
1

Lecture 23: Intro to
Microprogramming

• Microprogramming Definition

• Machine Architecture Review

• Control Unit

• Instruction Cycle

• Microprogramming

Microprogramming

• Microprogramming is a method of
implementing the behavior of
machine instructions (produced by
our assembler) by means of more
elementary operations, in direct
correspondence with the functions of
the physical components of the
computer.

• Microprogramming sees the
computer at a greater level of detail
than the computer architecture level.

• It needs to be able to specify state
changes in the components of the
physical structure.

Computer Organization

Control Unit

ALU

Registers

Memory

CPU

Input Output

Components

• Control Unit – fetches instructions,
decodes instructions, causes
instructions to be carried out.

• Arithmetic logical unit (ALU) –
performs arithmetic operations
(addition, etc.) on data.

• Registers – high speed memory cells
(don’ t need to go through the bus to
access). They vary in number and
purpose on different machines.

• Buses – communication pathways
connecting different
devices/components.

2

Memory Operation

• MAR (Memory Address
Register) – drives the address
bus

• MBR (Memory Buffer Register)
– drives the data bus.

• Figure 4-6, Tannenbaum 3rd

Edition

8086 Block Diagram

CS
DS
SS
ES

SI
DI

BP
SP

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

Data Registers

Index Registers

ALU

Bus
Interface

Unit

IP

Flags R

Control Unit

Instruction

Data

Data
Bus

Address
Bus

Control BusClock

Interrupt

+5V

• What we’ve seen:
– ALU (combinational circuit)

– Registers (sequential circuits)

– Memory (sequential circuits)

• What we haven’ t seen:
– Control Unit

Control Unit

• We need to get from the
machine code down to the
control signals that regulate the
gates and circuits.

• Early computers hardwired this.

• RISC machines do as well.

• Microprogramming is an
alternative that allows for
simpler machine hardware.

3

Hardwired vs.
Microprogrammed

Control
• Hardwired:

– composed of combinatorial and
sequential circuits that generate
complete timing that corresponds
with execution of each
instruction.

– time-consuming and expensive to
design

– difficult to modify

– … but fast

Hardwired vs.
Microprogrammed

Control (cont.)
• Microprogrammed:

– design is simpler – problem of
timing each instruction is broken
down. Microinstruction cycle
handles timing in a simple and
systematic way.

– easier to modify

– slower than hardwired control

Instruction Cycle

• Operation of a computer consists of
a sequence of instruction cycles, one
machine code instruction per cycle.

• Instruction cycles can be subdivided
into:
– fetch* - retrieving the instruction
– indirect – retrieving indirect operands

(if any)
– execute* - executing the instruction
– interrupt – handling any interrupts that

may have occurred
*always occur

we’ ll look mostly at the fetch-execute
portion

Micro-Operations

• Each step of the instruction
cycle can be broken down
further into MicroOperations
(� Ops or � Operations)

4

Fetch-Execute Cycle

1. extract the instruction from
memory

2. calculate the address of the next
instruction, by advancing the PC
(program counter)

3. decode the opcode
4. calculate the address of the

operand (if any)
5. extract the operand from memory
6. execute
7. calculate the address of the result
8. store the result in memory

Fetch (steps 1-3)

• Brings the instructions in from
memory to the IR (Instruction
Register). Involves four
registers:
– MAR specifies address of

read/write operation

– MBR contains value to be
read/written

– PC contains address of next
instruction to fetch

Fetch (steps 1-3)

• Sequence of events (at start,
address of next instruction is in the
PC)

1. “ latch” the address onto the MAR.
The address can remain set on the
address bus for the entire time
required for the read operation, while
it is possible to change the contents of
the PC.

2. bring in the instruction
– address in MAR placed on address bus
– control unit issues RD signal on control

bus
– result appears on data bus, is copied into

MBR

3. increment PC to get ready for the
next instruction

4. move contents of MBR to IR (frees
up MBR for execute portion of the
cycle)

Execute (Steps 4-8)

• Unlike Fetch, which is the same
for all machine instructions, for a
machine with N different opcodes
there will be N different sequences
of � Ops that can occur!

• Also, not all of the five steps apply
in each case:

4. calculate the address of the operand (if
any)

5. extract the operand from memory (if any)
6. execute
7. calculate the address of the result (if

storing)
8. store the result in memory (if storing)

5

Execute Example

• ADD instruction:
1. MAR = address portion of IR

2. MBR = contents of memory at
that address

3. ACC (Accumulator) = ACC +
MBR

Putting it All Together

• Our Micro-Ops need to be put
together in an order that makes
sense!

• The microprogram implements
an algorithm responsible for
sequencing the micro-ops
(ensuring that they are executed
in the proper order) and
executing the micro-ops
(carrying out the state changes
involved in the instruction)

The Microprogram

• We need to be able to express the
sequence of steps required to carry
out our instruction cycle.

• Here’s a set for fetch:
0: MAR = PC; RD;
1: PC = PC +1; RD;
2: IR = MBR;

• The semicolon indicates � Ops that
are issued at the same time.

• The carriage return (different lines)
indicate operations that occur in
sequence.

• Why two reads? (RD) – read (and
write) takes two instruction cycles.

