Binary Decision Diagrams

An Introduction and Some Applications

Manas Thakur

PACE Lab, IIT Madras

Binary decision tree for a truth table

\mathbf{x}_{1}	$\mathrm{x}_{\mathbf{2}}$	$\mathrm{x}_{\mathbf{3}}$	$\mathrm{x}_{\mathbf{4}}$	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Binary decision tree for a truth table

Collapse redundant nodes

Collapse redundant nodes

-

Collapse redundant nodes

Collapse redundant nodes

Eliminate unnecessary nodes

We got an ROBDD!!

Overview

(1) Motivating Example

(2) Introduction

(3) Constructing ROBDDs

4 Applications
(5) Conclusion

Binary Decision Diagrams

Definition

A Binary Decision Diagram is a rooted DAG with

- One or two terminal nodes of out-degree zero labeled 0 or 1
- A set of variable nodes of out-degree two

Ordered Binary Decision Diagrams (OBDDs)

- A BDD is ordered if on all paths through the graph, the variables respect a given linear order.

$$
b_{1}<b_{2}<\ldots<b_{n}
$$

Ordered Binary Decision Diagrams (OBDDs)

- A BDD is ordered if on all paths through the graph, the variables respect a given linear order.

$$
b_{1}<b_{2}<\ldots<b_{n}
$$

- An unordered BDD

Ordered Binary Decision Diagrams (OBDDs)

- The size of a BDD depends on the variable ordering

\mathbf{b}_{1}	\mathbf{b}_{2}	\mathbf{b}_{3}	\mathbf{f}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- The problem of finding the best variable ordering in OBDDs is NP-Complete

Reduced Ordered Binary Decision Diagrams (ROBDDs)

Definition
An OBDD is reduced if it satisfies the following properties:

- Uniqueness

$$
\operatorname{low}(u)=\operatorname{low}(v) \text { and } \operatorname{high}(u)=\operatorname{high}(v) \text { implies } u=v
$$

- Non-redundant tests

$$
\operatorname{low}(u) \neq \operatorname{high}(u)
$$

We already saw an example of ROBDDs!!

Properties of ROBDDs

- Size is correlated to amount of redundancy, NOT size of relation
- Insight: As the relation gets larger, the number of dont-care bits increases, leading to fewer necessary nodes (usually)
- Canonicity: For every Boolean function, there is exactly one ROBDD representing it
- Hence, satisfiability, tautology-check, and equivalence can be tested in deterministic time
- For Boolean expressions, this problem is NP-Complete
and Compliers Education Lestocralcy

Normal forms for Boolean expressions

- Disjunctive Normal Form (DNF)
- $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \vee \ldots \vee\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)$
- Satisfiability: easy; Tautology check: hard

Normal forms for Boolean expressions

- Disjunctive Normal Form (DNF)
- $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \vee \ldots \vee\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)$
- Satisfiability: easy; Tautology check: hard
- Conjunctive Normal Form (CNF)
- $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \wedge \ldots \wedge\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right)$
- Tautology check: easy; Satisfiability: hard

Normal forms for Boolean expressions

- Disjunctive Normal Form (DNF)
- $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \vee \ldots \vee\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)$
- Satisfiability: easy; Tautology check: hard
- Conjunctive Normal Form (CNF)
- $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \wedge \ldots \wedge\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right)$
- Tautology check: easy; Satisfiability: hard
- Reduction?

Normal forms for Boolean expressions

- Disjunctive Normal Form (DNF)
- $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right) \vee \ldots \vee\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)$
- Satisfiability: easy; Tautology check: hard
- Conjunctive Normal Form (CNF)
- $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \wedge \ldots \wedge\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right)$
- Tautology check: easy; Satisfiability: hard
- Reduction?
- No hopes since conversion between CNF and DNF is exponential

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

- More examples

$$
x=x \rightarrow(1,0)
$$

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

- More examples

$$
\begin{gathered}
x=x \rightarrow(1,0) \\
\neg x=(x \rightarrow 0,1)
\end{gathered}
$$

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

- More examples

$$
\begin{gathered}
x=x \rightarrow(1,0) \\
\neg x=(x \rightarrow 0,1) \\
x \vee y=(x \rightarrow 1, y)
\end{gathered}
$$

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

- More examples

$$
\begin{gathered}
x=x \rightarrow(1,0) \\
\neg x=(x \rightarrow 0,1) \\
x \vee y=(x \rightarrow 1, y) \\
x \wedge y=(x \rightarrow y, 1)
\end{gathered}
$$

If-then-else Normal Form (INF)

- An If-then-else Normal Form (INF) is a Boolean expression built from the if-then-else operator and the constants 0 and 1 , such that all tests are performed only on variables.

$$
x \rightarrow y_{0}, y_{1}=\left(x \wedge y_{0}\right) \vee\left(\neg x \wedge y_{1}\right)
$$

- More examples

$$
\begin{gathered}
x=x \rightarrow(1,0) \\
\neg x=(x \rightarrow 0,1) \\
x \vee y=(x \rightarrow 1, y) \\
x \wedge y=(x \rightarrow y, 1) \\
x \Leftrightarrow y=x \rightarrow(y \rightarrow 1,0),(y \rightarrow 0,1)
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
t=x_{1} \rightarrow t_{1}, t_{0}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{aligned}
t & =x_{1} \rightarrow t_{1}, t_{0} \\
t_{0} & =y_{1} \rightarrow 0, t_{00}
\end{aligned}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000}
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110}
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1 \\
t_{001}=y_{2} \rightarrow 1,0
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1 \\
t_{001}=y_{2} \rightarrow 1,0 \\
t_{110}=y_{2} \rightarrow 0,1
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1 \\
t_{001}=y_{2} \rightarrow 1,0 \\
t_{110}=y_{2} \rightarrow 0,1 \\
t_{111}=y_{2} \rightarrow 1,0
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1 \\
t_{001}=y_{2} \rightarrow 1,0 \\
t_{110}=y_{2} \rightarrow 0,1 \\
t_{111}=y_{2} \rightarrow 1,0
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{gathered}
t=x_{1} \rightarrow t_{1}, t_{0} \\
t_{0}=y_{1} \rightarrow 0, t_{00} \\
t_{1}=y_{1} \rightarrow t_{11}, 0 \\
t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
t_{11}=x_{2} \rightarrow t_{111}, t_{110} \\
t_{000}=y_{2} \rightarrow 0,1 \\
t_{001}=y_{2} \rightarrow 1,0 \\
t_{110}=y_{2} \rightarrow 0,1 \\
t_{111}=y_{2} \rightarrow 1,0
\end{gathered}
$$

Example: $t=\left(x_{1} \Leftrightarrow y_{1}\right) \wedge\left(x_{2} \Leftrightarrow y_{2}\right)$

$$
\begin{aligned}
& t=x_{1} \rightarrow t_{1}, t_{0} \\
& t_{0}=y_{1} \rightarrow 0, t_{00} \\
& t_{1}=y_{1} \rightarrow t_{00}, 0 \\
& t_{00}=x_{2} \rightarrow t_{001}, t_{000} \\
& t_{000}=y_{2} \rightarrow 0,1 \\
& t_{001}=y_{2} \rightarrow 1,0
\end{aligned}
$$

Let's move ahead

(1) Motivating Example

(2) Introduction
(3) Constructing ROBDDs
(4) Applications
(5) Conclusion

Programming Languabos Acchitecture
and Compiers Education 1 sitcralocy

Applications of BDDs

- Correctness of Combinational Circuits
- Equivalence of Combinational Circuits
- Model Checking
- And yes, Program Analysis!

BDDs for representing Points-to relation

- Points-to analysis using BDDs. Berndl et al. PLDI'03.
- Let a, b, c be reference variables and A, B, C be object references.
- The points-to relation (a,A),(a,B),(b,A),(b,B),(c,A),(c,B),(c,C) is represented as:

BDDs for representing Points-to relation

- Points-to analysis using BDDs. Berndl et al. PLDI'03.
- Let a, b, c be reference variables and A, B, C be object references.
- The points-to relation $(a, A),(a, B),(b, A),(b, B),(c, A),(c, B),(c, C)$ is represented as:

On the board.

bddbddb

- Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams. John Whaley and Monica S. Lam. PLDI'04.

bddbddb

- Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams. John Whaley and Monica S. Lam. PLDI'04.

On the Board

(1) Represent program information using relations Express relations as BDDs

bddbddb

- Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams. John Whaley and Monica S. Lam. PLDI'04.

On the Board

(1) Represent program information using relations Express relations as BDDs
(2) Write program analyses as Datalog queries Express queries as $B D D$ operations

bddbddb

- Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams. John Whaley and Monica S. Lam. PLDI'04.

On the Board

(1) Represent program information using relations

Express relations as BDDs
(2) Write program analyses as Datalog queries

Express queries as $B D D$ operations
(3) Get solutions!

Perform operations on BDDs

Pointers for the enthusiast

- An Introduction to Binary Decision Diagrams. Tutorial by Henrik Reif Andersen.
- Program Analysis using Binary Decision Diagrams. Ondrej Lhotak's PhD Thesis (2006).
- Context-Sensitive Pointer Analysis using Binary Decision Diagrams. John Whaley's PhD Thesis (2007).
- Fun with Binary Decision Diagrams. Video lecture by Donald Knuth.

Conclusion

Conclusion

BDDs are very interesting and useful!

