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• MOTIVATION and OUTLINE:

• To indicate reasons why (classical as well as non-commutative) Orlicz
spaces are emerging in the theory of (classical and quantum) Physics

• “The steady progress of Physics requires for its theoretical formulation
a mathematics that gets continually more advanced. This is only
natural and to be expected.”

• P. A. M. Dirac; Proc. Roy. Soc. London A 133 60-72 (1931)
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• Classical mechanics

• Newton; laid the base of classical mechanics and calculus.

• When a physicist knows that a certain quantity is an observable?

• In any answer: an observable u is known when also a function F (·) of
this observable is known. In particular, un should be known.

• This feature of observables was, probably, a motivation for Newton to
develop calculus and to use it in his laws of motion.

• We will repeat this question in the framework of Statistical Mechanics.
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• However, some 150 years later, Cauchy and Riemann gave a rigorous
definition of derivative and integral respectively. Subsequently, in the
second half of XIX century, Classical Mechanics was fully developed.

• Hamilton, Lagrange, Liouville.

• To a system, Γ - phase space, was associated,

• and classical mechanics was built on < C(Γ), measure, dynamics >.

• a selection of a family of observables (functions on Γ) encodes individual
features of a physical system!, eg C(Γ) or L∞, etc
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• Quantum mechanics

• Heisenberg (as Newton) wrote a dynamical equation (in the new setting
and now with the first noncommutative derivative)

• canonical quantization; no via bounded operators - so Hilbert space
should be of infinite dimension. Consequently, “quantum” is not
equivalent to “non-commutative” - a description of a quantum system
should be compatible with the canonical quantization. In particular,
Mn(C), is well suited for a description of a non-commutative system,
BUT not for a quantum one.

• uniqueness of quantization (von Neumann theorem); small and large
systems (Fock, van Hove, Schwinger, Wightmann, Dyson); uniqueness
only for small systems!

• Powers; factors III (relations to large systems, statistical physics)
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• we will use noncommutative integration theory; Segal, Dixmier, Nelson,
Haagerup, Araki-Masuda, Connes, Hilsum, Dodds, Dodds de Pachter;
von Neumann.

• individual characteristic of a system will be taken into account - Haag-
Kastler approach.

• (A, φ) where A - C∗-algebra, φ a state , gives noncommutative
probability space.

• Consequently, non-commutative calculus, stemming from C∗-algebra
theory, will be used and all basic features of quantization will be taken
into account.
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• Classical statistical physics

• Maxwell, Boltzmann - laid the base for statistical mechanics (classical).

• to select a function f which can describe a probability (velocity
distribution function) it was necessary to assume:

∫
fdx = 1 < ∞;

consequently L1 space was appeared and subsequently, to have a dual
pair (observables and states) the pair of Banach spaces < L∞, L1 > was
also appeared.

• Boltzmann theory: model of gas, Boltzmann equation, H-theorem; there
are no paradoxes - cf Kac explanations.

• Let me term by “Boltzmann dream” the following problems:

1. existence of solutions of Boltzmann equation,
2. properties of solutions; asymptotic
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3. return to equilibrium

• NOTE: the standard approach based on < L∞, L1 > seems to be not
effective.

• observables - stochastic variables.

• entropy - the function x 7→ xlogx is appearing; to support this choice we
note

1. McKean - natural Lyapunov functional for simplified (by Kac) model
of Boltzmann gas.

2. Stirling-type bounds - essential for calculations of various probabilities.

• problems:
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• The set of “good” density matrices {̺ : S(̺) <∞} (Wehrl, Rev. Mod.
Phys, (1978)) is a meager set only (we assume that the dimension of the
underlying Hilbert space is infinite!).

• For H(f) see Bourbaki, Éléments de Mathématique, Livre VI,
Intégration (1955); for f ∈ L1, H(f) is not well defined!

• Entropic problems lead to serious problems with the explanation of
the phenomenon of return to equilibrium and with the second law of
thermodynamics (entropy should be a state function which is increasing
in time) (Ray Streater).
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• Pistone-Sampi: The Orlicz space based on an exponentially growing
function cosh − 1 is a “good” space for a description of regular
observables!

• An argument, in favour of Orlicz spaces, was provided by Cheng and
Kozak (J. Math. Phys; 1972). Namely, it seems that the framework
within which certain non-linear integral equation of Statistical Mechanics
can be studied is that provided by Orlicz spaces.

• mathematical problems associated with Boltzmann’s equation; e.g C.
Villani in Handbook of mathematical fluid dynamics, vol I, 2002; R.
DiPerna, P.L. Lions, Commun. Math. Phys. 120 1-23 (1988) and
Ann. Math 130 312-366 (1989); where are solutions of Boltzmann
equation?, existence?
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• To solve both outlined above problems we propose to replace the pair of
Banach spaces

< L∞(X,Σ,m), L1(X,Σ,m) > (1)

• by the pair of Orlicz spaces (or equivalent pairs).

〈Lcosh−1, L log(L+ 1)〉. (2)

• The second Orlicz space L log(L+1), is the space defined by the Young’s
function x 7→ x log(x+ 1), x ≥ 0.

• The pair of Orlicz spaces we explicitly use are respectively built on the
exponential function (for the description of regular observables) and on
an entropic type function (for the corresponding states).

• They form a dual pair (both for classical and quantum systems).
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• This pair has the advantage of being general enough to encompass
regular observables, and specific enough for the latter Orlicz space to
select states with a well-defined entropy function.

• Moreover for small quantum systems this pair is shown to agree with the
classical pairing of bounded linear operators on a Hilbert space, and the
trace-class operators.

• The proposed quantization differs between “large systems” and “small
systems”.

• Consequently, the (Köthe) dual space consist of more regular states. This
is a new way of removing “non-physical” states which lead to infinities.
Thus a kind of renormalization is proposed.
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Orlicz spaces (Bennet, Sharpley; Krasnosielsky, Rutickij)

• Basic idea: whereas L1(m), L2(m), L∞(m) and the interpolating Lp(m)
spaces may be regarded as spaces of measurable functions conditioned
by the functions tp (1 ≤ p < ∞), the more general category of Orlicz
spaces are spaces of measurable functions conditioned by a more general
class of convex functions; the so-called Young’s functions

• Definition 1. Let ψ : [0,∞) → [0,∞] be an increasing and left-
continuous function such that ψ(0) = 0. Suppose that on (0,∞) ψ
is neither identically zero nor identically infinite. Then the function Ψ
defined by

Ψ(s) =

∫ s

0

ψ(u)du, (s ≥ 0) (3)

is said to be a Young’s function.
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• x 7→ |x|p, x 7→ cosh(x) − 1, x 7→ xln(x +
√

1 + x2) −
√

1 + x2 + 1,
x 7→ xln(x + 1) are Young’s functions while x 7→ xlnx not. We will
assume that Young’s functions are equal to 0 for x = 0.

• Definition 2. 1. A Young’s function Ψ is said to satisfy the ∆2-
condition if there exist s0 > 0 and c > 0 such that

Ψ(2s) ≤ cΨ(s) <∞, (s0 ≤ s <∞). (4)

2. A Young’s function Φ is said to satisfy ∇2-condition if there exist
x0 > 0 and l > 1 such that

Φ(x) ≤ 1

2l
Φ(lx) (5)

for x ≥ x0.
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• Definition 3. Let Ψ be a Young’s function, represented as in (3) as
the integral of ψ. Let

φ(v) = inf{w : ψ(w) ≥ v}, (0 ≤ v ≤ ∞). (6)

Then the function

Φ(t) =

∫ t

0

φ(v)dv, (0 ≤ t ≤ ∞) (7)

is called the complementary Young’s function of Ψ.

• We note that if the function ψ(w) is continuous and increasing
monotonically then φ(v) is a function exactly inverse to ψ(w).
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• Define (another Young’s function)

xln(x+
√

1 + x2) −
√

1 + x2 + 1 =

∫ x

0

arsinh(v)dv. (8)

• Corollary 4. xln(x +
√

1 + x2) −
√

1 + x2 + 1 and coshx − 1 are
complementary Young’s functions.

• Let L0 be the space of measurable functions on some σ-finite measure
space (X,Σ, µ). We will always assume, that the considered measures
are σ-finite.
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• Definition 5. The Orlicz space LΨ (being a Banach space) associated
with Ψ is defined to be the set

LΨ ≡ LΨ(X,Σ, µ) = {f ∈ L0 : Ψ(λ|f |) ∈ L1 for some λ = λ(f) > 0}.
(9)

• Luxemburg-Nakano norm

‖f‖Ψ = inf{λ > 0 : ‖Ψ(|f |/λ)‖1 ≤ 1}.

• An equivalent - Orlicz norm, for a pair (Ψ,Φ) of complementary Young’s
functions is given by

‖f‖Φ = sup{
∫

|fg|dµ :

∫
Ψ(|g|)dµ ≤ 1}.
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• Lp-spaces are nice examples of Orlicz spaces. Further, Zygmund spaces:

• – LlogL is defined by the following Young’s function

slog+s =

∫ s

0

φ(u)du

where φ(u) = 0 for 0 ≤ u ≤ 1 and φ(u) = 1 + logu for 1 <∞, where
log+x = max(logx, 0)

– Lexp is defined by the Young’s function

Ψ(s) =

∫ s

0

ψ(u)du,

where ψ(0) = 0 , ψ(u) = 1 for 0 < u < 1, and ψ(u) is equal to eu−1

for 1 < u < ∞. Thus Ψ(s) = s for 0 ≤ s ≤ 1 and Ψ(s) = es−1 for
1 < s <∞.
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• To understand the role of Zygmund spaces the following result will be
helpful

Theorem 6. Take (Y,Σ, µ) for the measure space with µ(Y ) = 1. The
continuous embeddings

L∞ →֒ Lexp →֒ Lp →֒ LlogL →֒ L1 (10)

hold for all p satisfying 1 < p < ∞. Moreover, Lexp may be identified
with the Banach space dual of LlogL.

• for any classical Orlicz space X being a rearrangement-invariant Banach
function space (over a resonant measure space) one has (Bennet,
Sharpley; Interpolation of operators, 1988)

L1 ∩ L∞ →֒ X →֒ L1 + L∞ (11)

IFTiA Gdańsk University – Poland 19



On applications of Orlicz spaces Applied Math & Math Methods in Physics, Gdansk, December 12, 2013

• More generally, for a pair (Ψ,Φ) of complementary Young’s functions
with the function Ψ satisfying ∆2-condition there is the following relation
(LΨ)∗ = LΦ. In particular, (Llog(L+ 1))∗ = Lcosh−1. (Llog(L+ 1)) is
defined by e.g x 7→ xlog(x+ 1).

• Finally, we will write F1 ≻ F2 if and only if F1(bx) ≥ F2(x) for x ≥ 0
and some b > 0, and we say that the functions F1 and F2 are equivalent,
F1 ≈ F2, if F1 ≺ F2 and F1 ≻ F2.

• Example 7. Consider, for x > 0

– F1(x) = xln(x+
√

1 + x2) −
√

1 + x2 + 1 =
∫ x

0
ln(s+

√
1 + x2)ds,

– F2 = kxlnx = k
∫ x

0
(lns+ 1)ds, k > e.

Then F1 ≻ F2.
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• Remark 8. 1. Recall, x 7→ xlnx is not a Young’s function. Therefore,
it is difficult to speak about Orlicz spaceLxlnx.

2. If Ψ ≻ F , Ψ is a Young’s function satisfying ∆2-condition, the
function F is bounded below by −c, then for f ∈ LΨ the integral∫
F (f)(u)dm(u) is finite provided that the measure m is finite.

• These results lead to

Corollary 9. Let (X,Σ,m) be a probability space. Putting Ψ(x) =
x log(x+

√
1 + x2) −

√
1 + x2 + 1 and F (x) = kx log x where k > e is

a fixed positive number we obtain: H(f) is finite provided that f ∈ LΨ
+.

• One has

• Theorem 10. Let Φi, i = 1, 2 be a pair of equivalent Young’s function.
Then LΦ1 = LΦ2.
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Proposition 11. Let (Y,Σ, µ) be a σ-finite measure space and
L log(L + 1) be the Orlicz space defined by the Young’s function
x 7→ x log(x+ 1), x ≥ 0. Then L log(L+ 1) is an equivalent renorming
of the Köthe dual of Lcosh−1.

Proposition 12. For finite measure spaces (X ,Σ,m) one has

Lcosh−1 = Lexp. (12)

Consequently, for the finite measure case, 〈Lcosh−1, L log(L+ 1)〉 is an
equivalent renorming of 〈Lexp, L logL〉.

• Note also: the functions xlog(x+1) and x log(x+
√

1 + x2)−
√

1 + x2+1
are equivalent.
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Regular classical systems

• Let {Ω,Σ, ν} be a measure space; ν will be called the reference measure.
The set of densities of all the probability measures equivalent to ν will
be called the state space Sν, i.e.

Sν = {f ∈ L1(ν) : f > 0 ν − a.s., E(f) = 1}, (13)

E(f) ≡
∫
fdν. f ∈ Sν implies that fdν is a probability measure.

• Definition 13. The classical statistical model consists of the measure
space {Ω,Σ, ν}, state space Sν, and the set of measurable functions
L0(Ω,Σ, ν).
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• We define for a stochastic variable u on (Ω,Σ, fdν)

ûf(t) =

∫
exp(tu)fdν, t ∈ R. (14)

• and to have a selection procedure:

Definition 14. The set of all random variables on (Ω,Σ, ν) such that
for a fixed f ∈ Sν

1. ûf is well defined in a neighborhood of the origin 0,
2. the expectation of u is zero,

will be denoted by Lf ≡ Lf(f · ν) and called the set of regular random
variables (these conditions imply that all moments are finite!).

• It was proved
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Theorem 15. (Pistone-Sempi) Lf is the closed subspace of the Orlicz
space Lcosh−1(f · ν) of zero expectation random variables.

• Note that there is the relation ≻ between the Young’s function xln(x+√
1 + x2) −

√
1 + x2 + 1 and the entropic function c · xlnx where c is a

positive number. Consequently, the condition f ∈ Lxln(f · ν) guarantees
(for finite measure case) that the continuous entropy is well defined.
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Corollary 16.

〈Lcosh−1, L log(L+ 1)〉
or equivalently

〈Lexp, L logL〉
provides the proper framework for the description of classical regular
statistical systems (based on probability measures).

• the proposed approach is compatible with a rigorous analysis of
Boltzmann’s equation (infinite measure case).

• Why?
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• (spatially homogeneous) Boltzmann’s equation:

∂f1
∂t

=

∫
dΩ

∫
d3v2I(g, θ)|v2 − v1|(f ′1f ′2 − f1f2) (15)

where f1 ≡ f(v1, t), f
′

2 ≡ f(v′

2, t), etc, are velocity distribution functions,
with v standing for velocities before collision, and v

′ for velocities after
collision. I(g, θ) denotes the differential scattering cross section, dΩ is
the solid angle element, and g = |v|.

• The natural Lyapunov functional for this equation is the continuous
entropy with opposite sign, i.e.

H+(f) =

∫
f(x) log f(x)dx

where f is supposed to be a solution of Boltzmann’s equation.
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• The important point to note here is the fact that DiPerna-Lions, Villani
showed that the estimates

f ∈ L∞

t ([0, T ];L1
x,v((1 + |v|2 + |x|2)dxdv) ∩ L log(L+ 1)) (16)

and
D(f) ∈ L1([0, T ] × IRN

x ), (17)

where D(f) = 1
4

∫
dΩ

∫
d3v1d

3v2I(g, θ)|v2 − v1|(f ′1f ′2 − f1f2) log
f ′

1f ′

2
f1f2

,

are sufficient to build a mathematical theory of weak solutions (faithful
citation; x stands for coordinate - is appearing in non-spatially
homogeneous Boltzmann equation).

• Furthermore, Villani announced that for particular cross sections (collision
kernels in Villani’s terminology) weak solutions of Boltzmann equation
are in L log(L+ 1).
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• Also, H+(f) is nicely defined, provided that f ∈ L log(L+ 1).

• Consequently, the scheme for classical statistical mechanics based on
the two distinguished Orlicz spaces 〈Lcosh−1, L log(L + 1)〉 does work.
However, the basic theory for Nature is Quantum Mechanics. Therefore
the question of a quantization of the given approach must be considered.

• However, there is a problem:

IFTiA Gdańsk University – Poland 29



On applications of Orlicz spaces Applied Math & Math Methods in Physics, Gdansk, December 12, 2013

• W. Thirring, Quantum Mathematical Physics. Atoms, Molecules and
large systems, Springer (2002) p.322 (second edition; vol. III and IV of
”Mathematical Physics”)

• “ To the malicious delight of many mathematicians the initial impression
that type III is the rule for infinite systems has panned out with the
passage of time. Types I and II turns out to be peripheral possibilities”

• see also: R. Haag’s book: Local Quantum Physics; Fields, Particles,
Algebras, 1996
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Non-commutative Orlicz spaces

• Let A be a von Neumann algebra acting on a Hilbert space H with
normal faithful semifinite weight ϕ

• Generate a bigger algebra M on L2(IR,H), so called cross product
M = A×σ IR

• M is generated by π(x), x ∈ A and λs, s ∈ IR.

• (π(x)ξ)(t) = σϕ
−tξ(t) and (λsξ)(t) = ξ(t− s)

• M is a semifinite von Neumann algebra equipped with an fns (faithful
normal semifinite) trace τ ,
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Non-commutative measurable functions

• Let a be a densely defined closed operator on L2(IR,H) with domain
D(a) and let a = u|a| be its polar decomposition.

• a is affiliated with M (denoted aηM) if u and all the spectral projections
of |a| belong to M.

• a is τ -measurable if aηM and there is, for each δ > 0, a projection
e ∈ M such that eL2(IR,H) ⊂ D(a) and τ(1 − e) ≤ δ.

• Denote by M̃ the set of all τ -measurable operators.

• Haagerup’s approach to non-commutative integration.
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• The space of all τ -measurable operators M̃ (equipped with the topology
of convergence in measure) plays the role of L0 .

• Xu; Doods, Dodds, de Pagter approach

• BUT

• J. von Neumann, Some Matrix Inequalities and Metrization of Matrix-
Space, Tomsk. Univ. Rev. 1 , 286-300 (1937)

• g(s(a)) gives a nice norm on the matrix algebra, where s(a) is a vector
formed from singular values of a while g stands for a symmetric gauge
functional. a stands for a n× n matrix.
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• generalized singular values

• f ∈ M̃ and t ∈ [0,∞), the generalized singular value µt(f) is defined
by µt(f) = inf{s ≥ 0 : τ(1l − es(|f |)) ≤ t} where es(|f |) s ∈ R is the
spectral resolution of |f |.

• The function t→ µt(f) will generally be denoted by µ(f).

• It contains essential information about f - Fack, Kosaki
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• Banach Function Space of measurable functions on (0,∞).

• A function norm ρ on L0(0,∞) is defined to be a mapping ρ : L0
+ →

[0,∞] satisfying

– ρ(f) = 0 iff f = 0 a.e.
– ρ(λf) = λρ(f) for all f ∈ L0

+, λ > 0.
– ρ(f + g) ≤ ρ(f) + ρ(g) for all .
– f ≤ g implies ρ(f) ≤ ρ(g) for all f, g ∈ L0

+.

• Such a ρ may be extended to all of L0 by setting ρ(f) = ρ(|f |).

• Define Lρ(0,∞) = {f ∈ L0(0,∞) : ρ(f) < ∞}. If now Lρ(0,∞) turns
out to be a Banach space when equipped with the norm ρ(·), we refer
to it as a Banach Function space.

IFTiA Gdańsk University – Poland 35



On applications of Orlicz spaces Applied Math & Math Methods in Physics, Gdansk, December 12, 2013

• If ρ(f) ≤ lim infn(fn) whenever (fn) ⊂ L0 converges almost everywhere
to f ∈ L0, we say that ρ has the Fatou Property.

• If this implication only holds for (fn) ∪ {f} ⊂ Lρ, we say that ρ is lower
semi-continuous.

• If f ∈ Lρ, g ∈ L0 and µt(f) = µt(g) for all t > 0, forces g ∈ Lρ and
ρ(g) = ρ(f), we call Lρ rearrangement invariant (or symmetric).

• When M = L∞(X,m) and τ(f) =
∫
fdm one gets

µt(f) = inf{s ≥ 0;m({x ∈ X; |f(x)| > s}) ≤ t},

• so, µt(f) is exactly the classical non-increasing rearrangement f∗(t).
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• Dodds, Dodds and de Pagter formally defined the noncommutative space
Lρ(M̃) to be

Lρ(M̃) = {f ∈ M̃ : µ(f) ∈ Lρ(0,∞)}

and showed that if ρ is lower semicontinuous and Lρ(0,∞)

rearrangement-invariant, Lρ(M̃) is a Banach space when equipped with
the norm ‖f‖ρ = ρ(µ(f)).

• For any Young’s function Φ, the Orlicz space LΦ(0,∞) is known to be
a rearrangement invariant Banach Function space with the norm having
the Fatou Property.

• Thus taking ρ to be ‖ · ‖Φ, the very general framework of Dodds, Dodds
and de Pagter presents us with an alternative approach to realizing
noncommutative Orlicz spaces.
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• Non-commutative regular systems

• 1. nτ = {x ∈ M : τ(x∗x) < +∞}.
2. (definition ideal of the trace τ) mτ = {xy : x, y ∈ nτ}.
3. ωx(y) = τ(xy), x ≥ 0.

• 1. if x ∈ mτ , and x ≥ 0, then ωx ∈ M+
∗
.

2. If L1(M, τ) stands for the completion of (mτ , || · ||1) then L1(M, τ)
is isometrically isomorphic to M∗.

3. M∗,0 ≡ {ωx : x ∈ mτ} is norm dense in M∗.

Finally, denote by M+,1
∗ (M+,1

∗,0 ) the set of all normalized normal positive
functionals in M∗ (in M∗,0 respectively).
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• Definition 17. The noncommutative statistical model consists of a
quantum measure space (M, τ), “quantum densities with respect to τ”

in the form of M+,1
∗,0 , and the set of τ -measurable operators M̃.

• Definition 18.

Lquant
x = {g ∈ M̃ : 0 ∈ D(µ̂g

x(t))0, x ∈ m+
τ }, (18)

where D(·)0 stands for the interior of the domain D(·) and

µ̂g
x(t) =

∫
exp(tµs(g))µs(x)ds, t ∈ R. (19)

(Notice that the requirement that 0 ∈ D(µ̂g
x(t))0, presupposes that the

transform µ̂g
x(t) is well-defined in a neighborhood of the origin.)
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• We remind that above and in the sequel µ(g) (µ(x)) stands for the
function [0,∞) ∋ t 7→ µt(g) ∈ [0,∞] ([0,∞) ∋ t 7→ µt(x) ∈ [0,∞]
respectively).

• To give a non-commutative generalization of Pistone-Sempi theorem we
need a generalization of Dodds, Dodds, de Pagter approach i.e. that one
which just was presented

• Definition 19. Let x ∈ L1
+(M, τ) and let ρ be a Banach function

norm on L0((0,∞), µt(x)dt). In the spirit of Dodds, Dodds, de Pagter,
we then formally define the weighted noncommutative Banach function
space Lρ

x(M̃) to be the collection of all f ∈ M̃ for which µ(f) belongs
to Lρ((0,∞), µt(x)dt). For any such f we write ‖f‖ρ = ρ(µ(f)).

• Remark 20. Comparing commutative and non-commutative regular
statistical models, we note that µt(x) (the Lebesgue measure dt) in
Definition 19 stands for f (dν, respectively).

IFTiA Gdańsk University – Poland 40



On applications of Orlicz spaces Applied Math & Math Methods in Physics, Gdansk, December 12, 2013

• The mentioned generalization of Dodds, Dodds, de Pagter approach is
contained in:

Theorem 21. Let x ∈ L1
+(M, τ). Let ρ be a rearrangement-invariant

Banach function norm on L0((0,∞), µt(x)dt) which satisfies the Fatou
property, ρ(χE) < ∞ and

∫
E
fdµ ≤ CEρ(f) for E : µ(E) < ∞. Then

Lρ
x(M̃) is a linear space and ‖ · ‖ρ a norm. Equipped with the norm

‖ · ‖ρ, L
ρ
x(M̃) is a Banach space which injects continuously into M̃.

• and the generalization of Pistone-Sempi is given by

Theorem 22. The set Lquant
x coincides with the the weighted Orlicz

space Lcosh−1
x (M̃) ≡ LΨ

x (M̃) (where Ψ = cosh−1) of noncommutative
regular random variables.
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• To show that statistics and thermodynamics can be well established for
noncommutative regular statistical systems, we note that

Proposition 23. Let M be a semifinite von Neumann algebra with
an fns trace τ and let f ∈ L1 ∩ L log(L + 1)(M̃), f ≥ 0. Then
τ(f log(f + ǫ)) is well defined for any ǫ > 0. Moreover

τ(f log f)

is bounded above, and if in addition f ∈ L1/2 (equivalently f1/2 ∈ L1),
it is also bounded from below. Thus τ(f log f) is bounded below on a
dense subset of the positive cone of L log(L+ 1).

• Consequently, if the “state” is taken from the “good” noncommutative
Orlicz space, then the entropy function is well defined.
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• One also has the following “almost” characterization of the elements
of LlogL(M̃)+ for which f log(f) is integrable. Zygmunt spaces are
employed!

• Proposition 24. As before let M be a semifinite von Neumann algebra
with an fns trace τ . Let f = f∗ ∈ M̃ be given. By χI will denote spectral
projection of f corresponding to the interval I. If f ∈ LlogL(M̃)+ with

τ(χ[0,1]) <∞, then τ(|f log(f)|) exists (i.e. f log(f) ∈ L1(M̃)).

Conversely if τ(|f log(f)|) exists , then f ∈ LlogL(M̃)+ with τ(χI) <
∞ for any open subinterval I of [0, 1].
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• Analogous to the commutative case, we get the following conclusion:

• Corollary 25. Either of the pairs

〈Lcosh−1, Llog(L+ 1)〉

or
〈Lexp, L logL〉

provides an elegant rigorous framework for the description of non-
commutative regular statistical systems, where now the Orlicz (and
Zygmund) spaces are noncommutative.
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• REMARK:

• There is an exceptional case: B(H); then B̃(H) = B(H) and the standard
formulation is appearing.

• DYNAMICS:

1. a large class of positive maps defined on M can be lifted to maps on
the corresponding non-commutative Orlicz space (Illinois J. Math)

2. Composition operator can be defined and studied (Illinois J. Math).
3. General recipe for dynamical maps.
(a) Potential theory: Beurling-Deny, Bakry; Dirichlet forms, Dirichlet

spaces, Markov semigroups
(b) non-commutative generalization: Albeverio-Hoegh-Krohn, Davies-

Lindsay, Cipriani-Sauvageot; in particular Dirac’s operator is nicely
defined!

(c) The spaces L1 ≡ M∗, L
2 ≡ L2(M), and L∞ ≡ M are appearing.
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(d) (L∞, L2) and (L2, L1); Calderon couples. Moreover, Lcosh−1 and
Llog(L+ 1) are nicely “inserted”; Karlovich, Maligranda.

(e) Interpolation techniques give well defined dynamics on the above
Orlicz spaces; Bennett-Sharpley; Lindestrauss-Tzafriri.

(f) The given scheme “invites” log-Sobolev “industry”. This provides
a proper framework to study asymptotic and decay to equilibrium
problems.

• Consequently, the proper framework for a solution of “Boltzmann dream”
was presented!
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