- Structure and Function tied together
- Locomotion:
- Terrestrial = gravity
- Aquatic = density of water and drag exerted by it – remember 800xdense and 50x viscous. Energetically it is more expensive to move through water – also lower O2 in water

Functional Morphology of Locomotion and Feeding

- · Locomotion: Forces and control
 - Forward progress
 - Directional Control

Functional Morphology of Locomotion and Feeding

- Drag = viscous or frictional drag (friction between water/body) + inertial or pressure drag (displacement of water as fish moves through it) + induced drag (vortices)
- Viscous = smoothness of body and surface area.

Locomotion – Swimming and Drift

- Drift also important in larval forms
- Swimming
- Undulation waves passing up/down body or fin
- Oscillation = structures move back and forth
- Propulsive effort = forward thrust
- Increase velocity increase thrust – increase tail beat freq and amplitude

- Aspect Ratio (A.R.)=
 height/width relationship =
 square root height/area
- High A.R. = reduced drag and flex in caudal and narrow caudal peduncle: rapid sustained propulsion
- Low aspect ratio = broad surface area powerful thrust; but high frictional drag

Body/Caudal Fin Propulsion Anguiliform Subcarangiform Carangiform Thumniform Carangiform Carangiform

Ten Types of Swimming

- Via trunk and tail all but head
 - (1) Anquilliform (eels, larval fish, lamprey, shark = ½ sine wave; dense vegetation, sediments, swim backwards = selfbraking; Wave length less than body length
 - Contraction of body musculature undulations s-shaped curves
 - Bi-lateral symmetry
 - To Stop hold body rigid

Ten Types of Swimming

- Via Trunk/Tail via Tail smaller part of body reduce yaw (movement of head)
- · Obtain greater speeds
- (2) Subcarangiform posterior 2/3 ½ half of body; forebody reduced flex;
- Low aspect ratios = better for rapid acceleration from dead stop; also good for hovering; Fast start predators; LM Bass = 1.5 A.R.; Brown trout = 2, Salmon = 2.7
- Salmonidae (salmon and trout), Cyprinidae (minnows and carp) and Gadidae (cods)

Functional Morphology of Locomotion and Feeding

- Ten Types of Swimming- Functional Hinge to connect tail to body (this and next)
- (3) Carangiform A.R. ~ 3.5; Posterior third of body flexible; Some Clupeidae, Some Characidae, Mackerels

Ten Types of Swimming

- Functional Hinge to connect tail to body
- (4) Thunniform caudal peduncle and tail
- Narrow caudal peduncle = narrow necking
- High aspect ratio = less drag, minimize vortices
- 4 8.5 Tunas; 10 in Marlin/Sailfish
- 20 m/sec burst; 4 m/sec sustained

- · Via Median and Paired Fins
 - (6) Tetradontiforms dorsal and anal fins synchronously
 - (7) Rajiform slow undulation of pectoral fins
 - (8) Amiiform undulation along dorsal fins; seahorses
 - (9) Gymnotiform undulation along anal fin
 - (10) Labriform row with pectoral fins.

Functional Morphology of Locomotion and Feeding

- Specialization for one function involves compromises in other functions – therefore most fish are generalists in locomotion
- · Few fish use only one mode
- · Not all fish fit into these "neat" categories
- For example Sharks undulations of body (sharks) or pectoral rays (skates and rays) – Most sharks = anguilliform – but three other aspects of morphology/swimming have attracted a lot of attention

- Median fins use as additional interacting thrusters
- Skin 2 layers of collagen; reinforced cylinder; internal hydrostatic pressure (10x greater in fast vs. slow swimming); skin attached to muscle and skin elastic

Functional Morphology of Locomotion and Feeding

 Tail – heterocercal so thrust up and head down??? Can adjust angle of attack of tail and pectoral and other fins.

Other Locomotion

Walk along bottom on modifies pelvic and pectoral fins

Terrestrial locomotion - fins

Aerial locomotion – jumping to flapping flight; greater speed in air - Flying fish – vibrate fins = paired and tail fins

- Most swimming = very rapid acceleration lasts few seconds or minutes
- Burst speeds:
- Aanguilliform
 - Eel = 2/lengths/sec
 - Flounder = 4 l/s
- Subcarangiform
 - Salmonidae (6 10 l/s = 300/500 cm/sec)
 - Rainbows 1000 cm/sec = 36 km/hr
 - Carp, Suckers, Cod = 100-3000 cm/sec = 5-8 l/sec

- Drag Reduction Drag pressure and frictional
- Reynolds number = R = LV laminar vs turbulent flow along body layer
- Drag proportional to sq rt velocity
- Flexible fish body 2 to 5 X more drag than rigid kickglide; gliding fish = ~ 1/3 drag of swimming

Reduce Drag??

- Tunas Great drag reducers;
 - Streamlined bodies; 'shoulder' back – increase laminar flow; Fins in grooves/slots; eyes, nostrils, jaws in fairings/smooth; Body straight
 - lateral movement confined to caudal peduncle; Increase aspect ratio; Small finlets on caudal peduncle – direct flow to minimize separation of boundary layer;
- Mucous coatings
- Schooling

Fins

- Unpaired Fins dorsal, anal and caudal
 - Stabilizers control yawing (horizontal axis) and rolling (vertical axis)
- Paired pectorals and pelvics
 - Pitching (vertical axis)