
EECS 206 May 20, 2002, Release v3.0 Laboratory 2

Laboratory 2

Signal Correlation and
Detection II

2.1 Introduction

In Lab 1, we designed an energy-based signal/no-signal detector for determining when a
signal is present. This type of detector has a wide variety of applications, from speech
analysis to communication, but it has two weaknesses. First, an energy-based detector is
very susceptible to noise, especially when the signal’s energy is small compared to the energy
of the noise. Second, such a detector cannot distinguish between different types of signals
that are mixed together.

In this laboratory, we will examine an alternative detection method that addresses these
concerns. It uses a computation called correlation to detect the presence of a signal with
a known form. In general, correlation measures the similarity between two signals. Using
correlation for detection has significant applications. For instance, it allows several signals
to be sent over a single communications channel simultaneously. It also allows the use of
radar and sonar in noisy environments. Later in this course, we will see that correlation
forms the basis for one of the most important tools in signals and systems engineering, the
spectrum.

2.1.1 “The Questions”

• How can we transmit and receive bits from a number of different users on the same
communication channel?

• How can we develop a radar detection scheme that is robust to noise, and how do we
characterize its performance?

The University of Michigan, All rights reserved 45

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

0 5 10
−4

−2

0

2

4

x[
n]

Positively Correlated

0 5 10
−4

−2

0

2

4

y[
n]

0 5 10
−10

0

10

x[
n]

*y
[n

]

C(x,y) = 38

0 5 10
−4

−2

0

2

4
Uncorrelated

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4

C(x,y) = 0

0 5 10
−4

−2

0

2

4
Negatively Correlated

0 5 10
−4

−2

0

2

4

0 5 10
−10

0

10

C(x,y) = −38

Figure 2.1: Examples of positively correlated, uncorrelated, and anticorrelated signals.

2.2 Background

2.2.1 Correlation

Suppose that we have two discrete-time signals, x[n] and y[n]. We compute the correlation1

between these two signals, C(x, y), using the formula

C(x, y) =
n2∑

n=n1

x[n]y[n] (2.1)

where n1 and n2 define the interval over which we are calculating the correlation. In words,
we compute a correlation by multiplying two signals together and then summing the product.
The result is a single number that indicates the similarity between the signals x[n] and y[n].

What values can C(x, y) take on, and what does this tell us about the signals x[n] and
y[n]? Let us consider the examples in Figure 2.1. For the signals shown in the first column,
C(x, y) > 0, in which case, the signals are said to be positively correlated. Basically, this
means that the signals are more similar than they are dissimilar. In the second column,
we can see an example where C(x, y) is zero. In this case, the two signals are uncorrelated.
One might say that uncorrelated signals are “equally” similar and dissimilar. Notice, for
instance, that the signal x[n]× y[n] is positive as often as it is negative. Knowledge of the
value of signal x[n] at time n indicates little about the value of y[n] at time n. Finally, in
the third column we see an example where C(x, y) < 0, which means that x[n] and y[n] are
negatively correlated. This means the signals are mostly dissimilar.

Note that the positively correlated signals given in Figure 2.1 are actually identical. This
is a special case; from equation (2.1), we can see that in this case the correlation is simply

1We will occasionally refer to this operation as “in-place” correlation to distinguish it from “running”
correlation.

46 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

the energy of x[n], i.e.
C(x, x) = E(x) . (2.2)

Sometimes, it is more useful to work with normalized correlation, as defined by

CN (x, y) =
C(x, y)√
E(x)E(y)

=
1√

E(x)E(y)

n2∑

n=n1

x[n]y[n]. (2.3)

Normalized correlation is somewhat easier to interpret. The well known Cauchy-Schwartz
inequality shows that the normalized correlation varies between -1 and +1. That is, for any
two signals

−1 ≤ CN (x, y) ≤ 1. (2.4)

Thus, signals that are as positively correlated as possible have normalized correlation 1
and signals that are as negatively correlated as possible have normalized correlation -1.
Moreover, it is known that two signals have normalized correlation equal to 1 when and
only when one of the signals is simply the other multiplied by a positive number. In this
case, the signals are said to be perfectly correlated. Similarly, two signals have normalized
correlation equal to -1 when and only when one is simply the other multiplied by a negative
number, in which case they are said to be perfectly anticorrelated. These properties indicate
how we may interpret a value of normalized correlation.

2.2.2 Running correlation

In many situations, it is quite useful to correlate a signal y[n] with a sequence of delayed
versions of another signal x[n]. That is, we wish to correlate y[n] with x[n], with x[n − 1],
with x[n − 2], etc. In such cases, we perform running correlation of y[n] with x[n], which
produces the correlation signal

r[k] = C(x[n − k], y[n]) , k = 0, 1, 2, . . . (2.5)

Note that since n was used as the time variable for x and y, we have introduced a new time
variable, k, for r.

Suppose, for example, that we want to know the distance to a certain object. We
transmit a radar pulse, x[n], and receive a signal, y[n], that contains the reflection of our
pulse off of the object. For simplicity, let’s assume that we know y[n] is simply a delayed
version of x[n], that is2,

y[n] = x[n − n0], (2.6)

However, we do not know the delay factor, n0. Since n0 is proportional to the distance to
our object, this is the quantity that we wish to estimate. We can use correlation to help
us determine this delay, but we need to use running correlation rather than simply in-place
correlation.

Suppose that we first guess that n0 is equal to zero. We correlate y[n] with x[n] and
record the resulting correlation value as one sample of a new signal, r[0]. Then, we guess
that n0 is equal to one, shift x[n] over by one sample, and correlate y[n] with x[n − 1]. We

2Recall that a signal x[n − n0] is equal to the signal x[n] shifted n0 samples to the right.

The University of Michigan, All rights reserved 47

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

−40 −20 0 20 40 60 80 100
0

0.5

1

A

100 200 300 400 500 600 700 800 900 1000

−0.5

0

0.5

1 B

100 200 300 400 500 600 700 800 900 1000 1100

0

0.5

1

C

Figure 2.2: (A) A radar pulse. (B) A received sequence from the radar system, containing
two pulses and noise. (C) The running correlation produced by correlating the radar pulse
with the received signal.

record this correlation value as r[1]. We can continue this shift-and-correlate procedure,
building up the new signal r[k] according to the formula

r[k] = C(x[n − k], y[n]) =
∞∑

n=−∞
x[n − k]y[n]. (2.7)

Once we find a value of r[k] that equals E(x), we have found the value of n0. This procedure
of building up the signal r[k] is known as running correlation or sliding correlation. We will
refer to the resulting signal (r[k] above) as the correlation signal.

As an example, Figure 2.2 shows a radar pulse, a received signal containing two de-
layed versions of the radar pulse (one without noise and one with noise), and the running
correlation produced by correlating the pulse with the received signal.

Let us note a couple important features of the correlation signal. First, the limits of
summation in equation (2.7) are infinite. Usually, though, the support of x[n] and y[n] will
be finite, so we do not actually need to perform an infinite summation. Instead, the duration
of the correlation signal will be equal to the sum of the durations of x[n] and y[n] minus
one3. There will also be transient effects (or edge effects) at the beginning and end of the
correlation signal. These transient effects result from cases where x[n − k] only partially
overlaps y[n]. Finally, notice that the value of the correlation signal at time k = 0 is just
the in-place correlation C(x[n], y[n]).

3Suppose that support interval of x[n] is nx1 ≤ n ≤ nx2 , while the support interval of y[n] is ny1 ≤ n ≤
ny2 . For this general case, we can see that the first nonzero sample of r[k] will occur at k = ny1 − nx2 .
Similarly, the last nonzero sample will fall at k = ny2 − nx1 . Thus, the duration of r[k] is (ny2 − ny1) +
(nx2 − nx1) + 1 = (ny2 − ny1 + 1) + (nx2 − nx1 + 1)− 1 = duration(x) + duration(y)− 1.

48 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

2.2.3 Using correlation for signal detection

Whenever we wish to use correlation for signal detection, we use a two-part system. The first
part of the system performs the correlation and produces the correlation value or correlation
signal, depending upon whether we are doing in-place or running correlation. The second
part of the system examines the correlation or correlation signal and makes a decision or
sequence of decisions. See the block diagram given in Figure 2.3.

Correlation
Calculator

Decision
Maker

DecisionInput
Signal

Correlation
Signal

Figure 2.3: A generalized block diagram for a correlation-based detection system.

In the radar example used to motivate running correlation in Section 2.2.2, we simply
checked to see if the correlation signal at a given point equals the energy of the transmitted
signal. While this will work for the idealized system presented, real systems are usually
much less ideal. We may have multiple reflections, distorted reflections, reductions in re-
flection amplitude, and various kinds of environmental noise. In order to address these and
other, similar problems in a wide variety of systems, we commonly use a simple threshold
comparison as our decision maker. For instance, if we compute a running correlation signal
r[n], we might choose a constant c called a threshold and make a decision for each sample
based on the following formula:

r
1

≷
0

c (2.8)

That is, when the correlation value r is greater than the threshold, c, we decide 1, or “signal
present.” If the value is less than the threshold, we decide 0, or “signal absent.” In our
radar example, for instance, we might select the threshold to be c = E(x)/2.

2.2.4 Using correlation for detection of signals transmitted simul-
taneously with other signals

Suppose that we wish to design a multi-user wireless communication system which permits
each of a number of users to simultaneously transmit a sequence of message bits. That
is, each user will transmit a signal across a common communication channel (for example,
a wire or a small portion of the electromagnetic spectrum) that conveys his/her message
bits, and despite the fact that these signals are received on top of one another, it should
be possible to decode the message bits produced by any one of the users. The users of this
system are completely uncoordinated; so no user has any idea who else might be using the
system at any given time. How can we design a system so that each user can use the system
without experiencing interference from the other users? This is the problem faced by the
designers of cell phones and cordless phones, for example.

It turns out that we can use a correlation-based detector to address this problem. To
begin, suppose that each user is trying to send a one bit message to a friend, and suppose

The University of Michigan, All rights reserved 49

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

10 20 30 40 50 60 70 80 90 100
−1

0

1

10 20 30 40 50 60 70 80 90 100
−1

0

1

10 20 30 40 50 60 70 80 90 100
−1

0

1

Figure 2.4: Example code signals for simultaneous communications

100 200 300 400 500 600
−2

0

2
A

100 200 300 400 500 600
−5

0

5
B

Figure 2.5: (A) Example of a transmitted signal. (B) The sum of the transmitted signals
from four users.

each user has a distinct code signal, like those shown in Figure 2.4. Each code signal is made
up of some number of binary chips, which are regions of constant signal value; the signals
shown here each consist of ten chips.4 To send a “one” message bit, the user transmits
his or her code signal. To send a “zero” message bit, the user instead transmits a negated
version of his or her code signal (which is is perfectly anticorrelated with the code signal).

Now, in order to send a sequence of message bits, the user concatenates these positive
and negative versions of the code signal into a sequence of code signals, which is called the
transmitted signal and which is input to the communication channel. Other users transmit
their own message bits in the same fashion, except that, of course, they use different code
signals. For example, Figure 2.5 shows a transmitted signal conveying eight message bits
using the top code signal from Figure 2.4. It also shows this signal with the transmitted
signals from three other users added to it. Notice that the signal in the upper panel is
obscured in the lower panel.

When someone, say the user’s friend, receives the signal from the communication chan-

4Though the code signals clearly have a binary nature, we use the term “chip” to distinguish binary
segments of the code signal from binary message elements, which we call “bits”.

50 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

nel5 and wishes to decode the user’s message bits, the friend correlates the received signal
with the user’s code signal. Specifically, in-place correlation of the received signal with the
code signal produces a value with which a decision about the first message bit can be de-
cided. Then in-place correlation of the received signal with a delayed version of the code
signal produces a value from which the second message bit can be decided, and so on. Since
each of these correlation values would equal plus or minus the energy of the code signal if
there were no other signals or noise present, it is natural to have the decision maker decide
that a message bit is “one” if the correlation value is positive and “zero” if the correlation
value is negative. That is, a threshold of zero is chosen.

A communication system of this form is said to be a code-division, multiple-access
(CDMA) system or a direct-sequence, spread-spectrum (DSSS) system. They are used,
for example, in 900 Mhz cordless telephones. Such systems work best when the code signals
are as different as possible, i.e. when the normalized correlation between the code signals of
distinct users are as near to zero as possible, which is what system designers typically at-
tempt to do. Consider the examples in Figure 2.4. The first two code signals are completely
uncorrelated, as are the second two. The first and third signals are slightly anticorrelated.
The normalized correlation between these signals is only -0.2, which is small enough that
these two code signals will not interfere much with one another.

Above, we’ve indicated that our detection system uses in-place correlation. This means
that this system is synchronous; that is, the receiver knows when bits are sent. However,
we can actually save ourselves some work by using running correlation, and then sampling
the resulting correlation signal at the appropriate times. This is how we will implement
this communication system in the laboratory assignment. Using the running correlation
algorithm presented in this lab, the “appropriate times” occur in the correlation signal at
the end of each code signal. That is, if our code signals are N samples long, we want to
pick off the (k × N)th sample out of the running correlator to decide the kth message bit.

It is worth noting that the threshold used to decode bits in this detection system, which
we have set to zero, is actually a design parameter of the system. If it should happen, for
instance, that the system’s noise is biased so that we tend to get slightly positive correlations
when no signal is sent, then we would be able to improve performance of the system by using
a positive threshold, rather than a threshold of zero. Alternatively, we might want to decide
that no bit has been sent if the magnitude of the correlation is below some threshold. In
this case, we actually have two thresholds. One separates “no signal” from a binary “one;”
the other separates “no signal” from a binary “zero.”

2.2.5 Noise, detector errors, and setting the threshold

Detectors, such as the radar and DSSS detectors we have discussed, must typically operate
in the presence of noise. Here, we begin by discussing the radar example of Section 2.2.2,
and conclude with a brief discussion of the DSSS detector.

When the radar pulse is x[n], the typical received radar signal has the form

y[n] = x[n − n0] + w[n] (2.9)

where x[n− n0] is the reflected radar pulse and w[n] is noise, i.e. an unpredictable, usually
wildly fluctuating signal that normally is little correlated with x[n] or any delayed version
of x[n]. When in order to estimate n0, we perform running correlation of y[n] with x[n], the

5For simplicity, we assume the communication channel does not attenuate the transmitted signal.

The University of Michigan, All rights reserved 51

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

resulting correlation signal is

r[k] =
∞∑

n=−∞
x[n − k]y[n]

=
∞∑

n=−∞
x[n − k](x[n − n0] + w[n])

=
∞∑

n=−∞
x[n − k]x[n − n0] +

∞∑

n=−∞
x[n − k]w[n]

= r0[k] + rw[k] , (2.10)

where r0[k] is the running correlation of x[n − n0] with x[n]. Note that r0[k] is what r[k]
would be if there were no noise, as given in equation 2.7. rw[k] is the running correlation of
the noise w[n] with x[n], which is added to r0[k]. This shows that the effect of noise is to
add rw[k] to r0[k]. Though in a well designed system rw[k] is usually close to zero, it will
occasionally be large enough to influence the decision made by the decision maker.

In Section 2.2.3, we argued that a threshold-based decision maker was useful for such
systems. Then, for example, when r[k] > c, the decision is that a radar pulse is present
at time k, whereas when r[k] < c, the decision is that no radar pulse is present at time k.
Since in the absence of noise r[k] = E(x) when there is a radar pulse at time k, and since
r[k] = 0 when there is no pulse at time k, it is natural, as mentioned in Section 2.2.3 to
choose threshold c = E(x)/2.

Though it makes good sense to use a threshold detector, such a detector will nevertheless
occasionally make an error, i.e. the wrong decision. Indeed, there are two types of errors that
a detector can make. First, it could detect a reflection of the transmitted signal where no
actual reflection exists. This is called a false alarm. It occurs at time k when r0[k] = 0 and
rw[k] > c, i.e. when the part of the correlation due to noise is larger than half the threshold.
The other type of error occurs when the detector fails to detect an actual reflection because
the noise causes the correlation to drop below the threshold even though a signal is present.
This type of error is called a miss. It occurs when r0[k] = E(x) and r[k] = E(x)+rw[k] < c,
which in turn happens when rw[k] < c−E(x). In summary, a false alarm occurs when there
is no radar pulse present, yet the noise causes rw[k] > c, and a miss occurs when there is a
radar pulse present, yet the noise causes rw[k] < c − E(x).

Depending on the detection system being developed, these two types of error could be
equally undesirable or one could be more undesirable than another. For instance, in a
defensive radar system, false alarms are probably preferable to misses, since the former are
decidedly less dangerous. We can trade off the likelihood of these two types of error by
adjusting the threshold. Raising the threshold decreases the likelihood of a false alarm,
while lowering it decreases the likelihood of a miss.

It is often useful to know the frequency of each type of error. There is a simple way
to empirically estimate these frequencies. First, we perform an experiment where we do
not send any radar pulses, but simply record the received signal y[n], which contains just
environmental noise w[k]. We then compute its running correlation r[k] with the radar pulse
x[n], which is just rw[k]. We count the number of times that rw[k] exceeds the threshold c
and divide by the total number of samples. This gives us an estimate the false alarm rate,
which is the frequency with which the detector will decide a radar pulse is present when
actually there is none. We can also use this technique to estimate the miss rate. When a

52 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

radar pulse is present, an error occurs when rw[k] < c − E(x). Thus, we can estimate the
miss rate by counting the number of times the already computed correlation signal rw[k] is
less than c − E(x), and dividing by the total number of samples.

The signal value distribution is also useful here. If we plot the histogram of values in
rw[k], we can use this plot to determine the error rate estimates. The estimate of false alarm
rate is the area of the histogram above values that exceeds c, divided by the total area of
the histogram6. Similarly, the estimate of the miss rate is the area of the hisogram above
values that are less than c − E(x)

Assuming that the distribution of rw[k] is symmetric about 0, we can minimize the
total error rate (which is simply the sum of the false alarm and miss rates) by setting a
threshold that yields the same number of false alarms as misses. Since the distribution of
rw[k] is assumed to be symmetric, we get an equal number of false alarms and misses when
c = E(x)/2, which is the threshold value suggested earlier.

Next, it is important to note how the error rates depend on the energy of the radar
pulse. Consider first the false alarm, which corresponds to the frequency with which the
noise induced correlation signal rw[k] exceeds c = E(x)/2. Suppose for example that the
radar pulse is amplified by a factor of two. Then its energy increases by a factor of four, and
consequently, the threshold c increases by a factor of four. On the other hand, one can see
from the formula rw[k] =

∫
y[n]x[n− k] dx that the noise term rw[k] will be doubled. Since

the threshold is quadrupled but the noise term is only doubled, the frequency with which
the noise term exceeds the threshold will be greatly decreased, i.e. the false alarm rate is
greatly decreased. A similar argument shows that the miss rate is also greatly decreased.
Thus, we see that what matters is the energy of the radar pulse, in relation to the strength
of the noise. If the energy of the signal increases, but the typical values of the noise w[n]
remain about the same, the system will make fewer errors. By making the energy sufficiently
large, we can make the error rate as small as we like. In the lab assignments to follow, we
will observe situations where the noise w[n] is so strong that it completely obscures the
radar pulse x[n − n0], yet the radar pulse is long enough that it has enough energy that a
correlation detector will make few errors.

Finally, we comment on the effects of noise on the DSSS detector. In this case, instead of
deciding whether a pulse is present or not, the detector decides whether a positive or negative
code signal is present. As with the radar example, this must ordinarily be accomplished
in the presence of noise. However, in this case there are two kinds of noise: environmental
noise, similar to that which affects radar, and multiple user noise, which is due to other users
transmitting their own code signals. In the absence of any noise, the in-place correlation
r(x, y) computed by the detector will be +E(x) when the message bit is “one” and −E(x)
when the message bit is “zero” , where x[n] is the user’s code signal. For this reason,
using a decision threshold c = 0 is natural. When the message bit is zero, an error occurs
when r(x, y) > 0, which happens when the correlation term rw due to noise exceeds E(x).
Similarly, when the message bit is one, an error occurs when r(x, y) < 0, which happens
when rw < −E(x). As with the radar example, errors occur less frequently when the signal
energy becomes larger. This will be evident in the lab assignment, when code signals of
different lengths, and hence different energies, are used.

6That is, we sum the values in this region of the histogram and divide by the sum of all values in the
histogram

The University of Michigan, All rights reserved 53

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

2.2.6 An algorithm for running correlation

Here, we provide an algorithm for running correlation. One of its primary benefits is that it
is easy to understand. In this algorithm, we imagine the filter as a box into which we drop
one new sample of the “incoming” signal and a corresponding new sample of the correlation
signal comes out. This allows the algorithm to be used in real-time: as samples of our signal
arrive (from a radar detector, for instance), we can process the resulting signal with almost
no delay.

In this algorithm we refer to the signal we are looking for (i.e., the transmitted radar
signal) as x[n], following (2.7). The algorithm goes like this:

1. Initialize an input buffer, which is simply an array with length equal to the duration
of x[n], to all zeros.

2. For each sample that comes in:

(a) Update the buffer by doing the following:
i. Discard the sample at the beginning of the buffer.
ii. Shift the rest of the samples one place towards the beginning of the buffer.
iii. Insert the incoming sample at the end of the buffer.

(b) Initialize a running sum variable to zero.
(c) For each position, n, in the buffer:

i. Multiply the nth position in the input buffer by the nth sample of x[n].
ii. Add the resulting product to the running sum.

(d) Output the running sum as the next sample of the correlation signal.

In the laboratory assignment, you will be asked to complete an implementation of this
algorithm. Note that significant portions of this algorithm can be implemented very simply
in Matlab. For instance, all of (a) can be accomplished using a single line of code. Similarly,
parts (b) through (d) can all be accomplished in a single line using one of Matlab’s built-in
functions and its vector arithmetic capabilities.

2.3 Some Matlab commands for this lab

• Calculating in-place correlation: If you have two signals, x and y, that you wish
to correlate, simply use the command

>> c_xy = sum(x.*y);

Note that x and y must be the same size; otherwise Matlab will return an error.

• The subplot command: In order to put several plots on the same figure in Matlab,
we use the subplot command. subplot creates a rectangular array of axes in a figure.
Figure 2.6 has an example figure with such an array. Each time you call subplot, you
activate one of the axes. subplot takes three input parameters. The first and second
indicate the number of axes per row and the number of axes per column, respectively.
The third parameter indicates which of the axes to activate by counting along the
rows7. Thus the command:

7Note in particular that this is the opposite of Matlab’s usual convention!

54 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

0 100 200
−1

0

1

0 100 200
−1

0

1

0 100 200
−1

0

1

0 100 200
−1

0

1

−1 0 1
−1

0

1

50 100 150 200
0

0.5

1

Figure 2.6: Example of a Matlab figure with subplots.

>> subplot(2,3,5)

activates the plot with the circle in Figure 2.6.

• The axis command: The command axis allows us to set the axis range for a particu-
lar plot. Its single input argument is a vector of the form [x_min, x_max, y_min, y_max].
For instance, if you wish to change the display range of the currently active plot (or
subplot) so that the x-axis ranges from 5 and 10 and the y-axis ranges from -100 to
100, simply execute the command

>> axis([5, 10, -100, 100]);

Other useful forms of the axis command include axis tight, which fits the axis
range closely around the data in a plot, and axis equal, which assures that the x-
and y-axes have the same scale.

• Buffer operations in Matlab: It is often useful to use Matlab’s vectors as buffers,
with which we can shift values in the buffer towards the beginning or end of the buffer
by one position. Such an operation has two parts. First, we discard the number at
the beginning or end of the buffer. If our buffer is a vector b, we can do this using
either b = b(2:end) or b = b(1:end-1). Then, we append a new number to the
opposite end of the buffer using a standard array concatenation operation. Note that
we can easily combine these two steps into a single command. For instance, if b is a
row vector and we wish to shift towards the end of the buffer, we use the command

>> b = [new_sample, b(1:end-1)];

• Counting elements that meet some condition: Occasionally we may want to
determine how many elements in a vector meet some condition. This is simple in
Matlab because of how the conditional operators are handled. Recall that for a
vector, v, (v == 3) will return a vector with the same size as v, the elements of which
are either 1 or 0 depending upon the truth of the conditional statement. Thus, to
count the number of elements in v that equal 3, we can simply use the command

>> count = sum(v == 3);

The University of Michigan, All rights reserved 55

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

2.4 Demonstrations in the Lab Section

• Detector error types

• Why use correlation? Or, when energy detectors break down.

• “In-place” correlation as a similarity measure

• Running correlation

• Multi-user communication

2.5 Laboratory Assignment

In this lab assignment, all signals are discrete-time and their support is assumed to be of
the form {1, 2, . . . , N}.

1. (Computing and interpreting in-place correlations) Download the file code_signal.m
and use it to create the following signals:

>> code1 = code_signal(75,10);
>> code2 = code_signal(50,10);
>> code3 = code_signal(204,10);

(a) (Plotting code signals) Use subplot and stairs to plot the three code sig-
nals on three separate axes in the same figure. After plotting each signal, call
axis([1, 100, -1.5, 1.5]) to make sure that the signal is visible.

• Include your figure, with axis labels on each subplot, a figure number and
caption, and the generating code in your report.

(b) (Calculate statistics) For each of the three signals generated above, calculate:

• Their mean values.
• Their energies.

(c) (Calculate correlations) Calculate the “in-place” correlation and normalized cor-
relation for the following pairs of signals.

• code1 and code2

• code1 and code3

• code2 and code3

(d) (Classify correlations) For each of the signal pairs given in problem 1c:

• Identify each pair as positively correlated, uncorrelated, or negatively corre-
lated.

2. (Implementing and interpreting running correlation) Download the file run_corr.m,
which is a “skeleton” file for an implementation of the “real-time” running correlation
algorithm described in Section 2.2.2. It accepts two input signals, performs running
correlation on them, and produces the correlation signal with a length equal to the
sum of the lengths of the input signals minus one.

56 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

(a) (Write the code) Complete the function, following the algorithm given in Section
2.2.2. You can use the completed demo version of the function, run_corr_demo.dll
to check your function’s output8.

• Include your code in the Matlab appendix of your report.

(b) (Compute running correlations) Use run_corr.m to compute the running corre-
lation between the following pairs of signals, and plot the resulting correlation
signals on the same figure using subplot.

• code1 and code2.
• code3 and itself.

(c) (Interpret a running correlation) When performing running correlation with a
signal and itself, the resulting correlation signal has some special properties.
Look at the correlation signal that you computed between code3 and itself.

• Plot the resulting correlation signal.
• Is the correlation signal symmetric? (It can be shown that it should be.)
• What is the maximum value of the correlation signal? How does the maxi-

mum value relate relate to the energy of code3?

3. (Using correlation to decode DSSS signals transmitted simultaneously with other sig-
nals.) Download the file lab2_data.mat and load it into your workspace. The file
contains the variable which represents a received signal that is the sum of several
message carrying signals, one from each of four users. The message carrying signal
from each user conveys a sequence of bits using the direct-sequence spread-spectrum
technique, described in Section 2.2.4, in which each bit is conveyed by sending a code
signal or its negative. Each user has a different code signal. One of the code signals
is the ten chip signal corresponding to the integer 170, while another is the six chip
signal corresponding to the integer 25. The other two code signals are unknown to us.
In this problem, we will try to extract the bit sequences conveyed by the known code
signals from dsss. Start by generating the following code signals:

>> cs1 = code_signal(170,10);
>> cs2 = code_signal(25,6);

(a) (Plot the signals) First, let’s look at the signals we’re given.

• Use subplot and stairs to plot dsss, cs1, and cs2 on three separate axes
of the same figure.

(b) (Decoding the bits of the user with the longer code signal) Start by using run_corr
to correlate the received signal dsss with the longer code signal cs1. Call the
resulting signal cor1. Now, to decode the sequence of message bits from this
user, we need to extract the appropriate samples from cor1. That is, we need
to extract just those samples of the running correlation that correspond to the
appropriate in-place correlations. We can do this in Matlab using the following
command:

>> sub_cor1 = cor1(length(cs1):length(cs1):length(cor1));

8If you cannot get your function working properly, you may use run corr demo.dll to complete the rest
of the assignment.

The University of Michigan, All rights reserved 57

Laboratory 2 May 20, 2002, Release v3.0 EECS 206

Each sample of sub_cor1 is used to make the decision about one of the user’s
bits. When it is greater than zero, i.e. the correlation of the received signal with
the code signal is positive, the decoder decides the bit is 1. When it is less than
zero, the decoder decides the user’s bit is 0.

• On two subplots of the same figure, use plot to plot cor1, and stem to plot
sub_cor1.

• Decode the sequence of bits. (You can do this visually or with Matlab)̇
(Hint: The sequence is 10 bits long, and the first 3 bits are “011”.)

(c) (Decoding the bits of the user with the shorter code signal) Repeat the procedure
in a and b above, this time using the code signal cs2. Call your correlation signal
cor2, and the vector of extracted values sub_cor2.

• On two subplots of the same figure, use plot to plot cor2, and stem to plot
the signal sub_cor2.

• Decode the sequence of bits. (Hint: there are 17 bits in this sequence.)
• Since the code signal cs2 has less energy (because it is shorter), there is a

greater chance of error. Are there any decoded bits that you suspect might
be incorrect? Which ones? Why?

4. (Using running correlation to detect reflected radar pulses) lab2_data.mat also con-
tains three other signals: radar_pulse, radar_received, and radar_noise. The
received signal contains several reflections of the transmitted radar pulse and noise.
The signal radar_noise contains noise with similar characteristics to the noise in the
received signal without the reflected pulses.

(a) (Examining the radar signals) First, let’s take a look at the first two signals.

• Calculate the energy of radar_pulse, E(x).
• Use subplot to plot radar_pulse and radar_received in separate axes of

the same figure.
• Can you identify the reflected pulses in the received signal by visual inspec-

tion alone?

(b) (Perform running correlation) Use run_corr to correlate radar_received with
radar_pulse.

• Plot the resulting correlation signal.
• Where are the received pulses? Visually identify sample locations of each

pulse in the correlation signal.
• Compare the heights of the peaks to the energy of the radar pulse and explain

why the peaks are larger/smaller than the energy.
• Given that the speed of light is 3 × 108 m/s and the sampling frequency of

the detector is 107 samples per second, what is the approximate distance to
each object9?

(c) (Estimating error rates, as in Section 2.2.5) In a real radar detector, the correla-
tion signal would be compared to a threshold to perform the detection. In order
to estimate the error rates for such a detector, let’s consider a threshold that is

9Remember that the radar pulse must travel to the object and then back again.

58 The University of Michigan, All rights reserved

EECS 206 May 20, 2002, Release v3.0 Laboratory 2

equal to one-half the energy of the transmitted pulse, i.e. c = E(x)/2. Perform
running correlation between radar_pulse and radar_noise call the resulting
correlation signal noise_c.

• Plot noise_c.
• For how many samples is noise_c greater than this threshold? Use this

value to estimate the false alarm rate.
• For how many samples is noise_c less than this threshold minus the energy

of the transmitted pulse? Use this value to estimate the miss rate.
• What is the total error rate for this threshold?

(d) (Determining error rates from a histogram) As discussed in Section 2.2.5, we can
use a histogram to judge the number of errors as well.

• Plot the histogram of noise_c using 100 bins.
• Describe how you could derive the error numbers in problem 4c from the

histogram.

(e) (Setting the threshold to achieve a particular error rate) Suppose that detector
false alarms are considered to be more serious than detector misses. Thus, we have
determined that we want to raise the threshold so that we achieve a false alarm
rate of approximately 0.004. Find a threshold that satisfies this requirement.

• What is your threshold?
• What is the false alarm rate on this noise signal with your threshold?
• What is the miss rate on this noise signal with your threshold?
• What is the total error rate for the new threshold? Compare this to the total

error rate of the threshold used in problem 4c.

The University of Michigan, All rights reserved 59

