STANDARD MODELS FOR FINITE FIELDS

Hendrik Lenstra

Joint work with Bart de Smit

Mathematisch Instituut, Universiteit Leiden

Finite fields

A finite field is a field E with $\#E < \infty$.

Finite fields, characteristic, degree

A finite field is a field E with $\#E < \infty$.

The characteristic char E of a finite field E is the additive order of 1 in E.

The degree deg E of E is the least number of generators of the additive group of E.

If char E = p and deg E = n then $\#E = p^n$.

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893). *There is a bijective map*

 $\{\text{finite fields}\} \cong \longrightarrow \{\text{primes}\} \times \mathbf{Z}_{>0}$ sending [E] to (char E, deg E).

A field of size p^n is denoted by \mathbf{F}_{p^n} or $\mathrm{GF}(p^n)$.

Classifying finite fields

Theorem (E. Galois, 1830; E. H. Moore, 1893). *There is a bijective map*

{finite fields}/ $\cong \longrightarrow \{\text{primes}\} \times \mathbb{Z}_{>0}$ sending [E] to (char E, deg E).

A field of size p^n is denoted by \mathbf{F}_{p^n} or $\mathrm{GF}(p^n)$.

Example: $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$.

The number of isomorphisms between two fields of size p^n equals n, so for $n \ge 2$ a field of size p^n is not uniquely unique.

Explicit models for finite fields

An *explicit model* for a finite field of size p^n is a field with underlying additive group $\mathbf{F}_p^n = \mathbf{F}_p \times \mathbf{F}_p \times \ldots \times \mathbf{F}_p$.

Explicit models for finite fields

An *explicit model* for a finite field of size p^n is a field with underlying additive group $\mathbf{F}_p^n = \mathbf{F}_p \times \mathbf{F}_p \times \dots \times \mathbf{F}_p$. If $\mathbf{F}_p^n = \bigoplus_{i=0}^{n-1} \mathbf{F}_p \cdot e_i$, then $e_i \cdot e_j = \sum_{k=0}^{n-1} a_{ijk} e_k$ for certain $a_{ijk} \in \mathbf{F}_p$.

Explicit models for finite fields

An *explicit model* for a finite field of size p^n is a field with underlying additive group $\mathbf{F}_p^n = \mathbf{F}_p \times \mathbf{F}_p \times \dots \times \mathbf{F}_p$. If $\mathbf{F}_p^n = \bigoplus_{i=0}^{n-1} \mathbf{F}_p \cdot e_i$, then $e_i \cdot e_j = \sum_{k=0}^{n-1} a_{ijk} e_k$ for certain $a_{ijk} \in \mathbf{F}_p$.

Exercise. The number of such explicit models equals $\left(\prod_{i=0}^{n-1} (p^n - p^i)\right)/n$.

Specifying finite fields numerically

For use in algorithms, an explicit model is supposed to be specified by the system of n^3 numbers $a_{ijk} \in \mathbf{F}_p = \{0, 1, \dots, p-1\}.$

Space: $O(n^3 \log p)$.

Specifying finite fields numerically

For use in algorithms, an explicit model is supposed to be specified by the system of n^3 numbers $a_{ijk} \in \mathbf{F}_p = \{0, 1, \dots, p-1\}.$ Space: $O(n^3 \log p)$.

A field homomorphism $\mathbf{F}_p^m \to \mathbf{F}_p^n$ between explicit models is supposed to be specified by an $n \times m$ -matrix over \mathbf{F}_p .

Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^n , computes in time at most $(n + \log p)^c$ a field isomorphism $\phi_{A,B}: A \to B$,

Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^n , computes in time at most $(n + \log p)^c$ a field isomorphism $\phi_{A,B}: A \to B$, and that has the property $\phi_{A,C} = \phi_{B,C} \circ \phi_{A,B}$ whenever A, B, C are explicit models for finite fields of the same size.

Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^n , computes in time at most $(n + \log p)^c$ a field isomorphism $\phi_{A,B}: A \to B$, and that has the property $\phi_{A,C} = \phi_{B,C} \circ \phi_{A,B}$ whenever A, B, C are explicit models for finite fields of the same size.

One has $\phi_{A,A} = \mathrm{id}_A$ and $\phi_{B,A} = \phi_{A,B}^{-1}$.

Standard models

Of all $\left(\prod_{i=0}^{n-1}(p^n-p^i)\right)/n$ explicit models for a field of size p^n , one is called the *standard model*.

Standard models

Of all $\left(\prod_{i=0}^{n-1}(p^n-p^i)\right)/n$ explicit models for a field of size p^n , one is called the *standard model*.

The good algorithmic properties of the standard model are easier to explain than its definition. Computing the standard model

Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^n . Computing the standard model

Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^n .

This is valid if the generalized Riemann hypothesis is true; probabilistically; and for any fixed value of p. Computing the standard model

Conjecture. There is a polynomial-time algorithm that on input p and n computes the standard model for a field of size p^n .

This is valid if the generalized Riemann hypothesis is true; probabilistically; and for any fixed value of p.

One proves these results by *standardizing explicit models*.

Standardizing explicit models

Theorem. There is a polynomial-time algorithm that on input p, n, and an explicit model A for a field of size p^n , computes the standard model for a field of size p^n as well as an isomorphism ϕ_A of A with the standard model.

Standardizing explicit models

Theorem. There is a polynomial-time algorithm that on input p, n, and an explicit model A for a field of size p^n , computes the standard model for a field of size p^n as well as an isomorphism ϕ_A of A with the standard model.

Thus, standard models do not contain "hidden information".

Theorem. There is, for some $c \in \mathbf{R}_{>0}$, an algorithm that on input p, n, and two explicit models A, B for fields of size p^n , computes in time at most $(n + \log p)^c$ a field isomorphism $\phi_{A,B}: A \to B$, and that has the property $\phi_{A,C} = \phi_{B,C} \circ \phi_{A,B}$ whenever A, B, C are explicit models for finite fields of the same size.

Proof. Take $\phi_{A,B} = \phi_B^{-1} \circ \phi_A$.

Compatibility between standard models

Let the basis vectors $e_0, e_1, \ldots, e_{n-1}$ of the standard model of size p^n be renumbered as $\epsilon_0, \epsilon_{1/n}, \ldots, \epsilon_{(n-1)/n}$.

Compatibility between standard models

Let the basis vectors $e_0, e_1, \ldots, e_{n-1}$ of the standard model of size p^n be renumbered as $\epsilon_0, \epsilon_{1/n}, \ldots, \epsilon_{(n-1)/n}$.

Then for each m dividing n, there is a field embedding of the standard model of size p^m into the standard model of size p^n that maps ϵ_s to ϵ_s for each $s \in \{0, 1/m, \dots, (m-1)/m\}.$ The standard algebraic closure

Taking the union over n, one obtains the standard algebraic closure $\overline{\mathbf{F}}_p$ of \mathbf{F}_p , with \mathbf{F}_p -basis $(\epsilon_s)_{s \in \mathbf{Q} \cap [0,1)}$.

The standard algebraic closure

Taking the union over n, one obtains the standard algebraic closure $\overline{\mathbf{F}}_p$ of \mathbf{F}_p , with \mathbf{F}_p -basis $(\epsilon_s)_{s \in \mathbf{Q} \cap [0,1)}$.

For each

$$\alpha = \sum_{s \in \mathbf{Q} \cap [0,1)}^{<\infty} c_s \epsilon_s \in \bar{\mathbf{F}}_p \quad (c_s \in \mathbf{F}_p),$$

the degree of α over \mathbf{F}_p is the least common denominator of $\{s : c_s \neq 0\}$.

Each \mathbf{F}_{p^n} can be written as the tensor product over \mathbf{F}_p of fields $\mathbf{F}_{p^{r^k}}$, with r^k ranging over all prime powers exactly dividing n.

Each \mathbf{F}_{p^n} can be written as the tensor product over \mathbf{F}_p of fields $\mathbf{F}_{p^{r^k}}$, with r^k ranging over all prime powers exactly dividing n.

Hence we may restrict to the case $n = r^k$, with r prime and $k \in \mathbb{Z}_{>0}$.

To define the standard model for \mathbf{F}_{p^n} , one may restrict to the case $n = r^k$, with r prime and $k \in \mathbf{Z}_{>0}$.

For any two primes p and r, we shall define a tower of degree r extensions

$$\mathbf{F}_p \subset \mathbf{F}_{p^r} \subset \mathbf{F}_{p^{r^2}} \subset \dots$$

To define the standard model for \mathbf{F}_{p^n} , one may restrict to the case $n = r^k$, with r prime and $k \in \mathbf{Z}_{>0}$.

For any two primes p and r, we shall define a tower of degree r extensions

 $\mathbf{F}_p \subset \mathbf{F}_{p^r} \subset \mathbf{F}_{p^{r^2}} \subset \dots$

Two cases: $r \neq p$ and r = p.

Towers of quadratic extensions

Theorem. Let p be an odd prime, let $2^{l} || (p^{2} - 1)/8$, and let $\alpha_{i} \in \overline{\mathbf{F}}_{p}$ (i = 0, 1, 2, ...) satisfy $\alpha_{0} = 0, \quad \alpha_{i+1}^{2} = 2 + \alpha_{i} \quad (i \ge 0).$ Then $\alpha_{0}, \ldots, \alpha_{l}$ are in \mathbf{F}_{p} , and $[\mathbf{F}_{p}(\alpha_{l+k}) : \mathbf{F}_{p}] = 2^{k} \quad (k \ge 0).$

Towers of quadratic extensions

Theorem. Let p be an odd prime, let $2^{l} || (p^{2} - 1)/8$, and let $\alpha_{i} \in \overline{\mathbf{F}}_{p}$ (i = 0, 1, 2, ...) satisfy $\alpha_{0} = 0, \quad \alpha_{i+1}^{2} = 2 + \alpha_{i} \quad (i \ge 0).$ Then $\alpha_{0}, \ldots, \alpha_{l}$ are in \mathbf{F}_{p} , and $[\mathbf{F}_{p}(\alpha_{l+k}) : \mathbf{F}_{p}] = 2^{k} \quad (k \ge 0).$

The proof makes use of

$$\alpha_i = \zeta_{2^{i+2}} + \zeta_{2^{i+2}}^{-1} \quad (i \ge 0).$$

The standard model for p odd, $n = 2^k$

Suppose in addition

 $\alpha_i \in \{0, 1, \dots, (p-1)/2\}$ for $0 \le i \le l$. The standard model for p odd, $n = 2^k$

Suppose in addition

$$\alpha_i \in \{0, 1, \dots, (p-1)/2\}$$

for $0 \leq i \leq l$.

Make $\mathbf{F}_p^{2^k} = \bigoplus_{i=0}^{2^k - 1} \mathbf{F}_p \cdot \epsilon_{i/2^k}$ into a field by the vector space embedding $\mathbf{F}_p^{2^k} \to \bar{\mathbf{F}}_p$ that maps ϵ_s to $\prod_{j \in S} \alpha_{l+j}$ if $s = \sum_{j \in S} 2^{-j}$. The standard model for p odd, $n = 2^k$

Suppose in addition

$$\alpha_i \in \{0, 1, \dots, (p-1)/2\}$$

for $0 \leq i \leq l$.

Make $\mathbf{F}_p^{2^k} = \bigoplus_{i=0}^{2^k - 1} \mathbf{F}_p \cdot \epsilon_{i/2^k}$ into a field by the vector space embedding $\mathbf{F}_p^{2^k} \to \bar{\mathbf{F}}_p$ that maps ϵ_s to $\prod_{j \in S} \alpha_{l+j}$ if $s = \sum_{j \in S} 2^{-j}$.

That is the standard model.

Example

For p = 31, n = 4 one finds l = 3, $\alpha_0 = 0, \, \alpha_1 = 8, \, \alpha_2 = 14, \, \alpha_3 = 4.$

Example

For
$$p = 31$$
, $n = 4$ one finds $l = 3$,
 $\alpha_0 = 0, \, \alpha_1 = 8, \, \alpha_2 = 14, \, \alpha_3 = 4.$

The field structure on

$$\mathbf{F}_{31}^4 = \mathbf{F}_{31} \cdot \epsilon_0 \oplus \mathbf{F}_{31} \cdot \epsilon_{1/4} \oplus \mathbf{F}_{31} \cdot \epsilon_{1/2} \oplus \mathbf{F}_{31} \cdot \epsilon_{3/4}$$

is determined by

$$\epsilon_0 = 1, \quad \epsilon_{1/2}^2 = 6 \quad (\text{since } \epsilon_{1/2} \mapsto \alpha_4),$$

$$\epsilon_{1/4}^2 = 2 + \epsilon_{1/2} \quad (\text{since } \epsilon_{1/4} \mapsto \alpha_5),$$

$$\epsilon_{1/4} \cdot \epsilon_{1/2} = \epsilon_{3/4}.$$

Standardizing explicit models

Theorem. There is a polynomial-time algorithm that on input p, n, and an explicit model A for a field of size p^n , computes the standard model for a field of size p^n as well as an isomorphism ϕ_A of A with the standard model. Standardizing quadratic towers

Let A be an explicit model for a field of size p^n , with p odd and $n = 2^k$, k > 0.

Standardizing quadratic towers

Let A be an explicit model for a field of size p^n , with p odd and $n = 2^k$, k > 0.

Using linear algebra one can find $x \in A$ with $x^p = -x$ and $x \neq 0$. Then x^2 is a non-square in \mathbf{F}_p , which can be used to solve quadratic equations in A.

Standardizing quadratic towers

Using linear algebra one can find $x \in A$ with $x^p = -x$ and $x \neq 0$. Then x^2 is a non-square in \mathbf{F}_p , which can be used to solve quadratic equations in A.

Hence one can find
$$\alpha_i \in A$$
 for $i \leq l+k$
with $\alpha_0 = 0$, $\alpha_{i+1}^2 = 2 + \alpha_i$ $(i \geq 0)$,
 $\alpha_i \in \{0, 1, \dots, (p-1)/2\}$ $(0 \leq i \leq l)$
and identify the standard model with A .

Towers of cubic extensions

For $n = 3^k$, $p \neq 3$, one can proceed similarly, replacing

$$2^{l} ||(p^{2} - 1)/8,$$

 $\alpha_{0} = 0, \quad \alpha_{i+1}^{2} = 2 + \alpha_{i}$

by

(

$$\begin{aligned} 3^{l} \| (p^{2} - 1)/3, \\ \alpha_{0} &= -1, \quad \alpha_{i+1}^{3} = 3\alpha_{i+1} + \alpha_{i}. \end{aligned}$$

One has $\alpha_{i} &= \zeta_{3^{i+1}} + \zeta_{3^{i+1}}^{-1} \quad (i \ge 0). \end{aligned}$

Towers of degree r extensions

For $n = r^k$, $r \ge 5$ prime, and $p \ne r$, one uses $r^l || (p^{r-1} - 1)/r$, and each α_i is replaced by a system of suitably chosen Gaussian periods.

Roots of unity

Let r be prime, and let the ring $A = \mathbf{Z}[\zeta_r, \zeta_{r^2}, \ldots]$ be defined by the relations $\sum_{i=0}^{r-1} \zeta_r^i = 0, \quad \zeta_{r^{i+1}}^r = \zeta_{r^i} \quad (i \ge 0).$

Roots of unity

Let r be prime, and let the ring $A = \mathbf{Z}[\zeta_r, \zeta_{r^2}, \ldots]$ be defined by the relations $\sum_{i=0}^{r-1} \zeta_r^i = 0, \quad \zeta_{r^{i+1}}^r = \zeta_{r^i} \quad (i \ge 0).$ Then Aut $A \cong \mathbf{Z}_r^* = \Delta \times \Gamma$, with Δ cyclic of order lcm(2, r - 1) and

 $\Gamma = 1 + 2r\mathbf{Z}_r \cong \mathbf{Z}_r.$

An extension with group \mathbf{Z}_r

Put $B = A^{\Delta} = \{x \in A : \forall \sigma \in \Delta : \sigma x = x\}.$

One has Aut $B \cong \Gamma \cong \mathbf{Z}_r$, and there are subrings

$$\mathbf{Z} = B_0 \subset B_1 \subset \ldots \subset \bigcup_{i \ge 0} B_i = B$$

with $[B_{i+1} : B_i] = r \ (i \ge 0).$

An extension with group \mathbf{Z}_r

Put $B = A^{\Delta} = \{x \in A : \forall \sigma \in \Delta : \sigma x = x\}.$

One has Aut $B \cong \Gamma \cong \mathbf{Z}_r$, and there are subrings

$$\mathbf{Z} = B_0 \subset B_1 \subset \ldots \subset \bigcup_{i \ge 0} B_i = B$$

with $[B_{i+1} : B_i] = r \ (i \ge 0).$

For
$$r = 2$$
 one has $B_i = \mathbf{Z}[\zeta_{2^{i+2}} + \zeta_{2^{i+2}}^{-1}],$
and for $r = 3$ one has $B_i = \mathbf{Z}[\zeta_{3^{i+1}} + \zeta_{3^{i+1}}^{-1}].$

For $r \geq 5$, the rings B_i are harder to describe.

Reducing modulo p

Theorem. Let $p \neq r$ be primes, and let r^l be the largest power of r dividing $(p^{r-1}-1)/r$ if r > 2 and $(p^2-1)/8$ if r = 2. Then the number of prime ideals $\mathfrak{p} \subset B_l$ with $p \in \mathfrak{p}$ equals r^l . Also, for any such \mathfrak{p} and any $k \geq 0$ the ring $B_{l+k} \otimes_{B_l} (B_l/\mathfrak{p})$ is a field of degree r^k over \mathbf{F}_p . Standard models for $n = r^k$, $p \neq r$

Normalizing the choice of \mathfrak{p} , and choosing explicit generators for the ring extensions

$$B_l \subset B_{l+1} \subset B_{l+2} \subset \ldots$$

(locally at \mathfrak{p}), one obtains the standard models for finite fields of degree a power of r and characteristic $p \neq r$. Standard models for $n = r^k, \ p \neq r$

Normalizing the choice of \mathfrak{p} , and choosing explicit generators for the ring extensions

 $B_l \subset B_{l+1} \subset B_{l+2} \subset \ldots$

(locally at \mathfrak{p}), one obtains the standard models for finite fields of degree a power of r and characteristic $p \neq r$.

The good algorithmic properties of these standard models are due to the connection with roots of unity. The standard model for $n = p^k$

Theorem. Let p be an odd prime, and let $\alpha_i \in \bar{\mathbf{F}}_p$ (i = 0, 1, 2, ...) satisfy $\alpha_0 = 1,$ $\alpha_{i+1}^p = 1 + \alpha_i \cdot \sum_{j=1}^{p-1} \alpha_{i+1}^j$ $(i \ge 0).$ Then for all $k \ge 0$ one has $[\mathbf{F}_p(\alpha_k) : \mathbf{F}_p] = p^k.$ The standard model for $n = p^k$

Theorem. Let p be an odd prime, and let $\alpha_i \in \overline{\mathbf{F}}_p$ (i = 0, 1, 2, ...) satisfy $\alpha_0 = 1,$ $\alpha_{i+1}^p = 1 + \alpha_i \cdot \sum_{j=1}^{p-1} \alpha_{i+1}^j$ $(i \ge 0).$ Then for all $k \ge 0$ one has $[\mathbf{F}_p(\alpha_k) : \mathbf{F}_p] = p^k.$

Proof. Use the Artin-Schreier equations

$$(\alpha_{i+1} - 1)^{-p} - (\alpha_{i+1} - 1)^{-1} + \alpha_i^{-1} = 0.$$

Practical applications

Standard models have potential applications in computer algebra.

Currently used standardizations in computational group theory depend on *Conway polynomials*. These have proven to be computationally completely intractable.

Announcement

Diamant Intercity Seminar **Standard models of finite fields** September 26, 2008 *Radboud Universiteit Nijmegen*

Speakers:

Wieb Bosma, Bart de Smit, Hendrik Lenstra, Frank Lübeck