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Finite fields

A finite field is a field E with #E < ∞.



Finite fields, characteristic, degree

A finite field is a field E with #E < ∞.

The characteristic charE of a finite

field E is the additive order of 1 in E.

The degree deg E of E is the least number

of generators of the additive group of E.

If charE = p and deg E = n then #E = pn.



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,deg E).

A field of size pn is denoted by Fpn or GF(pn).



Classifying finite fields

Theorem (E. Galois, 1830; E.H. Moore, 1893).

There is a bijective map

{finite fields}/∼= −→ {primes} × Z>0

sending [E] to (charE,deg E).

A field of size pn is denoted by Fpn or GF(pn).

Example: Fp = Z/pZ.

The number of isomorphisms between

two fields of size pn equals n, so for n ≥ 2

a field of size pn is not uniquely unique.
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group Fn
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Explicit models for finite fields

An explicit model for a finite field of

size pn is a field with underlying additive

group Fn
p = Fp × Fp × . . . × Fp.

If Fn
p =

⊕n−1
i=0 Fp·ei, then

ei · ej =
∑n−1

k=0 aijkek

for certain aijk ∈ Fp.

Exercise. The number of such explicit

models equals
(
∏n−1

i=0 (pn − pi)
)

/n.



Specifying finite fields numerically

For use in algorithms, an explicit model

is supposed to be specified by the system

of n3 numbers aijk ∈ Fp = {0, 1, . . . , p − 1}.

Space: O(n3 log p).



Specifying finite fields numerically

For use in algorithms, an explicit model

is supposed to be specified by the system

of n3 numbers aijk ∈ Fp = {0, 1, . . . , p − 1}.

Space: O(n3 log p).

A field homomorphism Fm
p → Fn

p

between explicit models is supposed

to be specified by an n × m-matrix

over Fp.
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Theorem. There is, for some c ∈ R>0, an

algorithm that on input p, n, and two explicit

models A, B for fields of size pn, computes in

time at most (n + log p)c a field isomorphism

φA,B :A → B,
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Consistent isomorphisms between finite fields

Theorem. There is, for some c ∈ R>0, an

algorithm that on input p, n, and two explicit

models A, B for fields of size pn, computes in

time at most (n + log p)c a field isomorphism

φA,B :A → B, and that has the property

φA,C = φB,C ◦ φA,B whenever A, B, C are

explicit models for finite fields of the same size.

One has φA,A = idA and φB,A = φ−1
A,B .
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Standard models

Of all
(
∏n−1

i=0 (pn − pi)
)

/n explicit

models for a field of size pn, one

is called the standard model.

The good algorithmic properties

of the standard model are easier

to explain than its definition.
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Computing the standard model

Conjecture. There is a polynomial-time

algorithm that on input p and n computes

the standard model for a field of size pn.

This is valid if the generalized Riemann

hypothesis is true; probabilistically; and

for any fixed value of p.

One proves these results by standardizing

explicit models.



Standardizing explicit models

Theorem. There is a polynomial-time

algorithm that on input p, n, and an

explicit model A for a field of size pn,

computes the standard model for a field

of size pn as well as an isomorphism
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Standardizing explicit models

Theorem. There is a polynomial-time

algorithm that on input p, n, and an

explicit model A for a field of size pn,

computes the standard model for a field

of size pn as well as an isomorphism

φA of A with the standard model.

Thus, standard models do not contain

“hidden information”.



Consistent isomorphisms between finite fields

Theorem. There is, for some c ∈ R>0, an

algorithm that on input p, n, and two explicit

models A, B for fields of size pn, computes in

time at most (n + log p)c a field isomorphism

φA,B :A → B, and that has the property

φA,C = φB,C ◦ φA,B whenever A, B, C are

explicit models for finite fields of the same size.

Proof. Take φA,B = φ−1
B ◦ φA.



Compatibility between standard models

Let the basis vectors e0, e1, . . . , en−1

of the standard model of size pn be

renumbered as ǫ0, ǫ1/n, . . . , ǫ(n−1)/n.



Compatibility between standard models

Let the basis vectors e0, e1, . . . , en−1

of the standard model of size pn be

renumbered as ǫ0, ǫ1/n, . . . , ǫ(n−1)/n.

Then for each m dividing n, there is a

field embedding of the standard model

of size pm into the standard model of

size pn that maps ǫs to ǫs for each

s ∈ {0, 1/m, . . . , (m − 1)/m}.
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the standard algebraic closure F̄p of Fp,

with Fp-basis (ǫs)s∈Q∩[0,1).



The standard algebraic closure

Taking the union over n, one obtains

the standard algebraic closure F̄p of Fp,

with Fp-basis (ǫs)s∈Q∩[0,1).

For each

α =
<∞
∑

s∈Q∩[0,1)

csǫs ∈ F̄p (cs ∈ Fp),

the degree of α over Fp is the least

common denominator of {s : cs 6= 0}.
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Defining the standard model

To define the standard model for

Fpn , one may restrict to the case

n = rk, with r prime and k ∈ Z>0.

For any two primes p and r, we shall

define a tower of degree r extensions

Fp ⊂ Fpr ⊂ Fpr2 ⊂ . . . .

Two cases: r 6= p and r = p.



Towers of quadratic extensions

Theorem. Let p be an odd prime,

let 2l‖(p2 − 1)/8, and let αi ∈ F̄p

(i = 0, 1, 2, . . . ) satisfy

α0 = 0, α2
i+1 = 2 + αi (i ≥ 0).

Then α0, . . . , αl are in Fp, and

[Fp(αl+k) : Fp] = 2k (k ≥ 0).



Towers of quadratic extensions

Theorem. Let p be an odd prime,

let 2l‖(p2 − 1)/8, and let αi ∈ F̄p

(i = 0, 1, 2, . . . ) satisfy

α0 = 0, α2
i+1 = 2 + αi (i ≥ 0).

Then α0, . . . , αl are in Fp, and

[Fp(αl+k) : Fp] = 2k (k ≥ 0).

The proof makes use of

αi = ζ2i+2 + ζ−1
2i+2 (i ≥ 0).
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The standard model for p odd, n = 2k

Suppose in addition

αi ∈ {0, 1, . . . , (p − 1)/2}

for 0 ≤ i ≤ l.

Make F2k

p =
⊕2k−1

i=0 Fp·ǫi/2k into a

field by the vector space embedding

F2k

p → F̄p that maps ǫs to
∏

j∈S αl+j

if s =
∑

j∈S 2−j .

That is the standard model.
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For p = 31, n = 4 one finds l = 3,

α0 = 0, α1 = 8, α2 = 14, α3 = 4.



Example

For p = 31, n = 4 one finds l = 3,

α0 = 0, α1 = 8, α2 = 14, α3 = 4.

The field structure on

F4
31 = F31·ǫ0 ⊕ F31·ǫ1/4 ⊕ F31·ǫ1/2 ⊕ F31·ǫ3/4

is determined by

ǫ0 = 1, ǫ2
1/2 = 6 (since ǫ1/2 7→ α4),

ǫ2
1/4 = 2 + ǫ1/2 (since ǫ1/4 7→ α5),

ǫ1/4 · ǫ1/2 = ǫ3/4.
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Theorem. There is a polynomial-time

algorithm that on input p, n, and an

explicit model A for a field of size pn,
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of size pn as well as an isomorphism

φA of A with the standard model.
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non-square in Fp, which can be used

to solve quadratic equations in A.



Standardizing quadratic towers

Using linear algebra one can find x ∈ A

with xp = −x and x 6= 0. Then x2 is a

non-square in Fp, which can be used

to solve quadratic equations in A.

Hence one can find αi ∈ A for i ≤ l + k

with α0 = 0, α2
i+1 = 2 + αi (i ≥ 0),

αi ∈ {0, 1, . . . , (p − 1)/2} (0 ≤ i ≤ l)

and identify the standard model with A.



Towers of cubic extensions

For n = 3k, p 6= 3, one can proceed

similarly, replacing

2l‖(p2 − 1)/8,

α0 = 0, α2
i+1 = 2 + αi

by

3l‖(p2 − 1)/3,

α0 = −1, α3
i+1 = 3αi+1 + αi.

One has αi = ζ3i+1 + ζ−1
3i+1 (i ≥ 0).



Towers of degree r extensions

For n = rk, r ≥ 5 prime, and p 6= r,

one uses rl‖(pr−1 − 1)/r, and each αi

is replaced by a system of suitably

chosen Gaussian periods.



Roots of unity

Let r be prime, and let the ring

A = Z[ζr, ζr2 , . . .] be defined

by the relations
∑r−1

i=0 ζi
r = 0, ζr

ri+1 = ζri (i ≥ 0).



Roots of unity

Let r be prime, and let the ring

A = Z[ζr, ζr2 , . . .] be defined

by the relations
∑r−1

i=0 ζi
r = 0, ζr

ri+1 = ζri (i ≥ 0).

Then AutA ∼= Z∗
r = ∆ × Γ, with

∆ cyclic of order lcm(2, r − 1) and

Γ = 1 + 2rZr
∼= Zr.



An extension with group Zr

Put B = A∆ = {x ∈ A : ∀σ ∈ ∆ : σx = x}.

One has AutB ∼= Γ ∼= Zr, and there are

subrings

Z = B0 ⊂ B1 ⊂ . . . ⊂
⋃

i≥0 Bi = B

with [Bi+1 : Bi] = r (i ≥ 0).



An extension with group Zr

Put B = A∆ = {x ∈ A : ∀σ ∈ ∆ : σx = x}.

One has AutB ∼= Γ ∼= Zr, and there are

subrings

Z = B0 ⊂ B1 ⊂ . . . ⊂
⋃

i≥0 Bi = B

with [Bi+1 : Bi] = r (i ≥ 0).

For r = 2 one has Bi = Z[ζ2i+2 + ζ−1
2i+2 ],

and for r = 3 one has Bi = Z[ζ3i+1 + ζ−1
3i+1 ].

For r ≥ 5, the rings Bi are harder to describe.



Reducing modulo p

Theorem. Let p 6= r be primes, and

let rl be the largest power of r dividing

(pr−1 − 1)/r if r > 2 and (p2 − 1)/8 if r = 2.

Then the number of prime ideals p ⊂ Bl

with p ∈ p equals rl. Also, for any such p

and any k ≥ 0 the ring Bl+k ⊗Bl
(Bl/p)

is a field of degree rk over Fp.
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Normalizing the choice of p, and choosing

explicit generators for the ring extensions

Bl ⊂ Bl+1 ⊂ Bl+2 ⊂ . . .

(locally at p), one obtains the standard

models for finite fields of degree a power

of r and characteristic p 6= r.



Standard models for n = rk, p 6= r

Normalizing the choice of p, and choosing

explicit generators for the ring extensions

Bl ⊂ Bl+1 ⊂ Bl+2 ⊂ . . .

(locally at p), one obtains the standard

models for finite fields of degree a power

of r and characteristic p 6= r.

The good algorithmic properties of these

standard models are due to the connection

with roots of unity.



The standard model for n = pk

Theorem. Let p be an odd prime, and

let αi ∈ F̄p (i = 0, 1, 2, . . . ) satisfy

α0 = 1,

αp
i+1 = 1 + αi ·

∑p−1
j=1 αj

i+1 (i ≥ 0).

Then for all k ≥ 0 one has

[Fp(αk) : Fp] = pk.



The standard model for n = pk

Theorem. Let p be an odd prime, and

let αi ∈ F̄p (i = 0, 1, 2, . . . ) satisfy

α0 = 1,

αp
i+1 = 1 + αi ·

∑p−1
j=1 αj

i+1 (i ≥ 0).

Then for all k ≥ 0 one has

[Fp(αk) : Fp] = pk.

Proof. Use the Artin-Schreier equations

(αi+1 − 1)−p − (αi+1 − 1)−1 + α−1
i = 0.



Practical applications

Standard models have potential

applications in computer algebra.

Currently used standardizations in

computational group theory depend

on Conway polynomials. These

have proven to be computationally

completely intractable.
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