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Abstract. Metagenomics is an emerging field in which the power of
genome analysis is applied to entire communities of microbes. It is fo-
cused on the understanding of the mixture of genes (genomes) in a
community as whole. The gene prediction task is a well-known prob-
lem in genomics, and it remains an interesting computational challenge
in metagenomics too. A large variety of classifiers has been developed for
gene prediction though there is lack of an empirical evaluation regard-
ing the core machine learning techniques implemented in these tools.
In this work we present an empirical performance comparison of dif-
ferent classification strategies for gene prediction in metagenomic data.
This comparison takes into account distinct supervised learning strate-
gies: one lazy learner, two eager-learners and one ensemble learner. The
ensemble-based strategy has achieved the overall best result and it is
competitive with the prediction baselines of well-known metagenomics
tools.
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1 Introduction

Since the human genome project several computation strategies have been devel-
oped to shed a light on the amazing complexity of the complex human genome.
Completed in 2003, this international research e�ort provided, for the fist time,
the blueprint for building a human being. Nowadays, we are facing a new voyage
of discovery into the microorganism world. Microbial communities support all
life on Earth, and metagenomics is a revolutionary new approach to better un-
derstanding the microbial world. This new science opens doors to a large amount
of scientific exploration and can help understand some of the most complex med-
ical, agricultural, environmental, and economic challenges of today’s world [1,
2].

Metagenomics is the application of shotgun sequencing to DNA obtained
directly from an environmental sample or series of related samples, and it is also a



derivation of conventional microbial genomics, with the key di�erence being that
it bypasses the requirement for obtaining pure cultures for sequencing [3]. It is
focused on the understanding of the mixture of genes (genomes) in a community
as a whole [4]. The gene prediction task is a well-known problem in genomics,
and it remains an interesting computational challenge in metagenomics too.

Gene prediction is the procedure of finding protein and RNA coding sequences
in the sample DNA. Depending on the applicability and success of the assembly,
gene prediction can be done on post assembly contigs1, on reads from unassem-
bled metagenomes or on a mixture of contigs and individual unassembled reads.
There are two main strategies for gene prediction [3]: i) evidence-based gene-
calling methods use homology searches to find genes similar to those observed
previously (reference microbial genomes); and ii) ab initio gene-calling relies on
the intrinsic features of the DNA sequence to discriminate between coding and
noncoding regions, allowing for the identification of homologs in the available
databases. The former approach has two major drawbacks. Low values of simi-
larity to known sequences either due to evolutionary distance or due to the short
length of metagenomic coding sequences and the presence of sequence errors re-
strict the identification of homologs. In addition, novel genes without similarities
are completely ignored. The latter approach usually employs Machine Learning
(ML) algorithms which can smooth the previous gene prediction drawbacks. Still
this requires a proper use of sophisticated classification methods and careful se-
lection of potential DNA sequence features that could best discriminate between
coding and noncoding sequences.

A large variety of classifiers has been developed for gene prediction. The hid-
den Markov models (HMM) is the state-of-the-art ML technique used since the
90’s, and it is at the core of the pipeline called GeneMark.hmm [5]. Recently,
metagenomic pipelines have adopted new classification strategies such as i) sup-
port vector machines(SVM) [6] (MetaGUN) and ii) artificial neural networks
(ANN) [7](Orphelia). As an example, in Orphelia first a linear discrimination
analysis takes place to select candidate features followed by ANN that calculates
the probability of an ORF2 being a potential coding sequence.

Applications of supervised machine learning methodologies continue to grow
in the scientific literature across several domains. Jensen and Bateman conducted
a careful text-mining over several biomedical articles in PubMed and they ob-
served a moderate decrease in the use of both ANN and HMM, and an increase
in usage of SVM and Random Forest in the literature [8]. This study takes into
account, basically, the citation of these ML methods. In this work we present an
empirical performance evaluation of the core ML techniques explored for gene
prediction by some of the most used metagenomic pipelines.

1 A contig is a continuous sequence resulting from the assembly of overlapping small
DNA fragments (sequence reads).

2 An ORF is a sequence of DNA that starts with a start codon, usually “ATG", and
ends with any of the three termination codons (TAA, TAG, TGA).



2 Materials and Methods

In Figure 1 we depict the overall architecture devised for the comparison of the
classifiers. It follows the classical steps of data preprocessing, learning and test.
First, coding and non-coding sequences are extracted for the identification of
potential sequence features, and next classification models are built for further
prediction analysis (Figure 1-A). Once new sequences are retrieved it is possible
to classify them in accordance with the classification models, and thus, an appre-
ciation regarding whether it is a coding sequence or not can be done(Figure 1-B).

Fig. 1: The overall architecture devised for the comparison of the classification
methods.

2.1 Classification methods

We have selected four classification strategies for the comparison study. These
methods employ distinct learning strategies, and ideally, each one has a particu-
lar manner to generalize the search space. The gene prediction problem is simply
a binary classification or concept learning (positive class: coding sequence and



negative class: no coding sequence). This comparison takes into account distinct
supervised learning strategies: one lazy learner (KNN: K-Nearest Neighbors),
two eager-learner (SVM: Support Vector Machines and ANN: Artificial Neural
Networks) and one ensemble learner (RF: Random Forest).

Random forest (RF) It is a well-known ensemble approach for classification
tasks proposed by Breiman [9]. Its basis comes from the combination of tree-
structured classifiers with the randomness and robustness provided by bagging
and random feature selection. Several decision trees are trained with random
bootstrap samples from the original data set ( 2/3 of data) and afterwards,
results are combined into a single prediction: for classification tasks, by means of
voting; for regression tasks, by averaging the results of all trees. The fact that the
predicted class represents the mode of all the classes output by individual trees
gives robustness to this ensemble classifier in relation to a single tree classifier.
Given its basis on an ensemble learning it is less impacted by overfitting, making
it a potential candidate ML approach in bioinformatics problems [10]. Though,
as far as we know it has not been explored as a solution in the gene prediction
of metagenomic sequences.

K-Nearest Neighbors (KNN) Nearest-neighbor classifiers are based on learn-
ing by analogy, by comparing a given test instance with training instances that
are similar to it [11]. The training instances are described by n features. Each
instance represents a point in a n-dimensional space. Thus, all of the training
instances are stored in an n-dimensional pattern space. When an unknown in-
stance is provided, a k-nearest-neighbor classifier searches the pattern space for
the k training instances closest to the unknown instance. Closeness is usually
defined in terms of a distance metric, such as Euclidean distance. K-nearest
neighbors are also used as a baseline strategy for comparison among distinct
classifiers.

Artificial Neural Networks (ANN) A neural network is a set of connected
input/output units in which each connection has a weight associated with it.
During the learning stage, the network learns by adjusting the weights with aims
to predict the correct class label of the input instances. ANN also involves long
training times and are also criticized for their poor interpretability. Nevertheless,
it has a higher tolerance to noisy data as well as the ability to classify patterns
on which it has not been trained. Backpropagation is the most popular ANN
algorithm and it performs learning on a multilayer feed-forward neural network
[11]. A multilayer feed-forward neural network basically consists of an input
layer, one or more hidden layers, and an output layer.

Support Vector Machines (SVM) It uses a linear model to implement non-
linear class boundaries. SVM transform the input using a nonlinear mapping,
thus, turning the instance space into a new space. A linear model (the maximum



margin hyperplane) constructed in the new space can represent a nonlinear de-
cision boundary in the original space. The maximum margin hyperplane is the
one that gives the greatest separation between classes. The instances that are
closest to this hyperplane, so the ones with minimum distance to it, are called
support vectors. Other kernel functions can be used instead to implement distinct
nonlinear mappings. Two that are often suggested are the radial basis functions

(RBF) kernel and the sigmoid kernel. These functions do not present large dif-
ferences in terms of prediction accuracy, though this observation depends on the
application domain. SVM has been used extensively in several domains, and in
some cases it outperforms ANN [12].

2.2 Feature engineering

Feature engineering is at the core of classification strategies and it is a crucial
step on prediction modeling. Essentially, two di�erent types of information are
currently used to try to find genes in a genomic sequence: i) extrinsinc content

sensors explore a su�cient similarity between a genomic sequence region and a
protein or DNA sequence present in a database in order to determine whether the
region is transcribed and/or coding; and ii) intrinsic content sensors proposed
particularly for prokaryotic genomes, in which features that characterize the
sequence as “coding” for a protein are carefully calculated for discrimination
analysis [13, 14]. Examples of content sensors are: nucleotide composition and
especially (G + C) content (introns being more A/T-rich than exons, especially
in plants), codon composition, hexamer frequency, base occurrence periodicity,
etc. Hexamer usage has been widely exploited by a large number of algorithms
through di�erent methods [14]. Table 1 presents six content sensors that are
strongly used by gene prediction tools in metagenomics. For the comparison
study we focused on three main types of features: (G + C) content, length and
codon usage. From this information we derived a total of six features as follows:
1) GC content, 2) GC content in the first position of each codon, 3) GC content
in the second position of each codon, 4) GC content in the third position of
each codon, 5) the sequence length, 6) the codon usage variance among the 61
monocodons.

GC
Content Length Codon

usage
Dicodon

usage TIS Aminoacid
usage

Orphelia x x x x x
MetaGUN x x x
MGC x x x x x x
MetaGene x x x
F ragGeneScan x

Table 1. Content sensors features used [x] by gene prediction tools in metagenomics.



GC-content It is the percentage of guanine and cytosine bases in all bases of
a sequence. It has been used extensively by several gene prediction tools. This
utilization is mainly due to the fact that coding regions present, on average, a
higher GC content than on non coding sequences [15]. Di�erently from previous
studies (see Table 1), we calculated the total level of GC content, and the content
at the first, second and third monocodon positions with the aim to evaluate their
impact in the gene prediction task. In this way, four features are derived from
the GC content.

Length Another feature for discrimination between coding and non-coding se-
quence is its length. The intergenic regions are usually smaller than coding re-
gions[14].

Codon Usage Perhaps the most important features for the discrimination be-
tween coding and non-coding sequences can be calculated from codon usage [16],
in particular the frequencies of 43 monocodons. These frequencies represent the
occurrences of successive trinucleotides (non-overlapping). For the characteriza-
tion of monocodon usage, we compute the variance among the 61 monocodons,
since gene sequences do not contain stop codons.

2.3 Training Data

The training data is basically DNA sequences having both coding sequences
(positive) and intergenic regions (negative) instances. Our approach to compare
the four classification methods is based on a learning scheme over eight prokary-
otic genomes, namely two Archaeas and six Bacterias, available in GenBank3

(Table 2). The choice of these organisms has to do with the experimental metage-
nomic data that will be evaluated while testing the predictive models. Thus,
either these organisms belong to the same branch of the evolutionary tree or
they are associated to Acid Mine Drainage biofilms (Section 2.4).

We have developed an algorithm to properly extract the coding and non-
coding regions, on both forward and reverse strands, from these eight “complete”
genomes. This algorithm was applied to regions with sequence lengths higher
than 59 bp. Sequences less than 60 bp are ignored since they are too short to
provide useful information [6]. Those originating from the annotated genes are
used as positive instances of coding sequences, whereas others are treated as
items of the non-coding class. After running this procedure we came up with a
total of 30144 sequences, being 10106 related to intergenic regions and remaining
20038 of coding sequences.

2.4 Test Data

The metagenomic data selected for the comparison study is the Acid Mine
Drainage (AMD) biofilm [17], freely available at the site of NCBI 4. This biofilm
3 http://www.ncbi.nlm.nih.gov/news/10-22-2013-genbank-release198
4 http://www.ncbi.nlm.nih.gov/books/NBK6860/



Species GenBank Acc.

Thermoplasma acidophilum * NC_002578
Thermoplasma volcanium * NC_002689
Acidimicrobium ferrooxidans NC_013124

Acidithiobacillus caldus NC_015850
Acidithiobacillus ferrooxidans NC_011206
Acidithiobacillus ferrivorans NC_015942

Candidatus Nitrospira defluvii NC_014355
Thermodesulfovibrio yellowstonii NC_011296

Table 2. The prokaryotic genomes used as reference for the training data. The “*”
symbol highlights the two Archaeas.

sequencing project was designed to explore the distribution and diversity of
metabolic pathways in acidophilic biofilms. Acidophilic biofilms are self-sustaining
communities that grow in the deep subsurface and receive no significant inputs
of fixed carbon or nitrogen from external sources. While some AMD is caused by
the oxidization of rocks rich in sulfide minerals, this is a very slow process and
most AMD is due directly to microbial activity [18]. More information regarding
the AMD study as well as environmental sequences, metadata and analysis can
be obtained at [17].

We have selected prokaryotic genomes associated to the same species found
in Tyson[17]. Thus, five genomes (2 Archaeas and 3 Bacterias) were extracted
from GenBank to create the test data (Table 3).

Species GenBank Acc.

FA: Ferroplasma acidarmanus * NC_021592
TA: Thermoplasmatales archaeon BRNA * NC_020892

LFI: Leptospirillum ferriphilum NC_018649
LFO: Leptospirillum ferrooxidans NC_017094

SA: Sulfobacillus acidophilus NC_015757

Table 3. The prokaryotic genomes used as reference for the test data. The “*” symbol
highlight the two Archaeas.

2.5 Measures of prediction performance

The classifiers will be evaluated through the evaluation of classical prediction
performance measures, namely, accuracy (ACC), specificity (SPE), sensitivity
(SEN) and Kappa. All these measures are easily calculated from the resulting
confusion matrix for each classifier. This matrix usually has two rows and two
columns that reports the number of false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN). Though we provide the results
for all these measures, we believe that Kappa is the most suitable measure to
compare distinct classifiers. Kappa measures how closely the instances labeled
by the classifiers matched the data labeled as ground truth, controling for the



ACC of a random classifier as measured by the expected accuracy. Thus, the
kappa for one classifier is properly comparable to others kappa’s classifiers for
the same classification task.

ACC = T P +T N
P +N (1)

SPE = T N
T N+F P (2)

SEN = T P
T P +F N (3)

Kappa = P r(a)≠P r(e)
1≠P r(e) (4)

3 Results and Discussion

3.1 Performance of the classifiers

The prediction modeling and evaluation was carried out with the caret R pack-
age [19]. We use the built-in tune() function for resampling and tuning to opti-
mize all classifiers parameters. The best values were as follows: i) RF (mtry 4),
KNN (k=5), ANN (size=5 and decay=0.1), SVML (C=0.5). The performance
measures were calculated from the average performance of three repetition of
a 10-fold cross validation scheme (Table 4). The most promising results were
obtained by the RF model using 200 trees (Figure 2).

ACC KAPPA

RF model 0.94 0.87

KNN model 0.87 0.70
ANN model 0.91 0.80

SVML model 0.88 0.74

Table 4. The average performance of the classifiers. The orange cells highlight the
best performance achieved by the RF classifier.



Fig. 2: RF has the best performance among all classifiers.

3.2 Comparison of classifiers using independent test data

In this section we present the performance comparison of the selected classifiers
using the independent test data discussed in Section 2.4. So, the main goal
was to evaluate how classifiers correctly classify the known coding sequences for
the species associated to the AMD metagenome. As we expected the ensemble
learning classifier employed by RF has achieved the best performance among all
classifiers (Table 5 and Table 6). Ensembles are designed to increase the accuracy
of a single classifier by training several distinct classifiers and combine their
decisions to output a single class label. Given such accuracy-oriented design,
ensemble learning algorithms are less likely to overfitting when dealing with
imbalanced data.

The SVM has an overall performance similar to KNN (base classifier), and
this is partially due to the generalization carried by a linear SVM. Probably a
radial SVM model would be able to generalize better the search space. On the
other hand, the other eager learner, ANN, presents competitive results. As an
example, ANN outperforms RF for the LFI specie (Kappa=0.9097).

Let us assume that we built a gene prediction method that is solely based on
a RF model, so the overall performance of our model would have SEN=0.91
for a “hypothetical” metagenome (as the one discussed in Section 2.4). Ta-
ble 7 presents a prediction baseline discussed in [6], where the MetaGUN tool,
based on a SVM classifier, outperforms the other two well-known gene prediction
pipelines. Though SVM would hypothetically outperform our RF model, it is



important to mention that our feature set is less complex than the one employed
by MetaGUN .

SEN SPE
Species RF ANN KNN SVML RF ANN KNN SVML
FA 0.9380 0.8801 0.6337 0.6521 0.9047 0.8642 0.9503 0.8662
LFI 0.8945 0.8783 0.8139 0.8203 0.9304 0.9316 0.9352 0.9276
LFO 0.8797 0.8469 0.7939 0.7743 0.9599 0.9628 0.9570 0.9504
SA 0.9317 0.9017 0.8145 0.8517 0.9433 0.9398 0.9486 0.9267
TA 0.9085 0.8408 0.7711 0.7642 0.9889 0.9679 0.9640 0.9522

Table 5. The comparison performance of classifiers in accordance to the SEN and SPE
measures. The highlighted cells show the best results.

ACC Kappa
Species RF ANN KNN SVML RF ANN KNN SVML
FA 0.9173 0.8702 0.8302 0.785 0.8275 0.7298 0.6182 0.5317
LFI 0.9156 0.9097 0.8854 0.8835 0.8256 0.9097 0.7599 0.7565
LFO 0.9263 0.9143 0.8888 0.8767 0.8472 0.8213 0.7666 0.741
SA 0.9383 0.9235 0.8913 0.8947 0.8741 0.8434 0.7746 0.7834
TA 0.957 0.9175 0.8875 0.9175 0.9089 0.8243 0.7577 0.737

Table 6. The comparison performance of classifiers in accordance to the ACC and
Kappa measures. The highlighted cells show the best results.

1200 bp 870 bp 535 bp 120 bp
Sen Spec Sen Spec Sen Spec Sen Spec

MetaGUN (SVM) 97.7 94,8 97.4 95.2 96.9 95.4 93.2 89.6
FragGeneScan (Markov Models) 95.7 87.3 95.5 88.0 95.2 88.4 90.4 82.1
Orphelia (Neural Network) 94.6 94.7 94.1 94.7 93.3 94.6 82.0 76.4

Table 7. The performance of three well-known pipelines for gene prediction in metage-
nomic data. The highlighted cells show the best results obtained for detecting the real
signal (gene).

4 Conclusions

Gene prediction is a well-known computational challenge in both genome and
metagenome analysis. This latter poses an even more di�cult problem since:
i) metagenomes are a mixture of several distinct genomes and ii) most of the
available genomes are not completed, so mainly draft genomes are available.
Therefore, the task of gene prediction is biased in the proper selection of potential



features in this complex domain as well as the choice of a robust machine learning
algorithm.

In this work we presented an empirical comparison of several well-known
classification methods applied to gene discovery in experimental metagenomic
data. Though the performance of the four base classifiers was good, the ensemble-
based strategy Random Forest has achieved the overall best result. As it can be
observed by the associated ML literature. Ensemble learning strategies such
as Random forest has been successfully applied on a large variety of business
and scientific applications. Basically such observation is due to the fact the
combination of models could be able to best generalize the hypothesis space.
Though the best approach to combine models continues an open problem in
ensemble learning research.

We plan to develop a new gene prediction pipeline having its basis on Random
Forest. To the extent of our knowledge there is no reference of gene prediction
algorithms based on a RF classifier.
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