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Abstract Managing populations, either for conservation,

harvesting, or control, requires a mechanistic or semi-

mechanistic understanding of population dynamics. Here,

we investigate how time-since-fire affects demographic

transitions in an endangered plant, Dicerandra frutescens

ssp. frutescens (Lamiaceae), which is specialized to gaps

created by fire. We used a hierarchical Bayesian model to

estimate transition probabilities (i.e., the elements of pop-

ulation projection matrices) as a function of time-since-fire

and random effects, from 13 years of data on marked

individuals in five populations. Using a standard Bayesian

criterion to compare models, we find that death becomes

increasingly probable and progression increasingly

improbable with time-since-fire. The magnitude of some of

the time-since-fire effects is substantial: death is 3–5 times

more likely for flowering plants[6 years versus 3–6 years

post-fire, 3-step progression is almost 7 times less likely,

and large flowering plants are more than 6 times more

likely to stop flowering. These insights inspire new

hypotheses about the underlying cause of decline with

time-since-fire, and how it can be managed. Our approach

can be used by others who wish to model the effect of an

exogenous factor on demography, while rigorously

accounting for uncertainty and variability.
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Introduction

Accurate modeling of population dynamics is essential for

management of rare species [i.e., population viability

analysis (PVA); Boyce 1992; Menges 2000; Beissinger

and McCullough 2002; Morris and Doak 2002], sustain-

able harvest of economically important species, and

control of pests, weeds, or invasive species (Shea et al.

1998; Ticktin et al. 2001; Mertens et al. 2002; Freckleton

et al. 2003). Many aspects of global change, including

altered weather patterns, ocean conditions, disturbance

regimes, nutrient loads, and introduced species, compel us

to understand how exogenous factors affect population

dynamics (van Mantgem et al. 2004; Maschinski et al.

2006; Morris et al. 2006). Fieberg and Ellner (2001)

suggest that incorporating such factors into models can

improve prediction of population dynamics. Further,

models relating environmental covariates to population

growth allow managers to identify the manipulations most

likely to have desired effects.

Electronic supplementary material The online version of this
article (doi:10.1007/s10144-007-0060-6) contains supplementary
material, which is available to authorized users.

M. E. K. Evans (&)

Unit of Mathematical Eco-Evolutionary Biology,

Laboratoire d’Ecologie, Ecole Normale Supérieure,

46 rue d’Ulm, 75230 Paris Cedex 05, France

e-mail: margaret.evans@yale.edu

M. E. K. Evans

Department of Ecology and Evolutionary Biology,

Yale University, New Haven, CT 06520-8106, USA

K. E. Holsinger

Department of Ecology and Evolutionary Biology,

University of Connecticut, U-3043, Storrs, CT 06269-3043, USA

e-mail: kent@darwin.eeb.uconn.edu

E. S. Menges

Archbold Biological Station, P.O. Box 2057, Lake Placid,

FL 33862, USA

e-mail: emenges@archbold-station.org

123

Popul Ecol (2008) 50:53–62

DOI 10.1007/s10144-007-0060-6

http://dx.doi.org/10.1007/s10144-007-0060-6


Here, we examine how an exogenous factor, time-since-

fire, affects the demography of an endangered perennial

herb, Dicerandra frutescens Shinners ssp. frutescens Huck

(Lamiaceae), which is endemic to the Lake Wales Ridge in

central Florida, USA. This plant is found in Florida scrub

communities, particularly in oak-hickory and sand pine

scrub on yellow sands (Menges 1999, 2007). These com-

munities are characterized by a dense canopy of oaks, pine,

and hickory that is periodically top-killed by fire. Most

perennials in the community resprout vigorously after fire

(e.g., Quercus myrtifolia and other oaks), re-establishing

the canopy. Others, like D. frutescens ssp. frutescens, are

killed by fire. For populations of such a species to persist,

individuals must regenerate from seeds that persist in the

soil (Menges et al. 2006) or from seeds produced by sur-

viving individuals if the fire is patchy. Like several other

endangered plants endemic to Florida scrub, D. frutescens

ssp. frutescens depends on canopy openings (Menges et al.

1999). Reproductive success and survivorship decline with

time-since-fire in other ‘‘gap-specialists’’ of Florida scrub

(Quintana-Ascencio et al. 2003; Menges and Quintana-

Ascencio 2004). A PVA of D. frutescens ssp. frutescens

(Menges et al. 2006) indicated that the asymptotic growth

rate, k, declines below the replacement level of 1.0 (on

average) in populations that remain unburned more than

6 years.

A limitation of many PVAs is that they are largely

phenomenological (Boyce 1992; Beissinger and Westphal

1998; Fieberg and Ellner 2001). In the case of D. frutescens

ssp. frutescens, for example, we still know little about what

changes in demography are associated with increasing

time-since-fire and a corresponding decline in the asymp-

totic growth rate. As a result, we have little indication of

what mechanisms may be involved. Here, we dissect the

negative effect of time-since-fire on the demography of

D. frutescens ssp. frutescens by exploring its effect on

demographic transitions. We use a hierarchical Bayesian

model to estimate transition probabilities (i.e., the elements

of the population projection matrices used in the PVA) as a

function of time-since-fire and random effects. The

Bayesian approach allows us to make quantitative, proba-

bilistic statements about the effects of time-since-fire; i.e.,

statements of how much time-since-fire affects the odds of

death, or other demographic transitions, rather than simply

rejecting or failing to reject the null hypothesis of no effect

(as discussed by Wade 2000; Ludwig et al. 2001; Marin

et al. 2003; Ellison 2004). Further, the hierarchical

Bayesian approach allows us to rigorously account for both

parameter uncertainty and process variability, as discussed

by Goodman (2002), Clark (2003, 2005), Harwood and

Stokes (2003), and Maunder (2004).

Given a population structured by variables such as age,

size, sex, or developmental stage, even a single exogenous

factor (like time-since-fire) can give rise to many alterna-

tive models of how that factor affects demography. For

example, time-since-fire might affect the survival of

seedlings but not established plants. Thus, we take a model

comparison approach, following the tradition of zoologists

analyzing capture–recapture data (Lebreton et al. 1992;

Burnham and Anderson 1998). We begin with a fully

parameterized model, with structure informed by the life-

history. This model allows different effects of time-since-

fire both on different life stages and on different types of

demographic transitions (death, progression, etc.). We then

compare this model to simpler models, using a Bayesian

model comparison criterion. This approach allows us to

build a more detailed understanding of the effect of time-

since-fire on the demography of D. frutescens ssp.

frutescens.

Methods

The data

We used a subset of the data used by Menges et al. (2006)

in their analysis of population viability: we included only

the five populations occurring in relatively unmodified

Florida scrub habitat. The data come from 13 years of

quarterly censuses of marked individuals in 1-m2 quadrats

within each study population; this includes a total of 2,191

unique plants monitored. We used the same five stages of

plants established by Menges et al. (2006) by use of the

Moloney algorithm (Moloney 1986): seedlings, vegetative

plants (i.e., non-seedlings that were not flowering), and

reproductive plants of three size categories (small, med-

ium, large; Fig. 1a). In contrast to Menges et al. (2006), we

did not pool data when the sample size in a particular stage

was small (1–5 plants in a given population in the first year

of a pair of years), or when no plants transitioned into the

large reproductive stage. However, if there were no plants

in a particular stage in a given population in the first year of

a pair of years, we pooled data from the same stage in other

years or populations (the same habitat type and approxi-

mate time-since-fire) until reaching a sample of at least five

plants in that stage, as described in Menges et al. (2006).

Such pooled data comprised\6% of the data set. Based on

the analysis in Menges et al. (2006), we created five cat-

egories of time-since-fire: year-of-fire (plants killed by

fire), 1 year after fire (seedlings recruit), 2 years after fire

(seedlings recruit, seedlings transition to other stages),

3–6 years after fire (all transitions possible), and [6 years

after fire (all transitions possible). Ultimately, only the last

two categories are of interest here. The available data were

unbalanced with respect to these time-since-fire categories:

there are only 9 population–year combinations that fall into
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the recently burned category (3–6 years since fire), com-

pared to 40 in the last category ([6 years after fire).

The model

We used a multinomial logistic model that is fundamentally

similar to the ‘‘Alligators’’ example provided in the soft-

ware WinBUGS (available freely at http://www.mrc-bsu.

cam.ac.uk/bugs). For each of five stages of plants at time t

(seedling, vegetative, and small, medium, and large

reproductive), the number of plants recorded in five pos-

sible fates at time t + 1 (vegetative, small, medium, or large

reproductive, or dead) is modeled as a stochastic realization

of the corresponding set of transition probabilities which

we wish to infer (first-stage likelihood; Fig. 1a). The logit

transform of these transition probabilities are modeled as

the sum of fixed and random effects (multinomial logistic

model; Fig. 1b). The fixed effects affect seven different

types of demographic transitions (Fig. 1b): death, stasis,

progression, retrogression, progression from the vegetative

stage to a reproductive stage (Pr), retrogression from a

reproductive stage to the vegetative stage (Rv), and ‘‘leap-

frogging’’. Leap-frogging (or ‘‘leap’’) refers to a direct

transition from the seedling stage to a reproductive stage, a

rare event that tends to occur in the few years immediately

after fire. The random effects capture variation due to

factors that were not included in the model, such as pop-

ulation and year effects. Note, however, that population and

year effects were not modeled explicitly; instead, separate

random effects were estimated for each transition in each

population in each year, one corresponding to each transi-

tion probability (1,450 transition probabilities, due to

12 year-pairs of data for 4 populations and 10 year-pairs

for one population, with 25 transition probabilities per

population and year-pair). For example, the logit of the

probability of a seedling becoming a large reproductive

plant (p41) is the sum of the effect of leap-frogging, the

effect of a 4-step progression, and a random effect

(Fig. 1b).

We considered models that placed different types of

constraints on the fixed effects (Fig. 1c). We examined the

hypothesis of no effect of time-since-fire by constraining

the fixed effects estimated for the different time-since-fire
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Fig. 1 Schematic of the

statistical model used to

investigate fire effects on non-

seed demographic transitions in

Dicerandra frutescens ssp

frutescens. a The data, counts of

plants in five stages at time t and

time t + 1 (xij’s), are stochastic

draws from underlying

multinomial probabilities (pij’s).

b The multinomial probabilities

are the sum of fixed effects and

random effects (eij’s). Fixed

effects affect seven kinds of

transitions: stasis (S),

progression (P), retrogression

(R), death (D), leap-frogging

(L), and transitions into (Pr) and

out of (Rv) reproductive stages.

Subscripting within each group

of transitions indicates where

different parameters were

estimated in the ‘‘full’’ version

of the effect. c Fixed effects on

death (like most other fixed

effects) can depend on plant

category (subscripting) and/or

time-since-fire category
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categories to be equal. Alternatively, separate effects were

estimated for each time-since-fire category. A second

dimension of model variation involved ‘‘full’’ versus

‘‘reduced’’ effects, as delineated by the subscripting in the

fixed effects panel of Fig. 1b. For example, the ‘‘full’’

version of death estimates different odds of death (or effect

of time-since-fire on the odds of death) for each plant stage

(Dslg=Dv=Dsr=Dmr=Dlr), whereas the ‘‘reduced’’ ver-

sion fits one effect for all types of plants

(Dslg = Dv = Dsr = Dmr = Dlr). Hence most fixed effects

(not Pr or Leap) may be parameterized in four different

ways: full or reduced, with or without an effect of time-

since-fire (Fig. 1c). We systematically explored these

alternative models. Table 1 shows the number of parame-

ters estimated for each fixed effect model that we

considered (7–42). These, added to the 1,450 random

effects and 1,450 transition probabilities, make the total

number of parameters large. Finding the maximum likeli-

hood estimates (MLE’s) of such a large number of

parameters would be essentially impossible. Taking a

Bayesian approach avoids this problem: MCMC (Markov

chain Monte Carlo) methods allow the posterior distribu-

tion to be explored efficiently, generating posterior

distributions for each parameter.

The prior distributions for both random and fixed effects

were centered on zero. We found that the ranking of

alternative models was somewhat sensitive to the choice of

the variance of these prior distributions, so we constructed

the model to estimate the variance of the random and fixed

effects. We chose a uniform distribution (bounded from

zero to four) for the prior distribution of the logit of the

standard deviation of the random and fixed effects (i.e.,

‘‘hyperpriors’’). A value of one for this standard deviation

corresponds roughly to a 5D uniform distribution for the

multinomial probabilities in each column of the transition

matrix, hence this choice for hyperpriors induces a vague

prior on the multinomial probabilities, one in which all

combinations of probabilities are about equally likely.

Implementation

The posterior densities of the fixed and random effects

were estimated via MCMC simulations in WinBUGS

(Version 1.4.1; Spiegelhalter et al. 2003). We ran the

simulations with three parallel chains, with initial values

for all parameters chosen randomly from the prior distri-

butions. We used the Gelman–Rubin–Brooks diagnostic to

assess convergence. This diagnostic compares the variation

within versus among chains; the comparison is close to

unity if the chains are well-mixed (Gelman and Rubin

1992; Carlin et al. 2006). We identified a burn-in phase of

20,000 iterations by examining traces of the chains. After

discarding the burn-in phase, we continued the simulation

for another 125,000 iterations. The magnitude of the DIC

statistics changed by less than 10–4% when we repeated a

MCMC simulation of the same model, suggesting we had

obtained a good sample of the posterior. Based on exam-

ination of autocorrelation plots of the MCMC output, we

retained only every 25th sampled value, leading to a pos-

terior sample of 15,000 (5,000 samples from each of three

chains). The WinBUGS code for our analysis is found in

the Electronic Supplementary Material (ESM).

Model comparison

Having fit a variety of models, we must then have a way to

compare them statistically. Bayes factor, the ratio of pos-

terior to prior odds for two models, has sometimes been

used for this purpose, but Han and Carlin (2001) point out

that Bayes factor estimates can be unreliable when derived

from complex, hierarchical models like the one that we use.

Instead, we used the deviance information criterion (DIC)

for model comparison. DIC is a generalization of the more

familiar Akaike Information Criterion (AIC; Akaike 1973),

but based on the posterior distribution of the deviance

(Spiegelhalter et al. 2002; Carlin et al. 2006; where devi-

ance is defined as –2 times the log of the likelihood of the

data, given the model). The DIC statistic summarizes the fit

of the model to the data (Dhat, the deviance at the posterior

mean of the parameters) penalized by the effective number

of parameters (pD = Dbar-Dhat, where Dbar is the poster-

ior mean of the deviance). In a hierarchical model (like

ours) the effective number of parameters (pD) is typically

not the same as the number of parameters in the model.

Like AIC, a lower value of DIC indicates a better fit of the

Table 1 The number of parameters estimated per variation of each

fixed effect, considering only the last two time-since-fire categories

(3–6 years after fire, [6 years after fire)

Full Reduced

tsf nef tsf nef

Death 10 5 2 1

Stasis 8 4 2 1

Progression 8 4 2 1

Retrogression 6 3 2 1

Ret to vegetative (Rv) 6 3 2 1

Leap 2 1 – –

Pro to reproductive (Pr) 2 1 – –

tsf time-since-fire; nef no effect of time-since-fire

Most of the fixed effects (not Leap and Pr) can be full or reduced,

with or without an effect of time-since-fire (‘‘tsf’’ vs ‘‘nef’’, respec-

tively). Compare the numbers shown here for death to Fig. 1c

56 Popul Ecol (2008) 50:53–62
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model to the data, taking into account a penalty for model

complexity. DIC differences greater than five are regarded

as moderately strong evidence and those greater than ten

are regarded as very strong evidence in favor of the model

with the smaller DIC. Differences less than two are

regarded as negligible (Spiegelhalter et al. 2002).

Results

Model comparison (DIC)

We considered a total of 26 models that varied in DIC

(listed as increasingly poor models in Table 2). By scan-

ning each column of Table 2, one can see the important

variation among models (highlighted with grey shading).

For example, the addition of random effects improved the

model dramatically (DIC is reduced; model 10 vs model

26, Table 2), in spite of increased model complexity (pD),

because the fit of the model to the data is improved greatly

(Dhat). Adding time-since-fire effects also improved the

model tremendously (DIC is reduced by *242 units;

model 10 vs 25, Table 2), which reflects a reduction in the

effective number of parameters, since the fit to the data

actually suffers. Thus there is overwhelming evidence that

both time-since-fire and additional unmeasured factors

influence the transition probabilities.

Using the most parameter-rich model (model 10) as a

point of reference, we discuss models with ‘‘reduced’’

versus ‘‘full’’ versions of the time-since-fire effects.

Treating the effect of time-since-fire on stasis as homoge-

neous across the five plant stages improves the model by

almost 3 DIC units (model 2 vs model 10, Table 2). Thus,

stage-specific effects of time-since-fire on stasis are not

supported (Fig. 2a). A model that treats the effect of time-

since-fire on cessation of flowering (Rv) as homogeneous

across the three reproductive stages is indistinguishable

from model 10 (model 7 vs model 10, Table 2; see

Fig. 2g), indicating that stage-specific effects of time-

since-fire on cessation of flowering may or may not occur.

In contrast, models with reduced versions of time-since-fire

effects on death, retrogression, and progression are 4, 20,

and 32 DIC units worse than model 10, respectively

(models 16, 21, and 23, Table 2). Thus, there is evidence

that the effect of time-since-fire on progression, retro-

gression, and death depends on the magnitude of the

change (i.e., 1-step vs 2-step vs 3-step progression, etc.;

Fig. 2b, c) or on plant stage (i.e., death of seedlings vs

small flowering plants, etc.; Fig. 2d).

Finally, we compare the best model, those statistically

indistinguishable from it (within 2 DIC units), and others

without time-since-fire effects. Models with the hypothesis

of no effect of time-since-fire on stasis, retrogression, and

progression to a reproductive stage are among the best

models (models 1, 4, and 5, respectively, Table 2). In

addition, models with no effect of time-since-fire on leap-

frogging, retrogression to the vegetative stage, and pro-

gression are within five DIC units of the best model

(models 6, 12, and 14, respectively, Table 2). A model with

no effect of time-since-fire on death is 5.09 DIC units

worse than the best model (model 15, Table 2). Hence

there is some uncertainty about whether time-since-fire

affects each of these types of demographic fates.

Time-since-fire effects

In spite of this model uncertainty (above), we report here

the best estimates of the direction and magnitude of time-

since-fire effects (from model 10, which contains all such

possible effects). Consistent with the analysis of Menges

et al. (2006), time-since-fire had negative effects on

demography; that is, increased time-since-fire modified

transition probabilities in a manner that should lead to

population decline. Time-since-fire increases the proba-

bility of death, particularly death of the reproductive

stages (Fig. 2d): the posterior odds of death are 5.30,

5.49, and 3.20 times greater for small, medium, and large

flowering plants more than 6 years after fire, compared

to 3–6 years after fire (Table 3). Time-since-fire reduces

the probability of progression (including leap-frogging

and progression to a reproductive stage; Fig. 2b, e, f) and

increases the probability of retrogression (including

cessation of flowering; Fig. 2c, g). Time-since-fire par-

ticularly suppresses the probability of larger increases in

size or developmental stage (Fig. 2b); 3-step and 4-step

progression are 6.82 and 4.51 times less likely to occur to

plants more than 6 years after fire, compared to 3–6 years

after fire (posterior means, model 10, Table 3). Leap-

frogging is 3.06 times less likely to occur to seedlings

more than 6 years after fire, compared to 3–6 years after

fire (Fig. 2e; Table 3). Large flowering plants are 6.25

times more likely to regress to the vegetative stage (stop

flowering) more than 6 years after fire, compared to

3–6 years after fire (Fig. 2g; Table 3).

Transition probabilities

We obtained good estimates of the transition probabilities

from our models, in the sense that the posterior means

closely resemble the observed transition frequencies

(Fig. 3). The 95% credible intervals of the posteriors

illustrate that there is considerable uncertainty about tran-

sition probabilities (due to the finite sample size of plants

involved), which is ignored when only a point estimate
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(MLE) is used in simulations of population viability

(Fig. 3).

Discussion

Our analysis offers new insights into the process of popu-

lation decline with time-since-fire in D. frutescens ssp.

frutescens. We found that time-since-fire increases the odds

of death, particularly the odds of death for flowering plants

(Fig. 2d). Time-since-fire also reduces the odds of pro-

gression, particularly those progression terms involving

greater increase in size or advances in developmental stage

(Fig. 2b). Increased time-since-fire also suppresses flow-

ering, either by increasing the odds of changing from a

reproductive stage to the vegetative stage (stronger evi-

dence, based on DIC; Fig. 2g), by decreasing the odds of

changing from the seedling or vegetative stages to a

reproductive stage (weaker evidence, based on DIC;

Fig. 2e, f), or both (as in models 1–4; Table 2). While the

Bayesian analysis that we used admits both model uncer-

tainty (Table 2) and parameter uncertainty (the intervals in

Fig. 2) in time-since-fire effects, the best estimates of the

magnitude of these effects are substantial. For example, the

posterior mean of the odds of death is 3–5.5 times greater

for flowering plants more than 6 years after fire, compared

to 3–6 years after fire (Table 3; Fig. 2d). Similarly, the

posterior mean of the odds of a 3-step progression is

reduced more than 6 times and the posterior mean of the

odds of a large flowering plant stopping flowering is

increased more than 6 times, more than 6 years after fire

compared to 3–6 years after fire (Table 3; Fig. 2b, g).

These insights suggest some directions for future

research and management. For example, the result that

time-since-fire reduces survival of reproductive plants

rather than non-reproductive plants is surprising and

intriguing. One might have expected seedlings and vege-

tative plants to be affected more by conditions that develop

with increased time-since-fire than older, larger, repro-

ductively mature plants. There are a number of possible

mechanisms by which time-since-fire could negatively

affect D. frutescens ssp. frutescens, including belowground

competition for water and nutrients from increasingly large

post-fire resprouting plants, allelochemicals from those

shrubs, reduced light availability as the canopy closes, and

microenvironmental effects caused by accumulating leaf

litter. The fact that seedling survival appears to be little

affected by time-since-fire argues against belowground

competition, allelochemicals and leaf litter as factors, since

all three would be expected to affect new, small plants

disproportionately. A closing canopy on the other hand

might have a moderating effect for seedlings (moderating

the heat load received at ground level, for example) but a

negative effect on flowering plants, which may require high

light conditions to recoup the energy costs involved in

reproduction. If canopy closure is the main mechanism for

Table 2 Parameterization and DIC statistics of all the models that we ran, in order of increasing DIC

Model Death Stasis Pro Ret Rv Leap Pr ε Dbar Dhat pD DIC ∆DIC 
1 F red, nef F F F + + + 2037.83 1656.35 381.48 2419.31 2.98 
2 F red F F F + + + 2037.82 1656.16 381.66 2419.47 2.82 
3 F red, nef F F red + --- + 2028.62 1637.69 390.93 2419.55 2.74 
4 F F F F, nef F + + + 2040.98 1661.53 379.46 2420.44 
5 F red, nef F F red + nef + 2032.55 1643.95 388.60 2421.15 

1.85 
1.14 

6 F F F F F nef + + 2040.80 1659.74 381.06 2421.86 0.43 
7 F F F F red + + + 2038.18 1654.49 383.69 2421.87 0.42 
8 F F F F F + nef + 2041.22 1660.36 380.86 2422.08 0.21 
9 F red, nef F F red nef + + 2032.82 1643.56 389.26 2422.08 0.21 

10 F F F F F + + + 2041.2 1660.1 381.09 2422.29 0 
11 F F F F --- + + + 2039.43 1656.36 383.07 2422.5 -0.21 
12 F F F F red, nef + + + 2039.7 1656.53 383.17 2422.87 -0.58 

13 F --- F F F + + + 2041.83 1660.71 381.12 2422.94
14 F F F, nef F F + + + 2039.8 1655.81 383.99 2423.78 

-0.65 
-1.49 

15 F, nef F F F F + + + 2039.35 1654.3 385.05 2424.4 -2.11 
16 red F F F F + + + 2041.61 1657 384.60 2426.21 -3.92 
17 --- F F F F + + + 2041.74 1656.77 384.97 2426.7 -4.41 
18 F red, nef F F red, nef + nef + 2034.94 1641.36 393.58 2428.52 
19 F red, nef F F red, nef + --- + 2034.97 1640.71 394.27 2429.24 

-6.23 
-6.95 

20 F F F F F --- + + 2028.7 1615.56 413.14 2441.83 -19.54 
21 F F F red F + + + 2051.7 1661.27 390.43 2442.12 -19.83 
22 F F F --- F + + + 2053.99 1664.77 389.21 2443.2 -20.91 
23 F F red F F + + + 2063.46 1672.61 390.86 2454.32 -32.03 
24 F F --- F F + + + 2063.13 1671.53 391.60 2454.72 -32.43 
25 --- --- --- --- --- --- --- + 2022.41 1380.93 641.48 2663.89 -241.6 
26 F F F F F + + --- 2889.96 2852.78 37.18 2927.14 -504.85 

within 2 
DIC 

within 5 
DIC 

within 10
DIC 

Seven types of fixed effects, in addition to random effects (e), may be present in a model (see Fig. 1b)

Variations on fixed effects include full (F), reduced (red), and no effect of time-since-fire (nef). Presence versus absence of an effect is indicated

by + versus –. We use horizontal lines in the table to indicate those models within 2, 5, and 10 DIC units of the best model, and shading to

highlight what is discussed in the text. The most highly parameterized model (10), in bold text, is a point of reference; thus, DDIC is in relation to

model 10
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Fig. 2 Posterior distributions of

the effect of time-since-fire

category on seven different

types of demographic

transitions: a stasis,

b progression, c retrogression,

d death, e leap-frogging,

f progression to reproductive

from vegetative, g retrogression

from reproductive to vegetative.

The y-axis of each panel is the

odds ratio (relative to a model

without that effect) on a log10

scale. The posterior means

(thick horizontal bars), 50%

quantiles (boxes), and 95%

credible intervals (whiskers) are

shown, as well as extreme

values (dots). These posteriors

were obtained from model 10
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decline in D. frutescens ssp. frutescens populations with

time-since-fire, then mechanical canopy removal may

suffice to reverse decline, in situations where prescribed

burning is not feasible (e.g., in the proximity of private

homes). Future experimentation and analysis can be

directed at this next generation of hypotheses and mecha-

nistic understanding.

There are alternatives to the hierarchical Bayesian

analysis that we used, but each has several disadvantages.

One approach is to treat the MLE’s of transition

probabilities as known, and analyze their variation as a

function of the exogenous factor (e.g., Pfeifer et al. 2006);

this approach ignores both parameter uncertainty and pro-

cess variation due to unknown sources. Another approach

is to analyze data from individual plants as a function of

the exogenous factor, which provides estimates of the

effect of that factor on response variables like survival,

growth, flowering, or fecundity, as opposed to transition

probabilities (e.g., Kalliovirta et al. 2006). Gross et al.

(2006) recently showed how this kind of model can be used

Table 3 Odds of each type of demographic transition, more than 6 years after fire, compared to 3–6 years after fire, from the posterior means of

model 10 (shown in Fig. 2)

Death Progression Retrogression Stasis Retro to veg Leap Prog

sdlg –1.56 1-step –2.38 1-step 1.27 veg –1.17 sr 1.17 –3.06 1.09

veg 1.00 2-step –2.57 2-step 1.05 sr –2.93 mr 1.45

sr 5.30 3-step –6.82 mr 1.36 lr 6.25

mr 5.49 4-step –4.51 lr –2.26

lr 3.20

sdlg seedling; veg vegetative stage; sr small, mr medium, lr large flowering plants

A value of 1.00 indicates equal odds in the two time-since-fire categories. For example, seedlings are 1.56 times less likely to die[6 years after

fire, compared to 3–6 years after fire

Fig. 3 Posterior densities of the

25 transition probabilities

estimated by model 1 for

population 2 in 1988–1989.

The posterior means (thick
horizontal bars), 50% quantiles

(boxes), and 95% credible

intervals (whiskers) are shown,

along with the observed

transition frequencies (black
diamonds, at right). The

arrangement of these panels
corresponds to the 5 · 5 matrix

in Fig. 1a
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to estimate transition probabilities. Their approach

addresses model uncertainty via multimodel averaging

(sensu Burnham and Anderson 2002), but does not address

parameter uncertainty or process uncertainty due to

unknown sources. Another method, life stage simulation

analysis (Wisdom et al. 2000), could be used to assess the

effect of time-since-fire on population growth, but relies on

specifying ‘‘plausible or hypothesized’’ levels of uncer-

tainty and variation in vital rates. In contrast, the Bayesian

framework used in this paper allows us to model demo-

graphic responses to an exogenous factor and to account

for and estimate uncertainty and variation within the con-

text of a single analysis. Moreover, the structure of our

model is quite general. It can be easily adapted to examine

how any exogenous factor affects demographic transitions.

It is a novel and general statistical tool that can be used by

others who wish to develop a better understanding of the

effect of an exogenous factor on demography, while rig-

orously accounting for uncertainty and variation.
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