

Australian Government

Department of Agriculture, Fisheries and Forestry

A STRATEGIC APPROACH TO THE MANAGEMENT OF ORNAMENTAL FISH IN AUSTRALIA

COMMUNICATION STRATEGY AND GREY LIST REVIEW -A REPORT TO OFMIG

DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY

Australian Government Bureau of Rural Sciences

A strategic approach to the management of ornamental fish in Australia

Communication strategy and grey list review – a report to OFMIG

Andy Moore, Nicholas Marton and Alex McNee

March 2010

© Commonwealth of Australia 2010

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General's Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.

The Australian Government acting through the Bureau of Rural Sciences has exercised due care and skill in the preparation and compilation of the information and data set out in this publication. Notwithstanding, the Bureau of Rural Sciences, its employees and advisers disclaim all liability, including liability for negligence, for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying upon any of the information or data set out in this publication to the maximum extent permitted by law.

Postal address: Bureau of Rural Sciences GPO Box 858 Canberra, ACT 2601

Copies available from: www.brs.gov.au

ISBN: 1-921192-37-2

Acknowledgements

This report was made possible through financial support from the Ornamental Fish Management Implementation Group (OFMIG) which is funded by state, teritory and federal government agencies.

We are grateful to everyone who helped in designing and refining the communication strategy and ancillary documents. We are also grateful to those who provided input and technical expertise in developing the risk matrix. The communication strategy and risk matrix were all improved as a result of this external input. We are also appreciative of those who assisted by promulgating the materials to relevant parties.

We are grateful to those who contributed significantly to the development of the grey list review matrix and the processing of species including Nick Gascoigne, Melinda Thompson and Dr Gavin Hinten. Thank you also to the expert technical group including Dr Peter Kind, Roland McKay, Tarmo Raadik, Dr Michael Hammer, Dr Tracey Bradley, Dr Gavin Hinten, Dos O'Sullivan, Shane Willis and Anthony Ramsey. The authors also appreciate the contribution of the Australian Centre of Excellence for Risk Analysis and in particular Professor Mark Burgman for independently reviewing the risk assessment model.

Executive summary

The ornamental aquarium fish trade in Australia is estimated to be worth approximately \$350 million annually. This ornamental fish industry encompasses commercial fish breeding facilities, wholesale traders and importers, retail outlets and the hobby sector.

While a valuable industry, the introduction of exotic (non-native) species can present a significant risk to freshwater ecosystems in Australia and has the potential to alter or degrade natural systems. Exotic fish species have been implicated in the decline of 42 per cent of Australian native fish and several frog species.

It is estimated that there are around 2000 species in the ornamental fish trade nationally, most of which are exotic to Australia. Many fish species in the ornamental fish trade are not on the current national permitted species lists established under Part 13A of the *Environment Protection and Biodiversity Conservation Act 1999* or covered by quarantine regulations. It may be that such species have been permitted under previous statutory arrangements, but they are no longer on any national permitted lists and have not been assessed for potential risk to the Australian environment.

To date 30 ornamental fish species have found their way into Australian native aquatic ecosystems and have been shown to have a significant impact on these systems. Of the 30 ornamental species established in Australia, 10 (33 per cent) of these species are currently on the permitted imports list, demonstrating how aquarium species can find there way into freshwater systems. Future escapes of ornamental fish have the potential to compound current impacts on native faunal and floral assemblages. Several ornamental species also pose a direct threat to human health. The Ornamental Fish Management Implementation Group (OFMIG) was formed in 2006 to address this issue. OFMIG developed a national strategy which included the creation of a national noxious and 'grey list' for problem species. Grey list species are defined as those ornamental fish species detailed in *A Strategic Approach to the Management of Ornamental Fish in Australia* (DAFF, 2005) that are currently not on the noxious list, and require further investigation/consideration and risk assessment.

The Bureau of Rural Sciences (BRS) was tasked by the OFMIG with:

- 1) developing a communication strategy to reduce the incidence of ornamental fish releases into the wild and how to dispose of unwanted pet fish
- 2) reviewing those ornamental fish species currently on the grey list outlined in the national report *A Strategic Approach to the Management of Ornamental Fish in Australia*.

A communication strategy has been developed, together with associated communications material. The communication message was based on the target audience's (ornamental fish keepers and hobbyists) likely level of interest and understanding, and a brief explanation of why ornamental fish should never be released into the wild. The messages developed for industry provide more detail about the potential impacts ornamental fish can have if released into the wild and some basic statistics on the number of ornamental fish thought to be present in Australia.

A rapid risk assessment approach was developed to assess the potential impact of ornamental fish on the environment and other species if released into the wild. The risk assessment matrix is based on 16 criteria covering climate compatibility, establishment history, resilience and hardiness, impacts on environment and native species, genetic and disease threats, and captivity status. The approach has been independently assessed by the Australian Centre of Excellence for Risk Analysis (ACERA). An independent expert technical group also provided input for the first tranche of species run through the matrix. This report has assessed risk for 447 ornamental fish species from the national grey list.

The communication strategy directly contributes to addressing the need for increased engagement with the ornamental fish trade on the key issue of proper disposal of unwanted pests. The rapid risk assessment provides a scientific, transparent and repeatable process for reviewing the potential risk of ornamental fish to Australian freshwater ecosystems.

Contents

Acknowledgementsiii
Executive Summaryiv
1 Introduction
2 Communication strategy
3 Review of species on the grey list
3.1 Developing a rapid risk assessment method
3.2 Grey list species review method
3.2.1 Review Process
3.2.2 Scoring
3.2.3 Application of the Threshold Score
3.2.4 Uncertainty
3.2.5 Calibration
3.2.6 Risk Matrix Categories and Criteria
3.3 Independent review of the rapid risk assessment tool
3.4 Technical workshop
3.4.1 Outcomes of Workshop
3.4.2 Tranche 1 – Species Reviewed by Technical Working Group
3.4.3 Tranche 2 – Species Not Reviewed by Technical Working Group
4 Next steps
4.1 Communication
4.2 Grey list
4.2.1 Progressing to Phase 2
5 References
6 Appendices
6.1 Appendix 1: OFMIG communications strategy
6.2 Appendix 2: BRS ornamental fish website
6.3 Appendix 3: Postcard –Strategic approach to the management of ornamental fish in Australia45
6.4 Appendix 4: Useful websites consulted for this review
6.5 Appendix 5: Results of tranche 1 and 2 (i.e. all species assessed to date)

List of Tables

Table 1. Summary of review matrix categories and criteria. 7
Table 2. Climate match scoring system
Table 3. Summary of family, genus and species assessed to date, including those that have beenassessed by the expert technical working group
Table 4. Species identified in tranche 1 as having a low risk
Table 5. Species agreed through technical workshop review to be proposed for addition to thenational noxious list, as these species were identified as being both high risk and of no interest toindustry or hobbyists.16
Table 6. Species identified as high risk but deferred for further assessment due to interest fromindustry and/or hobby sector.18
Table 7. Summary of family, genus and species assessed to date, including those that have not yetbeen assessed by the expert technical working group.19
Table 8. Breakdown of the number of species reviewed in both tranches and species on the grey listyet to be reviewed.19
Table 9. Low risk species from tranche 2 that have not been reviewed by the technical working group. 20
Table 10. Borderline species from tranche 2 that have not been reviewed by the technical group.Borderline species are defined as species with a relative risk score of 12 or 13 and are deemed towarrant review by the technical working group.20
Table 11. High risk species from tranche 2 that have not been reviewed by the technical group 21
Table 12. Implementation work plan for the management of ornamental fish in Australia duringPhase 1 (2007/08 to 2008/09) and Phase 2 (2009/10).27

1 Introduction

The introduction and spread of exotic (non-native) species is a significant threat to global biodiversity and ecological health (Courtenay and Moyle 1992; Vitousek et al. 1997; Rixon et al. 2005; Dudgeon et al. 2006). The introduction of exotic fish can lead to the homogenisation of global fish communities, where local distinctions between fish fauna are reduced (Rahel 2000; 2002). Exotic fish present a significant risk to the health of freshwater systems in Australia through competition with, or predation on, native species, aggressive interactions, introduced diseases and hybridisation (Corfield et al. 2008; Rowe et al. 2008). Exotic fish species are considered to be a contributing factor in the decline of 42 per cent of Australian native fish and several frog species (Wager and Jackson 1993; Morris et al. 2001; Reynolds 2009).

Once established, exotic fish can be very difficult and expensive to eradicate (Simberloff, 2003). There are 30 exotic ornamental (aquarium) fish species known to be established in Australian freshwater ecosystems, with many of these species shown to, or suspected of, having a significant impact on native biodiversity (Lintermans 2004; Corfield et al. 2008). Of the 30 ornamental species established in Australia, 10 (33 per cent) of these species are currently on the permitted imports list (maintained by the Department of Environment, Water, Heritage and the Arts) demonstrating how aquarium species can find their way into freshwater systems. It seems prudent, therefore, to review the potential risks associated with exotic species imported or traded within Australia.

The management of the ornamental fish trade in Australia is complex with different regulatory frameworks and management regimes in each jurisdiction. Movement of fish across borders appears to occur regularly, and with the exception of some major wholesale businesses or hobby groups, there is little understanding of what species are traded in Australia. Similarly, there is little understanding of the level of prohibited or noxious fish bred and traded within the industry (DAFF 2005).

There are two main pieces of legislation that cover the import of fish species; Part 13A – International Movement of Wildlife Specimens of the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) and Part V – Quarantine of Animals and Plants of the *Quarantine Act 1908* (Quarantine Act). Many fish species in the trade are not on the current national permitted import lists established under the EPBC Act or covered by regulations under the Quarantine Act. It may be that such species have been permitted as imports under previous statutory arrangements. However, these species are no longer on the live import list and are unlikely to have been assessed for their potential risk to the environment. There is a need for greater consistency between mechanisms or controls across regulatory agencies to deal with noxious fish.

Past efforts to regulate the ornamental fish industry have had limited success, primarily as a result of limited consultation with stakeholders. It is important, therefore, that this process consults widely with industry and hobbyists. The Pet Industry Association of Australia (PIAA) supports the review of the ornamental fish trade industry and the consultative process including stakeholders from the industry and hobby sectors (DAFF 2005).

State, territory and Commonwealth government officials met in September 2002 with aquarium industry representatives to develop a greater understanding of the aquarium industry and identify practical ways to address issues of pest and disease within the aquarium fish trade. Following this meeting a report was presented to the Marine and Coastal Committee (MACC) of the Natural Resource Management Standing Committee (NRMSC) which outlined issues within the ornamental fish trade and included a recommendation to establish a working group to address these issues. As a result, the Ornamental Fish Policy Working Group (OFPWG) was established.

The report *A Strategic Approach to the Management of Ornamental Fish in Australia* (hereafter, 'the strategic plan') (DAFF, 2005) was developed by OFPWG and submitted to the Natural Resource Management Ministerial Council (NRMMC), which endorsed the report at their 11th Meeting on 24 November 2006. At this meeting NRMMC also agreed to provide funding for two years, with an option for a third, to implement the key recommendations of the strategic plan. At the 15th Australian Fisheries Management Forum meeting and the 21st MACC meeting, members supported the draft implementation plan and terms of reference and establishment of the Ornamental Fish Management Implementation Group (OFMIG). OFMIG is funded by the jurisdictions and the Commonwealth and includes representatives from state and territory jurisdictions, Department of the Environment, Water, Heritage and the Arts (DEWHA), ornamental fish trade, aquaculture and the aquarium hobby sector.

The strategic plan recommended the following actions to manage ornamental fish in Australia:

- 1. Agree on and adopt a national noxious species list across all jurisdictions, noting links to existing lists and lists under development for marine pest species
- 2. Agree to review the status of fish on the 'grey list' (species highlighted as possibly having biological/ecological traits that may make them invasive if released) as a national priority
- 3. Establish a scientific/technical working group reporting to NRMSC (through the MACC), to conduct assessments of fish on the grey list over the next 2–3 years
- 4. Adopt a regulatory framework and licensing to manage large fish-breeders and ornamental fish importers in each state and territory
- 5. Develop control mechanisms for the regulation and management of noxious fish and rare fish already in circulation in Australia, again noting links to control plans for marine pests of concern
- 6. Initiate a review of aquatic plants used in the ornamental fish trade to control and regulate the spread of a number of recognised aquatic pest species
- 7. Implement a national communication strategy to raise awareness in the community and industry about the management, control and regulation of ornamental fish and invertebrates.

PIAA, in association with state/territory governments, has committed to the implementation of the strategic plan recommendations to ensure the industry has an economically sound and environmentally sustainable future.

The primary tasks of OFMIG were to: pursue regulatory changes within jurisdictions to adopt the nationally agreed noxious fish list and associated changes for the management of the ornamental sector; undertake a review of those species currently on the grey list; and to develop a communication strategy and tools to increase awareness about the management of ornamental fish across Australia.

The Bureau of Rural Sciences (BRS) was involved in the development of the strategic plan and provided technical and executive support to OFMIG in the delivery of the implementation plan. BRS provided technical assistance in the development of a communication strategy and associated tools and worked with DEWHA to develop a rapid assessment method for 'grey list' species.

OBJECTIVE:

This report details the work undertaken by BRS since 2006 to assist with the implementation of the strategic plan. The objective was to develop: 1) a communications strategy; and 2) a rapid risk assessment method for 'grey list' species. This risk assessment method was used to review 447 out of 778 'grey list' fish species.

2 Communication strategy

The strategic plan recommends the implementation of:

...a national communication strategy to raise the awareness in the community and industry about the management, control and regulation of ornamental fish and invertebrates.

An initial draft communication strategy was prepared by OFPWG. The communication strategy was further developed by BRS in consultation with OFMIG. The final draft (Appendix 1) is a working document to be updated by OFMIG as required. It outlines the key issues, aims/objectives, key messages, target audience and a range of communication approaches and tools to support implementation of the communication strategy. The strategy is designed to be implemented by each of the relevant jurisdictions.

Through the development of the communication strategy, primary and secondary stakeholders were identified as well as relevant messages to target them. Two groups of primary stakeholders were identified, general public and industry, while secondary stakeholders included government compliance/enforcement officers and public aquariums. Other education sources, such as news sources and programs like "Totally Wild" and "Better Homes and Gardens" were also identified as secondary stakeholders.

Messages were based on the target group's likely level of interest and understanding and included the slogan 'bag it, freeze it, bin it', and a brief explanation of why ornamental fish should never be released into the wild. The messages developed for industry provide more detail about the potential impacts ornamental fish can have if released into the wild and the number of ornamental fish thought to be present in Australia.

Consultation with animal ethics groups suggested euthanising fish by freezing them may not meet ethical requirements and OFMIG is continuing discussions as to the appropriate disposal message that can be broadly circulated. Currently, the only agreed option for disposing of unwanted fish is to return them to pet shops or state agencies.

Several communication products were developed including:

- Final strategic plan A Strategic Approach to the Management of Ornamental Fish in Australia. Design, printing and distribution in hard and soft version (web distribution through BRS website) including associated ministerial and media materials
- Ornamental fish web page design, establishment and maintenance of the web page http://www.brs.gov.au/ornamental, which is now hosted by PIRSA Fisheries and can be found at

http://www.pirsa.gov.au/fisheries/home/the_national_ornamental_fish_management_imple mentation_group (Appendix 2) and dedicated email contact (including separate materials to include the national noxious list on www.feral.org.au – a website on feral animals in Australia managed by the Invasive Animal CRC)

- Draft communication strategy for the implementation process (Appendix 1) including a network of key communication contacts within the jurisdictions
- Key messages consultations on development of key messages for implementation of the strategy (including consultations with the Invasive Marine Species Unit within the Department of Agriculture, Fisheries and Forestry, looking at synergies on messages for freshwater and marine ornamental fish)
- Postcards preparation and distribution of communication products including postcards for Pet Expo, and design and artwork for flyer and second postcard. A postcard was also developed to help promote the national release strategy to industry members, the hobby

sector and the general public (see Appendix 3) and distributed through the Melbourne Pet Show and stakeholders

- Press releases were provided with the ministerial launch and articles were also provided to targeted trade magazines
- Additional draft communications material was prepared for consideration by OFMIG at meetings.

3 Review of species on the grey list

A national noxious list comprising approximately 569 species was endorsed through the adoption of the strategic plan. Through the work of OFMIG, the states and territories have been working to implement the agreed noxious list through their respective legislation. A second list of species and genera that were potentially noxious were identified as the 'grey list' from the species known to be present in Australia (DAFF 2005). Grey list species are defined as those ornamental fish species detailed in the strategic plan grey list that are currently not on the noxious list, and require further investigation/consideration and risk assessment.

The strategic plan recommended that agreement be sought to:

... review the status of fish on the grey list as a national priority.

This action was agreed to and identified as a component of OFMIG's work program. OFMIG tasked BRS to undertake a review of the grey list to identify potentially high risk noxious species.

As the grey list contains individual species as well as whole families or genera not broken down to species level (e.g. catfish in the family Pangasiidae or puffer fish in the genus Tetraodon), it was necessary to identify to species level what fish were on the grey list. The online database FishBase (www.fishbase.org) was used due to the requirement for data to have been reviewed by relevant technical experts prior to being published on the site. Through FishBase, BRS determined there were approximately 780 species on the grey list. The number of species the list encompasses is not static. Ongoing research on species captured by the list has led to changes in the number of species assigned to the genera listed.

OFMIG agreed that a rapid risk assessment method using appropriate criteria and similar ranking systems to existing risk assessment models should be used to provide an initial assessment of grey list species.

Existing risk assessment systems for ornamental or alien fish were reviewed (Kolar and Lodge 2001, 2002; Clunie et al. 2002; Bomford 2003; Bomford and Glover 2004; Kolar 2004; Copp et al. 2005; Webb 2006; Wilding and Rowe 2008). A risk assessment based around the Fish Risk Assessment Model of New Zealand (Wilding and Rowe, 2008), an existing model from Australia (Bomford and Glover 2004) and a model from the United Kingdom (Copp et al. 2005) were seen as the most appropriate for adaptation for rapid risk assessment. The risk assessment provides an initial risk rating and identifies species that may present a greater risk to the Australian environment if they were to be released into the wild.

This chapter describes the risk assessment method including criteria, technical workshop, and independent assessment, as well as the results for grey list tranche 1 and 2 species. Due to the number of species to be reviewed, it was decided to complete the work in two tranches. Tranche 1 reviewed 132 species, which have been assessed by a technical working group. Tranche 2 reviewed 315 species, which have not been assessed by a technical working group.

3.1 Developing a rapid risk assessment method

The development of a risk assessment framework for reviewing potentially invasive species has to balance collecting sufficient relevant data with limited available resources. To assess whether species are likely to establish in a new environment relies on collecting and interpreting information on the biological/ecological traits of the species, as well as the climatic conditions it can tolerate. Generally, data can be difficult and costly to obtain, however, surrogates can be used such as the climatic conditions inherent to the species natural distribution. However, for many biological/ecological traits, data gathering can be more difficult. Therefore, risk assessments dealing with data poor species are likely to be dependent on a wide variety of source information, both domestic and international.

The risk assessment framework in the strategic plan promoted the use of the Bomford model which is based on climate matching data for the species being reviewed and predictions where that species may spread given its historical distribution (Bomford 2006). The conventional review method currently used by DEWHA for risk assessments of birds and reptiles was revised to broaden the base of information available to assist in this review.

The method developed, comprising a review matrix and the involvement of experts through a workshop, was agreed in principle at OFMIG's meeting in November 2008. The final review matrix methodology is the result of further development since November 2008. Comments and suggestions were included from industry, states, and the experts participating in the workshop on 16 October 2008.

The review matrix provides a useful framework for rapidly assessing available information across criteria that are relevant to decisions on whether a species could be considered high risk or not. Available information is used to develop a score for each criterion. The species' cumulative score is compared against a threshold score to indicate whether a species could be considered a high risk. A score of <12 was determined to be low risk, with high risk >13. The species cumulative score was calibrated against 31 exotic species known to be present and established in Australia to determine an appropriate threshold score. Where data are not available for a criterion, the highest score possible for that criterion is given as a default, with the exception of the score from the climate matching software Climatch.

3.2 Grey list species review method

This report outlines the grey list review method following OFMIG's meeting in April 2008 and through consultation with ACERA.

3.2.1 Review Process

The risk matrix and how it would be applied was discussed and accepted in principle at the 3rd OFMIG meeting on 17 April 2008 as a standard screening method to apply to the grey list and as an alternative to more costly risk assessments of individual species.

Representatives of DEWHA and BRS worked together to develop the approach and matrix for collating information to allow a transparent review of species on the grey list. The approach could be used for species that may require review in the future. The review matrix has been refined to include an appropriate threshold score to determine potentially high and low risk species. The matrix also addressed further comments provided by OFMIG members (Western Australia Department of Fisheries and PIAA) and as a result of suggestions from an expert workshop to review grey listed species held on 16 October 2008.

The criteria were grouped into three broad categories according to the key policy areas relevant to government consideration of the potential pest and invasiveness of a species: biodiversity; impacts; and trade (Table 1). This approach follows similar systems used for risk assessments of reptiles, amphibians and birds (Bomford et al. 2009a; Bomford et al. 2009b). The definitions section below provides explanations of the terms for categories used in the matrix. The Biodiversity Category includes criteria aimed at determining establishment in Australia. These criteria include climate matching (see Bomford 2006), previous establishment in Australia or outside the species natural range, and the resilience of the species. A criterion for hardiness was added following suggestions at the expert workshop in October 2008. The Impact Category includes likely impacts on native ecosystems including habitat, other species, genetics, disease and also includes threats to humans. The Trade Category includes criteria on whether a species has restricted trade in other countries, is a multiple use species, and captive status.

Table 1. Summary of risk matrix categories and criteria.

Category	Criterion	Definition	Score
Biodiversity	Climate match	Species with a high climate match score are likely to establish in Australia	1-8
5	Established in Australia	Species that have already established in Australia	0-2
	Eradication	If there has been or is any eradication efforts in Australia for the species	no score
	Established beyond natural range	Species has established beyond its natural range	0-2
	CITES listing	Listed as an endangered species under the CITES Convention	no score
	Hardiness	Species ability to tolerate, survive or adapt to wide variety of environmental conditions	0-2
	Resilience	Population doubling time as an indicator of population growth	0-2
Impact	Current noxious status in Australia	Species already has a noxious listing in Australia	0-1
	Impact on habitat	Species known to modify or disturb habitat	0-2
	Impact on other species	Species known to impact other species through competition, aggression, predation	0-2
	Genetic risk to native species	Species is likely to pose a significant genetic risk through hybridisation/introgression with native fish	0-2
	Genetic risk of non-native hybridisation	Species is likely to pose a significant genetic risk through hybridisation/introgression with exotic species	0-2
	Known carrier of high-risk disease	Species is a known carrier of high-risk disease	0-2
	Direct threat to humans	Species likely to have attributes that are likely to be a direct threat to humans	0-2
Trade	Restricted trade elsewhere	Species has been banned or has restricted importation and trade in other countries	no score
	Multiple-use species	Species used in more than one sector (e.g. recreational fish, ornamental, etc)	1-2
	Captive status in industry	Conditions in which the species is kept (i.e. restricted to research facilities, domestic aquariums, etc)	0-2

BRS populated the matrix with information for grey list species with the exception of several genera which were considered by an expert group based on 'example' species. The expert workshop involved nominated experts and members of the aquarium industry.

The outputs of each tranche were reported to OFMIG for consideration and review at its regular meetings. OFMIG then reported these outcomes to the MACC, which develops recommendations for additions to the noxious list. These are provided to the NRMSC which consider and endorse any additions to the national noxious list.

Species classified as low risk through this process could be considered for further assessment as species suitable for live import into Australia under Commonwealth legislation and processes. A requirement of this legislated process is for a comprehensive environmental assessment of the proposed import on the Australian environment. The Bomford and Glover (2004) risk assessment model for freshwater fish may be applied in this process to contribute to the environmental assessment and information for the decision. The work conducted in reviewing the grey list under the OFMIG process could be used as an initial source of information if a live import list amendment application was made.

The review matrix and method as outlined provide a repeatable process for reviewing further species that may be added to the grey list for the purpose of recommending whether they be considered potentially noxious in Australia. To ensure consistent and repeatable results, future users outside this process will need to be mindful to apply the review matrix in an appropriate context using relevant and reliable information sources.

3.2.2 Scoring

A two staged approach was used to assess the outputs of the risk matrix. If a species received a moderate to high climate match using the software package 'Climatch' (4 or above) and was assigned the highest score (score of 2 or 2.1) for any of the 'impact' categories apart from 'current noxious status in Australia' or 'genetic risk of non-native hybridisation', then it was automatically deemed high risk. If it did not meet both of these criteria, the scores for each category were summed to give a relative risk score (see Application of the Threshold Score below).

3.2.3 Application of the threshold score

The review matrix has been used to identify grey listed species that are high risk (relative risk score >13), and species that are low risk (relative risk score <12) out of a maximum potential score of 33. Any species considered borderline (relative risk score 12 or 13) were deemed to warrant expert technical input at the review workshop, as were species where information was limited (i.e. more than three criteria with insufficient supporting literature).

3.2.4 Uncertainty

Many animal species (including fish) when assessed in terms of their potential impact on the environment or invasiveness may have limited scientific or other information to support views on their potential impacts or noxious status. It is accepted practice in Australia to apply the precautionary approach when there is little or no scientifically based evidence or information. In circumstances where there was either conflicting information from reliable sources or no information available, the precautionary approach was used. To identify where the precautionary approach was used, 0.1 was added to the score for that category; for instance, instead of a score of 2 for 'impact on other species', it would be assigned 2.1. This does not impact on the final threshold score but allows easy identification of where the precautionary approach was used, and how many times it was used for any species or criterion.

3.2.5 Calibration

The threshold score of 12 for potentially high risk species was determined by calibrating the matrix with a number of fish species known to have established in Australia. We assessed 31 exotic species known to have established in Australia, with many of these species shown to have clear impacts on species or habitats. Among these species were particularly invasive species like European carp (*Cyprinus carpio*) and *Gambusia* (*Gambusia holbrooki*). Also included in the calibration process were species that have been kept in captivity in Australia for decades and not known to have established in the wild. A similar system of calibration has been used in New Zealand and the United Kingdom.

3.2.6 Risk matrix categories and criteria

See Table 1 for a summary of the risk matrix categories and criteria.

3.2.6.1 **BIODIVERSITY**

The following criteria relate to the distribution and abundance of a species. A species is more likely to establish itself in Australia if it is: widely distributed; can tolerate a wide range of climatic conditions; lives in a region with closely matching climatic conditions to Australia; or previously has established itself outside its natural range, either in Australia or elsewhere.

3.2.6.1.1 Climate match

The climate score is derived from the risk assessment climate matching model Climatch; the revised model used for previous risk assessments (e.g. Bomford 2006).

Risk assessment models (Bomford 2003; 2006; Bomford and Glover 2004; Bomford et al. 2005; Bomford et al. 2009a; Bomford et al. 2009b) have been developed by BRS to assess the risk of exotic vertebrates establishing in Australia. An integral part of these models is climate matching between each species' natural geographic distribution and similar environments in Australia.

Species which have a high Climatch score show attributes which are likely to make them successful colonisers in Australia. Conversely species with a low Climatch score will have a lower probability of establishment. Climatch scores ranging from 1-8 were assigned to fixed ranges of Climatch scores (Table 2).

Climate Match score	Climatch score
1	0
2	1-40
3	41-150
4	151-400
5	401-1000
6	1001-1500
7	1501-2500
8	>2500

 Table 2. Climate match scoring system.

NB: where no geographical information is available, the species is assigned a precautionary Climatch score of 4.1.

The Climatch score is the single highest possible score in the risk matrix, reflecting its importance as the key criterion in determining if a species is likely to establish itself in Australia. The 'World stations' (Maywald and Sutherst 1985; Busby 1991) database was generally used in Climatch for climate matching, however, due to the paucity of data, it was sometimes necessary to use the 'Worldclim' (Hijmans et al. 2005) dataset as this infers the likely climate in an area where there are no weather stations available to provide site specific data. For some species there were no data available on distribution and in these cases a precautionary score of 4.1 was assigned based on the median initial subsample of 132 species. It was agreed that these species were the most appropriate to use as a subsample as they represented species from over 80 per cent of genera and 95 per cent of families on the grey list.

3.2.6.1.2 Established in Australia

This criterion indicates if the species has previously established populations or currently has populations in Australia. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 =Not established in Australia
- 1 = Recorded occurrence in Australia
- 2 = Reproducing population or widespread in Australia

3.2.6.1.3 Eradication effort

This criterion indicates if there is, has been, or will be an eradication effort of any scale in Australia for the species. Accurate data for this criterion are difficult to obtain. For this reason this criterion is used for information purposes only and does not contribute to the overall risk score. This criterion has the following rating system:

- Ongoing An eradication program is currently in place and eradication efforts are ongoing
- Eradicated An eradication program has been implemented previously and the species has been successfully eradicated from Australia
- Not at this time An eradication program in Australia has yet to be implemented for this species
- Not required The species has not established in Australia and so an eradication effort is not currently required for this species

3.2.6.1.4 Established internationally

This criterion indicates if the species has established populations outside their natural range in any other country. This information is taken primarily from FishBase

(http://www.fishbase.org/search.php) and other internet resources providing data on fish species (see website list Appendix 5). This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = No established populations outside the species natural range
- 1 = Limited distribution outside the species natural range, typically in the same continental region
- 2 = Widespread distribution outside the species natural range
- 2.1 = No information available (precautionary approach)

3.2.6.1.5 CITES listing

This criterion indicates if the species is listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This criterion is of limited value in

determining whether a species is likely to establish itself if introduced to Australia and so is used for information purposes only and does not contribute to the overall relative risk score. It follows a simple yes/no scoring system. Listing information is gathered from CITES (http://www.cites.org/).

3.2.6.1.6 Hardiness

Hardiness is used as an indicator of the species' ability to tolerate, survive, or adapt to a wide range of temperatures, pH, salt or freshwater aquatic environments, or the ability to survive out of water for extended periods of time. Information for this criterion was gathered from FishBase (http://www.fishbase.org/search.php), various ichthyological and aquarium sites (see website list Appendix 5) and through an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Low
- 1 =Medium
- 2 = High
- 2.1 = No information available (precautionary approach)

3.2.6.1.7 Resilience

This criterion indicates the rate of population doubling as an indicator of the rate of potential population growth. This is likely to be a good indicator of the rate of population expansion (i.e. range extension) once established. This attribute is also likely to provide an indication of the difficulty of eradication once established. FishBase (http://www.fishbase.org/search.php) lists a category on resilience for most species and provides information on population doubling time. Information was also provided by an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Slow population growth
- 1 = Moderate population growth
- 2 = Fast population growth
- 2.1 = Unknown rate of population growth (precautionary approach)

3.2.6.2 IMPACTS

The following criteria relate to the environmental impact a species is likely to have if it successfully establishes in Australia. Possible impacts include habitat modification or disturbance, negative interaction with native species, particularly predation or aggression, the genetic risk to the gene pool of native species through hybridisation, the genetic risk of hybridisation with established noxious species and inheriting some or all of the pest characteristics of that species or increasing hybrid vigour (heterosis) to bottlenecked populations, or the potential introduction of high risk diseases.

3.2.6.2.1 Current noxious status in Australia

This impact indicates if the species has a noxious status in any Australian states or territories. Currently no distinction is made between being listed as noxious in a single state or territory and being listed as noxious in multiple states or territories.

- 0 = Not listed in any jurisdiction
- 1 = Listed in at least one jurisdiction

3.2.6.2.2 Potential impact on habitat

This impact indicates if the species has the potential to significantly modify or disturb habitats in which it establishes. Information on this criterion has been gathered from FishBase

(http://www.fishbase.org/search.php), various ichthyological and aquarium internet sites (see website list Appendix 5) and through an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = No impact on habitat
- 1 = Low impact on habitat
- 2 = Medium or high impact on habitat
- 2.1 = Unknown impact on habitat (precautionary approach)

3.2.6.2.3 Potential impact on other species

This impact indicates if the species has characteristics or behaviours which could significantly impact other species in environments if it establishes. Strong negative impacts include predation and aggression which are likely to affect the distribution and abundance of other species in these areas. Information on this criterion has been gathered from FishBase (http://www.fishbase.org/search.php), various ichthyological and aquarium internet sites (see website list Appendix 5) and through an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = No impact on other species
- 1 = Low impact on other species
- 2 = Medium or high impact on other species
- 2.1 = Unknown impact on other species (precautionary approach)

3.2.6.2.4 Genetic risk to native species

This impact indicates if the species poses a significant genetic risk to native fish species through hybridisation and introgression. Hybridisation with native species will alter and dilute the gene pool of native species and in extreme cases may lead to the genetic extinction of the native species, particularly in cases where the introduced species is abundant and the native species is rare. Introgression is the introduction, through hybridisation, of non-native genetic information into the native gene pool, which may alter the fitness of native species. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Low or no risk of hybridisation introduced species shares no or only distant phylogenetic relationship with native species
- 1 = Medium risk of hybridisation introduced species belongs to the same phylogenetic family as native species
- 2 = High risk of hybridisation introduced species belongs to the same phylogenetic genus as native species
- 2.1 = Unknown risk of hybridisation introduced species has an unresolved phylogeny but may have close ancestral relationship with native species (precautionary approach)

3.2.6.2.5 Genetic risk from hybridisation with established noxious species

This impact indicates if the species poses a significant genetic risk through hybridisation with established noxious species and inheriting some or all of the characteristics of the noxious species or through hybrid vigour (heterosis) to bottlenecked populations. Established noxious species are defined as those listed on the national noxious fish list. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Low or no risk of hybridisation introduced species shares no or only distant phylogenetic relationship with established noxious species
- 1 = Medium risk of hybridisation introduced species belongs to the same phylogenetic Family as established noxious species

- 2 = High risk of hybridisation introduced species belongs to the same phylogenetic Genus as established noxious species
- 2.1 = Unknown risk of hybridisation introduced species has an unresolved phylogeny but may have close ancestral relationship with established noxious species (precautionary approach)

3.2.6.2.6 Known carrier of high risk disease

This impact indicates if the species is a known carrier of high risk disease that could pose a significant risk to native fish species. High risk disease is defined here as those listed on Australia's National List of Reportable Diseases of Aquatic Animals (2007) and included in the Import Risk Analysis on Live Ornamental Finfish (1999). Information on this criterion has been gathered from FishBase (http://www.fishbase.org/search.php), various ichthyological and aquarium internet sites (see website list Appendix 5) and through an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Not known to carry high risk disease
- 1 = May carry high risk disease
- 2 =Is known to carry high risk disease
- 2.1 = Unknown disease risk (precautionary approach)

3.2.6.2.7 Direct threat to humans

This impact indicates if species are known to possess attributes that may be a direct threat to humans. These attributes may include venomous spines, toxins, stinging or stunning apparatus. Large predatory species or species with an aggressive nature would also be included in this criterion. Information on this criterion has been gathered from FishBase (http://www.fishbase.org/search.php), various ichthyological and aquarium internet sites (see website list Appendix 5) and through an expert technical panel. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Not known to possess attributes of direct impact to humans
- 1 = Known to carry minor attributes of direct threat to humans
- 2 = Known to carry significant attributes of direct threat to humans

3.2.6.3 TRADE

The following criteria relate to how international trade in a species might influence escape and establishment of that species, or its potential impact if it escapes. If trade in a species has been restricted elsewhere, it may suggest that this species has been recognised by that country as a potential threat, for one reason or another, and so may pose a similar threat if introduced to Australia. However, trade may be restricted for a variety of reasons not related to pest invasiveness. If a species has multiple uses across sectors this relates to how widespread the species is likely to become if it is introduced to Australia and thus how many different pathways exist to escape into the wild.

The more widespread a species is dispersed across activities or industries, the greater and more varied the risk of the species escaping captivity and establishing in the wild. However, some pathways to escape pose a greater risk than others. Therefore, the extent and type of industry use will also be a determining factor of the likelihood of escape. Together these two factors can be considered as the breadth and depth of risk of escape into the wild due to industry trade.

3.2.6.3.1 Restricted trade elsewhere

This criterion indicates if the importation or movement of the species has been limited to, or within, other countries. If trade in a species has been restricted elsewhere, it may suggest that the species has been recognised by that country as a potential threat, for one reason or another, and so may pose a

similar threat if introduced to Australia. However, trade may be restricted for a variety of reasons not related to pest invasiveness. This information is difficult to ascertain and is likely to be available only for a limited number of countries. For this reason this criterion is currently used for information purposes only and does not contribute to the overall relative risk score. However, this criterion could help inform the decision process where the review ranking is borderline. This criterion has a simple rating system of yes (trade in the species is restricted elsewhere), no (trade in the species is not restricted elsewhere), or trade in the species is unknown.

3.2.6.3.2 Multiple use species

This criterion indicates the use and benefits of the species across various sectors, including recreational fishing, aquaculture, the aquarium industry, or religious/ethnic activities. If a species has multiple uses across sectors this relates to how widespread the species is likely to become if it is introduced to Australia and thus how many different pathways exist to escape into the wild. The more widely a species is dispersed across industries, the greater and more varied the risk of the species escaping captivity and establishing in the wild. Information on this criterion has been gathered from FishBase (http://www.fishbase.org/search.php), various ichthyological and aquarium internet sites (see website list Appendix 5) and through an expert technical panel. This criterion can be considered as the breadth of risk due to industry use. This criterion is given a ranking score of 1 or 2, with the following scoring system:

- 1 =Used in less than or equal to one industry
- 2 =Used in more than one industry
- 2.1 = Breadth of use of this species is unknown (precautionary approach)

3.2.6.3.3 Captive status in industry

This criterion indicates under what conditions the species is kept within an industry. Some pathways to escape pose a greater risk than others. Therefore, the conditions of captivity may determine the likelihood of escape. This criterion is given a ranking score from 0-2, with the following scoring system:

- 0 = Use is restricted to a limited purpose or highly contained
- 1 = Use is not restricted or contained but the species is not widely kept
- 2 =Use is not restricted or contained and the species is widely kept
- 2.1 = Depth of use of this species is unknown (precautionary approach)

3.3 Independent review of the rapid risk assessment tool

BRS had the risk matrix process externally reviewed by the Australian Centre for Excellence in Risk Assessment (ACERA) to provide an independent review of the method. Noting that the risk matrix was not designed as a formalised quantitative risk assessment, ACERA found it reflected comparably on similar systems that exist already such as that used by Biosecurity Australia for weed risk assessment for plants proposed for import (Walton et al. 1998). ACERA suggested several minor refinements primarily around how the final score is assessed. Evaluation of these refinements indicated that they did not change the results of the rapid risk assessment.

3.4 Technical workshop

OFMIG agreed that a small group of experts should be consulted on borderline species, or species with insufficient information. Borderline species are those species that have scores of 11 or 12. Species evaluated as having insufficient information were lacking on three or more criteria. BRS covened a technical workshop of experts on 16 October 2008 to review the risk identification

method and its results. The workshop included scientists from around Australia and representatives from the aquarium and pet industries. The group included Dr Peter Kind (Qld DPI Fisheries), Roland McKay (independent scientist), Tarmo Raadik (DSE Vic), Dr Michael Hammer (independent scientist), Dr Tracey Bradley (Vic DPI veterinarian), Dr Gavin Hinten (BRS), Dos O'Sullivan (aquaculture expert), Shane Willis (hobby and industry representative), Anthony Ramsey (hobby and industry representative), Nick Gascoigne (DEWHA) and Melinda Thompson (DEWHA).

Prior to the workshop, 132 species from the grey list were assessed and assigned a preliminary numerical score based on available information for the 14 criteria. The numerical score was then translated to a category of high, intermediate or low risk based on calibration with other species established in Australia already.

The technical group discussed each species in turn and information on the genus provided from the rapid risk matrix. The scores for the 14 criteria were examined by the technical group, and where possible additional data and expert opinion were used to adjust the score and consequently the risk status.

3.4.1 Outcomes of workshop

The criteria 'impact on habitat' and to a lesser extent 'impact on other species' were typically data poor prior to the workshop. However, with input from the industry representatives and expert scientists, a number of species that initially scored an 'unknown' and therefore received a precautionary high score were able to be assigned an informed score.

It was also identified that adding a criterion for hardiness could provide additional useful information that was not being incorporated elsewhere. Hardiness scores were assigned for the 132 species at the workshop and for all species assessed since the workshop. In total, 322 changes were made to the scores for the criteria, of which 132 were from the inclusion of the criterion 'hardiness'. The remaining 190 changes were primarily from additional data being supplied which reduced the reliance on the precautionary approach and enabled a score of zero, 1 or 2 to be given. These changes resulted in reduced uncertainty and changes in status for 87.5 per cent of species.

A secondary, but also useful outcome of the workshop was to assign each species to a category based on the level of stakeholder interest in the species. Representatives from industry identified species or genera that were commercially important and representatives from the hobbyist sector identified species that were considered to be desirable and/or widely kept. In this way, species of 'interest to hobbyists', 'interest to trade', and 'of no interest' were separated.

3.4.2 Tranche 1 – Species reviewed by technical working group

The review can be divided into two tranches, species that were assessed through both the risk matrix and the expert technical group and those that were assessed through the matrix but have not been reviewed by the expert technical group.

Results from the tranche 1 assessment (Table 3; also see Appendix 4) of 132 species (16.9 per cent of the 778 species on the grey list) assigned a low risk rating for two species and a high risk rating for 130 species. Low risk species are listed in Table 4. High risk species, which have been identified by the technical working group as not of interest to industry and are recommended for noxious listing are listed in Table 5. Species that have been determined to be high risk and identified by the expert technical group as of importance to industry and hobbyists are listed in Table 6. Further review of species in Table 6 is awaiting completion of the public consultation and listing process currently being undertaken by various jurisdictions. Species in Table 6 may be subjected to a more detailed biological and socio-economic risk assessment in the future due to their economic and social value.

Table 3. Summary of family, genus and species assessed to date, including those that have been assessed by the expert technical working group.

Orna	Ornamental fish assessed by matrix and expert working group (1 st tranche)				
	Currently on grey list	Low risk	High risk	Total (% of grey list)	
Family	29	2	28	28 (96.5%)	
Genus	74	2	59	60 (81%)	
Species	778	2	130	132 (16.9%)	

Table 4. Species identified in tranche 1 as having a low risk.

Family	Species	Common name
Fundulidae	Leptolucania ommata	Pygmy killifish
Acipenseridae	Huso dauricus	Kaluga

Table 5. Species agreed through technical workshop review to be proposed for addition to the national noxious list, as these species were identified as being both high risk and of no interest to industry or hobbyists.

Family	Species	Common name
Acipenseridae	Acipenser fulvescens	Lake sturgeon
Acipenseridae	Acipenser brevirostrum	Shortnose sturgeon
Acipenseridae	Acipenser persicus	Persian sturgeon
Acipenseridae	Acipenser sinensis	Chinese sturgeon
Acipenseridae	Acipenser sturio	European sturgeon
Pangasiidae	Pangasius elongatus	
Pangasiidae	Pangasius nieuwenhuisii	
Polypteridae	Erpetoichthys calabaricus	Reedfish
Acipenseridae	Acipenser ruthenus	Sterlet
Acipenseridae	Acipenser dabryanus	Yangtze sturgeon
Acipenseridae	Acipenser medirostris	Green sturgeon
Acipenseridae	Acipenser mikadoi	Sakhalin sturgeon
Acipenseridae	Acipenser naccarii	Adriatic sturgeon
Acipenseridae	Acipenser oxyrinchus oxyrinchus	Atlantic sturgeon
Acipenseridae	Acipenser baerii baicalensis	Baikal sturgeon
Acipenseridae	Acipenser nudiventris	Fringebarbel sturgeon
Acipenseridae	Acipenser schrenckii	Amur sturgeon
Acipenseridae	Acipenser multiscutatus	Japanese sturgeon
Acipenseridae	Acipenser oxyrinchus destotoi	Gulf sturgeon
Ctenoluciidae	Ctenolucius hujeta	Gar characin
Eleotridae	Oxyeleotris heterodon	Sentani gudgeon
Pangasiidae	Pangasius gigas	Mekong giant catfish
Pangasiidae	Pangasius conchophilus	
Pangasiidae	Pangasius krempfi	
Pangasiidae	Pangasius kunyit	
Poeciliidae	Tomeurus gracilis	

Acipenseridae	Huso huso	Beluga
Eleotridae	Oxyeleotris urophthalmoides	
Eleotridae	Oxyeleotris siamensis	
Acipenseridae	Acipenser stellatus	Starry sturgeon
Pimelodidae	Perrunichthys perruno	Leopard catfish
Pimelodidae	Leiarius spp	Painted catfish
Poeciliidae	Alfaro cultratus	Knife-edged livebearer
Protopteridae	Protopterus dolloi	Slender lungfish
Rivulidae	Leptolebias opalescens	Opal pearlfish
Arapaimidae	Arapaima gigas	Arapaima
Eleotridae	Gobiomorphus gobioides	Giant bully
Poeciliidae	Heterandria bimaculata	Twospot livebearer
Chacidae	Chaca bankanensis	Angler catfish
Eleotridae	Allomogurnda nesolepis	Yellowbelly gudgeon
Eleotridae	Dormitator maculatus	Fat sleeper
Acipenseridae	Acipenser baerii baerii	Siberian sturgeon
Chacidae	Chaca chaca	Squarehead catfish
Potamotrygonidae	Paratrygon aiereba	Discus ray
Lebiasinidae	Lebiasina bimaculata	Twospot lebiasina
Pangasiidae	Pangasius pangasius	Yellowtailed catfish
Pangasiidae	Pangasius nasutus	
Rivulidae	Leptolebias aureoguttatus	
Rivulidae	Leptolebias marmoratus	Marbled pearlfish
Rivulidae	Leptolebias minimus	Barred tail pearlfish
Eleotridae	Gobiomorus dormitor	Bigmouth sleeper
Eleotridae	Oxyeleotris urophthalmus	
Acipenseridae	Acipenser gueldenstaedtii	Russian sturgeon
Acipenseridae	Acipenser transmontanus	White sturgeon
Lepidosirenidae	Lepidosiren paradoxa	South American lungfish
Pangasiidae	Pangasius larnaudii	Spot pangasius
Eleotridae	Gobiomorphus huttoni	Redfin bully
Poeciliidae	Alfaro huberi	
Chacidae	Chaca burmensis	Burmensis frogmouth catfish
Pangasiidae	Pangasianodon hypophthalmus	Sutchi catfish
Pangasiidae	Pangasius macronema	
Protopteridae	Protopterus aethiopicus	Marbled lungfish
Schilbeidae	Schilbe marmoratus	Shoulderspot catfish
Eleotridae	Gobiomorus maculatus	Pacific sleeper
Eleotridae	Hypseleotris cyprinoides	Tropical carp-gudgeon
Percidae	Perca fluviatilis ¹	European perch
Protopteridae	Protopterus amphibius	Gilled lungfish
Eleotridae	Hypseleotris tohizonae	-
Eleotridae	Dormitator latifrons	Pacific fat sleeper
Ictaluridae	Ictalurus punctatus	Channel catfish
Schilbeidae	Schilbe intermedius	Silver catfish
Eleotridae	Oxyeleotris marmorata	Marble goby
1		

(¹Perca fluviatilis (European/redfin perch) is a species of interest for some jurisdictions. For example, Victoria has recently set a recreational catch limit for redfin perch, which indicates it is a recreationally valuable species for these jurisdictions).

Table 6. Species identified as high risk but deferred for further assessment due to interest from industry and/or hobby sector (Blue – denotes of interest to hobby, Yellow – denotes of interest to industry, which may require more detailed biological and/or social assessment).

Family	Species	Common name
Anabantidae	Microctenopoma nanum	Dwarf ctenopoma
Anabantidae	Microctenopoma ansorgii	Ornate ctenopoma
Anabantidae	Ctenopoma acutirostre	Spotted ctenopoma
Characidae	Bryconops melanurus	
Characidae	Bryconops affinis	Orangefin tetra
Characidae	Hollandichthys multifasciatus	
Cichlidae	Caquetaia umbrifera	Turquoise cichlid
Cichlidae	Caquetaia spectabilis	
Cichlidae	Caquetaia kraussii	Bucketmouth
Cichlidae	Crenicichla lacustris	
Cichlidae	Amphilophus zaliosus	Arrow Cichlid
Cichlidae	Amphilophus labiatus	Red devil
Cichlidae	Crenicichla lepidota	Pike Cichlid
Cichlidae	Crenicichla saxatilis	Ringtail pike cichlid
Cichlidae	Amphilophus citrinellus	Midas Cichlid
Cichlidae	Herichthys cyanoguttatus	Rio Grande cichlid
Cichlidae	Cichlasoma urophthalmus	Mexican mojarra
Cyprinidae	Cyprinus carpio	Common carp/ Koi
Fundulidae	Adinia xenica	Diamond killifish
Fundulidae	Fundulus chrysotus	Golden topminnow
Mastacembelidae	Mastacembelus erythrotaenia	Fire eel
Mastacembelidae	Macrognathus pancalus	Barred spiny eels
Mastacembelidae	Mastacembelus armatus	Zig-zag eel
Notopteridae	Chitala blanci	Indochina featherback
Notopteridae	Chitala ornata	
Osteoglossidae	Osteoglossum bicirrhosum	Silver Arawana
Pimelodidae	Phractocephalus hemioliopterus	Redtail catfish
Pimelodidae	Brachyplatystoma vaillantii	Laulao
Pimelodidae	Sorubimichthys planiceps	Firewood catfish
Pimelodidae	Pseudoplatystoma fasciatum	Barred sorubim
Pimelodidae	Brachyplatystoma filamentosum	Kumakuma
Pimelodidae	Sorubim elongatus	Slender shovelnose catfish
Pimelodidae	Sorubim lima	Duckbill catfish
Polypteridae	Polypterus endlicheri	Saddled bichir
Polypteridae	Polypterus retropinnis	West African bichir
Potamotrygonidae	Plesiotrygon iwamae	Long-tailed river stingray
Potamotrygonidae	Potamotrygon hystrix	Porcupine river stingray
Potamotrygonidae	Potamotrygon motoro	Ocellate river stingray
Potamotrygonidae	Potamotrygon orbignyi	Smooth back river stingray
Siluridae	Ompok bimaculatus	Butter catfish
Siluridae (Anabantidae)	Sandelia bainsii	Eastern Cape Rocky
Siluridae (Anabantidae)	Sandelia capensis	Cape Kurper
Tetraodontidae	Carinotetraodon travancoricus	Malabar pufferfish
Tetraodontidae	Auriglobus amabilis	nanou purorion
Tetraodontidae	Auriglobus nefastus	Greenbottle pufferfish
		Steenoottie putternon

Tetraodontidae	Chonerhinos silus	
Tetraodontidae	Colomesus psittacus	Banded puffer
Tetraodontidae	Carinotetraodon lorteti	Redeye puffer
Tetraodontidae	Tetraodon baileyi	Hairy puffer
Tetraodontidae	Colomesus asellus	Amazon puffer
Tetraodontidae	Tetraodon mbu	Fresh water puffer fish
Tetraodontidae	Carinotetraodon borneensis	
Tetraodontidae	Takifugu vermicularis	Purple puffer
Tetraodontidae	Takifugu radiatus	
Tetraodontidae	Tetraodon nigroviridis	Spotted green pufferfish
Tetraodontidae	Chelonodon laticeps	Bluespotted blaasop
Tetraodontidae	Takifugu rubripes	Japanese pufferfish
Tetraodontidae	Chelonodon pleurospilus	Blaasop beauty

3.4.3 Tranche 2 – Species not reviewed by technical working group

Since the expert workshop in October 2008, BRS has run an additional 315 grey list species through the risk matrix process (Appendix 4). Table 7 presents a summary table of this second tranche of species which has not yet been reviewed by the technical working group. Table 8 presents a breakdown of the number of species reviewed in each tranche and the number left on the grey list to complete. Tables 9, 10 and 11 represent the species which were rated by the rapid risk matrix as representing a low, medium and high risk.

	Ornamental fish assessed by matrix but not expert panel (2 nd tranche)				
	Currently on grey list	Low risk	High risk	Total (% of grey list)	Combined tranche 1 & 2 (% of grey list)
Family	29	5	15	17 (58.6%)	29 (100%)
Genus	74	5	29	33 (44.5%)	74 (100%)
Species	778	6	250	315 (40.4)	447 (57.5%)

Table 7. Summary of Family, Genus and Species assessed to date, including those that have not yet been assessed by the expert technical working group.

Table 8. Breakdown of the number of species reviewed in both tranches and species on the grey list yet to be reviewed.

Category	Number of species	Percent of grey list
Species reviewed by workshop (1 st tranche)	132	17%
Species reviewed since workshop (2 nd tranche)	315	40%
Total species reviewed	447	57%
Total species remaining	331	42%

Low risk			
Family	Species Name	Common Name	
Pimelodidae	Leiarius pictus		
Characidae	Astyanax jordani		
Characidae	Astyanax leopoldi		
Ctenoluciidae	Boulengerella maculata	Spotted-pike characin	
Ictaluridae	Ictalurus australis	Panuco catfish	
Potamotrygonidae	Potamotrygon schroederi	Rosette river stingray	

Table 9. Low risk species from tranche 2 that have not been reviewed by the technical working group.

Table 10. Borderline species from tranche 2 that have not been reviewed by the technical group. Borderline species are defined as species with a relative risk score of 12 or 13 and are deemed to warrant review by the technical working group.

Borderline				
Family	Species Name	Common Name		
Ictaluridae	Ameiurus brunneus	Snail bullhead		
Characidae	Astyanax kennedyi			
Ctenoluciidae	Boulengerella lateristriga	striped-pike characin		
Cichlidae	Cichla pinima			
Ctenoluciidae	Ctenolucius beani			
Pangasiidae	Helicophagus typus			
Siluridae	Ompok goae			
Polypteridae	Polypterus teugelsi			
Potamotrygonidae	Potamotrygon constellata	Thorny river stingray		
Potamotrygonidae	Potamotrygon falkneri	Largespot river stingray		
Potamotrygonidae	Potamotrygon scobina	Raspy river stingray		
Anabantidae	Ctenopoma argentoventer	Silverbelly ctenopoma		
Ictaluridae	Ameiurus serracanthus	Spotted bullhead		
Characidae	Astyanax armandoi	Penjamo tetra		
Characidae	Astyanax bourgeti			
Characidae	Astyanax brevirhinus			
Characidae	Astyanax dnophos			
Characidae	Astyanax multidens			
Characidae	Astyanax validus			
Characidae	Bryconops caudomaculatus			
Characidae	Bryconops cyrtogaster			
Cichlidae	Cichla melaniae			
Cichlidae	Cichla orinocensis			
Cichlidae	Crenicichla johanna			
Cichlidae	Crenicichla lenticulata			
Cichlidae	Crenicichla maculata			
Cichlidae	Crenicichla marmorata			
Cichlidae	Crenicichla strigata			
Cichlidae	Crenicichla ternetzi			
Anabantidae	Ctenopoma nigropannosum	Twospot climbing perch		
Eleotridae	Eleotris amblyopsis	Large scaled spiny cheek sleeper		
Dasyatidae	Himantura lobistoma	Tube-mouth whip-ray		
Ictaluridae	Ictalurus dugesii	Lerma catfish		
Ictaluridae	Ictalurus mexicanus	Rio Verde catfish		
Ictaluridae	Ictalurus ochoterenai	Chapala catfish		
Pimelodidae	Leiarius arekaima	_		

Lepisosteidae	Lepisosteus platostomus	Shortnose gar
Lepisosteidae	Lepisosteus platyrhincus	Florida gar
Ictaluridae	Noturus albater	Ozark madtom
Ictaluridae	Noturus furiosus	Carolina madtom
Ictaluridae	Noturus lachneri	Ouachita madtom
Ictaluridae	Noturus taylori	Caddo madtom
Siluridae	Ompok binotatus	
Siluridae	Ompok eugeneiatus	Malay glass catfish
Siluridae	Ompok hypophthalmus	
Siluridae	Ompok leiacanthus	
Siluridae	Ompok miostoma	
Siluridae	Ompok platyrhynchus	
Siluridae	Ompok pluriradiatus	
Cichlidae	Petenia splendida	Bay snook
Polypteridae	Polypterus palmas palmas	Shortfin bichir
Polypteridae	Polypterus senegalus meridionalis	
Potamotrygonidae	Potamotrygon castexi	Vermiculate river stingray
Potamotrygonidae	Potamotrygon henlei	Bigtooth river stingray
Potamotrygonidae	Potamotrygon leopoldi	White-blotched river stingray
Potamotrygonidae	Potamotrygon ocellata	Red-blotched river stingray
Potamotrygonidae	Potamotrygon schuhmacheri	
Potamotrygonidae	Potamotrygon signata	Parnaiba river stingray
Potamotrygonidae	Potamotrygon yepezi	Maracaibo river stingray

Table 11. High risk species from tranche 2 that have not been reviewed by the technical group.

	High Risk					
Family	FamilySpecies NameCommon Name					
Ictaluridae	Ameiurus platycephalus	Flat bullhead				
Characidae	Astyanax alburnus					
Characidae	Astyanax bimaculatus	Twospot astyanax				
Characidae	Astyanax giton					
Cichlidae	Cichla jariina					
Cichlidae	Cichla kelberi					
Cichlidae	Cichla mirianae					
Cichlidae	Cichla nigromaculata					
Cichlidae	Cichla pleiozona					
Cichlidae	Cichla temensis	Speckled pavon				
Cichlidae	Cichla thyrorus					
Cichlidae	Crenicichla acutirostris					
Cichlidae	Crenicichla albopunctata					
Cichlidae	Crenicichla alta	Millet				
Cichlidae	Crenicichla cametana					
Cichlidae	Crenicichla compressiceps					
Cichlidae	Crenicichla cyanonotus					
Cichlidae	Crenicichla cyclostoma					
Cichlidae	Crenicichla empheres					
Cichlidae	Crenicichla lucius					
Cichlidae	Crenicichla lugubris					
Cichlidae	Crenicichla multispinosa					
Cichlidae	Crenicichla nickeriensis					
Cichlidae	Crenicichla sveni					
Cichlidae	Crenicichla wallacii					
Eleotridae	Eleotris sandwicensis	Sandwich Island Sleeper				

Poeciliidae Poeciliidae Dasyatidae Fungulidae Anabantidae Ictaluridae Siluridae Siluridae Siluridae Cichlidae Cichlidae Polypteridae Polypteridae Polypteridae Potamotrygonidae Potamotrygonidae Potamotrygonidae Anabantidae Characidae Characidae

Heterandria anzuetoi Heterandria tuxtlaensis Himantura pareh Lucania goodei Microctenopoma congicum Noturus elegans Noturus eleutherus Noturus exilis *Noturus fasciatus* Noturus flavater Noturus flavipinnis Noturus flavus Noturus maydeni Noturus phaeus Noturus placidus Noturus stanauli **Ompok** javanensis **Ompok** rhadinurus **Ompok** sindensis Parachromis dovii Parachromis motaguensis Polypterus endlicheri congicus Polypterus palmas buettikoferi Polypterus palmas polli Potamotrygon brachyura Potamotrygon magdalenae Potamotrygon marinae Anabas cobojius Astyanacinus goyanensis Astyanacinus multidens Astyanacinus platensis Astyanax altior Astvanax chico Astyanax clavitaeniatus Astyanax cremnobates Astyanax guaporensis Astyanax hastatus Astyanax hermosus Astyanax intermedius Astyanax jacuhiensis Astyanax jenynsii Astyanax latens Astyanax leonidas Astyanax magdalenae Astyanax obscurus Astyanax pampa Astyanax paris Astyanax pelegrini Astyanax puka Astyanax robustus Astyanax rupununi Astyanax schubarti Astyanax siapae Astyanax stilbe Astyanax totae Astyanax tumbayaensis

Livebearing fish

Bluefin killifish Congo ctenopoma Elegant madtom Mountain madtom Slender madtom Saddled madtom Checkered madtom Yellowfin madtom Stonecat Black River madtom Brown madtom Neosho madtom Pygmy madtom

Guapote False yellowjacket cichlid

Short-tailed river stingray Magdalena river stingray

Gangetic koi

Yucatan tetra

Characidae Characidae Characidae Characidae Characidae Characidae Characidae Characidae Characidae Cichlidae Characidae Characidae Anabantidae Anabantidae Anabantidae Anabantidae Pangasiidae Pangasiidae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Ictaluridae Ictaluridae Characidae Anabantidae Anabantidae Ictaluridae Siluridae Siluridae Siluridae

Astyanax unitaeniatus Astyanax varzeae Astyanax villwocki Bryconops colaroja Bryconops durbini Bryconops giacopinii Bryconops humeralis Bryconops inpai Bryconops vibex Cichla intermedia Cichla monoculus *Cichla piquiti* Cichla vazzoleri Crenicichla adspersa Crenicichla anthurus Crenicichla cincta Crenicichla frenata Crenicichla minuano Crenicichla notophthalmus Crenicichla phaiospilus Crenicichla proteus Crenicichla rosemariae Crenicichla sedentaria Crenicichla tigrina Ctenobrycon alleni Ctenobrycon spilurus Ctenopoma kingsleyae Ctenopoma muriei Ctenopoma ocellatum Ctenopoma weeksii Helicophagus leptorhynchus Helicophagus waandersii Himantura bleekeri Himantura pacifica *Himantura pastinacoides* Himantura schmardae Himantura uarnacoides Ictalurus balsanus Ictalurus pricei Knodus savannensis Microctenopoma lineatum Microctenopoma milleri Noturus bailevi Noturus crypticus Noturus funebris Noturus gilberti Noturus gladiator Noturus hildebrandi hildebrandi Noturus hildebrandi lautus *Noturus leptacanthus* Noturus munitus Noturus stigmosus Noturus trautmani **Ompok** borneensis **Ompok** fumidus Ompok jaynei

Silver tetra Tailspot ctenopoma Ocellated labyrinth fish Eyespot ctenopoma Mottled ctenopoma

Bleeker's whipray Pacific chupare Round whip ray Chupare stingray Whitenose whip ray Balsas catfish Yaqui catfish

Smoky madtom Chucky madtom Black madtom Orangefin madtom

Least madtom

Speckled madtom Frecklebelly madtom Northern madtom Scioto madtom

Management of ornamental fish. Communication strategy and grey list review

Siluridae	Ompok pinnatus	Long-fin glass catfish		
Siluridae	Ompok urbaini			
Siluridae	Ompok weberi			
Polypteridae	Polypterus senegalus senegalus	Gray bichir		
Potamotrygonidae	Potamotrygon boesemani			
Characidae	Astyanax aeneus	Banded tetra		
Cichlidae	Crenicichla brasiliensis			
Cichlidae	Crenicichla britskii			
Cichlidae	Crenicichla celidochilus			
Cichlidae	Crenicichla coppenamensis			
Cichlidae	Crenicichla gaucho			
Cichlidae	Crenicichla geayi	Halfbanded pike cichlid		
Cichlidae	Crenicichla hadrostigma			
Cichlidae	Crenicichla haroldoi			
Cichlidae	Crenicichla heckeli			
Cichlidae	Crenicichla hemera			
Cichlidae	Crenicichla hummelincki			
Cichlidae	Crenicichla igara			
Cichlidae	Crenicichla iguapina			
Cichlidae	Crenicichla iguassuensis			
Cichlidae	Crenicichla inpa			
Cichlidae	Crenicichla isbrueckeri			
Cichlidae	Crenicichla jaguarensis			
Cichlidae	Crenicichla jegui			
Cichlidae	Crenicichla jupiaensis			
Cichlidae	Crenicichla jurubi			
Cichlidae	Crenicichla labrina			
Cichlidae	Crenicichla menezesi			
Cichlidae	Crenicichla mucuryna			
Cichlidae	Crenicichla niederleinii			
Cichlidae	Crenicichla pellegrini			
Cichlidae	Crenicichla percna			
Cichlidae	Crenicichla prenda			
Cichlidae	Crenicichla punctata			
Cichlidae	Crenicichla pydanielae			
Cichlidae	Crenicichla regani			
Cichlidae	Crenicichla santosi			
Cichlidae	Crenicichla scottii			
Cichlidae	Crenicichla semicincta			
Cichlidae	Crenicichla sipaliwini			
Cichlidae	Crenicichla stocki			
Cichlidae	Crenicichla tendybaguassu			
Cichlidae	Crenicichla tingui			
Cichlidae	Crenicichla urosema			
Cichlidae	Crenicichla vaillanti			
Cichlidae	Crenicichla virgatula			
Cichlidae	Crenicichla vittata			
Cichlidae	Crenicichla yaha			
Cichlidae	Crenicichla zebrina			
Anabantidae	Ctenopoma multispine	Manysnined stanonoma		
Poeciliidae	Heterandria attenuata	Manyspined ctenopoma		
Poeciliidae	Heterandria cataractae			
Poeciliidae				
	Heterandria dirempta Heterandria formosa	Logot killifich		
Poeciliidae	Heterandria formosa	Least killifish		
Poeciliidae	Heterandria jonesii Heterandria literaanse	Barred killifish		
Poeciliidae	Heterandria litoperas			

Poeciliidae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Lepisosteidae Anabantidae Ictaluridae Ictaluridae Ictaluridae Siluridae Siluridae Polypteridae Polypteridae Polypteridae Polypteridae Polypteridae Polypteridae Polypteridae Characidae Cichlidae Cichlidae Cichlidae Eleotridae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Dasyatidae Ictaluridae Ictaluridae Lepisosteidae Fungulidae Ictaluridae Siluridae Osteoglossidae Polypteridae Polypteridae Osteoglossidae Ictaluridae Characidae Cichlidae Cichlidae Dasyatidae Dasyatidae Ictaluridae Ictaluridae Dasyatidae Dasyatidae Siluridae Cichlidae Ictaluridae Ictaluridae Cyprinidae

Cyprinidae

Heterandria obliaua Himantura alcockii Himantura krempfi Himantura microphthalma Himantura oxyrhyncha Himantura walga Lepisosteus osseus Microctenopoma fasciolatum Noturus insignis Noturus miurus Noturus nocturnus **Ompok** canio **Ompok** pabo Polypterus ansorgii Polypterus bichir bichir Polypterus bichir katangae Polypterus endlicheri endlicheri Polypterus mokelembembe Polypterus ornatipinnis Polypterus weeksii Astyanax mexicanus Crenicichla macrophthalma Crenicichla missioneira Crenicichla semifasciata Dormitator lebretonis Himantura draco Himantura fluviatilis Himantura hortlei Himantura marginata Himantura signifer Ictalurus furcatus Ictalurus lupus Lepisosteus oculatus Lucania parva Noturus gyrinus **Ompok malabaricus** Osteoglossum ferreirai Polypterus bichir lapradei *Polypterus delhezi* Scleropages formosus Ameiurus catus Astyanax fasciatus Cichla ocellaris Crenicichla reticulata Himantura gerrardi Himantura kittipongi Pylodictis olivaris Ameiurus natalis Himantura fava Himantura imbricata Ompok pabda Parachromis managuensis Ameiurus melas Ameiurus nebulosus Rutilus rutilus Tinca tinca

Pale-spot whip ray Marbled freshwater whip ray Smalleye whip ray Marbled whipray Dwarf whipray Longnose gar Banded ctenopoma Margined madtom Brindled madtom Freckled madtom

Pabo catfish Guinean bichir Nile bichir

Saddled bichir

Ornate bichir Mottled bichir Mexican tetra

Dragon stingray Ganges stingray Hortle's whipray Blackedge whipray White-edge freshwater whip ray Blue catfish Headwater catfish Spotted gar Rainwater killifish Tadpole madtom Goan catfish Black arawana Bichir Barred bichir Asian bonytongue White catfish Banded astyanax Peacock cichlid Sharpnose stingray Flathead catfish Yellow bullhead honeycomb whipray Scaly whipray Pabdah catfish Guapote tigre Black bullhead Brown bullhead Roach Tench

Management of ornamental fish. Communication strategy and grey list review

4 Next steps

4.1 Communication

The implementation of the communication activities is the responsibility of OFMIG and the jurisdictions. A second postcard and a brochure are being developed by a communications working group within OFMIG. The brochure will be targeted at serious hobbyists and the industry sector and goes into more detail to explain the noxious list and relevant legislation. The postcard will be targeted at novice hobbyists and explains the process for correct disposal of unwanted fish (including noxious/high risk species). These brochures are intended to be made available in aquarium and pet stores. Retailers will also be supplied with more comprehensive information to assist them in responding to customer's questions. All information will be circulated to aquarium hobbyist clubs, societies and associations to maximise exposure.

4.2 Grey list

The ornamental fish trade continues to evolve. At present there are three national fish lists recognised in the strategic plan for the import or control of ornamental fish in Australia (DAFF, 2005). These are: 1) the permitted species lists maintained by DEWHA and the Australian Quarantine and Inspection Service, 2) the agreed noxious list, and 3) the grey list. However, among the 2000 or more ornamental fish species likely to be in Australia at present there is a fourth group of fish which are not on any of the previous lists (McNee, 2002). This fourth group is yet to be identified or reviewed in terms of risk and warrants consideration in terms of implementation of a national approach to the management of ornamental fish.

The 315 species assessed in tranche 2 now require review by the expert technical working group to be organised by OFMIG. This will provide an opportunity for industry and hobbyists to identify those species within these risk groups that are of particular commercial or hobbyist interest. This will provide additional species that may be subjected to more rigorous biological and socio-economic assessments.

Although BRS completed the risk assessment for 447 species, there is still a further 331 grey list species that need to go through all stages of review (tranche 3). OFMIG now has carriage of tranche 3. The first step will be to analyse tranche 3 using the risk matrix. The borderline and high risk species from the tranche 3 assessment could then be added to those from the tranche 2 assessment and put to the stakeholder review workshop as a single group. The outputs from this review would then provide the next group of species to be put out for consultation prior to addition to the national noxious species list, and a final group of species (combined blue and yellow lists) from the three tranches of review that need to be subject to a more rigorous biological and socio-economic risk assessment process. The development and agreement to this broader risk assessment process can be progressed by OFMIG alongside the tranche 3 risk matrix review as one of the priority actions of the group.

4.2.1 Progressing to Phase 2

At their 29th meeting on 27 February 2009, the MACC endorsed a Phase 2 work plan for OFMIG, building on the work completed in the initial two years (Table 12). A number of important aspects of the national strategy have been addressed as part of the work presented in this report. This project provides an important foundation for future work requirements and will assist OFMIG to make decisions on the on-going implementation of the national strategy.

Table 12. Implementation work plan for the management of ornamental fish in Australia during Phase 1 (2007/08 to 2008/09) and Phase 2 (2009/10).

(Phase 2 priorities highlighted in bold)

RECOMMENDATION	TASKS	PRIORITY	AGENCY RESPONSIBLE	DATE FOR IMPLEMENTATION	Progress
Adopt national noxious fish list	Draft regulations or gazette list in each jurisdiction	High	Each jurisdiction	1 December 2007	Completed for all jurisdictions except WA
	Develop communication tools for national approach	High	OFMIG	ongoing	by March 2009
Review status of fish on the grey list	Appoint and resource	High	MACC	31 March 2007	Completed
	Scientific/Technical Advisory Group		Scientific/Technical		
	Risk assessment for grey list species	High	Advisory Group	30 April 2007	1 st tranche completed
				(commencement)	2 nd tranche ready for consultation
					3 rd tranche initial assessment to be completed
Regulatory framework and licensing to manage large fish breeders and ornamental fish importers	Develop regulatory and licensing policies	Medium	Each jurisdiction	1 Dec 2007	Completed
	Advise industry groups of new arrangements	Medium	Each jurisdiction	1 July 2007	Completed
Control mechanisms for	Options paper on	High	OFMIG	30 June 2007	In progress
regulation and management of noxious fish and rare fish already in circulation in Australia	management and control approaches			(commencement)	

Control plans for escaped ornamental fish	Development of control or eradication plans for priority species	Medium	Each jurisdiction	1 June 2008	On-going in each jurisdiction
Review of aquatic plants used in ornamental fish trade	Identification of plants and draft management strategy	Medium	OFMIG (through Australian Weeds Committee)	1 December 2007 (dependent on Weeds Committee	Completed
National communication strategy	Develop and resource national strategy	High	OFMIG (MACC)	1 September 2007	On-going
	Produce communication tools	Medium	DAFF, DEWHA, States	On-going	On-going
Monitor and evaluate National Plan implementation	Review implementation in each jurisdiction	Low	OFMIG (MACC)	On-going to 30 June 2008	Completed (report to MACC)
Roll out of eradication or control programs	National approach for:	Medium	Each jurisdiction as required	1 December 2007 (on- going)	On-going

5 References

Bomford, M. (2003) Risk assessment for the import and keeping of exotic vertebrates in Australia. Bureau of Rural Sciences, Canberra.

Bomford, M. (2006) Risk assessment for the establishment of exotic vertebrates in Australia: recalibration and refinement of models. Bureau of Rural Sciences, Canberra.

Bomford, M. and Glover, J. (2004) Risk assessment model for the import and keeping of exotic freshwater and estuarine finfish. Bureau of Rural Sciences, Canberra.

Bomford, M., Kraus, F., Braysher, M., Walter, L. and Brown, L. (2005) Risk assessment model for the import and keeping of exotic reptiles and amphibians. Bureau of Rural Sciences, Canberra.

Bomford M, Kraus F, Barry SC and Lawrence E. (2009a). Predicting establishment success for alien reptiles and amphibians: a role for climate matching. *Biological Invasions* 11:713–724.

Bomford, M., Darbyshire, R., and Randall, L. (2009b) Determinants of establishment success for introduced exotic mammals. *Wildlife Research* 36:3, 192.

Busby, J. R. (1991) BIOCLIM - a Bioclimate analysis and prediction system. IN MARGULES, C. R. & AUSTIN, M. P. (Eds.) *Nature Conservation: Cost effective biological surveys and data analysis*'. Melbourne, CSIRO Publishing.

Clunie, P., Stuart, I., Jones, M., Crowther, D., Schreiber, S., McKay, S., O'Conner, J., McLaren, D., Weiss, J., Gunasekera, L. and Roberts, J. (2002) A risk assessment of the impacts of pest species in the riverrine environment in the Murray-Darling Basin. Department of Natural Resources and environment, Authur Rylah Institute for Environmental Reasearch.

Copp, G.H., Garthwaite, R. and Gozlan, R.E. (2005) Risk identification and assessment of nonnative freshwater fishes: concepts and perspectives on protocols for the UK. *Science Series Technical Report No. 129.* CEFAS, Lowesoft.

Corfield, J., Diggles, B., Jubb, C., McDowall, R.M., Moore, A., Richards, A. & Rowe, D.K. (2008) Review of the impacts of introduced ornamental fish species that have established wild populations in Australia. A report to the Australian Government Department of the Environment, Water, Heritage and the Arts.

Courtenay, W.R., Moyle, P.B. (1992) Crimes against biodiversity: the lasting legacy of fish introductions. *Northern American Wildlife and Natural Resources Conference Transactions*. 57:365-382.

DAFF (2005) A strategic approach to the management of ornamental fish in Australia. Department of Agriculture Fisheries & Forestry, Canberra.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z., Knowler, D.J., Leveque, C., Naiman, R.J., Prieur-Richards, A., Soto, D., Stiassny, M.L. and Sullivan, C.A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. *Biological Review*. 81:163-182.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*. 25: 1965-1978.

Kolar, C. and Lodge, D.M. (2001) Progress in invasive biology: predicting invaders. *Trends in Ecology and Evolution*. 16(4):199-204.

Kolar, C. and Lodge, D.M. (2002) Ecological predictions and risk assessment for alien fishes in North America. *Science*. 298(5596):1233-1236.

Kolar, C. (2004) Risk assessment and screening for potentially invasive fishes. *New Zealand Journal of Maine and Freshwater Research*. 38:391-397.

Lintermans, M. (2004) Human-assisted dispersal of alien freshwater fish in Australia. *New Zealand Journal of Marine and Freshwater Research* 38:481-501.

McNee, A. (2002) A national approach to the management of exotic species in the aquarium trade: An inventory of exotic freshwater fish species. Bureau of Rural Sciences, Canberra.

Morris, S.A., Pollard, D.A., Gehrke, P.C. and Pogonoski, J.J. (2001) Threatened and potentially threatened freshwater fishes of coastal New South Wales and the Murray-Darling Basin. *NSW Fisheries Final Report Series*, No. 33.

Maywald, G. F. & Sutherst, R. W. (1985) *User's guide to CLIMEX, a climatic matching program,* Canberra, CSIRO Australian Division of Entomology Rep. No. 35.

Rahel, F.J. (2000) Homogenisation of fish faunas across the United States. Science. 288:854-856.

Biodiversity Conservation. 14:1365-1381.

Rahel, F.J. (2002) Homogenisation of fish faunas. *Annual Review of Ecology and Systematics*. 33:291-315.

Reynolds, S.J. (2009) Impact of the introduced Poeciliid *Gambusia holbrooki* on amphibians in southwestern Australia. *Copeia*. 2:296-302.

Rixon, C.A., Duggan, I.C., Bergeron, N.M., Ricciardi, A. and Macisaac, H.J. (2005) Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes.

Rowe, D.K., Moore, A.S. Georgetti, A. Maclean, C., Grace, P., Corfield, J., Wadhwa, S., Cooke, J. (2008) Review of the impacts of Gambusia, redfin perch, tench, roach, yellowfin goby and streaked goby in Australia. A report to the Australian Government Department of the Environment, Water, Heritage and the Arts.

Simberloff, D. (2003) How much information on population biology is needed to manage introduced species? *Conservation Biology*. 17:83-92.

Vitousek, P.M. D'Antonio, C.M. Loope, L.L.Rejmanek, M., Westbrooks, R. (1997) Introduced species: a significant component of human-caused global change. *New Zealand Journal of Ecology*. 21:1-16.

Wager, R. and Jackson, P. (1993) The action plan for Australian freshwater fishes. Australian Nature Conservation Agency, Canberra.

Webb, A.C. (2006) Risk assessment screening for potentially invasive freshwater fishes whithin the wet tropics bioregion: a review of assessment approaches, identification of knowledge gaps and future recommendations. Report No 06/26. Australian Centre for Tropical Freshwater Research, James Cook University, Townsville.

Wilding, T.K. and Rowe, D.K. (2008) FRAM: A risk assessment model for the importation and management of alien freshwater fish in New Zealand. NIWA report prepared for the Foundation for Research Science & Technology.

Walton, C., Ellis, N and Pheloung, P. (1998) A manual for using the weed risk assessment system (WRA) to assess new plants. Biosecurity Australia, Canberra.

6 Appendices

6.1 Appendix 1: OFMIG communications strategy

Communications Strategy - Ornamental Fish in Australia

Communication Strategy

for

The implementation of the national campaign

Ornamental Fish Policy Working Group Natural Resource Management Ministerial Council

September 2007

Last updated: 8/07/2009 Prepared by Vicki Pow

Table of Contents

Background	3
Need for a Communication Strategy	4
Key Issues and Considerations	4
STAGE 2 — National Campaign	8
Aims	8
Objectives	8
Key Messages	8
Target Audience	9
Communications Strategy	10
Communication tools	10
Budget	12
Evaluation	12
Summary of Activity	13

Last updated: 8/07/2009 Prepared by Vicki Pow

Background

The ornamental fish trade in Australia is estimated to be worth approximately \$350 million annually. This figure is not concise but does include commercial fish breeding facilities, wholesale traders, retail outlets and the hobby industry.

The trade in Australia is complex and complicated with each jurisdiction having different regulatory frameworks and management regimes. Translocation of fish across borders occurs without any enforcement or punishment and no one really understands (outside of some major wholesale businesses or hobby groups) what species are being traded in Australia, or the level of prohibited or noxious fish being bred and traded in the industry.

Ornamental fish present a significant risk to freshwater systems in Australia and have the potential to trigger or contribute to a major aquatic animal pest or disease incursion in Australia in the future.

A number of populations of exotic or non-endemic ornamental fish species are established in Australia, and these 'pests' are seriously impacting on biodiversity in our freshwater systems. Some aquatic plants, such as *Caulerpa taxifolia* (which was traded in the aquarium industry until recently), can have devastating effects on marine systems if released, and future escapes and invasions need to be avoided.

Many fish species in the trade are not on the current national permitted species lists established under Part 13A of the *Environment Protection and Biodiversity Conservation Act 1999* or covered by quarantine regulations. It may be that such species have been permitted under previous statutory arrangements, but they are no longer on the list and are unlikely to have been assessed for their potential risk to the environment. There is no consistency between mechanisms or controls across regulatory agencies to deal with the serious issue of noxious aquatic pests, with the exception of a few species.

Past efforts to regulate the ornamental fish industry have failed, primarily as a result of heavyhanded approaches to regulation and a lack of consultation and failure to engage effectively with industry stakeholders.

The Pet Industry Association of Australia (PIAA) has supported this review of the ornamental fish trade. The PIAA, in association with state and territory governments, has committed to the implementation of this report's recommendations, to ensure that the industry has an economically sound and environmentally sustainable future.

The recommendations of the report address the need for a nationally recognised noxious species list and new management frameworks for the ornamental sector as a whole. The report also recognises the importance of improved communication with all stakeholders and the wider community through a comprehensive communication plan.

The Ornamental Fish Policy Working Group (OFPWG) is responsible for the implementation of the national communications strategy.

Last updated: 8/07/2009 Prepared by Vicki Pow

Need for a Communication Strategy

A communications strategy is necessary to minimise misinformation and produce community understanding and awareness about the potential threat of ornamental fish, live rock and plants to our freshwater environment.

A national campaign would bring together all state and territory organisations that have the responsibility for regulating the ornamental fish industry and be proactive in developing strategies and messages that could be applied across the nation.

There will be two phases to the strategy -

- 1. the announcement of the release of the final report
- 2. the implementation of the recommendations for a national campaign

Key Issues and Considerations

- Many fish species in the trade are not on the current national permitted species lists established under Part 13A of the *Environment Protection and Biodiversity Conservation Act* 1999 or covered by quarantine regulations.
- Certain species have been permitted under previous statutory arrangements but they are no longer on the list and are unlikely to have been assessed for their potential risk to the environment.
- Each state or territory has their own list of permitted species with different regulatory frameworks and management regimes and as a result there is no consistency between mechanisms or controls across regulatory agencies to deal with the serious issue of noxious aquatic pests, with the exception of a few species (eg. European carp).
- Translocation of fish across borders occurs with impunity and no one really understands (outside of some major wholesale businesses or hobby groups) what species are being traded in Australia, or the level of prohibited or noxious fish being bred and traded.

Last updated: 8/07/2009 Prepared by Vicki Pow

STAGE 2 - National Campaign

Aims

- To raise awareness to stakeholders of the availability of the final report Management of Ornamental Fish in Australia.
- To implement a strategy to raise community understanding and awareness to risks and the potential threat of ornamental fish, aquatic plants and live rock to our environment if released into our waterways.

Objectives

The objectives for the implementation of the Ornamental Fish Strategy are:

- to minimise misinformation and raise community awareness to the potential threat of ornamental fish, aquatic plants and live rock to our freshwater environment;
- to initiate behavioural change to encourage the community to dispose of their unwanted / noxious ornamental fish, live rock and aquatic plants in the correct way;
- to achieve better communication by developing networks and cooperative working
 partnerships between the regulators, industry and major hobby groups; and
- to provide timely updates on changes in regulatory arrangements to improve hobby and trade practice and to ensure that the industry has an economically sound and environmentally sustainable future.

Key Messages

There are key messages for the various sectors of the ornamental fish industry as well as public awareness and community education. It will form the basis of the national promotion.

 Ornamental fish are wonderful pets, but they should never be released into our natural waterways.

General public messages

- Safely dispose of your unwanted fish or aquatic plants or live rock "bag it, freeze it, bin it" or take the fish, plants to your local aquarium.
- Never release unwanted fish into our natural waterways.
- Ornamental fish, aquatic plants and live rock are a risk to our waterways in Australia and can trigger or contribute to a future major aquatic animal pest or disease spread, particularly in freshwater systems, if released.
- Take care in cleaning aquarium tanks as this can accidentally introduce unwanted species into our waterways.
- Governments and industry are working together to protect our freshwater environments.

Last updated: 8/07/2009 Prepared by Vicki Pow

Industry messages

 Many ornamental fish species in the trade are not on the current national permitted species lists. Check before you buy.

A recent review suggests that there are over 1100 exotic ornamental fish species in Australia. The current 'permitted import' list states that there are only 481 species or genera that have been assessed as permitted imports.

- Illegally importing exotic ornamental fish species increases the risk of introducing new diseases and pests to our natural waterways.
- Take care in cleaning aquarium tanks as this can also introduce unwanted species into our waterways and can affect our native fish populations and waterways.
- Importers of ornamental fish can apply to have new species included on the 'permitted imports' list.
- Some aquatic plants can also have devastating effects on marine systems if released, seriously impacting on biodiversity in our freshwater systems.
- No one really knows which species are being traded in Australia, or the numbers of prohibited or noxious fish being bred and traded in the industry.
- The Pet Industry Association of Australia (PIAA), is working with state and territory governments, to ensure that the industry has an economically sound and environmentally sustainable future.

Target Audience

The target audience can be broadly divided into two groups – the general public and the industry sector.

Primary targets

- General public
- Commercial fish breeders
- Importers / Wholesalers / Retailers
- · Private aquarium owners (including those with fish ponds), hobbyists and enthusiasts.
- Indigenous groups / NESB

Secondary targets and stakeholders

- State or territory government compliance / enforcement officers
- AQIS and customs officers
- Public aquariums
- Industry representatives
- · Media metropolitan, rural and regional media
- Educational programmes such as 'Totally Wild', Discovery channel programmes, or lifestyle
 programmes such as 'Better Homes and Garden' where there is a segment devoted to pet
 care or pet problems.

Last updated: 8/07/2009 Prepared by Vicki Pow

Communications Strategy

This is the second stage of this communications strategy. A communications strategy is necessary to minimise misinformation and raise community understanding and awareness by providing balanced information about the potential threat of ornamental fish and plants to our water environment.

It planned that with the implementation of the Ornamental Fish Strategy and associated Communications Strategy, communication materials will be developed and be utilised by all jurisdictions, thus reducing costs and effort for each jurisdiction while ensuring a consistent message across the country.

Some jurisdictions have already developed communication tools and a review of this material and their effectiveness will be taken into consideration when developing the communications tools for the national promotion. It is hoped that this material will supplement the new material.

There is great potential for the communications strategy to 'fill the gap' in information and provide a more balanced perspective. The existing tools will supplement or value add to the new material.

NOTE: All material developed will require clearance from the OFPWG.

Communication tools

- Slogan for campaign
- National badging for all materials relating to this campaign
- · Information/ fact sheets with more detail
- Promotional poster
- ID Guide
- Supporting material / giveaways such as DL Brochure with key messages
- Dedicated website
- Promotional opportunities at specific shows
- Media Release
- Advertisements print, radio and television (depending on funds available) and associated editorials
- Community Service Announcements
- Optional Ministerial launch of campaign

Slogan for national campaign

A slogan is to be developed for the campaign. "Bag it, freeze it, bin it" has been agreed to by the working group.

Note: We are currently checking with animal welfare groups, RSPCA and Australian Veterinary Association to confirm that freezing is the most humane way of disposing of fish.

Banner/logo/badging

A 'look' for material relating to this campaign needs to be developed. This would incorporate a template for such things as information sheets, poster and any other promotional material. Badging will need to be agreed to – Is it the same as for the Strategy? Show industry-governments working together.

Last updated: 8/07/2009 Prepared by Vicki Pow

Information Sheets

Most jurisdictions have already developed information sheets and brochures. These will be used to supplement the new material.

Promotional Poster

A promotional poster will be developed with key messages and appropriate images relating to the campaign and slogan. It will be available for public aquariums, the aquarium trade and importers, aquarium industry associations and other key stakeholders groups. It will also be available to download from website.

Identification Guide

To develop an identification guide along similar lines to the Protected Marine Species Identification Guide developed by DEH for NHT. Small laminated flip-type booklet approx 11.5cm \times 18.5cm. On each page would be an image of a noxious species with a description of elements of characteristics such as size, colour and specific feature. Purpose would be to assist enforcement officers to recognise noxious species.

Supporting material / giveaways

Brochure, suggest DL 6 panel size for distribution as an in-store counter promotion for the aquarium trade, hobby clubs and vets. Brochure would contain basic information but would provide contacts for more information.

Optional: Develop tools such as fridge magnets with key messages on them and to be available as giveaways as various events, trade shows etc.

Dedicated website and promotional material

A dedicated website is to be developed for information relating to ornamental fish and will include importing details, information sheets, what to do if you have illegal fish, contact lists and useful links.

The website will be the primary mode for providing information and online resources to various stakeholders, such as the aquarium industry, importers, enforcement agencies, trade, private aquarium owners (including those with fish ponds), hobbyists and enthusiasts. The website could have a secured area for access by registered users, such as enforcement/compliance officers.

 Useful links – A list of useful links to key websites and resources to obtain additional information about bycatch.

It was suggested that we use the <u>www.feral.org.au</u> to place our information. At present there is information on carp. This avenue is currently being investigated. Other portals are being investigated as well.

Promotional opportunities at specific shows

To identify promotional opportunities at specific shows, such as conferences, trade shows and exhibitions. For example, as part of a joint display with state agency at the Pet Expo 2007 in Melbourne, 5-6 October.

Last updated: 8/07/2009 Prepared by VickI Pow

Media

A media release is to be prepared and distributed among metropolitan, regional and rural media outlets announcing the release of the Ornamental strategy. Media releases should also be prepared for various stages of the promotion, such as additions to 'permitted species' lists.

It is essential that we engage the media during the course of the campaign and promote the key messages.

Prepared articles are to be distributed to key industry journals, newsletters and publications. There are opportunities with some journals or magazines for the placement of an advertisement and an accompanying editorial.

Also seek opportunities television shows, particularly children's television shows, such as Totally Wild or the pet segment of Better Homes and Garden – pet care, Dr Harry or similar shows advising them of the pleasures of keeping ornamental fish, aquatic plants but also the possible environmental risks if they are dumped or let loose into waterways.

Additional activity

- Profile on BRS webpage
- Articles for Contours, E-clips and E-bulletin
- Articles for other relevant government publications or distribution outlets
- Advertisements and articles for industry publications PIAA

Optional - Ministerial launch

If a Ministerial launch is planned to officially launch the campaign then it will be co-ordinated at an agreed time through the relevant Minister's office. It is likely to be a joint launch as there are two Ministers involved – Minister for Agriculture Fisheries and Forestry and the Minister for Environment and Water Resources. This will need to be negotiated.

Launch:

- Invitations prepared and distributed
- Speech
- Media release
- Interview and Photograph opportunities

Media:

- Media alert for launch
- · Media kit prepared for Ministerial launch to contain: Ministerial Media Release,
- poster, background information and the Strategy
- Ministerial media release (drafted)

Budget

A limited budget has been allocated for activities relating to implementation of the Ornamental Fish Strategy.

Proposed allocation of funding for the national communications component of the national strategy implementation over a two year period is below: The allocated funds are for a National communication strategy - public notices, posters, pamphlets and E-reference with annual funding of \$80,000 for two years (totalling \$160,000).

Last updated: 8/07/2009 Prepared by Vicki Pow

Evaluation

- Success of the media strategy will be measured by: Media coverage received following the launch of campaign
 - Enquiries by industry and key stakeholder groups
 - Hits on the dedicated website
 - Requests for information by public

Last updated: 8/07/2009 Prepared by Vicki Pow

Summary of Activity

Activity	Responsible Agency	Contact	Deadline
COMMUNICATIONS TOOLS:			
Slogan		-	
Banner /logo			
Brochure - DL			
Poster with key messages			
Laminated booklet – id fish (refer NHT Protected Species ID guide)			
Promotional material – fridge magnets, etc			
Promotional opportunities at key conference and/or trade shows			
 Website Development of website and associated material Development of Secured area for website 			
MINISTERIAL LAUNCH			
Minute/s			
Event Brief			
Speech			
Media Release			
Launch Details:			
Invitation list			
Draft and distribute invite			
RSVP point of contact			
Set-up, pack down			
Attendance, logistics (AV equip, lectern)			
Venue / catering		-	
Order of proceedings			
Photographer			
Launch materials:		-	
Display copies of brochure, poster etc			
Minister's media release			
Poster for lectern			
Photo opps at venue			
BRS pull up banner			
Media			
Media alert of the launch. 2 alerts to be sent out			
Media alert follow up.			

Last updated: 8/07/2009 Prepared by Vicki Pow

Media release on launch day by relevant Minister/s		
Working Party or BRS spokesperson(s) for interviews		
Media kits - Compile copies of release, poster, Strategy, background information etc for distribution at the launch and direct mail on request		
ADDITIONAL MEDIA		
Contours, E-clips and E-bulletin articles	BRS	
Paid advertisements in industry journals		
Articles in industry newsletters		
MONITORING:		
Media monitoring for 4 weeks post launch.	BRS	

Last updated: 8/07/2009 Prepared by Vicki Pow

6.2 Appendix 2: BRS ornamental fish website

Ornamental fish: pets or pests?

The ornamental fish industry in Australia - which includes traders, fish breeders, retail outlets and the hobby industry - is estimated to be worth \$350 million a year.

Aquarium fish make great pets, but if they are released into the wild they can pose a serious threat to Australia's aquatic biodiversity.

Ornamental fish and aquarium plants can be dumped or released, often making their way into our waterways. This has resulted in a number of exotic fish species establishing a presence in Australia, seriously affecting the biodiversity of our freshwater systems.

Whereas some control is already occurring, through quarantine regulations and State fishery regulations, there is no consistency between the regulatory agencies dealing with the issue of noxious, aquatic pests. Despite several attempts to regulate the industry, nothing workable has eventuated.

To address this problem, the Natural Resource Management Ministerial Council has endorsed a national strategy - A Strategic Approach to the Management of Ornamental Fish in Australia. The strategy was developed by the Ornamental Fish Policy Working Group in close consultation with industry and other stakeholders. It looks at the potential for aquarium fish to become pests and makes seven main recommendations on managing and regulating their trade. Key recommendations include the need for a nationally recognised noxious species list; new management frameworks for the ornamental sector, better communication with stakeholders and a public awareness campaign on the dangers of releasing fish where they can get into waterways, and what to do with them if they are no longer wanted.

An Ornamental Fish Management Implementation Group has been created to progress the implementation of the strategy. This group has representatives from all jurisdictions as well as industry and hobby sector representatives and a member from the Aquatic Animal Health Committee.

The latest facts about keeping ornamental fish

Ornamental fish are well-suited to aquariums but, if released into Australia's natural waterways, could threaten Australia's aquatic environment.

The national strategy released in 2006: A Strategic Approach to the Management of Ornamental Fish in Australia, contains a proposed national noxious ornamental aquarium fish species list and a "grey" list of species that require further review.

The states and territories have either formalised or are in the process of formalising the noxious species list in their legislation. Where there was not unanimous agreement on the status of a species, it was added to the grey list.

Scientists and industry representatives from around Australia, including from the state and Australian governments, recently reviewed a risk identification method and results for categorising grey list ornamental fish according to the probability of their establishment in the wild and their potential environmental impact.

Results of the workshop are still being reviewed. However there is a significant number of grey list species that fall into the high risk category.

The listing of grey-listed species as noxious is the responsibility of the Natural Resource Management Ministerial Council and will then be taken up by the states and territories.

Treatment of noxious species, the regulations and how they are enforced is determined by state and territory governments.

A copy of A Strategic Approach to the Management of Ornamental Fish in Australia can be obtained through the BRS Shop.

Updates from the Chair of the Ornamental Fish Management Implementation Group on the review of grey-list species

18 November 2008

In 2006 the national strategy, A Strategic Approach to the Management of Ornamental Fish in Australia, was approved by the Australian, state and territory governments through the Natural Resource Management Ministerial Council (NRMMC). It contains a list of noxious ornamental aquarium fish species that the states and territories have agreed to control through legislation.

Where there was not unanimous agreement on the noxious status of an ornamental fish species, it was added to a list to be reviewed to determine whether it presented a high risk to the Australian environment if released either deliberately or accidentally. The national strategy states that these species require further technical consideration and risk assessment. This list is commonly called the 'grey list'.

Scientists and industry representatives from around Australia, recently reviewed a range of ornamental fish species on the grey list and considered their risk of establishing in the wild and their potential environmental impact. The review covered approximately 140 of the 780 species currently on the grey list. The review process identified species that were considered high and low risk and species that were of direct importance to the aquarium trade and hobby sector. The results of the review were considered by the Ornamental Fish Management Implementation Group (OFMIG) on 7 November 2008. The recommendations of that meeting were:

- high risk species unlikely to be of direct importance to the trade and hobby sectors (as
 identified by representatives of industry and hobby groups) will be released for public comment
 before states and territories proceed to list them as noxious
- high risk species identified as being of importance to the trade and hobby sectors will be
- subject to stakeholder consultation to discuss management options
- a stakeholder workshop will be run in 2009 to consult with stakeholders.

The recommendations from OFMIG will be considered by the NRM Marine and Coastal Committee (MACC) prior to implementation. The decision to list grey-listed species as noxious is the responsibility of the Natural Resource Management Ministerial Council, which is representative of all governments in Australia. Control through legislation will then be taken up by the states and territories.

You should be aware that species not listed on the national live import list are prohibited imports. People importing and keeping them may need to demonstrate lawful import. For a copy of the live import list please see the following website: http://www.environment.gov.au/biodiversity/tradeuse/lists/import/pubs/live-import-list.pdf

Further information and a copy of A Strategic Approach to the Management of Ornamental Fish in Australia can be obtained at the following website: http://www.daff.gov.au/brs/fisheriesmarine/environment/ornamental

Yours sincerely

Will Zacharin Chair Ornamental Fish Management Implementation Group

Last reviewed: 21 Nov 2008 Contact: Email Bureau of Rural Sciences About Bureau of Rural Sciences and Contact details Media Inquiries

6.3 Appendix 3: Postcard – Strategic approach to the management of ornamental fish in Australia

6.4 Appendix 4: Useful websites consulted for this review

http://animal-world.com/encyclo/fresh/fresh.htm http://aquatic-hobbyist.com http://aquaticpredators.com http://aquaworld.netfirms.com http://fisc.er.usgs.gov/afs/ http://fish.mongabay.com http://fpcs.fish.govt.nz/ www.amonline.net.au/fishes/index.cfm www.aquariacentral.com www.aquarticles.com www.aquaticcommunity.com www.arcbc.org.ph/arcbcweb/pdf/vol2no4/12-15_sr_invasive_aquatic_animals.pdf www.cites.org/ www.defra.gov.uk www.fishbase.org www.fishprofiles.com www.geocities.com www.liveaquaria.com www.nanfa.org www.planetcatfish.com www.pond-life.me.uk www.scotcat.com www.seriouslyfish.com www.theaquariumwiki.com www.thetropicaltank.co.uk www.tropicalfishfinder.co.uk www.wcs.org/globalconservation/Africa/madagascar/freshwaterfishconservation www.wetwebmedia.com

6.5 Appendix 5: Results of tranche 1 and 2 (i.e. all species assessed to date)

Highlighted cells in the 'Family' column refer to the level of interest shown in them; Blue = of interest to hobbyists, Yellow = of interest to industry, Purple = of no interest. Highlighted cells in the 'Total' and 'Climatch x Impact' columns refer to the level of risk the species poses; Green = low risk, Red = high risk. These colours only appear on the 132 species that have been assessed by the technical working group as level of interest and final scores have not been assigned for the other 315 species assessed to date.

				B	iodiver	sity					In	ipac	ts			, , , , , , , , , , , , , , , , , , ,	Frade		Tota	ıl	
Family	Species	Climate match	Established in Australia	Eradication effort	Established beyond natural range internationally	CITES listing	Hardiness	Resilience	Current noxious status in Australia	Impact on habitat	Impact on other species	Genetic risk to native species	Genetic risk of non-native hybridisation	Known carrier of high risk disease	Direct threat to humans	Restricted trade elsewhere	Multiple use species	Captive status in industry	Total	Unknowns	Climate x Impact
Fundulidae	Leptolucania ommata	3	0	NR	0	No	2	2	0	0	0	0	0	0	0	No	1	1	9	0	low risk
Acipenseridae	Huso dauricus	3	0	NR	0	Yes	2	0	0	2	2.1	0	0	0	0	Yes	1	1	11	1	high impact, low climate
Acipenseridae	Acipenser fulvescens	3	0	NR	0	Yes	2	0	0	2	2.1	0	0	0	0	Yes	2	1	12		high impact, low climate
Acipenseridae	Acipenser brevirostrum	3	0	NR	0	Yes	2	0	0	2	2.1	0	0	0	0	Yes	2	1	12	1	high impact, low climate
Acipenseridae	Acipenser persicus	4	0	NR	0	Yes	2	0	0	2	2.1	0	0	0	0	Yes	1	1	12	1	high risk
Acipenseridae	Acipenser sinensis	3	0	NR	0	Yes	2	0	0	2	2.1	0	0	0	0	Yes	2	1	12	1	high impact, low climate
Acipenseridae	Acipenser sturio	5	0	NR	0	Yes		0	0	2	2.1	0	0	0	0	Yes	2	1	12	1	high risk
Pangasiidae	Pangasius elongatus	2	0	NR	0	No	2	2	0	2	2	0	0	0	0	No	1	1	12	0	high impact, low climate
Pangasiidae	Pangasius nieuwenhuisii	2	0	NR	0	No	2	2	0	2	2	0	0	0	0	No	1	1	12	0	high impact, low climate

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI]	DS	TH	RT	MU	CS	ТТ	UK	CI
Polypteridae	Erpetoichthys calabaricus	3	() NR	0	No	2	1	() 2.1	2	2 ()	0	0		No	1	1	12	1	high impact, low climate
Mastacembelidae	Mastacembelus erythrotaenia	3	(NR	0	No	2	1	() 1	2	2 ()	0	0	0	No	2	2	12	0) high impact, low climate
Pimelodidae	Phractocephalus hemioliopterus	1	(NR	0	No	2	0) () 2	2	2 ()	0	2.1	0	No	2	2	12	1	high impact, low climate
Cichlidae	Caquetaia umbrifera	2	(NR	0	No	2	1	() 2	2	2 ()	1	0	0	No	1	1	12	0) high impact, low climate
Acipenseridae	Acipenser ruthenus	3	(NR	2	Yes	2	0	() 2	1	()	0	0	0	Yes	2	2	13	0) high impact, low climate
Acipenseridae	Acipenser dabryanus	5		NR	0	Yes	2		() 2	2.1	()	0	0	0	Yes	1	. 1	13	1	high risk
Acipenseridae	Acipenser medirostris	4) NR	0	Yes	2) () 2)	0	0	0	Yes	2	2 1	13	1	high risk
Acipenseridae	Acipenser mikadoi	4	0) NR	0	Yes	2	0) () 2	2.1	()	0	0	0	Yes	2	2 1	13	1	high risk
Acipenseridae	Acipenser naccarii	5	() NR	0	Yes	2	0) () 2	2.1	()	0	0	0	Yes	1	. 1	13	1	high risk
Acipenseridae	Acipenser oxyrinchus oxyrinchus	4	(NR	0	Yes	2	0) () 2	2.1	()	0	0	0	Yes	2	2	13	1	high risk
Acipenseridae	Acipenser baerii baicalensis	4	(NR	0	Yes	2	0) () 2	1	()	0	2.1	0	Yes	1	1	13	2	2 high risk
Acipenseridae	Acipenser nudiventris	4	(NR	1	Yes	2	0) () 2	2.1	()	0	0	0	Yes	1	. 1	13	2	2 high risk
Acipenseridae	Acipenser schrenckii	4	(NR	1	Yes	2	0) () 2	2.1	()	0	0	0	Yes	1	. 1	13	2	2 high risk
Acipenseridae	Acipenser multiscutatus	4	(NR	0	Yes	2	0) () 2	2.1	()	0	0	0	Yes	2.1	1	13	3	³ high risk
Acipenseridae	Acipenser oxyrinchus destotoi	4	(NR	0	Yes	2	0) () 2	2.1	()	0	0	0	Yes	2.1	1	13	3	high risk
Ctenoluciidae	Ctenolucius hujeta	4	() NR	0	No	2.1	1	(2.1	1	()	0	0	0	No	2	2 1	13	2	2 high risk
Eleotridae	Oxyeleotris heterodon	2	(NR	0	No	2	2	() (2	2 2	2	1	0	0	No	1	1	13	0) high impact, low climate
Pangasiidae	Pangasius gigas	4	(NR	1	Yes	2	0) () 2	2	2 ()	0	0	0	No	1	1	13	1	high risk
Pangasiidae	Pangasius conchophilus	4	(NR	0	No	2	0) () 2	2	2 ()	0	0	0	No	2	. 1	13	() high risk
Pangasiidae	Pangasius krempfi	2	(NR	0	No	2	2	() 2	2	2 ()	0	0	0	No	2	2	13	C) high impact, low climate
Pangasiidae	Pangasius kunyit	2	(NR	0	No	2	2	() 2	2	2 ()	0	0	0	No	2	2	13	C) high impact, low climate

Fm	Sp	Cm	EA	A EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	D	S	TH RT	MU	CS	T	ΓU	K	CI
Fundulidae	Adinia xenica	5		0 NR	0	No	2	2	2 () 1	1	. ()	0	0	0 No	1		1 1	3		low impact, high climate
Fundulidae	Fundulus chrysotus	4	(0 NR	0	No	2	2	2 1	1 1	1	. ()	0	0	0 No	1		1 1	3		low impact, high climate
Pimelodidae	Brachyplatystoma vaillantii	3	(0 NR	0	No	2	C) () 2	2 2	2 0)	0 2	2.1	0 No	1		1 1	3		high impact, low climate
Tetraodontidae	Carinotetraodon travancoricus	2	(0 NR	0	No	2	2	2 () 2	2	2 1		0	0	0 No	1		1 1	3		high impact, low climate
Tetraodontidae	Auriglobus amabilis	2	(0 NR	0	No	2	2	2 () 2	2	2 1		0	0	0 No	1		1 1	3		high impact, low climate
Tetraodontidae	Auriglobus nefastus	2		0 NR	0	No	2	2	2 () 2	2 2	2 1		0	0	0 No	1		1 1	3		high impact, low climate
Tetraodontidae	Chonerhinos silus	2	(0 NR	0	No	2	2	2 () 2	2 2	2 1		0	0	0 No	1		1 1	3		high impact, low climate
Tetraodontidae	Colomesus psittacus	3	(0 NR	0	No	2	1	. () 2	2	2 1		0	0	0 No	1		1 1	3		high impact, low climate
Cichlidae	Caquetaia spectabilis	2	(0 NR	0	No	2	1	. () 2	2 2	2 0)	1	0	0 No	2	2	1 1	3		high impact, low climate
Poeciliidae	Tomeurus gracilis	2	(0 NR	0	No	2	2	2 () 1	2	2 ()	1 2	2.1	0 No	1		1 1	4		high impact, low climate
Acipenseridae	Huso huso	4	(0 NR	1	Yes	2) () 2	2.1	. ()	0	0	0 Yes	2	2	1 1	4	2	high risk
Eleotridae	Oxyeleotris urophthalmoides	2	(0 NR	0	No	2	1	. () 2.1	2	2 2	2	1	0	0 No	1		1 1	4		high impact, low climate
Eleotridae	Oxyeleotris siamensis	4	(0 NR	0	No	2	1	. () () 2	2 2	2	1	0	0 No	1		1 1	4	0	high risk
Pimelodidae	Sorubimichthys planiceps	4	(0 NR	0	No	2	C) () 2	2 2	2 0)	0 2	2.1	0 No	1		1 1	4	1	high risk
Potamotrygonidae	Plesiotrygon iwamae	3	(0 NR	0	No	2	C) () 2.1	2	2 ()	0	2	1 Yes	1		1 1	4		high impact, low climate
Cichlidae	Caquetaia kraussii	3	(0 NR	0	No	2	1	. () 2	2	2 ()	1	0	0 Unknown	2	2	1 1	4		high impact, low climate
Acipenseridae	Acipenser stellatus	5	(0 NR	1	Yes	2) () 2	2 2	2 0)	0	0	0 Yes	2	2	1 1	5	0	high risk
Notopteridae	Chitala blanci	6	(0 NR	1	No	2.1	0) (2.1	1	. ()	0	0	0 No	2	2	1 1	5	21	high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	TH RT	MU	CS	TT	UK	CI
Notopteridae	Chitala ornata	5	0	NR	1	No	2.1	0) () 2.1	2.1	0) (0 0	0 No	2	2	1 15	3	high risk
Pimelodidae	Perrunichthys perruno	4	0	NR	0	No	2	1	() 2	2	0) (0 2.1	0 No	1		1 15	2	high risk
Pimelodidae	Leiarius spp	4	0	NR	0	No	2	1	() 2	2	0) (0 2.1	0 No	1		1 15	2	high risk
Poeciliidae	Alfaro cultratus	3	0	NR	0	No	2.1	2	() 2.1	1	C		1 2.1	0 No	1		1 15	3	high impact, low climate
Protopteridae	Protopterus dolloi	4	0	NR	0	No	2	0) (2.1	1	0)	2 2.1	0 No	1		1 15	2	high risk
Rivulidae	Leptolebias opalescens	4	0	NR	0	Yes	2.1	2	(2.1	1	0) (0 2.1	0 No	1		1 15	4	high risk
Arapaimidae	Arapaima gigas	4	0	NR	1	Yes	2	0) () 1	2	0) (0 2.1	0 Yes	2	2	1 15	1	high risk
Eleotridae	Gobiomorphus gobioides	3	0	NR	0	No	2	1	() (1	2		1 2.1	0 Unknown	1	2.	1 15	2	high impact, low climate
Poeciliidae	Heterandria bimaculata	3	0	NR	0	No	2	2	() 1	2	C		1 2.1	0 No	1		1 15	1	high impact, low climate
Chacidae	Chaca bankanensis	2	0	NR	0	No	2	2	() 2	2	C) (0 0	2 No	1		1 14	0	high impact, low climate
Eleotridae	Allomogurnda nesolepis	2	0	NR	0	No	2	2	() 2.1	2	2	2	1 0	0 No	1		1 15	1	high impact, low climate
Eleotridae	Dormitator maculatus	7	0	NR	0	No	2	1	() (1	1	. (0 0	0 No	1		1 14	0	low impact, high climate
Cichlidae	Crenicichla lacustris	4	0	NR	0	No	2	1	1	2	2	0)	1 0	0 No	1		1 15	0	high risk
Pimelodidae	Pseudoplatystoma fasciatum	4	0	NR	0	No	2	1	() 2	2	C C) (0 0	0 No	2	2	2 15	0	high risk
Pimelodidae	Brachyplatystoma filamentosum	3	C	NR	0	No	2	0) () 2	2	C) (2.1	2 No	1		1 15	1	high impact, low climate
Potamotrygonidae	Potamotrygon hystrix	4	0	NR	1	No	2	0) () 2	2	0) (0 0	2 Yes	1		1 15	0	high risk
Potamotrygonidae	Potamotrygon motoro	4		NR	0	No	2		() 2	2	0) (0 1	2 Yes	1		1 15	0	high risk
Tetraodontidae	Carinotetraodon lorteti	4	0	NR	0	No	2	2	() 2	2	1	. (0 0	0 No	1		1 15	0	high risk
Tetraodontidae	Tetraodon baileyi	4	0	NR	0	No	2		() 2	2	1	(0 0	0 No	1		1 15	1	high risk
Polypteridae	Polypterus endlicheri	6	0	NR	0	No	2		() 1	2	0) (0 1	0 No	1		1 15	0	high risk
Polypteridae	Polypterus retropinnis	5	0	NR	0	No	2	2	() 1	2	0) (0 1	0 No	1		1 15	0	high risk
Anabantidae	Microctenopoma nanum	5	0	NR	0	No	2	2	1	1	1	C) (0 0	0 No	1		1 14	0	low impact, high climate

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	G	N GI	DS	Т	H RT	MU	CS	ТТ	UK	СІ
Tetraodontidae	Colomesus asellus	3	C	NR	0	No	2	2	2 (0 2	2 2	2	1	0	0	0 No	1		2 15	() high impact, low climate
Anabantidae	Microctenopoma ansorgii	4	0	NR	1	No	2	2	2	1 1	1	1	0	0	0	0 No	1	-	1 14	. () low impact, high climate
Anabantidae	Ctenopoma acutirostre	4	0	NR	0	No	2	1		1 2.1	2	2	0	0	0	0 No	1		1 14	. 1	high risk
Cichlidae	Amphilophus zaliosus	4	. 0	NR	0	No	2	1	. (0 2	2 2	2	0	2	0	0 Unknown	1		1 15	1	high risk
Acipenseridae	Acipenser baerii baerii	3	C	NR	2	Yes	2	() (0 2	2 2	2	0	0	2	0 Yes	2		1 16	() high impact, low climate
Chacidae	Chaca chaca	5	0	NR	0	No	2	2.1		1 1	2	2	0	0	0	1 Unknown	1		1 16	1	high risk
Potamotrygonidae	Paratrygon aiereba	4	0	NR	0	No	2) (0 2	2 2	2	0	0 2	.1	2 Yes	1		1 16	1	high risk
Lebiasinidae	Lebiasina bimaculata	2	0	NR	0	No	2.1	2.1		1 2.1	2	2	0	0	0	0 Unknown	2	2.1	1 15	۷	high impact, low climate
Pangasiidae	Pangasius pangasius	5	0	NR	2	No	2	. () (0 2	2 ()	0	0 2	.1	0 No	2		1 16	1	high risk
Pangasiidae	Pangasius nasutus	5	0	NR	0	No	2	2	2 (0 2	2 2	2	0	0	0	0 No	2		1 16	() high risk
Rivulidae	Leptolebias aureoguttatus	4	0	NR	0	No	2.1	2	2 (0 2.1	2.1	1	0	0 2	.1	0 No	1		1 16	5	5 high risk
Rivulidae	Leptolebias marmoratus	4	0	NR	0	Yes	2.1	2	2 (0 2.1	2.1	1	0	0 2	.1	0 No	1		1 16	5	5 high risk
Rivulidae	Leptolebias minimus	4	0	NR	0	Yes	2.1	2	2 (0 2.1	2.1	1	0	0 2	.1	0 No	1		1 16	5	5 high risk
Eleotridae	Gobiomorus dormitor	5	0	NR	0	No	2	. () () () 1	1	2	1 2	.1	0 Unknown	1	2.1	1 16	2	2 high risk
Eleotridae	Oxyeleotris urophthalmus	3	0	NR	1	No	2	1	. (0 2.1	2	2	2	1	0	0 No	1	-	1 16	1	high impact, low climate
Characidae	Bryconops melanurus	5	0	NR	0	No	2	2	2	1 1	2	2	0	0	0	0 No	1		1 15	() high risk
Potamotrygonidae	Potamotrygon orbignyi	4	0	NR	0	No	2	() (0 2	2 2	2	0	0 2	.1	2 Yes	1		1 16	1	high risk
Characidae	Bryconops affinis	4	0	NR	1	No	2	2	2	1 1	2	2	0	0	0	0 No	1		1 15	() high risk
Pimelodidae	Sorubim elongatus	4	0	NR	0	No	2	2	2 (0 2	2 2	2	0	0 2	.1	0 No	1		1 16	1	high risk
Pimelodidae	Sorubim lima	5	0	NR	0	No	2	1	. (0 2	2 2	2	0	0 2	.1	0 No	1		1 16	1	high risk
Tetraodontidae	Tetraodon mbu	5	0	NR	0	No	2	1	. (0 2	2 2	2	1	0	0	1 No	1		1 16	() high risk
Tetraodontidae	Carinotetraodon borneensis	4	0	NR	1	No	2	2	2 (0 2	2 2	2	1	0	0	0 No	1		1 16	1	high risk
Tetraodontidae	Takifugu vermicularis	4	0	NR	0	No	2	1	. (0 2	2 2	2	1	0	0	1 No	2		1 16	() high risk
Tetraodontidae	Takifugu radiatus	4	0	NR	0	No	2	2	2 (0 2	2 2	2	1	0	0	1 No	1		1 16	1	high risk
Cichlidae	Amphilophus labiatus	5	1	No	1	No	2	1	. (0 1	2	2	0	1	0	0 No	1		1 16	() high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	(GN	GI	DS	ТН	RT	MU	CS	TT	UK	CI
Acipenseridae	Acipenser	6	() NR	2	Yes	2	()	2	2	0	0) Yes	2) 1	17	0	high risk
Acipensentiae	gueldenstaedtii	0					2	Ĺ		,	2	2	0	0				2	. 1	17	0	iligii 115k
Acipenseridae	Acipenser transmontanus	5	(NR	1	Yes	2	C) ()	2	2	0	0	2	C	Yes	2	2 1	17	0	high risk
Lepidosirenidae	Lepidosiren paradoxa	6	() NR	1	No	2	0) ()	2	2	0	0	0	C	No	2	2.1	17	1	high risk
Pangasiidae	Pangasius larnaudii	6	() NR	0	No	2	2	. () :	2	2	0	0	0 0	0	No	2	2 1	17	0	high risk
Eleotridae	Gobiomorphus huttoni	3	(NR	0	No	2	2	()	0	1	2	1	2.1	C	Unknown	2	2.1	17	2	high impact, low climate
Poeciliidae	Alfaro huberi	5	(NR	0	No	2	2	. ()	1	2	0	1	2.1	0	No	1	. 1	17	1	high risk
Osteoglossidae	Osteoglossum bicirrhosum	4	(NR	1	No	2	1	1		0	2	2	0	0	C	No	2	2 1	16		high risk
Cichlidae	Crenicichla lepidota	6	(NR	1	No	2	2	. 1		1	1	0	1	0	C	No	1	1	17	0	low impact, high climate
Chacidae	Chaca burmensis	6	(NR	0	No	2	2.1	()	1	2	0	0	0	1	No	1	. 1	16	1	high risk
Pangasiidae	Pangasianodon hypophthalmus	5	(NR	2	No	2	C) ()	2 2	.1	0	0	2	C	No	2	2 1	18	1	high risk
Pangasiidae	Pangasius macronema	5	() NR	0	No	2	2	. ()	2	2	0	0	2	0	No	2	2 1	18	0	high risk
Protopteridae	Protopterus aethiopicus	6	() NR	1	No	2	0) () 2.	1	2	0	2	1	0	No	1	. 1	18	1	high risk
Schilbeidae	Schilbe marmoratus	4	() NR	0	No	2	2	. ()	2	2	0	2	2.1	0	No	1	. 1	18	1	high risk
Eleotridae	Gobiomorus maculatus	6	() NR	0	No	2	1	()	0	1	2	1	2.1	C	Unknown	1	2.1	18	2	high risk
Eleotridae	Hypseleotris cyprinoides	5	(NR	0	No	2	2	()	0	1	2	1	2.1	C	Unknown	1	2.1	18	2	high risk
Tetraodontidae	Tetraodon nigroviridis	6	() NR	0	No	2	2	. ()	2	2	1	0	0	0	No	1	. 2	2 18	0	high risk
Siluridae (Anabantidae)	Sandelia bainsii	6	() NR	0	Yes	2	1	() 2.	1	2	0	1	2.1	0	No	1	. 1	18	2	high risk
Characidae	Hollandichthys multifasciatus	4	(NR	0	No	2.1	2	; 1	2.	1 2	.1	0	0	0	C	No	1	2.1	16	4	high risk
Mastacembelidae	Macrognathus pancalus	6	() NR	0	No	2	2	()	1 2	.1	0	0	2.1	0	No	2	2 1	18	2	high risk
Tetraodontidae	Chelonodon laticeps	6	(NR	0	No	2	2	. () :	2	2	2	0	0	0	No	1	. 1	18	0	high risk
Tetraodontidae	Takifugu rubripes	3	(NR	1	No	2	1	()	2	2	1	0	2	1	No	2	2 1	18	0	high impact, low climate
Cichlidae	Crenicichla saxatilis	5	(NR	1	No	2	2	: 1	1	2	2	0	1	0	0	No	1	1	18	0	high risk
Cichlidae	Amphilophus citrinellus	5	1	No	2	No	2	1	()	1	2	0	1	1	0	Unknown	1	. 1	18	0	high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	N GI		DS	TH	RT	MU	CS	ТТ	UK	CI
Percidae	Perca fluviatilis	4	1	No	2	No	2	1	. (0 1	2	: (0	0	2	0	No	2	2	19	1	high risk
Protopteridae	Protopterus amphibius	6	0	NR	1	No	2	() (0 2	2	. (0	2	2.1	-	No	1	1	19	1	high risk
Eleotridae	Hypseleotris tohizonae	6	0	NR	0	No	2	2	2 (0 0	1		2	1	2.1	0	Unknown	1	2.1	19	2	high risk
Eleotridae	Dormitator latifrons	7	0	NR	0	No	2	2	2 (0 0	1		1	0	0	0	No	2	2	17	C	low impact, high climate
Siluridae (Anabantidae)	Sandelia capensis	7	0	NR	0	No	2	1	. (0 2.1	2	. (0	1	2.1	0	No	1	1	19	2	high risk
Mastacembelidae	Mastacembelus armatus	7	0	NR	0	No	2	2	2 (0 1	1	(0	0	2.1	0	No	2	2	19	1	high risk
Tetraodontidae	Chelonodon pleurospilus	6	0	NR	0	No	2	2	2 (0 2	2		2	0	0	1	No	1	1	19	C	high risk
Siluridae	Ompok bimaculatus	7	0	NR	0	No	2	1	. (0 2.1	2	. (0	0	2	0	No	2	1	19	1	high risk
Ictaluridae	Ictalurus punctatus	7	0	NR	2	No	2	() (0 2	2	. (0	0	2	0	yes	2	2	21	C	high risk
Schilbeidae	Schilbe intermedius	7	0	NR	0	No	2	2	2 (0 2.1	2	. (0	2	2.1	0	No	1	1	21	2	high risk
Eleotridae	Oxyeleotris marmorata	5	0	NR	2	No	2	2	2	1 0	2		2	1	0	0	No	2	1	20	C	high risk
Cichlidae	Herichthys cyanoguttatus	7	0	NR	2	No	2	1		1 2	2	. (0	1	0	0	No	1	1	20	C	high risk
Cichlidae	Cichlasoma urophthalmus	5	1	No	1	No	2	2	2	1 2	2	. (0	1	2	0	No	2	1	22	C	high risk
Cyprinidae	Cyprinus carpio	8	2	ongoing	2	No		1		1 2	2	. (0	1	2	0	unknown	2	2	25	C	high risk
SPECIES THAT HAVE	NOT BEEN THROUG	H TI	ECH	INICAL V	VOF	RKIN	G GR	OUI)													
Anabantidae	Anabas cobojius	4	0	NR	0	No	2	2	2 (0 2.1	2.1	(0	0	0	0	No	2	1	15	2	high risk
Anabantidae	Ctenopoma argentoventer	4	0	NR	0	No	2.1	1	. (0 2.1	2.1	(0	0	0	0	No	1	1	13	4	high risk
Anabantidae	Ctenopoma kingsleyae	5	0	NR	0	No	2.1	1		1 2.1	2	. (0	0	0	0	Unknown	1	1	15	2	high risk
Anabantidae	Ctenopoma multispine	6	0	NR	0	No	2	1	. (0 2.1	2.1	(0	0	0	0	No	2	1	16	2	high risk
Anabantidae	Ctenopoma muriei	5	0	NR	0	No	2	2	2 (0 2.1	2.1	(0	0	0	0	No	1	1	15	2	high risk
Anabantidae	Ctenopoma nigropannosum	4	0	NR	0	No	2.1	1	. (0 2.1	2.1	(0	0	0	0	No	1	1	13	3	high risk
Anabantidae	Ctenopoma ocellatum	5	0	NR	0	No	2	1		1 2.1	2	. (0	0	0	0	Unknown	1	1	15	1	high risk
Anabantidae	Ctenopoma weeksii	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	(0	0	0	0	Unknown	1	1	15	3	high risk
Anabantidae	Microctenopoma congicum	5	0	NR	0	No	2	2	2	1 2.1	0) (0	0	0	0	Unknown	1	1	14	1	high risk

Fm	Sp	Cm	EA EE	EI	СТ	Ha	Re	Nx	IH	IS	(GN GI]	DS	TH	RT	MU	CS		ТТ	UK	CI
Anabantidae	Microctenopoma fasciolatum	5	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	Unknown	1		1	16	3	high risk
Anabantidae	Microctenopoma lineatum	5	0 NR	C	No	2.1	2	2	0 2.	1 2.	.1	0	0	0	C	No	1		1	15	3	high risk
Anabantidae	Microctenopoma milleri	5	0 NR	C	No	2.1	2	2	0 2.	1 2.	.1	0	0	0	C	No	1		1	15	3	high risk
Characidae	Astyanacinus goyanensis	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	15	4	high risk
Characidae	Astyanacinus multidens	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	15	4	high risk
Characidae	Astyanacinus platensis	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	15	4	high risk
Characidae	Astyanax aeneus	5	0 NR	C	No	2	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	16	2	high risk
Characidae	Astyanax alburnus	3	0 NR	C	No	2.1	2	2	1 2.	1	2	0	0	0	C	No	1		1	14	2	high impact, low climate
Characidae	Astyanax altior	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax armandoi	2	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	13	3	high impact, low climate
Characidae	Astyanax bimaculatus	5	0 NR	C	No	2	2	2	1 2.	1	0	0	0	0	0	No	1		1	14	1	high risk
Characidae	Astyanax bourgeti	2	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	13	3	high impact, low climate
Characidae	Astyanax brevirhinus	2	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	13	3	high impact, low climate
Characidae	Astyanax chico	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax clavitaeniatus	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax cremnobates	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax dnophos	2	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	C	No	1		1	13	3	high impact, low climate
Characidae	Astyanax fasciatus	7	0 NR	0	No	2	2	2	1	1 2.	.1	0	0	0	0	No	2	2	1	18	1	high risk
Characidae	Astyanax giton	3	0 NR	0	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	14	3	high risk
Characidae	Astyanax guaporensis	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	3	high risk
Characidae	Astyanax hastatus	4	0 NR	0	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax hermosus	4	0 NR	0	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk
Characidae	Astyanax intermedius	4		0	No	2.1	2	2	1 2.	1 2.	.1	0	0	0		No	1		1	15	4	high risk
Characidae	Astyanax jacuhiensis	4	0 NR	C	No	2.1	2	2	1 2.	1 2.	.1	0	0	0	0	No	1		1	15	4	high risk

Fm	Sp	Cm	EA EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	TH	IRT	MU	CS		TT	UK	CI
Characidae	Astyanax jenynsii	4	0 NR	0) No	2.1	2	2	1 2.1	2.1)	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax jordani	3	0 NR	C	No	1	2	2	1 2.1	. () ()	0 () () No	1		1	11	1	high impact, low climate
Characidae	Astyanax kennedyi	4	0 NR	C	No	1	2	2	1 2.1	. () ()	0 0) () No	1		1	12	2	high risk
Characidae	Astyanax latens	4	0 NR	0	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax leonidas	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax leopoldi	2	0 NR	C	No	2.1	2	2	1 2.1	. () ()	0 0) () No	1		1	11	2	high impact, low climate
Characidae	Astyanax magdalenae	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax mexicanus	8	0 NR	C) No	2.1	2	2	1 2.1	. () ()	0 0) () No	1		1	17	2	high risk
Characidae	Astyanax multidens	2	0 NR	C	No	2.1	2	2	1 2.1	2.1	0)	0 0) () No	1		1	13	3	high impact, low climate
Characidae	Astyanax obscurus	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax pampa	4	0 NR	0	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax paris	4	0 NR	C) No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax pelegrini	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax puka	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax robustus	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax rupununi	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax schubarti	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax siapae	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax stilbe	4	0 NR	0) No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax totae	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax tumbayaensis	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	15	4	high risk
Characidae	Astyanax unitaeniatus	4	0 NR	0) No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax validus	2	0 NR	C	No	2.1	2	2	1 2.1	2.1	0)	0 0) () No	1		1	13	3	high impact, low climate
Characidae	Astyanax varzeae	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Astyanax villwocki	4	0 NR	0	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk
Characidae	Bryconops caudomaculatus	2	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 () () No	1		1	13	3	high impact, low climate
Characidae	Bryconops colaroja	4	0 NR	C	No	2.1	2	2	1 2.1	2.1	()	0 0) () No	1		1	15	4	high risk

Management of ornamental fish. Communication Strategy and Grey List Review

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	G	N GI		DS	TH	RT	MU	CS	ТЛ	U	K CI
Characidae	Bryconops cyrtogaster	2	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	l	0	0	0	0	No	1		1 1	3	3 high impact, low climate
Characidae	Bryconops durbini	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Characidae	Bryconops giacopinii	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Characidae	Bryconops humeralis	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Characidae	Bryconops inpai	4	0	NR	0	No	2.1	2	2	1 2.1	l 2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Characidae	Bryconops vibex	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Characidae	Ctenobrycon alleni	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	1	0	0	0	0	No	1		1 1	5	3 high risk
Characidae	Ctenobrycon spilurus	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	1	0	0	0	0	No	1		1 1	5	3 high risk
Characidae	Knodus savannensis	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.1	1	0	0	0	0	No	1		1 1	5	4 high risk
Cichlidae	Cichla intermedia	4	0	NR	0	No	2.1	2	2 (0 2.1	l 2	2	0	1	0	0	No	1		1 1	5	3 high risk
Cichlidae	Cichla jariina	4	0	NR	0	No	2.1	1	(0 2.1	2.1	1	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla kelberi	4	0	NR	0	No	2.1	1	(0 2.1	2.1	1	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla melaniae	2	C	NR	0	No	2.1	1	. (0 2.1	1	2	0	1	0	0	No	2	,	1 1	3	2 high impact, low climate
Cichlidae	Cichla mirianae	4	0	NR	0	No	2.1	1	(0 2.1	2.1	1	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla monoculus	2	C	NR	2	No	2	1	. (0 2.1	1	2	0	1	0	0	No	2		1 1	5	1 high impact, low climate
Cichlidae	Cichla nigromaculata	4	0	NR	0	No	2.1	1	(0 2.1	2.1	1	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla ocellaris	4	0	NR	2	No	2	2	2 (0 2.1	l 2	2	0	1	0	0	No	2	,	1 1	8	1 high risk
Cichlidae	Cichla orinocensis	2	C	NR	0	No	2.1	2	2 (0 2.1	2.1	l	0	1	0	0	No	1		1 1	3	3 high impact, low climate
Cichlidae	Cichla pinima	2	C	NR	0	No	2.1	1	. (0 2.1	1 2.1	l	0	1	0	0	No	1		1 1	2	3 high impact, low climate
Cichlidae	Cichla piquiti	4	0	NR	0	No	2.1	1	(0 2.1	l 2	2	0	1	0	0	No	2		1 1	5	3 high risk
Cichlidae	Cichla pleiozona	4	0	NR	0	No	2.1	1	(0 2.1	2.1	l	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla temensis	2	C	NR	1	No	2.1	1	. (0 2.1	1 2	2	0	1	0	0	No	2	,	1 1	4	2 high impact, low climate
Cichlidae	Cichla thyrorus	4	0	NR	0	No	2.1	1	(0 2.1	2.1	l I	0	1	0	0	No	1		1 1	4	4 high risk
Cichlidae	Cichla vazzoleri	4		NR		No	2.1			0 2.			0	1	0		No	2	,	1 1		4 high risk
Cichlidae	Crenicichla acutirostris	2	0	NR	0	No	2.1		2	1 2.1			0	1	0	0	No	1		1 1		2 high impact, low climate

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GI	GI	DS]	TH RT	MU	CS	TT	UK	CI
Cichlidae	Crenicichla adspersa	4	0	NR	0	No	2.1	1		1 2.	1 2	2	0	1	0	0 No	1		1 15		3 high risk
Cichlidae	Crenicichla albopunctata	2	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 14	. 2	2 high impact, low climate
Cichlidae	Crenicichla alta	2	0	NR	0	No	2	2	2	1 2.	1 2	2 (0	1	0	0 No	1		1 14	. 1	l high impact, low climate
Cichlidae	Crenicichla anthurus	3	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 15	2	2 high impact, low climate
Cichlidae	Crenicichla brasiliensis	4	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 16		3 high risk
Cichlidae	Crenicichla britskii	4	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 16	1	2 high risk
Cichlidae	Crenicichla cametana	2	0	NR	0	No	2.1	2	2	1 2.	1 2	2 (0	1	0	0 No	1		1 14	. 2	2 high impact, low climate
Cichlidae	Crenicichla celidochilus	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 16	j _	4 high risk
Cichlidae	Crenicichla cincta	3	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 15	2	2 high risk
Cichlidae	Crenicichla compressiceps	2	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 14	. 2	2 high impact, low climate
Cichlidae	Crenicichla coppenamensis	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1	0	1	0	0 No	1		1 16	4	4 high risk
Cichlidae	Crenicichla cyanonotus	2	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 14		high impact, low climate
Cichlidae	Crenicichla cyclostoma	2	0	NR	0	No	2.1	2	2	1 2.	1 2	2 (0	1	0	0 No	1		1 14	. 2	2 high impact, low climate
Cichlidae	Crenicichla empheres	2	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 14		high impact, low climate
Cichlidae	Crenicichla frenata	3	0	NR	0	No	2.1	2	2	1 2.	1 2	2 (0	1	0	0 No	1		1 15	2	2 high impact, low climate
Cichlidae	Crenicichla gaucho	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 16	2	4 high risk
Cichlidae	Crenicichla geayi	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 16	j _	4 high risk
Cichlidae	Crenicichla hadrostigma	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 16	4	4 high risk
Cichlidae	Crenicichla haroldoi	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1 (0	1	0	0 No	1		1 16	<u> </u>	1 high risk
Cichlidae	Crenicichla heckeli	4	0	NR	0	No	2.1	2	2	1 2.	1 2	2	0	1	0	0 No	1		1 16		3 high risk
Cichlidae	Crenicichla hemera	4	0	NR	0	No	2.1	2	2	1 2.	1 2.1	1	0	1	0	0 No	1		1 16	j _	4 high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	ТН	RT	MU	CS	ŗ	ГТ	UK	CI
Cichlidae	Crenicichla hummelincki	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	. C)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla igara	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	. 0)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla iguapina	4	0	NR	0	No	2.1	2	1	1 2.1	2.1)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla iguassuensis	4	0	NR	0	No	2.1	2	:	1 2.1	2.1	C)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla inpa	4	0	NR	0	No	2.1	2	2	1 2.1	2	2 0)	1 0	0	No	1		1	16	3	high risk
Cichlidae	Crenicichla isbrueckeri	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	0)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla jaguarensis	4	0	NR	0	No	2.1	2	l 1	1 2.1	2.1	. 0)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla jegui	4	0	NR	0	No	2.1	2	2	1 2.1	2	2 0)	1 0	0	No	1		1	16	3	high risk
Cichlidae	Crenicichla johanna	2	0	NR	0	No	2.1	1	. 1	1 2.1	2.1	C)	1 0	0	No	1		1	13	3	high impact, low climate
Cichlidae	Crenicichla jupiaensis	4	0	NR	0	No	2.1	2	2	1 2.1	2.1)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla jurubi	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	0)	1 0	0 0	No	1		1	16	4	high risk
Cichlidae	Crenicichla labrina	4	0	NR	0	No	2.1	2	!	1 2.1	2.1	0)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla lenticulata	2	0	NR	0	No	2.1	1	. 1	1 2.1	2	2 0)	1 0	0	No	1		1	13	2	high impact, low climate
Cichlidae	Crenicichla lucius	2	0	NR	0	No	2.1	2	: 1	1 2.1	2.1	C)	1 0	0	No	1		1	14	3	high impact, low climate
Cichlidae	Crenicichla lugubris	2	0	NR	0	No	2.1	2	: 1	1 2.1	2.1	C)	1 0	0	No	1		1	14		high impact, low climate
Cichlidae	Crenicichla macrophthalma	5	0	NR	0	No	2.1	2	: 1	1 2.1	2.1	C)	1 0	0	No	1		1	17	3	high risk
Cichlidae	Crenicichla maculata	2	0	NR	0	No	2.1	1	. 1	1 2.1	2.1	C)	1 0	0	No	1		1	13	3	high impact, low climate
Cichlidae	Crenicichla marmorata	2	0	NR	0	No	2.1	1	. 1	1 2.1	2.1	C)	1 0	0	No	1		1	13	3	high impact, low climate
Cichlidae	Crenicichla menezesi	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	0)	1 0	0	No	1		1	16	4	high risk
Cichlidae	Crenicichla minuano	5	0	NR	0	No	2.1	2		1 2.1	0) ()	1 0	0	No	1		1	15	2	high risk
Cichlidae	Crenicichla missioneira	5	0	NR	0	No	2.1	2	2	1 2.1	2.1	0)	1 0	0	No	1		1	17	3	high risk
Cichlidae	Crenicichla mucuryna	4	0	NR	0	No	2.1	2	2	1 2.1	2.1	0)	1 0	0	No	1		1	16	4	high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	G	N (GI	DS	TH	IRT	MU	CS	TT	UK	CI
Cichlidae	Crenicichla multispinosa	2	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 14		high impact, low climate
Cichlidae	Crenicichla nickeriensis	2	0	NR	0	No	2.1	2	2	1 2.1	2.	1	0	1	0	(0 No	1		1 14		high impact, low climate
Cichlidae	Crenicichla niederleinii	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16	4	1 high risk
Cichlidae	Crenicichla notophthalmus	4	0	NR	0	No	2.1	2	2	1 2.1		1	0	1	0) (0 No	1		1 15		3 high risk
Cichlidae	Crenicichla pellegrini	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16	4	1 high risk
Cichlidae	Crenicichla percna	4	0	NR	0	No	2.1	2	2	1 2.1	2.	1	0	1	0	(0 No	1		1 16	4	l high risk
Cichlidae	Crenicichla phaiospilus	3	0	NR	0	No	2.1	2	2	1 2.1	l 2.	1	0	1	0	(0 No	1		1 15		3 high risk
Cichlidae	Crenicichla prenda	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16	2	1 high risk
Cichlidae	Crenicichla proteus	3	0	NR	0	No	2.1	2	2	1 2.1	2.	1	0	1	0	(0 No	1		1 15	3	high impact, low climate
Cichlidae	Crenicichla punctata	4	0	NR	0	No	2	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16		2 high risk
Cichlidae	Crenicichla pydanielae	4	0	NR	0	No	2.1	2	2	1 2.1	l 2.	1	0	1	0	(0 No	1		1 16	4	l high risk
Cichlidae	Crenicichla regani	4	0	NR	0	No	2.1	2	2	1 2.1	l í	2	0	1	0	(0 No	1		1 16		3 high risk
Cichlidae	Crenicichla reticulata	5	0	NR	0	No	2.1	2	2	1 2.1	l 2.	1	0	1	0	(0 No	2	r	1 18		3 high risk
Cichlidae	Crenicichla rosemariae	4	0	NR	0	No	2.1	1		1 2.1	l 2.	1	0	1	0	(0 No	1		1 15	4	1 high risk
Cichlidae	Crenicichla santosi	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16		3 high risk
Cichlidae	Crenicichla scottii	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16		3 high risk
Cichlidae	Crenicichla sedentaria	3	0	NR	0	No	2.1	2	2	1 2.1	2.	1	0	1	0) (0 No	1		1 15		high impact, low climate
Cichlidae	Crenicichla semicincta	4	0	NR	0	No	2.1	2	2	1 2.1	1 2.	1	0	1	0	(0 No	1		1 16		3 high risk
Cichlidae	Crenicichla semifasciata	5	0	NR	0	No	2.1	2	2	1 2.1	l ź	2	0	1	0	(0 No	1		1 17	2	2 high risk
Cichlidae	Crenicichla sipaliwini	4	0	NR	0	No	2.1	2	2	1 2.1	2.	1	0	1	0	(0 No	1		1 16	4	l high risk
Cichlidae	Crenicichla stocki	4	0	NR	0	No	2.1	2	2	1 2.1	l í	2	0	1	0	(0 No	1		1 16		3 high risk
Cichlidae	Crenicichla strigata	2	0	NR	0	No	2.1	1		1 2.1	1	2	0	1	0) (0 No	1		1 13	2	2 high impact, low climate
Cichlidae	Crenicichla sveni	2	0	NR	0	No	2.1	2	2	1 2.1	1 2	2	0	1	0) (0 No	1		1 14	- 2	2 high impact, low climate

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	0	ΞN	GI	DS	TH	I RT	MU	CS	TT	Uŀ	CI
Cichlidae	Crenicichla tendybaguassu	4	C	NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla ternetzi	2	0) NR	0	No	2.1	1		1 2.1	1 2.	.1	0	1	0		0 No	1		1 13	3	3 high impact, low climate
Cichlidae	Crenicichla tigrina	4	0) NR	0	No	2.1	1		1 2.1	1 2.	.1	0	1	0		0 No	1		1 15	5	4 high risk
Cichlidae	Crenicichla tingui	4	0	NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla urosema	4	0	NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla vaillanti	4	0	NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla virgatula	4	0	NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla vittata	5	0) NR	0	No	2.1	1		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	3 high risk
Cichlidae	Crenicichla wallacii	2	0) NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 14		3 high impact, low climate
Cichlidae	Crenicichla yaha	4	0) NR	0	No	2.1	2		1 2.1	1 2.	.1	0	1	0		0 No	1		1 16	5	4 high risk
Cichlidae	Crenicichla zebrina	4	0	NR	0	No	2.1	1	-	1 2.1	1 2.	.1	0	1	0		0 No	2		1 16	5	4 high risk
Cichlidae	Parachromis dovii	3	0) NR	0	No	2.1	1	() 2	2	2	0	1	0		0 No	2		1 14	ļ	1 high impact, low climate
Cichlidae	Parachromis managuensis	4	0) NR	2	No	2	1	(0 2.1	L	2	0	1	2		0 No	2		1 19)	1 high risk
Cichlidae	Parachromis motaguensis	4	0	NR	0	No	2.1	1	(0 2.1	l	2	0	1	0		0 No	1		1 14	Ļ	2 high risk
Cichlidae	Petenia splendida	3	0) NR	0	No	2	1	(0 2.1	L	1	0	1	0		0 No	2		1 13	3	1 high impact, low climate
Ctenoluciidae	Boulengerella lateristriga	2	C) NR	0	No	2.1	2.1	(0 2.1	1 2.	.1	0	0	0		0 No	1		1 12	2	4 high impact, low climate
Ctenoluciidae	Boulengerella maculata	1	C) NR	0	No	2.1	2.1	(0 2.1	1 2.	.1	0	0	0		0 No	1		1 11	-	4 high impact, low climate
Ctenoluciidae	Ctenolucius beani	2	0) NR	0	No	2.1	2.1	(0 2.1	L	2	0	0	0		0 No	1		1 12	2	3 high impact, low climate
Cyprinidae	Rutilus rutilus	5	2	unknown	2	No	2	1	(0 2.1	1 2.	.1	0	1	0		0 No	2		1 20)	2 high risk
Cyprinidae	Tinca tinca	5	2	unknown	2	No	2	1	() 2	2 2.	.1	0	1	0		0 No	2		1 20)	1 high risk
Dasyatidae	Himantura alcockii	4	0) NR	0	No	2.1	0) (0 2.1	1 2.	.1	2	0	0 0		2 No	1		1 16	5	4 high risk

Fm	Sp	Cm	EA	EE	EI	СТ	На	Re	Nx	IH	[IS	GN	GI	DS	TH	IRT	MU	CS	TT	UK	СІ
Dasyatidae	Himantura bleekeri	2	0	NR	0	No	2	C) (0 2	2.1	2.1	2	() () 2	2 No	2		1 1:	5 2	high impact, low climate
Dasyatidae	Himantura draco	5	0	NR	0	No	2.1	0) (0 2	2.1	2.1	2	() () '	2 No	1		1 11	7 3	high risk
Dasyatidae	Himantura fava	4	0	NR	0	No	2.1	2.1	. (0 2	2.1	2.1	2	() ()	2 No	2		1 19) 5	high risk
Dasyatidae	Himantura fluviatilis	4	0	NR	0	No	2.1	0) (0 2	2.1	2.1	2	() (2 No	2		1 11	7 4	high risk
Dasyatidae	Himantura gerrardi	5	0	NR	0	No	2.1	C) (0 2	2.1	2.1	2	() ()	2 No	2		1 18	3 3	high risk
Dasyatidae	Himantura hortlei	2	0	NR	0	No	2.1	2.1	(0 2	2.1	2.1	2	() () [2 No	2		1 1	4	high impact, low climate
Dasyatidae	Himantura imbricata	6	0	NR	0	No	2) (0 2	2.1	2.1	2	() () '	2 No	2		1 19) 2	high risk
Dasyatidae	Himantura kittipongi	4	0	NR	0	No	2.1	2.1	. (0 2	2.1	2.1	2	() () (2 No	1		1 18	3 5	high risk
Dasyatidae	Himantura krempfi	4	0	NR	0	No	2) (0 2	2.1	2.1	2	() () (2 No	1		1 10	5 3	high risk
Dasyatidae	Himantura lobistoma	1	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	1		1 13	3 3	high impact, low climate
Dasyatidae	Himantura marginata	4	0	NR	0	No	2) (0 2	2.1	2.1	2	() () (2 No	2		1 1	7 3	high risk
Dasyatidae	Himantura microphthalma	4	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	1		1 10	5 4	high risk
Dasyatidae	Himantura oxyrhyncha	4	0	NR	0	No	2) (0 2	2.1	2.1	2	() () (2 No	1		1 10	5 2	high risk
Dasyatidae	Himantura pacifica	3	0	NR	0	No	2.1	0) (0 2	2.1	2.1	2	() () (2 No	1		1 1.	5 3	high risk
Dasyatidae	Himantura pareh	2	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () (2 No	1		1 14	4 3	high impact, low climate
Dasyatidae	Himantura pastinacoides	2	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	2		1 1;	5 3	high impact, low climate
Dasyatidae	Himantura schmardae	2	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	2		1 1.	5 3	high impact, low climate
Dasyatidae	Himantura signifer	4	0	NR	0	No	2) (0 2	2.1	2.1	2	() () (2 No	2		1 1	7 3	high risk
Dasyatidae	Himantura uarnacoides	2	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	2		1 1.	5 3	high impact, low climate
Dasyatidae	Himantura walga	3	0	NR	0	No	2.1	C		0 2	2.1	2.1	2	() () 2	2 No	2		1 10	5 3	high impact, low climate
Eleotridae	Dormitator lebretonis	5	0	NR	0	No	2	. 2	2	1 2	2.1	2.1	1	() () () No	1		1 11	/ 2	high risk
Eleotridae	Eleotris amblyopsis	1	0	NR	0	No	2	2		0 2	2.1	2.1	2	() () () No	1		1 13	3 2	high impact, low climate

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	S	GN	GI	DS	ТН	RT	MU	CS	Т	T U	K CI
Eleotridae	Eleotris sandwicensis	3	() NR	C	No	2.1	1		0 2	.1	2.1	2	(0 0	0	No	1		1	14	3 high impact, low climate
Fungulidae	Lucania goodei	5	() NR	C	No	2	2	2	0 2.	.1	1	0	() (0 0	No	1		1	14	1 high risk
Fungulidae	Lucania parva	7	() NR	C	No	2.1	2	2	0 2	.1	2.1	0	() 0	0 0	No	1		1	17	3 high risk
Ictaluridae	Ameiurus brunneus	3	() NR	C	No	2	1		0 2	.1	2.1	0	(0 0	0 0	No	1		1	12	2 high impact, low climate
Ictaluridae	Ameiurus catus	4	() NR	1	No	2.1	1		0 2	.1	2.1	0	() 2	0	Unknown	2	2 2.	1	18	4 high risk
Ictaluridae	Ameiurus melas	7	() NR	2	No	2.1	1		0 2	.1	2.1	0	() ()	0	Unknown	2	2 2.	1 2	20	4 high risk
Ictaluridae	Ameiurus natalis	7	() NR	2	No	2	1		0 2	.1	2.1	0	() 0	0	No	2	2	1	19	2 high risk
Ictaluridae	Ameiurus nebulosus	5	() NR	2	No	2	1		0 2	.1	2	0	() 2	0	Unknown	2	2 2.	1 2	20	2 high risk
Ictaluridae	Ameiurus platycephalus	4	() NR	C	No	2.1	1		0 2	.1	2.1	0	() 0	0	Unknown	1	2.	1	14	4 high risk
Ictaluridae	Ameiurus serracanthus	4	() NR	C	No	2.1	()	0 2	.1	2.1	0	() 0	0	Unknown	1	2.	1	13	5 high risk
Ictaluridae	Ictalurus australis	2	() NR	C	No	2.1	0)	0 2	.1	2.1	0	(0 0	0 0	Unknown	1	2.	1	11	4 high impact, low climate
Ictaluridae	Ictalurus balsanus	6	() NR	C	No	2.1	()	0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	15	4 high risk
Ictaluridae	Ictalurus dugesii	4	() NR	C	No	2.1	()	0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	13	5 high risk
Ictaluridae	Ictalurus furcatus	5	() NR	0	No	2.1	()	0 2	.1	2.1	0	() 2	0	Unknown	2	2 2.	1	17	4 high risk
Ictaluridae	Ictalurus lupus	7	() NR	C	No	2.1	1		0 2.	.1	2.1	0	() (0 0	Unknown	1	2.	1	17	4 high risk
Ictaluridae	Ictalurus mexicanus	4	() NR	C	No	2.1	()	0 2	.1	2.1	0	() 0	0	Unknown	1	2.	1	13	4 high risk
Ictaluridae	Ictalurus ochoterenai	4	() NR	C	No	2.1	()	0 2	.1	2.1	0	() 0	0	Unknown	1	2.	1	13	5 high risk
Ictaluridae	Ictalurus pricei	6	() NR	C	No	2.1	()	0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	15	4 high risk
Ictaluridae	Noturus albater	3	() NR	C	No	2	2	2	0 2	.1	2.1	0	(0 0	0 0	No	1		1	13	2 high impact, low climate
Ictaluridae	Noturus baileyi	4	() NR	C	No	2.1	2	2	0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	15	5 high risk
Ictaluridae	Noturus crypticus	4	() NR	C	No	2.1	2	2	0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	15	4 high risk
Ictaluridae	Noturus elegans	3	() NR	C	No	2.1	2	2	0 2.	.1	2.1	0	() ()	0 0	Unknown	1	2.	1	14	4 high impact, low climate
Ictaluridae	Noturus eleutherus	4	() NR	0	No	2.1	1		0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	14	4 high risk
Ictaluridae	Noturus exilis	4	() NR	0	No	2.1	1		0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	14	4 high risk
Ictaluridae	Noturus fasciatus	3	0) NR	C	No	2.1	2	2	0 2.	.1	2.1	0	(0 0	0 0	Unknown	1	2.	1	14	4 high impact, low climate
Ictaluridae	Noturus flavater	4	() NR	C	No	2.1	1		0 2	.1	2.1	0	() ()	0	Unknown	1	2.	1	14	4 high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	5	GN	GI	DS	T	H RT	MU	CS		TT	UK	CI
Ictaluridae	Noturus flavipinnis	4	0	NR	0	No	2.1	1	(0 2.	1	2.1	0	() (0	0 Unknown	1		2.1	14	4	5 high risk
Ictaluridae	Noturus flavus	4		NR		No	2.1	1		0 2.		2.1	0		-		0 Unknown	1		2.1	14		high risk
Ictaluridae	Noturus funebris	4		NR		No	2.1	2		$\frac{0}{2}$		2.1	0				0 Unknown	1		2.1	15		high risk
Ictaluridae	Noturus furiosus	2	-	NR		No	2.1	2	-	0 2.		2.1	0				0 Unknown	1		2.1	13		4 high impact, low climate
Ictaluridae	Noturus gilberti	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	() (0	0 Unknown	1		2.1	15	2	4 high risk
Ictaluridae	Noturus gladiator	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	15	2	4 high risk
Ictaluridae	Noturus gyrinus	6	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	17	2	4 high risk
Ictaluridae	Noturus hildebrandi hildebrandi	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	(0	0	0 Unknown	1		2.1	15	2	4 high risk
Ictaluridae	Noturus hildebrandi lautus	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	(0	0	0 Unknown	1	-	2.1	15	5	5 high risk
Ictaluridae	Noturus insignis	4	0	NR	1	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	16	2	4 high risk
Ictaluridae	Noturus lachneri	2	0	NR	0	No	2.1	2	(0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	13	Z	high impact, low climate
Ictaluridae	Noturus leptacanthus	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	15	2	4 high risk
Ictaluridae	Noturus maydeni	3	0	NR	0	No	2.1	2	(0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	14	4	high impact, low climate
Ictaluridae	Noturus miurus	5	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	16	2	4 high risk
Ictaluridae	Noturus munitus	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	15	2	1 high risk
Ictaluridae	Noturus nocturnus	6	0	NR	0	No	2.1	1	(0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	16	2	4 high risk
Ictaluridae	Noturus phaeus	3	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	14	4	high impact, low climate
Ictaluridae	Noturus placidus	3	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	14	Z	high impact, low climate
Ictaluridae	Noturus stanauli	4	0	NR	0	No	2	2	. (0 2.	1	2.1	0	()	0	0 No	1		1	14	3	3 high risk
Ictaluridae	Noturus stigmosus	3	0	NR	1	No	2.1	2	(0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	15	4	high impact, low climate
Ictaluridae	Noturus taylori	2	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	13	4	high impact, low climate
Ictaluridae	Noturus trautmani	4	0	NR	0	No	2.1	2	. (0 2.	1	2.1	0	()	0	0 Unknown	1		2.1	15	5	5 high risk
Ictaluridae	Pylodictis olivaris	7	0	NR	2	No	2	0) (0 2.	1	2.1	0	()	0	0 No	2	2	1	18	2	2 high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS		GN	GI	DS	TH	IRT	MU	CS]	ГТ (JK	CI
Lepisosteidae	Lepisosteus oculatus	7	0	NR	0	No	2	1	() 2.	1 2	2.1	0	() () () No	2		1	17	2	high risk
Lepisosteidae	Lepisosteus osseus	7	0	NR	0	No	1	0		1 2.	1	2	0	() () () No	2		1	16	1	high risk
Lepisosteidae	Lepisosteus platostomus	4	0	NR	0	No	2	0	() 2.	1 2	2.1	0	() () () No	2		1	13	2	high risk
Lepisosteidae	Lepisosteus platyrhincus	4	0	NR	0	No	1	0		1 2.	1 2	2.1	0	() () () No	2		1	13	2	high risk
Osteoglossidae	Osteoglossum ferreirai	4	0	NR	0	No	2.1	2.1	() 2.	1 2	2.1	2	() () () No	2		1	17	5	high risk
Osteoglossidae	Scleropages formosus	4	0	NR	2	Yes	2.1	0	() 2.	1 2	2.1	2	() () () Yes	2		1	17	3	high risk
Pangasiidae	Helicophagus leptorhynchus	5	0	NR	0	No	2	2.1	() 2.	1 2	2.1	0	() () () No	1		1	15	3	high risk
Pangasiidae	Helicophagus typus	2	0	NR	0	No	2	2.1	() 2.	1 2	2.1	0	() () () No	1		1	12		high impact, low climate
Pangasiidae	Helicophagus waandersii	4	0	NR	0	No	2	2.1	() 2.	1 2	2.1	0	() () () No	2		1	15	3	high risk
Pimelodidae	Leiarius arekaima	4	0	NR	0	No	2.1	1	() 2.	1 2	2.1	0	() () () No	1		1	13	4	high risk
Pimelodidae	Leiarius pictus	1	0	NR	0	No	2.1	1	() 2.	1 2	2.1	0	() () () No	1		1	10		high impact, low climate
Poeciliidae	Heterandria anzuetoi	2	0	NR	0	No	2.1	2	() 2.	1 2	2.1	0	1	C) (Unknown	1	2.	.1	14		high impact, low climate
Poeciliidae	Heterandria attenuata	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria cataractae	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria dirempta	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria formosa	4	0	NR	0	No	2	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	3	high risk
Poeciliidae	Heterandria jonesii	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria litoperas	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria obliqua	4	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	1	0) (Unknown	1	2	.1	16	5	high risk
Poeciliidae	Heterandria tuxtlaensis	2	0	NR	0	No	2.1	2	() 2.	1 2	2.1	0	1	C) (Unknown	1	2.	.1	14		high impact, low climate
Polypteridae	Polypterus ansorgii	5	0	NR	0	No	2.1	2	. () 2.	1 2	2.1	0	() () (Unknown	1	2	.1	16	4	high risk
Polypteridae	Polypterus bichir bichir	6	0	NR	0	No	2.1	1	() 2.	1 2	2.1	0	() () (Unknown	1	2.	.1	16	4	high risk
Polypteridae	Polypterus bichir katangae	6	0	NR	0	No	2.1	1	() 2.	1 2	2.1	0	() () (Unknown	1	2.	.1	16	4	high risk

Fm	Sp	Cm	EA EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	T	H RT	MU	CS	Т	TU	JK	CI
Polypteridae	Polypterus bichir lapradei	6	0 NR	(No	2.1	1	(0 2.1	1 2.1	1 ()	0	0	0 Unknown	2	2. 2.	1	17	4	high risk
Polypteridae	Polypterus delhezi	6	0 NR	0	No	2.1	1	() 2.1	1 2.1	1 ()	0	0	0 Unknown	2	2 2.	1	17	4	high risk
Polypteridae	Polypterus endlicheri congicus	4	0 NR	0	No	2.1	0	() 2.1	1 2.1	1 ()	0	0	0 Unknown	2	2.	1	14	4	high risk
Polypteridae	Polypterus endlicheri endlicheri	5	0 NR	(No	2.1	1	() 2.1	2.1	1 ()	0	0	0 Unknown	2	2.	1	16	4	high risk
Polypteridae	Polypterus mokelembembe	4	0 NR	(No	2.1	2	() 2.1	2.1	1 ()	0	0	0 Unknown	2	2.	1	16	5	high risk
Polypteridae	Polypterus ornatipinnis	6	0 NR	0	No	2.1	1	() 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	16	4	high risk
Polypteridae	Polypterus palmas buettikoferi	4	0 NR	0	No	2.1	1	() 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	14	5	high risk
Polypteridae	Polypterus palmas palmas	4	0 NR	0	No	2.1	0	() 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	13	4	high risk
Polypteridae	Polypterus palmas polli	4	0 NR	0	No	2.1	1	() 2.1	1 2.1	1 ()	0	0	0 Unknown	1	2.	1	14	4	high risk
Polypteridae	Polypterus senegalus meridionalis	3	0 NR	0	No	2.1	1	() 2.1	1 2.1	1 ()	0	0	0 Unknown	1	2.	1	13		high impact, low climate
Polypteridae	Polypterus senegalus senegalus	5	0 NR	0	No	2.1	C	() 2.1	2.1	1 ()	0	0	0 Unknown	2	2.	1	15	4	high risk
Polypteridae	Polypterus teugelsi	2	0 NR	0	No	2.1	1	() 2.1	1 2.1	1 ()	0	0	0 Unknown	1	2.	1	12		high impact, low climate
Polypteridae	Polypterus weeksii	6	0 NR	0	No	2.1	1	(0 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	16	4	high risk
Potamotrygonidae	Potamotrygon boesemani	4	0 NR	(No	2.1	2.1	() 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	15	6	high risk
Potamotrygonidae	Potamotrygon brachyura	4	0 NR	(No	2.1	0	() 2.1	1 2.1	1 ()	0	0	0 Unknown	2	2.	1	14	5	high risk
Potamotrygonidae	Potamotrygon castexi	4	0 NR	(No	2.1	0	(2.1	2.1	1 ()	0	0	0 Unknown	1	. 2.	1	13	5	high risk
Potamotrygonidae	Potamotrygon constellata	2	0 NR	0	No	2.1	0	() 2.1	2.1	1 ()	0	0	0 Unknown	2	2.	1	12		high impact, low climate
Potamotrygonidae	Potamotrygon falkneri	3	0 NR	0	No	2.1	0	() 2.1	2.1	1 ()	0	0	0 Unknown	1	2.	1	12		high impact, low climate
Potamotrygonidae	Potamotrygon henlei	4	0 NR	0	No	2.1	0	() 2.1	1 2.1	1 ()	0	0	0 Unknown	1	. 2.	1	13	5	high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	TI	HRT	MU	CS	ТТ	UK	СІ
Potamotrygonidae	Potamotrygon leopoldi	4	0	NR	C	No	2.1	0)	0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	13	5	high risk
Potamotrygonidae	Potamotrygon magdalenae	5	0	NR	C	No	2.1	C		0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	14	4	high risk
Potamotrygonidae	Potamotrygon marinae	2	0	NR	C	No	2.1	2.1		0 2.1	2.1	1 () (0	0	0 Unknown	2	2.1	14	5	high impact, low climate
Potamotrygonidae	Potamotrygon ocellata	4	0	NR	C	No	2.1	0)	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	13	5	high risk
Potamotrygonidae	Potamotrygon schroederi	2	0	NR	C	No	2.1	0		0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	11	4	high impact, low climate
Potamotrygonidae	Potamotrygon schuhmacheri	4	0	NR	C	No	2.1	C		0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	13	5	high risk
Potamotrygonidae	Potamotrygon scobina	2	0	NR	C	No	2.1	0		0 2.1	2.1	1 () (0	0	0 Unknown	2	2.1	12	4	high impact, low climate
Potamotrygonidae	Potamotrygon signata	4	0	NR	C	No	2.1	0)	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	13	5	high risk
Potamotrygonidae	Potamotrygon yepezi	4	0	NR	C	No	2.1	0)	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	13	5	high risk
Siluridae	Ompok binotatus	2	0	NR	C	No	2.1	2		0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	13	4	high impact, low climate
Siluridae	Ompok borneensis	4	0	NR	C	No	2.1	2	2	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	15	5	high risk
Siluridae	Ompok canio	6	0	NR	C	No	2.1	1		0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	16	4	high risk
Siluridae	Ompok eugeneiatus	2	0	NR	C	No	2.1	2	2	0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	13	4	high impact, low climate
Siluridae	Ompok fumidus	4	0	NR	C	No	2.1	2	!	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	15	5	high risk
Siluridae	Ompok goae	2	0	NR	C	No	2.1	1		0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	12	4	high impact, low climate
Siluridae	Ompok hypophthalmus	2	0	NR	C	No	2.1	1		0 2.1	2.1	1 () (0	0	0 Unknown	2	2.1	13	4	high impact, low climate
Siluridae	Ompok javanensis	4	0	NR	C	No	2.1	1		0 2.1	2.1	ι () (0	0	0 Unknown	1	2.1	14	5	high risk
Siluridae	Ompok jaynei	4	0	NR	C	No	2	2	2	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	15	4	high risk
Siluridae	Ompok leiacanthus	2	0	NR	C	No	2.1	2		0 2.1	2.1	1 () (0	0	0 Unknown	1	2.1	13	4	high impact, low climate
Siluridae	Ompok malabaricus	6	0	NR	C	No	2	1		0 2.1	2.1	l () (0	0	0 Unknown	2	2.1	l 17	3	high risk
Siluridae	Ompok miostoma	4	0	NR	C	No	2.1	0)	0 2.1	2.1	l () (0	0	0 Unknown	1	2.1	13		high risk
Siluridae	Ompok pabda	6	0	NR	C	No	2.1	1		0 2.1	2.1	l () (0	2	0 Unknown	2	2.1	19	4	high risk

Fm	Sp	Cm	EA	EE	EI	СТ	Ha	Re	Nx	IH	IS	GN	GI	DS	TH	RT	MU	CS	TT	UK	CI
Siluridae	Ompok pabo	4	0	NR	0	No	2.1	2	2 0	2.1	2.1	. 0) () () (Unknown	2	2.	1 16	4	high risk
Siluridae	Ompok pinnatus	4	0	NR	0	No	2	2	2 0	2.1	2.1	0) () () (Unknown	1	2.		4	high risk
Siluridae	Ompok platyrhynchus	2	0	NR	0	No	2.1	2	2 0	2.1	2.1	0) () () (Unknown	1	2.	1 13		high impact, low climate
Siluridae	Ompok pluriradiatus	2	0	NR	0	No	2.1	2	2 0	2.1	2.1	0) () (0 0	Unknown	1	2.	1 13		high impact, low climate
Siluridae	Ompok rhadinurus	4	0	NR	0	No	2.1	1		2.1	2.1	. 0) () () (Unknown	1	2.	1 14	- 5	high risk
Siluridae	Ompok sindensis	4	0	NR	0	No	2.1	1		2.1	2.1	0) () () (Unknown	1	2.	1 14	- 5	high risk
Siluridae	Ompok urbaini	4	0	NR	0	No	2.1	2	2 0	2.1	2.1	. 0) () () (Unknown	1	2.	1 15	5	high risk
Siluridae	Ompok weberi	4	0	NR	0	No	2.1	2	2 0	2.1	2.1	. 0) () () (Unknown	1	2.	1 15	5	high risk