STANDARD MODELS

 FOR FINITE FIELDSHendrik Lenstra

Joint work with Bart de Smit

Mathematisch Instituut, Universiteit Leiden

Finite fields
A finite field is a field E with $\# E<\infty$.

Finite fields, characteristic, degree
A finite field is a field E with $\# E<\infty$.
The characteristic char E of a finite field E is the additive order of 1 in E.

The degree $\operatorname{deg} E$ of E is the least number of generators of the additive group of E.

If $\operatorname{char} E=p$ and $\operatorname{deg} E=n$ then $\# E=p^{n}$.

Classifying finite fields
Theorem (E. Galois, 1830; E. H. Moore, 1893).
There is a bijective map
$\{$ finite fields $\} / \cong \longrightarrow\{$ primes $\} \times \mathbf{Z}_{>0}$
sending $[E]$ to (char $E, \operatorname{deg} E)$.
A field of size p^{n} is denoted by $\mathbf{F}_{p^{n}}$ or $\operatorname{GF}\left(p^{n}\right)$.

Classifying finite fields
Theorem (E. Galois, 1830; E. H. Moore, 1893). There is a bijective map
$\{$ finite fields $\} / \cong \longrightarrow\{$ primes $\} \times \mathbf{Z}_{>0}$
sending $[E]$ to $(\operatorname{char} E, \operatorname{deg} E)$.
A field of size p^{n} is denoted by $\mathbf{F}_{p^{n}}$ or $\operatorname{GF}\left(p^{n}\right)$.
Example: $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$.
The number of isomorphisms between
two fields of size p^{n} equals n, so for $n \geq 2$
a field of size p^{n} is not uniquely unique.

Explicit models for finite fields
An explicit model for a finite field of size p^{n} is a field with underlying additive $\operatorname{group} \mathbf{F}_{p}^{n}=\mathbf{F}_{p} \times \mathbf{F}_{p} \times \ldots \times \mathbf{F}_{p}$.

Explicit models for finite fields
An explicit model for a finite field of size p^{n} is a field with underlying additive $\operatorname{group} \mathbf{F}_{p}^{n}=\mathbf{F}_{p} \times \mathbf{F}_{p} \times \ldots \times \mathbf{F}_{p}$.

If $\mathbf{F}_{p}^{n}=\bigoplus_{i=0}^{n-1} \mathbf{F}_{p} \cdot e_{i}$, then

$$
e_{i} \cdot e_{j}=\sum_{k=0}^{n-1} a_{i j k} e_{k}
$$

for certain $a_{i j k} \in \mathbf{F}_{p}$.

Explicit models for finite fields
An explicit model for a finite field of size p^{n} is a field with underlying additive $\operatorname{group} \mathbf{F}_{p}^{n}=\mathbf{F}_{p} \times \mathbf{F}_{p} \times \ldots \times \mathbf{F}_{p}$.

If $\mathbf{F}_{p}^{n}=\bigoplus_{i=0}^{n-1} \mathbf{F}_{p} \cdot e_{i}$, then

$$
e_{i} \cdot e_{j}=\sum_{k=0}^{n-1} a_{i j k} e_{k}
$$

for certain $a_{i j k} \in \mathbf{F}_{p}$.
Exercise. The number of such explicit models equals $\left(\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)\right) / n$.

Specifying finite fields numerically
For use in algorithms, an explicit model is supposed to be specified by the system of n^{3} numbers $a_{i j k} \in \mathbf{F}_{p}=\{0,1, \ldots, p-1\}$.

Space: $O\left(n^{3} \log p\right)$.

Specifying finite fields numerically
For use in algorithms, an explicit model is supposed to be specified by the system of n^{3} numbers $a_{i j k} \in \mathbf{F}_{p}=\{0,1, \ldots, p-1\}$.

Space: $O\left(n^{3} \log p\right)$.
A field homomorphism $\mathbf{F}_{p}^{m} \rightarrow \mathbf{F}_{p}^{n}$
between explicit models is supposed to be specified by an $n \times m$-matrix over \mathbf{F}_{p}.

Consistent isomorphisms between finite fields
Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an
algorithm that on input p, n, and two explicit models A, B for fields of size p^{n}, computes in time at most $(n+\log p)^{c}$ a field isomorphism $\phi_{A, B}: A \rightarrow B$,

Consistent isomorphisms between finite fields
Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^{n}, computes in time at most $(n+\log p)^{c}$ a field isomorphism
$\phi_{A, B}: A \rightarrow B$, and that has the property $\phi_{A, C}=\phi_{B, C} \circ \phi_{A, B}$ whenever A, B, C are explicit models for finite fields of the same size.

Consistent isomorphisms between finite fields
Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^{n}, computes in time at most $(n+\log p)^{c}$ a field isomorphism
$\phi_{A, B}: A \rightarrow B$, and that has the property $\phi_{A, C}=\phi_{B, C} \circ \phi_{A, B}$ whenever A, B, C are explicit models for finite fields of the same size.

One has $\phi_{A, A}=\operatorname{id}_{A}$ and $\phi_{B, A}=\phi_{A, B}^{-1}$.

Standard models
Of all $\left(\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)\right) / n$ explicit
models for a field of size p^{n}, one is
called the standard model.

Standard models
Of all $\left(\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)\right) / n$ explicit models for a field of size p^{n}, one is called the standard model.

The good algorithmic properties of the standard model are easier to explain than its definition.

Computing the standard model
Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^{n}.

Computing the standard model
Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^{n}.

This is valid if the generalized Riemann hypothesis is true; probabilistically; and for any fixed value of p.

Computing the standard model
Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^{n}.

This is valid if the generalized Riemann hypothesis is true; probabilistically; and for any fixed value of p.

One proves these results by standardizing explicit models.

Standardizing explicit models
Theorem. There is a polynomial-time
algorithm that on input p, n, and an explicit model A for a field of size p^{n}, computes the standard model for a field of size p^{n} as well as an isomorphism ϕ_{A} of A with the standard model.

Standardizing explicit models

Theorem. There is a polynomial-time
algorithm that on input p, n, and an explicit model A for a field of size p^{n}, computes the standard model for a field of size p^{n} as well as an isomorphism ϕ_{A} of A with the standard model.

Thus, standard models do not contain "hidden information".

Consistent isomorphisms between finite fields
Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^{n}, computes in time at most $(n+\log p)^{c}$ a field isomorphism
$\phi_{A, B}: A \rightarrow B$, and that has the property $\phi_{A, C}=\phi_{B, C} \circ \phi_{A, B}$ whenever A, B, C are explicit models for finite fields of the same size.

Proof. Take $\phi_{A, B}=\phi_{B}^{-1} \circ \phi_{A}$.

Compatibility between standard models
Let the basis vectors $e_{0}, e_{1}, \ldots, e_{n-1}$
of the standard model of size p^{n} be renumbered as $\epsilon_{0}, \epsilon_{1 / n}, \ldots, \epsilon_{(n-1) / n}$.

Compatibility between standard models
Let the basis vectors $e_{0}, e_{1}, \ldots, e_{n-1}$
of the standard model of size p^{n} be renumbered as $\epsilon_{0}, \epsilon_{1 / n}, \ldots, \epsilon_{(n-1) / n}$.

Then for each m dividing n, there is a field embedding of the standard model of size p^{m} into the standard model of size p^{n} that maps ϵ_{s} to ϵ_{s} for each $s \in\{0,1 / m, \ldots,(m-1) / m\}$.

The standard algebraic closure
Taking the union over n, one obtains
the standard algebraic closure $\overline{\mathbf{F}}_{p}$ of \mathbf{F}_{p}, with \mathbf{F}_{p}-basis $\left(\epsilon_{s}\right)_{s \in \mathbf{Q} \cap[0,1)}$.

The standard algebraic closure
Taking the union over n, one obtains the standard algebraic closure $\overline{\mathbf{F}}_{p}$ of \mathbf{F}_{p}, with \mathbf{F}_{p}-basis $\left(\epsilon_{s}\right)_{s \in \mathbf{Q} \cap[0,1)}$.

For each

$$
\alpha=\sum_{s \in \mathbf{Q} \cap[0,1)}^{<\infty} c_{s} \epsilon_{s} \in \overline{\mathbf{F}}_{p} \quad\left(c_{s} \in \mathbf{F}_{p}\right)
$$

the degree of α over \mathbf{F}_{p} is the least common denominator of $\left\{s: c_{s} \neq 0\right\}$.

Defining the standard model
Each $\mathbf{F}_{p^{n}}$ can be written as the tensor product over \mathbf{F}_{p} of fields $\mathbf{F}_{p^{r k}}$, with r^{k} ranging over all prime powers exactly dividing n.

Defining the standard model
Each $\mathbf{F}_{p^{n}}$ can be written as the tensor product over \mathbf{F}_{p} of fields $\mathbf{F}_{p^{r^{k}}}$, with r^{k} ranging over all prime powers exactly dividing n.

Hence we may restrict to the case
$n=r^{k}$, with r prime and $k \in \mathbf{Z}_{>0}$.

Defining the standard model
To define the standard model for $\mathbf{F}_{p^{n}}$, one may restrict to the case $n=r^{k}$, with r prime and $k \in \mathbf{Z}_{>0}$.

For any two primes p and r, we shall define a tower of degree r extensions

$$
\mathbf{F}_{p} \subset \mathbf{F}_{p^{r}} \subset \mathbf{F}_{p^{r^{2}}} \subset \ldots
$$

Defining the standard model
To define the standard model for $\mathbf{F}_{p^{n}}$, one may restrict to the case $n=r^{k}$, with r prime and $k \in \mathbf{Z}_{>0}$.

For any two primes p and r, we shall define a tower of degree r extensions

$$
\mathbf{F}_{p} \subset \mathbf{F}_{p^{r}} \subset \mathbf{F}_{p^{r^{2}}} \subset \ldots
$$

Two cases: $r \neq p$ and $r=p$.

Towers of quadratic extensions
Theorem. Let p be an odd prime,
let $2^{l} \|\left(p^{2}-1\right) / 8$, and let $\alpha_{i} \in \overline{\mathbf{F}}_{p}$
($i=0,1,2, \ldots$) satisfy

$$
\alpha_{0}=0, \quad \alpha_{i+1}^{2}=2+\alpha_{i} \quad(i \geq 0)
$$

Then $\alpha_{0}, \ldots, \alpha_{l}$ are in \mathbf{F}_{p}, and

$$
\left[\mathbf{F}_{p}\left(\alpha_{l+k}\right): \mathbf{F}_{p}\right]=2^{k} \quad(k \geq 0)
$$

Towers of quadratic extensions
Theorem. Let p be an odd prime,
let $2^{l} \|\left(p^{2}-1\right) / 8$, and let $\alpha_{i} \in \overline{\mathbf{F}}_{p}$
($i=0,1,2, \ldots$) satisfy

$$
\alpha_{0}=0, \quad \alpha_{i+1}^{2}=2+\alpha_{i} \quad(i \geq 0)
$$

Then $\alpha_{0}, \ldots, \alpha_{l}$ are in \mathbf{F}_{p}, and

$$
\left[\mathbf{F}_{p}\left(\alpha_{l+k}\right): \mathbf{F}_{p}\right]=2^{k} \quad(k \geq 0)
$$

The proof makes use of

$$
\alpha_{i}=\zeta_{2^{i+2}}+\zeta_{2^{i+2}}^{-1} \quad(i \geq 0)
$$

The standard model for p odd, $n=2^{k}$
Suppose in addition

$$
\alpha_{i} \in\{0,1, \ldots,(p-1) / 2\}
$$

$$
\text { for } 0 \leq i \leq l
$$

The standard model for p odd, $n=2^{k}$
Suppose in addition

$$
\alpha_{i} \in\{0,1, \ldots,(p-1) / 2\}
$$

for $0 \leq i \leq l$.
Make $\mathbf{F}_{p}^{2^{k}}=\bigoplus_{i=0}^{2^{k}-1} \mathbf{F}_{p} \cdot \epsilon_{i / 2^{k}}$ into a
field by the vector space embedding
$\mathbf{F}_{p}^{2^{k}} \rightarrow \overline{\mathbf{F}}_{p}$ that maps ϵ_{s} to $\prod_{j \in S} \alpha_{l+j}$
if $s=\sum_{j \in S} 2^{-j}$.

The standard model for p odd, $n=2^{k}$
Suppose in addition

$$
\alpha_{i} \in\{0,1, \ldots,(p-1) / 2\}
$$

for $0 \leq i \leq l$.
Make $\mathbf{F}_{p}^{2^{k}}=\bigoplus_{i=0}^{2^{k}-1} \mathbf{F}_{p} \cdot \epsilon_{i / 2^{k}}$ into a
field by the vector space embedding
$\mathbf{F}_{p}^{2^{k}} \rightarrow \overline{\mathbf{F}}_{p}$ that maps ϵ_{s} to $\prod_{j \in S} \alpha_{l+j}$
if $s=\sum_{j \in S} 2^{-j}$.
That is the standard model.

Example
For $p=31, n=4$ one finds $l=3$, $\alpha_{0}=0, \alpha_{1}=8, \alpha_{2}=14, \alpha_{3}=4$.

Example
For $p=31, n=4$ one finds $l=3$,
$\alpha_{0}=0, \alpha_{1}=8, \alpha_{2}=14, \alpha_{3}=4$.
The field structure on

$$
\mathbf{F}_{31}^{4}=\mathbf{F}_{31} \cdot \epsilon_{0} \oplus \mathbf{F}_{31} \cdot \epsilon_{1 / 4} \oplus \mathbf{F}_{31} \cdot \epsilon_{1 / 2} \oplus \mathbf{F}_{31} \cdot \epsilon_{3 / 4}
$$

is determined by

$$
\begin{aligned}
& \epsilon_{0}=1, \quad \epsilon_{1 / 2}^{2}=6 \quad\left(\text { since } \epsilon_{1 / 2} \mapsto \alpha_{4}\right) \\
& \epsilon_{1 / 4}^{2}=2+\epsilon_{1 / 2} \quad\left(\text { since } \epsilon_{1 / 4} \mapsto \alpha_{5}\right) \\
& \epsilon_{1 / 4} \cdot \epsilon_{1 / 2}=\epsilon_{3 / 4}
\end{aligned}
$$

Standardizing explicit models
Theorem. There is a polynomial-time
algorithm that on input p, n, and an explicit model A for a field of size p^{n}, computes the standard model for a field of size p^{n} as well as an isomorphism ϕ_{A} of A with the standard model.

Standardizing quadratic towers
Let A be an explicit model for a field of size p^{n}, with p odd and $n=2^{k}, k>0$.

Standardizing quadratic towers
Let A be an explicit model for a field of size p^{n}, with p odd and $n=2^{k}, k>0$.

Using linear algebra one can find $x \in A$ with $x^{p}=-x$ and $x \neq 0$. Then x^{2} is a non-square in \mathbf{F}_{p}, which can be used to solve quadratic equations in A.

Standardizing quadratic towers
Using linear algebra one can find $x \in A$ with $x^{p}=-x$ and $x \neq 0$. Then x^{2} is a non-square in \mathbf{F}_{p}, which can be used to solve quadratic equations in A.

Hence one can find $\alpha_{i} \in A$ for $i \leq l+k$
with $\alpha_{0}=0, \alpha_{i+1}^{2}=2+\alpha_{i} \quad(i \geq 0)$,
$\alpha_{i} \in\{0,1, \ldots,(p-1) / 2\} \quad(0 \leq i \leq l)$
and identify the standard model with A.

Towers of cubic extensions
For $n=3^{k}, p \neq 3$, one can proceed similarly, replacing

$$
\begin{aligned}
& 2^{l} \|\left(p^{2}-1\right) / 8 \\
& \alpha_{0}=0, \quad \alpha_{i+1}^{2}=2+\alpha_{i}
\end{aligned}
$$

by

$$
\begin{aligned}
& 3^{l} \|\left(p^{2}-1\right) / 3 \\
& \alpha_{0}=-1, \quad \alpha_{i+1}^{3}=3 \alpha_{i+1}+\alpha_{i}
\end{aligned}
$$

One has $\alpha_{i}=\zeta_{3^{i+1}}+\zeta_{3^{i+1}}^{-1} \quad(i \geq 0)$.

Towers of degree r extensions
For $n=r^{k}, r \geq 5$ prime, and $p \neq r$, one uses $r^{l} \|\left(p^{r-1}-1\right) / r$, and each α_{i} is replaced by a system of suitably chosen Gaussian periods.

Roots of unity
Let r be prime, and let the ring
$A=\mathbf{Z}\left[\zeta_{r}, \zeta_{r^{2}}, \ldots\right]$ be defined
by the relations
$\sum_{i=0}^{r-1} \zeta_{r}^{i}=0, \quad \zeta_{r^{i+1}}^{r}=\zeta_{r^{i}} \quad(i \geq 0)$.

Roots of unity
Let r be prime, and let the ring
$A=\mathbf{Z}\left[\zeta_{r}, \zeta_{r^{2}}, \ldots\right]$ be defined
by the relations
$\sum_{i=0}^{r-1} \zeta_{r}^{i}=0, \quad \zeta_{r^{i+1}}^{r}=\zeta_{r^{i}} \quad(i \geq 0)$.
Then Aut $A \cong \mathbf{Z}_{r}^{*}=\Delta \times \Gamma$, with
Δ cyclic of order $\operatorname{lcm}(2, r-1)$ and
$\Gamma=1+2 r \mathbf{Z}_{r} \cong \mathbf{Z}_{r}$.

An extension with group \mathbf{Z}_{r}
Put $B=A^{\Delta}=\{x \in A: \forall \sigma \in \Delta: \sigma x=x\}$.
One has Aut $B \cong \Gamma \cong \mathbf{Z}_{r}$, and there are subrings

$$
\mathbf{Z}=B_{0} \subset B_{1} \subset \ldots \subset \bigcup_{i \geq 0} B_{i}=B
$$

with $\left[B_{i+1}: B_{i}\right]=r \quad(i \geq 0)$.

An extension with group \mathbf{Z}_{r}
Put $B=A^{\Delta}=\{x \in A: \forall \sigma \in \Delta: \sigma x=x\}$.
One has Aut $B \cong \Gamma \cong \mathbf{Z}_{r}$, and there are subrings

$$
\mathbf{Z}=B_{0} \subset B_{1} \subset \ldots \subset \bigcup_{i \geq 0} B_{i}=B
$$

with $\left[B_{i+1}: B_{i}\right]=r \quad(i \geq 0)$.
For $r=2$ one has $B_{i}=\mathbf{Z}\left[\zeta_{2^{i+2}}+\zeta_{2^{i+2}}^{-1}\right]$, and for $r=3$ one has $B_{i}=\mathbf{Z}\left[\zeta_{3^{i+1}}+\zeta_{3^{i+1}}^{-1}\right]$.

For $r \geq 5$, the rings B_{i} are harder to describe.

Reducing modulo p
Theorem. Let $p \neq r$ be primes, and
let r^{l} be the largest power of r dividing
$\left(p^{r-1}-1\right) / r$ if $r>2$ and $\left(p^{2}-1\right) / 8$ if $r=2$.
Then the number of prime ideals $\mathfrak{p} \subset B_{l}$
with $p \in \mathfrak{p}$ equals r^{l}. Also, for any such \mathfrak{p}
and any $k \geq 0$ the ring $B_{l+k} \otimes_{B_{l}}\left(B_{l} / \mathfrak{p}\right)$
is a field of degree r^{k} over \mathbf{F}_{p}.

Standard models for $n=r^{k}, p \neq r$
Normalizing the choice of \mathfrak{p}, and choosing explicit generators for the ring extensions

$$
B_{l} \subset B_{l+1} \subset B_{l+2} \subset \ldots
$$

(locally at \mathfrak{p}), one obtains the standard models for finite fields of degree a power of r and characteristic $p \neq r$.

Standard models for $n=r^{k}, p \neq r$
Normalizing the choice of \mathfrak{p}, and choosing explicit generators for the ring extensions

$$
B_{l} \subset B_{l+1} \subset B_{l+2} \subset \ldots
$$

(locally at \mathfrak{p}), one obtains the standard models for finite fields of degree a power of r and characteristic $p \neq r$.

The good algorithmic properties of these standard models are due to the connection with roots of unity.

The standard model for $n=p^{k}$
Theorem. Let p be an odd prime, and
let $\alpha_{i} \in \overline{\mathbf{F}}_{p}(i=0,1,2, \ldots)$ satisfy

$$
\begin{aligned}
& \alpha_{0}=1 \\
& \alpha_{i+1}^{p}=1+\alpha_{i} \cdot \sum_{j=1}^{p-1} \alpha_{i+1}^{j} \quad(i \geq 0) .
\end{aligned}
$$

Then for all $k \geq 0$ one has

$$
\left[\mathbf{F}_{p}\left(\alpha_{k}\right): \mathbf{F}_{p}\right]=p^{k} .
$$

The standard model for $n=p^{k}$
Theorem. Let p be an odd prime, and
let $\alpha_{i} \in \overline{\mathbf{F}}_{p}(i=0,1,2, \ldots)$ satisfy

$$
\begin{aligned}
& \alpha_{0}=1 \\
& \alpha_{i+1}^{p}=1+\alpha_{i} \cdot \sum_{j=1}^{p-1} \alpha_{i+1}^{j} \quad(i \geq 0)
\end{aligned}
$$

Then for all $k \geq 0$ one has

$$
\left[\mathbf{F}_{p}\left(\alpha_{k}\right): \mathbf{F}_{p}\right]=p^{k}
$$

Proof. Use the Artin-Schreier equations

$$
\left(\alpha_{i+1}-1\right)^{-p}-\left(\alpha_{i+1}-1\right)^{-1}+\alpha_{i}^{-1}=0 .
$$

Practical applications
Standard models have potential applications in computer algebra.

Currently used standardizations in
computational group theory depend
on Conway polynomials. These
have proven to be computationally
completely intractable.

Announcement
Diamant Intercity Seminar
Standard models of finite fields
September 26, 2008
Radboud Universiteit Nijmegen
Speakers:
Wieb Bosma, Bart de Smit,
Hendrik Lenstra, Frank Lübeck
http://www.math.leidenuniv.nl/
\sim desmit/ic/current.html

