.g., John — Mary is 3 and saw — Mary is 30

Chu-Liu-Edmonds illustrated

é—\ 9 /’\ 9
/ root 10 \ R a1 (
9 20" Tsqw 30 root - ’\’;*- 30
L i Vi % N _--" .saw)
John __ 30 0 _ Mary 20 7 Tsquy 30 E L W \

e g 7 \ t John .-~ Mary
K;; John __ 30 Mary \\’/\31 /

» Incoming arc weights

Equal to the weight of best spanning tree that includes head of
incoming arc, and all nodes in cycle

root — saw — John is 40 (**)

root — John — saw is 29

» This is a tree and the MST for the contracted graph!!

A

root 40
3>
// /‘\“
_-7 _saw 30

// w]S // \

7 . g
 John _ .~ Mary
\\’/,

» Go back up recursive call and reconstruct final graph

Arc weights as linear classifiers

Wl_l/(— ew'f(’afak)

» Arc weights are a linear combination of features of the arc, f,
and a corresponding weight vector w

» Raised to an exponent (simplifies some math ...)
» What arc features?

» [McDonald et al. 2005] discuss a number of binary features

Example of classifier features

PP

John saw Mary McGuire yesterday with his telescope

N V. N N R P PR N

» Features from [McDonald et al. 2005]:
Identities of the words w; and w; and the label /;

head=saw & dependent=with

How to score a graph G
using features?

By definition of arc weights
as linear classifiers

Arc-factored model
assumption

G = Al 11lax H W!j‘ — Al'g 111X H EWF{IJH
GET(Gx) (; ; GET(Ge) ; ;
(ij,k)eG (ij.k)eG
= argmax log H ew'f{f‘j‘k}
GET(Gy) (ij.k)EG

= argmax Z w-f(i.j. k)
GET(Gx) (jjk)eG

= argmax W - Z f(i.j.k) = argmax w-f(G)
GeT(Gx) (i.j.k)EG GeT(Gx)

How can we learn
the classifier from data?

e.g., I'he Perceptron

Training data: 7 = {(x;, G;)}/~

t=1
2. forn:1..N
3. fort:1..T
4. Let G/ = arg max g W(i) . f(G/)
5. if G £ G
6. wl D) — w() f(G,) — f(G")
/. i =1i+1
8. return w'

Dependency Parsing: what you should know

* Formalizing dependency trees

* Transition-based dependency parsing
 Shift-reduce parsing
* Transition system: arc standard, arc eager
* Oracle
* Learning/predicting parsing actions

* Graph-based dependency parsing

* A flexible framework that allows many extensions
* RNNs vs feature engineering, non-projectivity

Extension: dynamic oracle

Problem with standard classifier-based oracle:

- Itis “static”
- ie tied to optimal config sequence that produces gold tree

- What if there are multiple sequences for a single gold tree?
- How can we recover if the parser deviates from gold sequence?

One solution: “dynamic oracle” [Goldberg & Nivre 2012]

See also Locally Optimal Learning to Search [Chang et al. ICML 2015]

Extension: dynamic oracle

Algorithm 3 Online training with a dynamic oracle

1: w20

2: for] =1 — ITERATIONS do

3 for sentence x with gold tree G4 in corpus do
4 ¢ «— c,(x)

5 while ¢ is not terminal do

6: t, < argmax, w- ¢(c,t)
7
8
9

[zBRO_cOST « {t|o(t;c, Gypq) = true} |
Lo < Arg MaX czepo cost W ¢(C, t)
: if t, ¢ zERO_cosT then
10: we—w+ ¢(c,t,)— ¢p(c,t,)

11: [t, < cHoosE NExt(I,t,,ZERO_COST) |
12: c—t,(c)

13: returnw

See [Goldberg & Nivre 2012] for details

