
Page 1 of 41

Subprograms, Subroutines, and Functions

Subprograms are also called “subroutines”, “functions”, “procedures” and “methods”.

A function is just a subprogram that returns a value; say Y = SIN(X).

In general, the distinction between a subroutine and a function is a logical one

made at the higher level language level to support the structure of the program.

Some languages are built on functions only. In those cases, a subroutine is

a function returning void.

The concept of a subprogram can be traced to David Wheeler, then a graduate student

working on the development of the EDSAC computer.

The EDSAC was designed in late 1946 and executed its first program on May 6, 1949,

when it calculated a table of squares.

As a part of his work, Wheeler devised the idea of a subroutine to encapsulate shared

code.

Because of this, the JSR (Jump to Subroutine) instruction used to be

called the “Wheeler Jump”.

Page 2 of 41

The Return Address

It is the idea of a return address that distinguishes a subprogram call

from another type of branch instruction.

A subprogram call involves an unconditional transfer of control to code at another

address, called the EA or Effective Address.

After execution of the subprogram, control returns to the next instruction.

The situation just before the call is shown below. At this point, the IP (Instruction

Pointer) had already been moved to the next instruction.

The execution of the CALL involves three tasks:

 1. Computing the value of the Effective Address (EA).

 2. Storing the current value of the Instruction Pointer (IP)

 so that it can be retrieved when the subroutine returns.

 3. Setting the IP = EA, the address of the first instruction in the subroutine.

Page 3 of 41

Issues with the Subprogram Call

There are a number of issues to be addressed when designing a mechanism

for subprogram invocation.

 1. How to store the return address and retrieve it when needed.

 2. How to communicate parameter values to the called subprogram.

 3. How to return function values. This question holds also for Java methods.

We discuss these issues in reverse order.

Function values are almost always returned in a general purpose register that is

standard for the programming language and its run–time system.

For programs run on the IA–32, this is likely the 32–bit register EAX.

In the CDC–6600 and CDC–7600 series, a single precision result was returned in the

standard register X6, and a double precision in the pair (X6, X7).

For Java, the value is returned at the top of the operand stack, ready to be popped.

In Java, the return value may be an object reference, so that an object can be returned.

Page 4 of 41

Communicating Parameter Values

The idea of a subprogram is based on the passing and returning of parameter values.

There are many methods for passing parameter values.

The two common methods are call by reference and call by value.

In the call by value protocol, it is the value of the argument that is passed. Any

changes made to that argument are local to the subprogram and not returned.

Consider the following code fragments.

 Main Sub1

 X = 2 SUB1 (ByValue X)

 CALL SUB1(X) X = X + 1

 Y = X PRINT X

 PRINT Y RETURN

When the subprogram prints the value, it prints a 3.

When the main program prints the value, it prints a 2.

Note that the change in the value of X is not communicated back to the calling program.

Page 5 of 41

Call By Reference

In the call by reference protocol, it is the address of the variable that is passed.

Value changes made in the subprogram are communicated back to the caller.

Consider the following code fragments.

 Main Sub1

 X = 2 SUB1 (ByReference X)

 CALL SUB1(X) X = X + 1

 Y = X PRINT X

 PRINT Y RETURN

When the subprogram prints the value, it prints a 3.

When the main program prints the value, it also prints a 3.

The C and C++ languages do things a bit differently.

All parameters are passed by value.

Call by reference is done by passing the value of the address of the variable.

Page 6 of 41

Call By Reference (C/C++ Style)

Consider the following line of C++ code, adapted from the book by Rob Williams.

 n = average (10, math_scores)

This might be implemented in assembly language as follows:

 LEA EAX, math_scores // Get address of the array

 PUSH EAX // Push the address

 PUSH 0Ah // Push hexadecimal A,

 // which is decimal 10

 CALL average

We shall discuss the use of the stack for parameter passing soon.

The C/C++ convention calls for right–to–left pushing onto the stack.

Page 7 of 41

Storing the Return Address

The key advantage of the subprogram structure is that a return address can be

stored. This enables program execution to resume at the instruction immediately

following the call instruction.

Question: How is this return address to be stored?

There are a number of ways to store the return address so that it can be accessed

on the return to the calling program.

Efficiency

The efficient methods store the return address in a fixed location.

The IBM System/360 specification calls for the return address to be stored in

a designated general purpose register.

The CDC–6600 and similar computers call for the return address to be stored in

the body of the called subprogram.

Each of these is very efficient, but neither will support recursion.

Flexibility

The more flexible, and modern, approach is to use a stack to store the return address.

Page 8 of 41

The Original Way to Store the Return Address

The simplest way is to store the return address in the subroutine.

This is the method used by many older computers, such as the CDC–6600.

A subprogram at address Z would be invoked by a call such as JSR Z.

The return address would be stored at address Z and execution begin at (Z + 1).

Note that the last executable instruction is an indirect jump.

 1. Go to address Z and get the contents of that address.

 2. Use the contents of that address as the target address for the jump.

Page 9 of 41

The Original IBM System/360 Convention

The convention calls for using one of the general–purpose registers to store the

return address. In this example, I use register 8, which is a common choice.

Calling the subroutine

BAL (Branch and Link) is one of the two instructions used for subroutine invocation.

Here is a sample of the code BAL 8,P10PAGE

 NEXT Another Instruction

This instance of the instruction stores the return address in register 8 and then

executes an unconditional branch to the subroutine P10PAGE.

Here, the return address is associated with the label NEXT; for the next instruction.

Returning from the subroutine

This instruction is used to return from execution of the subroutine. It is an unconditional

jump to an address contained in the register.

Obviously, the subroutine cannot change the value stored in this register.

An example of such an instruction is BR 8

Page 10 of 41

Sample CDC–6600 Call (Not Recursive)

Suppose the following instructions

 100 JSR 200

 101 Next Instruction

 200 Holder for Return Address

 201 First Instruction

 Last BR *200

After the subroutine call, we would have

 100 JSR 200

 101 Next Instruction

 200 101

 201 First Instruction

 Last BR *200

The BR*200 would cause a branch to address 101, thus causing a proper return.

Page 11 of 41

Sample CDC–6600 Call (Try At Recursion)

Suppose a five instruction subroutine at address 200.

Address 200 holds the return address and addresses 201 – 205 hold the code.

This subroutine contains a single recursive call to itself that will be executed once.

Called from First Recursive First

address 100 Call Return

200 101 200 204 200 204

201 Inst 1 201 Inst 1 201 Inst 1

202 Inst 2 202 Inst 2 202 Inst 2

203 JSR 200 203 JSR 200 203 JSR 200

204 Inst 4 204 Inst 4 204 Inst 4

205 BR * 200 205 BR * 200 205 BR * 200

Note that the original return address has been overwritten.

As long as the subroutine is returning to itself, there is no difficulty.

It will never return to the original calling routine.

Page 12 of 41

Writing Recursive Subroutines

We note immediately that neither of the above methods will support recursion,

because each will lose track of return addresses.

The standard way to track return addresses is to use a stack.

Here is how the use of a stack corrects the problem above.

Main calls the subroutine SP 101

The subroutine calls itself SP 204 101

First return Pop the return address from the stack

 RA = 204

 SP 101

The subroutine returns to itself.

Second return Pop the return address from the stack

 RA = 101

The subroutine returns to the main program.

Page 13 of 41

Tail Recursion

A subprogram is called “tail recursive” if the recursive call is the

last executable statement in the subprogram.

Modern compilers can convert tail recursive subprograms into non–recursive

equivalents that use iteration. These are far more efficient.

The best example is the factorial function.

 Integer Factorial (Integer N)

 If (N < 2) Then Return 1 ;

 Else Return N*Factorial(N – 1);

Here is the equivalent code that would be actually compiled to machine language.

 Integer Factorial (Integer N)

 Integer F = 1 ;

 For (Integer K = N, K > 1, K--)

 Do F = F * K ;

 Return F ;

Page 14 of 41

Stack Protocols

This example shows a standard protocol that is implemented on top of hardware.

The hardware supports the protocol, but does not dictate it.

It is the standard RTS (Run Time System) associated with a give high–level language

that contains the implementation details, such as

 1. How to manage the system stack.

 2. How to pass the return address to a subprogram.

 3. How to pass arguments to the subprogram and return function values.

 4. How to allocate memory for variables local to the subprogram.

Most standard designs use the following convention.

 JSR will push the return address to the stack.

 RET will pop the return address from the stack.

Most modern protocols provide for use of the stack to hold values other than the

return address. We shall develop this idea when we discuss the stack frame.

Page 15 of 41

Management of Dynamic Memory

In order to understand the use of a stack in managing subprograms, we must

first see the stack as one of two important dynamic data structures.

The stack is a LIFO (Last In – First Out) data structure that is quite useful in allocation

of memory for subprogram calls: return address, local variables, arguments, etc.

The heap is a semi–structured data collection used to allocate memory for dynamic

variables that are created by operators such as the Java new() or C++ malloc().

Typically, a RTS (Run Time System) will allocate a block of memory to be shared

between the stack and the heap, without setting direct limits on either.

The standard arrangement is to have the stack start at high

addresses and grow towards low addresses.

The heap starts at low addresses and grows toward the high.

In the MIPS memory allocation

 the stack pointer is initialized to 0x7FFF FFFC, and

 the heap pointer is initialized to 0x1000 8004.

The two grow towards each other.

Page 16 of 41

The IA–32 Stack

The tendency of the stack to grow down gives rise to a situation that

is not intuitive. The stack top is the lowest address on the stack.

The IA–32 architecture calls for stacking only 32–bit values.

The following diagram might reflect the memory map associated with

the stack on an IA–32 machine.

In this example the values were pushed in this order: 6 (first), 5, 4, 3, and then 2.

The stack top has the lowest address.

Page 17 of 41

Implementation of the Stack Operations

As noted above, the stack grows toward more negative addresses.

Given this we have two options for implementing PUSH,

each giving rise to a unique implementation of POP.

 Option PUSH X POP Y

 1 M[SP] = X SP = SP + 1 // Post–decrement on PUSH

 SP = SP – 1 Y = M[SP]

 2 SP = SP – 1 Y = M[SP] // Pre–decrement on PUSH

 M[SP] = X SP = SP + 1

As far as I can determine, the Java standard requires only that the stack operations

be implemented as a consistent pair that preserve the idea of a stack top.

At this point, either option is equally viable.

Page 18 of 41

The IA–32 Stack Protocol

More properly, this is the MS–DOS and MS–Windows protocol.

This protocol is uniform for the run time systems that support compilers for

high–level languages run under MS–DOS and MS–Windows.

This protocol uses two registers found in the IA–32.

 ESP The 32–bit stack pointer, used to indicate the top of the stack.

 EBP The 32–bit base pointer, used to manipulate the stack frame.

 More on this later.

The stack protocol is pre–decrement, post–increment.

PUSH ESP = ESP - 4 // Decrement the stack pointer

 MEM[ESP] = VALUE // Place the item on the stack

POP VALUE = MEM[ESP] // Get the value

 ESP = ESP + 4 // Increment the stack pointer

The RTS calls for only 32–bit values to be stored on the stack.

Page 19 of 41

Example: The Stack for the Return Address

Here are two fragments of code to illustrate the stack use for return addresses.

First, we have a fragment of the calling code.

 N = 3

 M = FACT(N)

A1: J = M*3 // A silly statement, get the label

Here is the function, written in an “expanded style” to facilitate discussion.

 INTEGER FACT (INTEGER L)

 K1 = 1 ;

 IF (L > 1) THEN

 L2 = L – 1;

 K2 = FACT(L2);

A2: K1 = L*K2 ;

 END IF ;

 RETURN K1 ; // Question: What is the return address?

 // Does this return to A1 or A2?

Page 20 of 41

Follow the Stack (Part 1)

 M = FACT(N)

The return address placed on the stack is that

of a statement in the calling program.

L = 3, L2 = 2. K2 = FACT(L2)

Here, this is called from within the FACT function.

It is the return address within the function that is

stored on the stack.

Page 21 of 41

Follow the Stack (Part 2)

L = 2, L2 = 1. K2 = FACT(L2)

The return address within the function is again placed onto

the stack. The function is called with L = 1.

The function returns with value 1

 K2 = FACT(L2);

A2: K1 = L*K2 ;

Here L = 2. The function computes K1 = 2, and

returns to the address indicated at the top of the stack.

The function returns again.

Page 22 of 41

Follow the Stack (Part 3)

The function returns with value 2. The state of the stack is now as follows.

 K2 = FACT(L2);

A2: K1 = L*K2 ;

Here K2 = 2 and L = 3. K1 = 6.

The function returns to address A1 with a value of 6.

But note that there is another problem. How are the local variables stored?

First call L = 3 L2 = 2 K2 = 2 K1 = 6

Second call L = 2 L2 = 1 K2 = 1 K1 = 2

Third call L = 1 L2 is not used. K2 not used K1 = 1

The values K1 and K2 are computed after the return from the recursive call, so

they are not critical. The value L2 is computed and used only in the call, so it

is not critical either. It is the value of L that must be correct when needed.

Page 23 of 41

Use the Stack for Arguments

We have described the use of the stack to handle return addresses.

We now extend this discussion to the use of the stack for passing arguments.

The two common ways to pass an argument are call by value (passing the value of the

argument) and call by reference (passing the address of the argument).

At this level, we just consider proper stack handling of 32–bit parameters, which might

be values or addresses. The basic mechanism is independent of the parameter’s use.

Here is the basic script at this point.

 1. Push the parameters onto the stack.

 For call by value, push the value of the argument.

 For call by reference, push the address of the argument.

 2. Push the return address onto the stack.

 3. The called routine accesses the stack to get at the parameters.

 4. The called routine pops the return address from the stack and returns.

Page 24 of 41

Two Calling Conventions

Consider the high–level language statement.

 PROCA (L, M, N)

In what order are the arguments pushed onto the stack?

In the Pascal convention, the arguments are pushed left–to–right.

The sequence for a Pascal–like language would be
 PUSH L

 PUSH M

 PUSH N

 CALL PROCA

In the C/C++ convention, the arguments are pushed right–to–left.

The sequence for a C–like language would be
 PUSH N

 PUSH M

 PUSH L

 CALL PROCA

The CALL instruction pushes the return address onto the stack.

Page 25 of 41

MS–Windows Uses the Pascal Calling Convention

Though mostly written in C and C++, MS–Windows uses the Pascal convention.

Here is a sample header description for a MS–Windows API function.

BOOL WINAPI CopyFileEx(

 __in LPCTSTR lpExistingFileName,

 __in LPCTSTR lpNewFileName,

 __in_opt LPPROGRESS_ROUTINE lpProgressRoutine,

 __in_opt LPVOID lpData,

 __in_opt LPBOOL pbCancel,

 __in DWORD dwCopyFlags

);

 BOOL The function returns a Boolean value: TRUE or FALSE.

 WINAPI This is a descriptor for the calling convention used. This is

 the new name for the older __stdcall name, which itself

 replaces the name __pascal, for the Pascal convention.

Page 26 of 41

CALL PROCA (L, M, N)

Here we assume the C/C++ style of pushing arguments, right to left.

This slide overlooks several mistakes in order to make a single point.

The correct version of the stack will be given very soon.

Suppose that this is the state of the stack on entry

to the subprogram PROCAA.

The dynamic idea is to access arguments by

offsets

from values stored in registers, such as ESP.

At this point, the addresses of the arguments are

fixed with

respect to the ESP. Why not use these offsets?

CAUTION: This is not what a debugger will show if stopped before the first

 executable statement of the subroutine.

 There is special entry code, which we shall discuss very soon.

Page 27 of 41

The Stack Frame

The stack frame, also known as the “call stack”, is the basic mechanism for storing

variables that are local to a called subprogram.

In the terminology of C and C++, these are called “automatic variables”.

These variables have meaning only within the called subprogram itself.

Suppose that the subprogram PROCA used four 32–bit variables I, J, K and K1.

The entry code for PROCA would allocate 4 stack

slots to hold these variables.

This entry code is executed immediately upon

entry to the subprogram, before the first

executable line of the subprogram.

Again, this is not quite the complete picture.

We shall evolve that soon.

Note for the moment that this might complicate

the use of ESP as a base register for addressing

the arguments that were passed.

Page 28 of 41

The Run–Time Stack – Not Quite the ADT

In the traditional ADT (Abstract Data Type) stack, the only data movement

operators are PUSH and POP. The stack is not manipulated by other operators.

The RTS (Run Time System) will simply subtract a value from the stack pointer

in order to allocate space on the stack for local variable storage..

Space for four local 32–bit variables would be allocated by setting SP = SP – 0x10.

 Before After

At this point, I is at ESP + 12, J at ESP + 8, K at ESP + 4, and K1 at ESP.

Page 29 of 41

The Base Pointer EBP

Again, we note that the picture at this point is not quite complete.

We need one more feature to complete the design of a stack frame.

We now discuss the mechanism chosen to allow for register & offset access to items

in the stack without directly using the stack pointer, ESP.

The mechanism is called the frame pointer or the base pointer.

In the IA–32, this is the function of the 32–bit EBP register.

The base pointer will be used to reference:

 1. The parameters passed to the subprogram , and

 2. The variables local to the subprogram.

This frees the design to allow the stack pointer, ESP, to vary in accordance with

the needs of stack management.

Page 30 of 41

Creating the Stack Frame

When a subprogram is invoked, the run–time system software creates a new

stack frame.

Here is the complete procedure for creation of the stack frame, as implemented

in the IA–32 architecture.

 1. The passed arguments, if any, are pushed onto the stack.

 2. The CALL instruction causes the return address to be pushed onto the stack.

 3. Before the execution of the first code in the subprogram, EBP is pushed onto

 the stack. This is the base pointer of the calling procedure.

 This is pushed onto the stack, so that it can be restored on return.

 4. EBP is set to the value stored in ESP; thereafter in the routine it is used to access

 the subroutine parameters as well as any local variables.

 5. Space is allocated on the stack to store any variables local to the subprogram.

 This is done by subtracting a value from the ESP.

 6. If the subprogram is written to store and restore values in the registers, these

 are pushed onto the stack before being altered.

Page 31 of 41

Example Call

Here is a simple implementation of the function, written in Pseudo–Java.

 INT PROCA (INT I, INT J, INT K)

{

 INT K1 ;

 K1 = I + J + K ; // K1 is a 32-bit value.

 RETURN K1 ;

}

Assuming that the variables L, M, and N have been properly initialized,

this might be invoked as follows:

 K2 = PROCA (L, M, N) ;

Page 32 of 41

A Possible Assembly Language Implementation of the Call

In this, we assume that the register EAX is use to return the function value.

Here is a possible assembly language implementation.

; K2 = PROCA (L, M, N)

0x3FFC PUSH EAX // Save the value of EAX

0x4000 PUSH N

0x4004 PUSH M

0x4008 PUSH L

0x400C CALL PROCA

0x4010 ADD ESP, 12 // Clear parameters from stack

0x4014 MOV K2, EAX

0x4018 POP EAX // Get the old EAX back.

Some implementations might not save the value of the register used to

return the function value.

This code choice just shows what is possible.

Page 33 of 41

Step–By–Step Illustration of the Stack

In this illustration, we assume that the arguments have the following values.

L = 16 (0x10)

M = 32 (0x20)

N = 50 (0x32)

We assume some addresses for the stack.

In particular, that ESP = 0x1000 before the call is executed.

Assume that, just before the call, the registers EAX and EBP

have the following values.

EAX contains 0x2222

EBP contains 0x100C.

Page 34 of 41

Call Sequence (Page 1)

Step 1: The value of EAX is first pushed onto the stack.

 The three argument values are then pushed onto the stack.

Step 2: The CALL instruction causes the return address to be pushed onto the stack.

Page 35 of 41

Call Sequence (Page 2)

At this point, we need to base our discussion on the assembly language.

Begin with the entry code, which precedes any declaration or executable HLL code.

; INT PROCA (INT I, INT J, INT K)

 PUSH EBP ; Save the old value of EBP

 MOV EBP, ESP ; Set EBP for this stack frame.

Page 36 of 41

Call Sequence (Page 3)

; INT K1 ;

 SUB ESP, 4 ; Set aside room for K1

Notice the amount of assembly language code executed before the first

executable line of the high level language.

One must understand this in order to read the stack correctly.

Page 37 of 41

Call Sequence (Page 4)

; K1 = I + J + K ;

 MOV EAX, [EBP + 8] ; Get value

 ADD EAX, [EBP + 12]

 ADD EAX, [EBP + 16]

 MOV [EBP – 4], EAX

Page 38 of 41

Call Sequence (Page 4)

The first part of the return sequence sets the value of EAX to the return value.

Then the process of clearing the stack frame begins, by resetting ESP almost

to the value needed for the return.

; RETURN K1 ;

 MOV EAX, [EBP – 4]

 MOV ESP, EBP

Page 39 of 41

Call Sequence (Page 5)

The next part of the return sequence sets the value of EBP to its saved value.

 POP EBP

Page 40 of 41

Call Sequence (Page 6)

The final part of the return sequence pops the return address and executes the return.

 RET

Page 41 of 41

The Return Sequence in the Calling Code

0x4010 ADD ESP, 12 // Clear parameters from stack

0x4014 MOV K2, EAX

0x4018 POP EAX // Get the old EAX back.

