
Discrimination of Signal-Background
Events with Supervised and Weakly

Supervised Learning in the Search for
New Bosons Decaying to Z + γ Final

State

Nkateko Baloyi

Supervisor(s):
Bruce Mellado
Xifeng Ruan

A research report submitted in accordance with the requirements for the degree of
Master of Science in the field of e-Science

in the

School of Computer Science and Applied Mathematics

University of the Witwatersrand, Johannesburg

14 July 2020

i

Declaration

I, Nkateko Baloyi, declare that the content in this research report is my own original
work and It has not been submitted to any other university for a degree.

Part of this research have contributed and submitted to the High Energy Particle
Physics (HEPP) 2019 and conference proceedings and the South African Institute
of High Energy Physics (SAIP) 2019 conference proceedings to be published under
the topics, Application of Boosted Decision trees in the Search for a New Boson
decaying to Zγ Final State and Discrimination of Signal-Background Events with
Supervised and Semi-supervised Learning in the Search for New Bosons Decay-
ing to Z + γ Final State, respectively.

Nkateko Baloyi

14 July 2020

ii

Abstract

The theory of Standard Model (SM) has successfully driven experiments and pre-
dictions since it was developed in 1975 and it has never been contradicted by ex-
perimental results. In 2012, the SM led to the discovery of Higgs boson (h) at the
Large Hadron Collider (LHC) which completed the particle spectrum of the SM.
The discovery of h inspired experimental studies to further understand the h scalar
properties, opening the search for Beyond the Standard Model physics (BSM). BSM
physics searches for new particles that can help understand and answer phenom-
ena that cannot be explained by the SM. The LHC collides protons at high lumi-
nosity and high energy trying to recreate particles that occurred moments after the
big bang and the BSM particles. The data produced during the collision requires
advanced techniques that can search for relevant information in the data for sig-
nal (S) events to be identified. The production of the S events comes with a huge
amount of background (B) production to which the S events cannot be easily iden-
tified. advanced machine learning (ML) and statistical techniques can be used to
isolate the S events from the B events. ML is a subset of artificial intelligence that
provides systems the ability to automatically learn and improve from experience.
This research focuses on the application of boosted decision trees (BDT) and deep
neural networks (DNN) on the Monte Carlo simulated data. Supervised learning
and weakly-supervised learning (WSL) approaches are implemented to discrimi-
nate the S from the B events. The supervised learning is used as a benchmark to
measure the performance of the WSL approach. Pre-selection cuts are applied on
the data and four different models are applied to classify the S and B events for
both BDT and DNN using the supervised learning and WSL approach. The WSL
approach use two samples, one sample with only B events and the other sample
mixed with S and B events to train the model. The DNN model is trained on the
samples and applied to classify the S and B events on the same test data used in the
supervised learning approach. The performance of the WSL models are compared
to the supervised learning models performance. The results show a strong bias in
the WSL approach.

iii

Acknowledgements

I sincerely and gratefully acknowledge my supervisor Prof. Bruce Mellado and
my co-supervisor Dr. Xifeng Ruan for their guidance, patience, constant support
throughout this research. I am tremendously fortunate to have the opportunity to
be mentored and learn from them with the depth of knowledge they have in the
field. I am also truly grateful for the opportunity to travel to CERN to be associated
and learn from experts in the field of Machine Learning from different parts of the
world, which was made possible by my supervisor.
In addition, I gratefully acknowledge the e-Science programme for this amazing
opportunity to enroll in the programme. I am truly grateful for the funding I re-
ceived from DST-CSIR through the programme, and I thank SA-CERN for making
it possible for me to travel to CERN.
Lastly, I would like to express my heartiest gratitude to my parents, Ntombhi Mazini
and David Baloyi, for their support and prayers throughout my academic journey.
Special thanks to my friends Risuna Nkolele, Zwidofhelangani Ndamulelo, Orape-
leng Mogawana for their support, and my amazing team, Joshua Choma, Theodore
Gaelejwe, Ntsoko Phuti and Kehinde Tomiwa for the role they played in me exe-
cuting this research.

iv

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 2
1.2 Problem Statement . 3
1.3 Research Question . 4
1.4 Research Aims . 4
1.5 Objectives . 4
1.6 Overview . 4
1.7 Outline . 5

2 Literature Review 6
2.1 Introduction . 6

2.1.1 Supervised Learning . 6
2.1.2 Unsupervised Learning . 7
2.1.3 Semi-supervised Learning . 7
2.1.4 Weakly Supervised Learning 8
2.1.5 Boosted Decision Trees (BDT) 9

The Mathematics of Decision Trees and Gradient Boosting . . 10
2.1.6 Deep Neural Networks . 13

The Mathematics of Neural Networks 13

v

2.1.7 Activation Functions . 16
2.1.8 Classifier Performance . 17

2.2 Related Studies . 19

3 Research Methodology 22
3.1 Data . 22
3.2 Methods . 24

3.2.1 Supervised Learning . 24
3.2.2 Weakly Supervised Learning 24
3.2.3 Application . 25

Application of Boosted Decision Trees 25
Application of Deep Neural Network 26

3.2.4 Performance Metrics . 27
3.3 Summary . 27

4 Results and Discussion 28
4.1 Boosted Decision Trees Results . 28

4.1.1 Supervised Learning . 28
4.1.2 Weakly Supervised Learning 31

4.2 Deep Neural Networks Results . 34
4.2.1 Supervised Learning . 34
4.2.2 Weakly Supervised Learning 36

4.3 Discussion . 39

5 Conclusions and Future Work 41
5.1 Conclusions . 41
5.2 Future Work . 41

A 42
A.1 1D Distributions . 42

Bibliography 44

vi

List of Figures

2.1 Illustration of a Decision Tree [34] . 11
2.2 Illustration of a shallow Neural Network (Left) [41] and Deep Neural

Network (Right) [42] . 14
2.3 Plot of the ReLu Activation function (Left) and the Leaky ReLu acti-

vation function (Right) . 17
2.4 Plot of the Sigmoid function . 17

4.1 ROC curves illustrating the performance of the the BDT supervised
learning model. 29

4.2 S and B Output distributions . 30
4.3 ROC curves illustrating the performance of the the BDT WSL model. 32
4.4 S and B Output distributions . 33
4.5 ROC curves illustrating the performance of the DNN supervised learn-

ing model. 35
4.6 S and B Output distributions . 36
4.7 ROC curves illustrating the performance of the DNN WSL model. . . 37
4.8 S and B Output distributions . 38

A.1 1 Dimensional distributions of the input variables 43

vii

List of Tables

2.1 Confusion Matrix . 18

3.1 Input variables description . 23
3.2 BDT Hyper-parameters . 26
3.3 DNN Hyper-parameters . 26

4.1 BDT supervised learning Table of Results 29
4.2 BDT WSL Table of Results . 31
4.3 DNN supervised learning Table of Results 34
4.4 DNN WSL Table of Results . 37

1

Chapter 1

Introduction

The Large Hadron Collider (LHC) is the largest and most powerful particle accel-
erator in the world. It was built between 1998 and 2008 by the European Organiza-
tion for Nuclear Research for the purpose of testing predictions of different theories
in high energy physics [1, 2]. The LHC runs under the Swiss-French border near
Geneva in a circular tunnel of 27 km circumference. The accelerator consists of two
proton beams that travel in opposite directions at near the speed of light with very
high energy before colliding [2, 3]. In 2010, the LHC was successfully commisioned
for proton-proton (pp) collision with 7 tera electron Volts (TeV) centre of mass en-
ergy [4].

The phenomena that physicists are looking for in the collisions have a very low
probability of occurrence. High luminosity is required to produce more data events
in order to increase the occurrence of the phenomena. Luminosity gives the mea-
sure of the number of potential collisions that occur in a given period of time, an
important indicator of the performance of the accelerator [5]. An integral of the lu-
minosity over time known as the integrated luminosity gives a measure of the col-
lected data size measured in inverse femtobarn (f b−1). The value of 1 f b−1 equates
to 100 million collisions [4, 5].

During the pp collision in the LHC, the protons can either collide violently and
produce any new particles or they can glance off each other. The probability of
production of any of the particles is different, each particle have a different cross-
section. The rare particles such as the Higgs bosons have a very small cross-section
[6]. The large luminosity accumulated by the LHC opens the possibility of a new
range of Beyond the Standard Model (BSM) physics discoveries. The data collected

2

in the LHC during the collisions is complex, high dimensional, highly imbalanced
with a strong overlap of the classes, which requires more advanced techniques with
the potential to extract information produced in the pp collision. The information
that can be obtained from the collisions includes, but not limited to the half-lives
of particles, the velocity, decay rate of the particles, transverse momentum. Statis-
tical tools and advanced techniques, such as machine learning (ML) can be used to
improve data processing, classification and regression tasks in particle physics data
and directly improves the probability of discovering new particles. ML is devel-
oped with the concept of allowing computers to learn by themselves and improve
efficiency with experience and is applied in various professional fields and indus-
tries to improve the processing and the quality of results by finding patterns in data
that lead to accurate decision making [7, 8, 9].

Various ML algorithms have been applied in binary classification tasks and have
achieved accuracy above the random guess threshold. Boosting techniques and
deep learning techniques have gained popularity in classification and regression
tasks due to their ability to improve accuracy when applied on weak learning al-
gorithms and trained on huge amount of data, respectively. Boosted decision trees
and deep neural networks have been applied widely in different professions, in-
cluding high energy physics data, and they have proven to be superior in terms of
accuracy [10, 11].
This study aims to highlights machine learning approaches that can be used to
discriminate signal and background events on simulated data and help develop
a model for real data. We develop two machine learning models following the su-
pervised learning and the weakly supervised learning approach. The background,
research aims and objectives of this study are described in this chapter.

1.1 Background

The standard model (SM) of physics is a theory that describes three of the four fun-
damental forces, the electromagnetic, weak, and strong interactions, and how these
forces and elementary particles that makes up matter as we know it, relate to each
other. The SM has successfully driven experiments and predictions since it was
introduced in 1975 [12, 13]. This theory is a well-tested method and it has never

3

been contradicted by experimental results. In 2012, the theory led to the discovery
of the Higgs boson (h) [14], which completed the particle spectrum of the SM. The
particle h is a very important particle in the SM as it signals the existence of the
Higgs field, an invisible energy field that is accompanied by the h, and generates
mass through its interaction with other particles. The discovery of h inspired many
theoretical and experimental studies conducted to understand the scalar properties
of this particle and how new physics can be identified.

Although the SM has successfully explained experiments and was validated by the
discovery of h, it still fails to explain some phenomena [15]. The discovery of h
ended the era of theories driving the experimental results. This means that experi-
ments must be conducted in search of new physics Beyond the SM (BSM), to help
understand and explain some phenomena that cannot be explained by the SM. The
LHC data has been made public to learn more about the data and analysis stud-
ies have been done on this data [16]. The studies conducted show that there are
excesses observed in the LHC data release, which suggests the possibility of new
physics [17, 18]. These excesses have been observed in both the ATLAS and CMS
experiments and a number of final states resulting in these excesses has been identi-
fied. The Wits Institute for collider Particle Physics and their collaborators proposed
a hypothesis called the Madala hypothesis, an extension of the SM, which searches
for BSM physics.

1.2 Problem Statement

BSM physics requires particles to be accelerated at extremely high energy and high
luminosity to increase the probability of the BSM events to be created. During the
collision, a large amount of background is created with a small amount of signal.
For new particles to be discovered, the signal and background events must be iso-
lated. This requires statistical tests and advanced techniques that can extract the
small signal within the large background. Machine learning techniques can be de-
veloped to discriminate the signal and background events, and improve the purity
of signal in the search for new physics.

4

1.3 Research Question

From highly imbalanced dataset, can we identify and discriminate signal from the
background events with supervised learning, to help improve the purity of the sig-
nal in order to perform the search for BSM physics?

When working with mixed unlabeled dataset, can we develop a model from data
using the weakly supervised learning approach that can isolate signal from back-
ground?

1.4 Research Aims

This study aims to develop machine learning models that can discriminate signal
and background events in the search for new bosons decaying to Z + γ final state.

1.5 Objectives

The primary goal is to develop a supervised learning model trained on labeled
data to distinguish signal and background events. The secondary goal is to de-
velop a weakly supervised learning model that can be employed on unlabeled data
by assigning weak-labels on the unlabeled data. The weakly supervised approach
implemented on weak-labeled data is used to distinguish the same test data used in
the supervised learning approach to compare the output in order to help develop a
model that can be implemented on real data.

1.6 Overview

Studies show that excesses have been observed in the LHC Run1 and Run2 data
release, which suggest that BSM physics is possible. This inspired the search for
new BSM physics that can explain and help understand life moments after the big
bang. The search for BSM physics requires particles to be accelerated at extreme
high energy and luminosity to increase the BSM cross-section. This ends up with
large background and small signal events produced. In order to search for new

5

physics, the signal must be isolated from the background to check for unknown
signal. With the vast amount of data generated by the LHC during collisions, ad-
vanced machine learning and statistical techniques are the key to isolating signal
from background to improve the quality of signal used in detecting possible BSM
physics. In this study, we aim to develop supervised learning and weakly super-
vised learning models using simulated Monte Carlo data, that can be implemented
on real data.

1.7 Outline

The remaining chapters of this research report are designed as follows. Chapter 2
describes the concepts of machine learning and the performance metrics. Boosted
decision trees and deep neural networks are described in detail. The related study is
presented in the form of literature review. Chapter 3 describes the data and outlines
the research methodology. The data preparation, application of boosted decision
trees and deep neural networks are described. The results and discussion of the
boosted decision trees and deep neural networks findings are presented in Chapter
4. The conclusions and possible future research are presented in Chapter 5.

6

Chapter 2

Literature Review

2.1 Introduction

Machine Learning (ML) is the umbrella term for a set of statistical and computa-
tional techniques for interpreting data which evolves from computational learning
and the study of pattern recognition. ML interprets data and make predictions
by exploring algorithms that learn and extract patterns in data such as various re-
gression methods, classification methods, etc., and improve automatically through
experience [19]. This chapter focus on the binary classification tasks using two ML
approaches, supervised and weakly supervised learning. The literature of these
two ML approaches, the ML algorithms implemented and the performance metrics
that are used in this study are defined in this chapter.

2.1.1 Supervised Learning

Supervised learning is a type of ML that learns from labeled data in order to make
predictions on new unseen data. The supervised learning algorithm learns a func-
tion based on the input-output pairs to map the input vector to the output. The
training sample consist of labeled data with instance x and a corresponding label y,
that is, {(xi, yi)}n

i=1. For a given set of training data, {(xi, yi)} with xi representing
a feature vector and yi representing the label of training example i, the algorithm
learns a function f : χ → Y, where the goal of the function f (x) is to predict the
correct label y when given test data x such that χ is the domain of instances and Y
is the domain of labels [20, 21].

7

There are two types of Supervised learning, classification and regression. Classi-
fication is a technique of identifying to which category does a set of observations
belong to with discrete y labels. Regression techniques are used to predict a target
continuous value Y based on the relationship of variables in the data. This study
focus on the classification techniques since the goal of the study is to discriminate
instances from two classes.

2.1.2 Unsupervised Learning

Unsupervised learning is a type of ML that trains a machine to estimate a model
that can find unknown patterns in data that is not labeled, classified or catego-
rized. Unsupervised learning is divided into the parametric unsupervised learning
and the non-parametric supervised learning. The parametric unsupervised learn-
ing assumes that the data points are independently and identically drawn from a
common distribution, based on a fixed set of parameters. For a given set of input
examples X = x1, x2,, xn, the machine estimate a model representing the prob-
ability distributions for a new input instance xi, such that P(xi|x1, ..., xi−1). Non-
parametric unsupervised learning groups the data into clusters based on shared
attributes. In clustering, the common attributes in the data are identified and the
data is then grouped based on the similarities and dissimilarities of the instances
[22, 23].

2.1.3 Semi-supervised Learning

Semi-supervised learning is a class of ML techniques that make use of unlabeled
data and labeled data for training. Semi-supervised learning use unlabeled data
with a small proportion of labeled instances to model a classifier that takes an ad-
vantage of using labeled and unlabeled instances. Labeled data is difficult to obtain
since it requires experts to draw conclusion on the labels of the instances. Most
often data collected is unlabeled and advanced techniques such as unsupervised
learning techniques are used to label the data. Semi-supervised learning used to
label unlabeled instances use self training which employs a large amount of un-
labeled data with a proportion of labeled data to build a classification model that
can label unlabeled instances. The model is built on the labeled instances, and then

8

tries to add labels to the unlabeled instances. For a given set of n examples contain-
ing independently identically distributions, (x1...xn)εχ with the corresponding la-
bels (y1...yn)εY and another given set of unlabeled examples xn+1...xn+u, the semi-
supervised learning make use of the combined given data to build a classifier that
could be obtained by following the supervised learning approach where the un-
labeled data is discarded or make use of the unsupervised learning by discarding
the labeled data. Assuming that the data comes from a Gaussian mixture model in
Equation2.1

f (x|θ) =
n

∑
k=1

αk f (x|θk), (2.1)

given that αk is defined as the mixture coefficient, ∑n
k=1 αi = 1 and θ = θi are the pa-

rameters. Let the target label yi be a random variable with distribution P(yi|xi, zi),
where zi is a mixture variable that determines the random label distribution with
the feature vector xi. The maximum posterior gives:

g(x) = argmax
Eε(Y,N)

n

∑
k=1

P(yi = E)|zi = k, xi)P(zi = k)|xi, (2.2)

and

P(zik|xi) =
αi f (xi|θk)

∑n
j=1 αj f (xi|θj)

. (2.3)

The goal is to estimate P(yi = E|zi = k, xi) and P(zi = k|xi) from the training data
[24, 25, 26].

2.1.4 Weakly Supervised Learning

Weakly supervised learning is a term that covers the processes applied to build a
model by learning with weak supervision. Weak supervision uses labeled data, but
the labels are not quite correct. There might be noise in the labeling process of the
data, or it might be that the labels represents which of the collection of classes a
given observation belongs to. The goal of weak supervision is the same as the su-
pervised learning approach, to develop a model that accurately outputs the labels,
however it is not trained on correctly labeled training data. For a given unlabeled

9

data X = (x1, ..., xn) there are weak labeled training instances from the weak super-
vision Pi(y|x), i = 1, such that each instance has a coverage set Ci which represents
the set points x. The accuracy of the model is defined as the probability of the cor-
rect target label y over Ci, assumed to be < 1. Weak supervision is divided into three
classes, the incomplete supervision, inexact supervision and the inaccurate super-
vision. The incomplete supervision is derived from the semi-supervised or active
learning where only a proportion of instances in the training data are labeled. This
method uses the active learning to label the unlabeled instances assuming that the
cost of the labeling of these instances depends only by the number of queries. In
the inaccurate supervision, the training data consists of instances with correct and
incorrect labels. This method employs several learners to identify the unlabeled
instances and examine with the training data in order to make corrections. In the
inexact supervision, the training data is assigned labels but the labels are not as
exact as desired. In this method, the training data consists of labeled bags which
contains unlabeled instances. Each bag consists of the collection of unlabeled in-
stances where a bag is negatively labeled if all the instances in the bag are negative.
The task is to learn F : χ→ Y from a given training data {(x1, y1), ..., (xn, yn)}. The
bag is defined as Xi = {xi1, ..., xi,ni ⊆ χ} where ni is the number of instances in the
bag Xi and yiεY = {Y, N}, and each instance is defined as xik ⊆ χ(kε{1, ..., ni}).
A bag Xi is positively labeled if there exist xiP which is positive and Pε{1, ..., ni}
is unknown. The goal of this method is to correctly predict the labels of the new
unseen bags [27, 28, 26].

2.1.5 Boosted Decision Trees (BDT)

Decision tree is data mining tree like structure model that performs a top-down
split greedy approach [29]. The model structure consists of a root node, branch and
leaf node where each internal node represents the input attribute, the branch rep-
resents the outcome and the leaf node represents the target output. The root node
is at the top and instances are sorted down from the root node to the leaf node, in
which splitting is done on the entire training set. Decision trees are very popular
and they are commonly used in data mining to derive strategy for decision making
making, and they have gained popularity and have been widely used in ML to pre-
dict target output. Although decision trees are very powerful, they are prone to bias

10

and variance. Studies have been done to simplify decision trees and the techniques
developed by J.Quinlan (1999) [30] show that decision trees can be simplified while
still retaining their accuracy. Ensemble techniques have been implemented on de-
cision trees to improve the prediction of decision trees by constructing more than
one decision tree to build a better model. The principle behind ensemble methods
is to combine several weak learners in order to form one strong optimal model with
improved prediction performance. Bagging and boosting are some of the popular
ensemble techniques implemented to improve the performance of weak models by
lowering error rates and prediction errors in classification and regression tasks, re-
spectively. Bagging and boosting in decision trees are used to reduce variance of the
model and reduce error from the prior tree, respectively. In bagging, each model
is trained on samples independently with replacement from the original training
dataset and the target output is the weighted sum of the predictions made by all
the models. Boosting trains the initial model on the training set with replacement
from the training dataset while passing through all the training patterns in order to
note patterns that gives the least errors [31, 32].

The Mathematics of Decision Trees and Gradient Boosting

Figure 2.1 is an illustration of a decision tree. Each node represents the attributes
(features), each branch and leaf represents the decision and the outcome, respec-
tively. To build a tree, the attribute with the highest information gain (IG) is chosen.
The entropy (H), known as the information theory, is calculated first according to
Equation 2.4

H(s) = ∑
c∈C
−p(c)log2p(c), (2.4)

where H(s) is the entropy (H) in a set, measuring the amount of uncertainty in the
set, s is the set for which H is calculated, C is the set of classes in s, and p(c) is the
proportion of the number of entries in class C to the entries in set s. The IG is then
calculated according to Equation 2.5

IG(A, s) = H(s)− ∑
t∈T

p(t)H(t), (2.5)

where A is an attribute, IG(A) is the measure of a decrease in entropy H after split-
ting s into A, T is a subset created when s was split to A, p(t) is the proportion of

11

the total entries in subset t to the entries in s and H(t) is the entropy H of subset t
[33, 34].

FIGURE 2.1: Illustration of a Decision Tree [34]

In gradient boosting, weak learning models are combined together to build one
complex model [35, 36]. Consider the input training data (xi, yi)

n
i=1, loss function

L(y, F(x)) and iterations m.
An initial model consist of a function F0(x) defined with a constant value where the
function is defined according to Equation 2.6:

F0(x) = argminγ

n

∑
i=1

L(yi, γ) (2.6)

Fm(x) = Fm−1(x) + argminhm∈H

[
n

∑
i=1

L(yi, Fm−1(xi + hm(xi))

]
. (2.7)

The model predicts y by minimizing the mean squared error.

(2.8)

The differential of Equation 2.6 with respect to γ, minimizes to Equation 2.9

F0(x) = ∑n
i=1 yi

n
, (2.9)

12

where i is the indexes of the training set. The pseudo-residual of each error is cal-
culated according to Equation 4

rim =

[
δL(yi, F(xi)

δF(xi)

]
F(x)=Fm−1(x)

. (2.10)

From the given dataset, new data is derived and modified as defined in Equation
2.11

D = (xi, rim). (2.11)

A base learner h(x) which represent the direction in which the loss function is min-
imum with respect to Fm−1 is trained and fitted on the modified dataset. Fm(x) is
then calculated according to Equation 2.12:

Fm(x) = Fm−1(x) + γhm(x), (2.12)

where h(x) is calculated using Equation 2.13

hx = Fm+1 − Fm(x), (2.13)

where Fm+1 attempts to correct the errors made by the previous model. The base
learner hm(x) is then fitted on the pseudo-residuals rm. Weights W are moved in the
direction of decreasing loss function. The learning rate hyper-parameter controls
how much weights moves. The weight W are updated according to Equation 2.14

W ←W − α
δL
δW

, (2.14)

optimum γ found by solving Equation 2.5

γm = argminγ

n

∑
i=1

L(yi, Fm−1(xi) + γhm(xi)). (2.15)

When the optimum γm is solved, Equation 2.12 is updated.

13

2.1.6 Deep Neural Networks

Neural networks are a set of algorithms inspired by the biological neural networks
that recognise patterns in data and improves automatically through experience.
Neural networks consists of the input layer, hidden layer with nodes and an output
layer. The goal of the neural network is to take an input and learn a function that
can map the input to the output [37]. The nodes are linked to each other by a con-
nection represented by weights, where each node has an activation function. In a
feed-forward network, the patterns of the input information are fed into the input
layer which the neural network learns, triggering the hidden layers which apply
different transformations to the information received from the previous layer, al-
lowing the neural network to learn more complicated patterns. The hidden layer
send the information extracted from the patterns to the output layer [38].

Neural network learns by a process of back propagation, where the goal of the
back propagation is to optimize the weights by computing the gradient descent
with regard to the weights and biases. A loss function is used to measure the differ-
ence between the neural network output to the desired output and to estimate the
loss. Once the loss is estimated, the neural network propagates the loss informa-
tion back-wards, from the output layer, through the nodes in the hidden layers, to
the input layer, causing the neural network to adjust weights. The loss function is
minimized by using the gradient descent technique which allows the weights to be
updated by calculating the gradient of the loss function in order to determine the
direction of the global minimum [39, 40].

The Mathematics of Neural Networks

Figure 2.2 on the Left illustrate the structure of a neural network with dimension of
4 input, a hidden layer and 2 output layers. The input xi is connected to the output
node by weights wi. Each node receives a vector (x) which contains the feature
values and compute a corresponding output target (y). Each node consists of a set
of parameters, weights (w) and a bias (b). The node calculates the weighted average
of the vector x and add b such that:

z =
m

∑
i=1

wixi + b, (2.16)

14

where m is the total number of inputs. The input x and w represented as vectors
gives the dot product of the two product shown in Equation 2.17 below:

z = wT.x + b. (2.17)

The output y is passed through an activation function g such that:

y = g(z). (2.18)

FIGURE 2.2: Illustration of a shallow Neural Network (Left) [41] and
Deep Neural Network (Right) [42]

The advancement of computers and technology improved the computation, the
amount of data generated and data collection processes and advanced neural net-
works algorithms. These advancements allowed the improvement of neural net-
works to run high dimensional parameter and deep neural, known as deep neural
network (DNN). Figure 2.2 on the Right shows an architecture of DNN. DNNs are
different from shallow neural networks since they have more than one hidden layer,
whereas shallow neural networks have only one. When writing the notation of a
selected layer in DNN, vector a, which is the activation function corresponding to
the selected layer, is used. The layers in the DNN performs calculations following
Equation 2.19:

zl
i = wT

i .al−1 + bi, (2.19)

and the activation is calculated according to Equation 2.20:

al
i = gl(zl

i), (2.20)

15

where i represent the index of the node in a layer and l represent the layer. The b of
each node in a layer and vectors of w are independently stacked together to form a
vertical vector b and matrix W, respectively. The matrix W l is represented as:

wl
1T

wl
2T

wl
3T
...

wl
n−1T

and the vertical vector bl is represented as follows:

bl
1

bl
2

bl
3
...

bl
n−1

When considering multiple entries instead of working with one layer as we have
from the equations derived above, vectorization is applied across the multiple en-
tries. Given m entries and j features, the vertical vectors x,a and z create X,A and
Z, respectively. Equation 2.19 and Equation 2.20 becomes:

z = W l.Al−1 + bl, (2.21)

and

Al = gl(zl). (2.22)

Different activation functions can be used for each layer, which introduce non-
linearity in the output of the node. The W and b parameters are adjusted using
the Equation 2.23 and Equation 2.24 in the back propagation:

W l = W l − α
δL

δW l , (2.23)

and
bl = bl − α

δL
δbl , (2.24)

16

where δW and δb are the partial derivatives of W and b, and α is the learning rate.
The learning rate α is a hyper-parameter which allows control of the adjustments.
Setting α is important since it controls how your neural network model learns. If
the α is set too low, the model learns too slow and if set too high, the model might
miss global minimum [41, 43].

2.1.7 Activation Functions

Activation functions determines whether a node should be activated or not acti-
vated given an input or a set of inputs. They introduce non-linear properties in
neural network, allowing the network to learn and "represents non-linear complex
arbitrary functional mappings between inputs and outputs". There are several acti-
vation functions used in neural networks, rectified linear units (ReLu) and sigmoid
are some of the popular and commonly used activation functions. ReLu is the most
commonly used activation function in neural networks that gained its popularity
in the past few years, almost all deep learning applications use ReLu. ReLu is linear
for all positive values and zero for all the negative values.

ReLu : f (x) =

0, for x < 0

1, forx ≥ 0

This means that ReLu does not saturate when x gets larger [44], it allows for quick
training of neural networks, and it avoids and rectifies the vanishing gradient prob-
lem. X.Gloret al [45], demonstrated that ReLu allows for better training of deeper
neural networks when compared with the other activation functions. Although
ReLu is commonly used in all deep learning applications and has improved the
training of deep learning, it has some drawbacks. One of its major drawbacks is a
dying ReLu problem which causes several nodes to die and remain inactive [45, 46].
This problem can be solved with the use of Leaky ReLu which introduces a small
slope to the gradient of ReLu. Figure 2.3 is an illustration of the ReLu and Leaky
ReLu activation functions .

17

FIGURE 2.3: Plot of the ReLu Activation function (Left) and the Leaky
ReLu activation function (Right)

Another popular and commonly used activation function is the sigmoid function,
defined in Equation 2.25.

f (x) =
1

1 + e−x . (2.25)

Sigmoid is characterised by a ’S’ shaped curve, ranging between 0 and 1. Sigmoid
functions have a problem of vanishing gradient which prevents the weights from
changing its value, results in back-propagation errors [47].

FIGURE 2.4: Plot of the Sigmoid function

2.1.8 Classifier Performance

In ML, the performance measurement of a model is an essential task. In classifica-
tion tasks, the classifier produce a discrete class label indicating the predicted class
of the instance. To measure the performance of the classifier, classification metrics
are used. The area under the curve (AUC) and receiver operating characteristics

18

(ROC) curves analysis are one of the most important evaluation metrics to measure
the performance of the classifier. The AUC and ROC analysis have been adopted
in different fields of study as a standard evaluation metrics to measure how well a
model is capable of distinguishing classes. To distinguish between the actual class
label and predicted class label, the labels {Y, N} are used for the classifier’s pre-
dicted class label [48]. In a binary classification task, for each instance in a given
classifier, there are four possible outcomes:

True Positive (TP) = Number of positive instances correctly classified as positive.
False Positive (FP) = Number of negative instances incorrectly classified as posi-
tive.
True Negatives (TN) = Number of negative instances correctly classified as nega-
tive.
False Negative (FN) = Number of positive instances incorrectly classified as posi-
tive.

Table 2.1 represents the confusion matrix. The major diagonal (TP and TN) rep-
resents the number of correctly classified instances and the second diagonal (FP
and FN) represent the number of instances that are incorrectly classified.

TABLE 2.1: Confusion Matrix

Positive (1) Negative (0)
Positive (1) TP FP

Negative (0) FN TN

The true positive rate (TPR) and the false positive rate (FPR) are defined in Equa-
tion 2.26 and Equation 2.27, respectively, where tp represents the number of cor-
rectly classified positives, P represents the total number of positive instances, f n
represents the number of incorrectly classified negatives and N represents the total
number of negative instances.

TPR ≈ tp
P

, (2.26)

19

FPR ≈ f n
N

. (2.27)

The ROC curve is a plot of the TPR against the FPR at different classification thresh-
old. The AUC measure the area under the ROC curve to provide the overall mea-
sure of performance ranging from 0 to 1. An excellent performing classifier has
AUC closer to 1 indicating that the classifier has a good measure of separability.
A poor performing classifier has AUC closer to 0, indicating that the classifier has
the worst measure of separability. The higher the AUC, the better the model is at
predicting instances of different classes.

Other common evaluation metrics are defined in Equation2.28 - Equation2.30. Pre-
cision and recall are also important evaluation metrics in machine learning. Preci-
sion indicate the ability of the classifier to predict relevant instances, that is, how
well the classifier can label negative instances as negatives and not as positives. Re-
call indicates how well the classifier can correctly classify all the positive instances
by providing a percentage of total positive results correctly classified. Accuracy
provides the percentage of the correctly classified instances [49]. Accuracy is not a
reliable metric for the real performance of a classifier, however, it is commonly used
with other evaluation metrics.

precision =
TP

TP + FP
, (2.28)

accuracy =
TP + TN

P + N
, (2.29)

recall =
TP
P

. (2.30)

2.2 Related Studies

Discrimination of signal and background instances produced during the PP colli-
sion in the LHC is a very crucial step in searching for new signal instances pro-
duced during the PP collision without loosing or missing the signal instances [10,
50]. Studies have been conducted using modern techniques that can discriminate
these two types of instances with maximum accuracy and also out perform the tra-
ditional physics methods.

20

High energy physics data is often imbalanced with the class of interest being the
minority class. H.Han et al. [51] compares different techniques that can be used to
handle highly imbalanced dataset and highlights metrics that can be a measure of
a classifier performance when working with imbalanced dataset. There are differ-
ent techniques used to correct imbalance dataset, synthetic minority Over-sampling
technique (SMOTE) is one of the methods used to over-sample the minority class.
In this study, SMOTE is compared with other over-sampling techniques. A con-
fusion matrix is used to measure the performance of the classifier, and the results
obtained show that the SMOTE approach achieves better results.

BDT and ANN have been widely used in high-energy physics. A comparison study
of this two techniques applied on particle identification using Monte Carlo samples
is discussed in this paper [11]. The results obtained show that both BDT and ANN
techniques in this task are very competitive. The BDT performance improved as
number of variables (features) are increased, and proved to be more efficient and
superior than the ANN. The results also show that BDT also improves performance
when the number of trees are increased.

L.Dery et al. [52] introduces a new machine paradigm for classification task called
weakly supervised classification that can be trained on incomplete and/or unla-
beled data and still match the performance of a fully supervised learning technique.
The classifier is trained on unlabeled data using an approach called learning with
label proportions (LLP). Data is split into bags containing unlabeled instances. "For
a binary classification task with classes, A and B, the training set contains at least
one instance of A classifier". The goal is to optimize a model that can at least iden-
tify one instance of A on unseen bag, given only a fraction of class A in a given bag.

E.Metodiev et al. [53] introduces another type of weak learning paradigm that can
also be used in binary classification, called classification without labels (CWoLa)
approach. This approach allows a classifier to be trained on real data set, which im-
plies that this can be a better approach when dealing with the LHC data since the
data is not labeled and mixed. The classifier is trained on two mixed samples, M1
and M2, consisting of both signal and background instances in each sample with

21

different proportions. Using full supervision, the classifier is trained to discriminate
M1 from M2 without providing the classifier with the proportions of each sample.
The same classifier used to discriminate M1 from M2, is then applied to discrimi-
nate signal instances from background instances without labels. This approach is
found to match the performance of full supervision approach.

22

Chapter 3

Research Methodology

3.1 Data

This study employs the Monte Carlo dataset implementing the LHC data recorded
from 2015-2017 in the pp collision at

√
s= 13 TeV generated using PYTHIA8 [54, 55,

56] . One sample follows the 2015 and 2016 LHC data normalized to luminosity of
36.1 fb−1, and the other sample follows the 2017 LHC data normalized to luminosity
of 43.8 fb−1. The signal data consist of Z boson produced from gluon-gluon fusion
sample, real missing transverse energy (Emiss

T) from neutrinos produced by Z decay,
and the heavy pseudo-scalar particle decaying to Z boson and heavy scalar sample.
Missing energy is the energy that is expected to be detected during particle collision
but is not detected on the particle detector since it is carried by particles that do not
interact with strong forces. The background data is a mixture of the ttγ and γ− Jet
background samples and is produced . The background contains fake Emiss

T . The
dataset for the supervised approach consist of labeled signal (S) and background
(B)events with 11730 S events and 151534 B events decaying to the Z + γ final state.
The second dataset for the weakly supervised learning approach used in this study
consists of two different samples of unlabeled data. The first sample is the Monte
Carlo data collected from 2015 to 2017 in the pp collision that consists of the Z + γ

events with the invariant mass outside 240-280 GeV. The second sample consist of
different statistics of the Z + γ events of the first sample and the BSM monte carlo
data. The first sample is made up of only B events, while the second sample consist
of mixed S and B events. Pre-selection cuts are applied on the data for both the
supervised and weakly supervised approach into three categories with respect to
the missing transverse energy significance (SEmiss

T
). The cuts are applied based on

23

the following:

• low (Low) category : 2.5 ≤ SEmiss
T
≤ 3.5

√
GeV

• The intermediate (Int) category : 3.5 ≤ SEmiss
T
≤ 5.5

√
GeV

• The high (High) category : SEmiss
T
≥ 5.5

√
GeV.

The pre-selection cuts are applied to maximize S and minimize B, where the cut
points are scanned regions of S to B efficiency. The training data consists of 114284
events with only 8211 S events and 106073 B, and the test data contains 48980 events
with 3515 S events and 45461 B, before applying the pre-selection cuts.The Low
category consists of 1336 S and 7875 B training events, and 529 S and 3369 B test
events. The Int category consists of 3486 S and 3996 B events in the training data
and only 1744 B and 1524 S events in the test data. The High category consist of
2017 S and 1393 B events in the training data and 874 S and 588 B in the test data.
Table 3.1 below is the description of the features used in this study. The features
used include two leptons, a photon and multiple jets.

TABLE 3.1: Input variables description

Variable Description
mu Average bunch crossing

dphifjmet The angular distance ∆(φ) between forward jets and MET
dphisjmet The angular distance ∆(φ) between soft jets and MET
ssumpt2 Subleading vertex sum Pt squared

djpt Scalar difference between the vectorial sum Pt of all the jets and leading vectorial sum Pt
dsumpt2 Difference between leading and subleading vertex sum Pt squared

dphirefjetmet The angular distance ∆(φ) between vectorial sum Pt of all jets and MET

The 1-dimensional distributions of these input variables are provided in Appendix
A. The distributions for the S and B have been normalised in order for the distri-
butions to be comparable. All the variables except for the metsig variable , ET

miss,
strongly overlap. This demonstrate that the B and S events share similar character-
istics that cannot easily be distinguished .

24

3.2 Methods

This section describes the methods applied in this study. The method is divided
into two sections, the supervised learning and the weakly supervised learning ap-
proach.

3.2.1 Supervised Learning

The ROOT data format is converted into a python readable format using uproot I/O
library, primarily intended to stream data into ML libraries in python. The data is
split into 70:30 train and test for each category before pre-processing. The MinMax
scaler is applied to transform the feature events by scaling to a range of 0-1. Min-
max scaler is used instead of standard scaler since we are not concerned with the
standardisation along the variance axes. The data described in Section 3.1 shows
that the data highly imbalanced, with 1:13 B to S ratio. The training data for each
category is split into 80 % training and 20 % validation before oversampling the mi-
nority class. Mixmax scaler is then used to scale the data points between 0 and 1 on
the training data, and is then fitted on the validation and test data independently.
Random oversampling technique is applied to improve the S to B ratio by supple-
menting multiple copies of some of the S events. Oversampling is only applied on
the training data of each category after splitting the train, validation and test data
to avoid having multiple copies of events instances of the training data also in the
validation and test data.

3.2.2 Weakly Supervised Learning

The weakly supervised learning method employed in this study is a new method
derived from the inaccurate weak supervision. This approach uses the unlabeled
data samples of only background and the mixed sample. The two samples are as-
signed weak labels, where the background only events in sample 1 (M1) are labeled
0 and the mixed S and B events in sample 2 (M2) are labeled 1 . The samples are
split into 70:30 training and testing data and a model is trained to distinguish events
from M1 and M2. The same model trained to distinguish M1 and M2 events, is
used to discriminate the S and B events in the test data used in the supervised learn-
ing approach. E.Metodiev et al. [53] shows that a weakly learning model trained

25

to distinguish events from different samples can be employed to discriminate the S
and B and still performs just as well as the supervised learning model. This study
takes a different approach by using the same model trained to distinguish events
from M1 and M2, to discriminate S and B from the supervised learning approach
in order to measure the performance of the weakly supervised learning with the
supervised learning results to help develop a model for real data. The performance
of the model is measured by comparing the ROC curves of the supervised learning
categories and the output distributions.

3.2.3 Application

Application of Boosted Decision Trees

The K-fold cross validation is used to first find the optimal maximum depth. The
optimal maximum depth is determined by evaluating the boosted decision tree on
a held-out data set using the 10-fold cross validation for the maximum depth range
of 1 to 25. The data is re-sampled, randomly split into 10 folds and fit the trees
using K-1 folds and validate on the remaining folds. The scores are noted and the
process is repeated until all the K-folds serves as the validation set. The classifica-
tion accuracy is measured on the validation folds. The optimal maximum depth
is chosen based on the best bias-variance trade-off. The optimal maximum depth
is then fixed, and a GridSearchCV hyper-parameter tuning is used to apply all the
possible combinations of parameters provided in the grid through a list of dictio-
naries to find the optimal parameters to build a BDT model. The BDT is trained for
each value in the grid and the performance score of each iteration is provided. The
optimal parameter selected is the one that gave the best score. The validation data
is used to evaluate the performance of the model while fine tuning the parameters
to ensure there is little overtraining observed from the training and validation accu-
racy before applying it to the test data. The parameters used to build a BDT model
for each category are defined in Table 3.2.

26

TABLE 3.2: BDT Hyper-parameters

Hyper-parameters Low Category Int category High Category No-cut
NTrees 700 800 100 1500

Max-Depth 3 3 1 3
Learning rate 0.01 0.01 0.01 0.1

BoostType Gradient Gradient Gradient Gradient

Application of Deep Neural Network

The k-fold cross validation is used to first determine the activation functions. The
held-out approach 5-fold cross validation is applied for ReLu, Sigmoid and Leaky
ReLu activation function. The activation functions for the layers were then chosen
based on the accuracy and the highest AUC score. The activation functions are
fixed during the optimal hyper-parameter search. GridSearchCV is used to find
the optimal batch size, number of hidden layers, drop out rates and the epochs. A
dictionary of hyper-parameters with the parameter name and an array of values
are provided to evaluate a model in the parameter grid. The gridsearch construct
and evaluate the model for each combination of parameters. The combination of
parameters which gives the best score are used. The optimal hyper-parameters are
added to the sequential model. Adam Optimizer is used to find the individual
learning rate of each parameter. Table 3.3 show the parameters used to build the
DNN model. ReLu activation function is used to activate the hidden layers, and
sigmoid function is used to activate the output layer.

TABLE 3.3: DNN Hyper-parameters

Parameters Low Category Int category High Category No-cut
No. Hidden Layers 3 3 3 4

Batch Size 100 100 60 20
Epochs 100 100 100 10

Dropout 0.1 0.1 0.1 0.2

27

3.2.4 Performance Metrics

To measure the performance of the models, ROC curves, AUC score, confusion
matrix and output distributions are used. The ROC curve is a summary of the con-
fusion matrix, however, we use both the ROC AUC score and the confusion matrix
for analysis. The output distributions are used for easy read and interpretation of
the results. For a model that can distinguish S and B events with no misclassifica-
tions, we expect a ROC curve with an AUC score of 1, and an output distribution
that shows an ideal separatibity with no overlapping of the S and B classes.

3.3 Summary

Simulated Monte Carlo dataset is used in this study. Optimal BDT and DNN mod-
els used in this study are developed following the supervised and weakly super-
vised learning approaches. The weakly supervised learning approach implemented
is called weakly supervised learning where two samples of unlabeled data are used,
with one sample containing mixed S and B events. A model is trained to first dis-
tinguish events from each sample, and then used to discriminate S and B events
from new dataset.

28

Chapter 4

Results and Discussion

In this Chapter the supervised learning and the weakly supervised learning (WSL)
results achieved with BDT and DNN are discussed. The output distributions show
how well the models can distinguish S and B events. The ROC curve is the plot of
signal efficiency against background rejection, a summary of the confusion matrix.
Using the output distributions, table of results and the ROC curves, the supervised
learning results the WSL and both the BDT and DNN overall performance are pre-
sented. The instances will be referred to as events in this chapter.

4.1 Boosted Decision Trees Results

The results obtained using BDT are presented in this section. The BDT supervised
learning approach results are presented first in Subsection 4.1.1. The WSL approach
results are presented in Subsection 4.1.2.

4.1.1 Supervised Learning

Table 4.1 shows the performance of the supervised learning BDT. The Low category
correctly classified 75% of S and 71% B, misclassifying 25% of S and 29% of B.
The Int category model correctly classified 68% S and 74% B. The High category
model correctly classified 68% of B and 52% of S events. The No-cut category model
correctly classified 85% of S and 89% of B.

29

TABLE 4.1: BDT supervised learning Table of Results

Correctly Classified Misclassified
S B S B

Low Category 0.75 0.71 0.25 0.29
Int Category 0.68 0.74 0.32 0.26

High Category 0.52 0.68 0.48 0.32
No-cut Category 0.85 0.89 0.15 0.11

Figure 4.1 represent the ROC curves of the BDT supervised learning. The Low cat-
egory model achieved 78% AUC represented by the blue curve showing that the
is 22% likelihood of misclassifying events. The Int category model achieved 79%
AUC as shown by the green curve and the High category represented by the ma-
roon curve achieved 69% AUC. The is 21% and 31% likelihood of misclassifying
events with the Int and Hihg categories, respectively. The red curve represents the
No-cut category with 94% AUC. The No-cut illustrates a low likelihood of misclas-
sifying events with the model.

FIGURE 4.1: ROC curves illustrating the performance of the the BDT
supervised learning model.

30

The BDT output in Figure 4.2 shows how well the BDT can distinguish between
the S and B events. The red stepfilled distribution represent the training B events
and the the blue stepfilled distribution represent the S train events. The purple
and green step distribution represent the B and S test. The Low BDT output shows
that the model distinguished the S and B with less uncertainty. A separation of
S and B is observed with a small amount of S and B overlapping between -2 and
2 regions. The output distribution shows that the is a close fit between the train
and test output, which demonstrate that the model is slightly overtraining. The
S and B separation is also observed on the Int category distribution with a slight
moderate amount of S and B overlapping. The distribution demonstrate a close
fit of the test to the train events, with more overtraining observed in the S region.
The High category model performed poorly. The is a huge overlap of S and B with
little separation observed. The No-cut category BDT output demonstrate a clear
separation of S and B with little overlapping observed. The is little overtraining
observed on the S region and an almost perfect fit on the B region.

FIGURE 4.2: S and B Output distributions

31

4.1.2 Weakly Supervised Learning

Table 4.2 shows the performance of the models when predicting S and B. The Low
category model is bias towards the B. The model correctly classified 97% of B and
misclassified 84% of S events. The Int category correctly classified 69% of S and
74% of B events, misclassifying 31% and 26% of S and B, respectively. The High
category model is bias towards the S. The model correctly classified 99% of S and
misclassified 94% of B. The No-cut category is also bias towards the B with 97% of
the B correctly classified and only 61% of S events classified correctly.

TABLE 4.2: BDT WSL Table of Results

Correctly Classified Misclassified
S B S B

Low Category 0.16 0.97 0.84 0.03
Int Category 0.69 0.74 0.31 0.26

High Category 0.99 0.06 0.01 0.94
No-cut Category 0.61 0.97 0.39 0.3

Figure 4.3 shows the WSL ROC curves, a summary of Table 4.2. The Low category
represented by the blue curve shows that the model achieved 77% AUC, which il-
lustrates that the model have 23% likelihood of misclassifying events. The Int and
High category curves in green and maroon, respectively, achieved 79% and 64%
AUC. The No-cut category model achieved 93% AUC. The likelihood of the No-cut
model misclassifying events is low. The high AUC scores achieved by the models
are due to the high ratio of B over S.

32

FIGURE 4.3: ROC curves illustrating the performance of the the BDT
WSL model.

The output distributions in Figure 4.4 represent the BDT training output of M1 and
M2 (Left) and the performance of the BDT model when predicting the test S and B
(Right). The Low category train output shows that the is less certainty in the results.
The is more M1 and M2 events overlapping and a slight separation achieved. The
Low category S and B test output distribution shows an improvement when the
model predicts S and B. The is less overlapping of S and B observed as compared
to the M1 and M2 distribution. The Int category distributions shows that the per-
formance of the model on the M1 and M2 train is close to the performance of the S
and B test. The is S and B separation observed on the distribution with a moderate
amount of events overlapping. The High category BDT output distributions shows
that the model performed poorly on classification of both M1 and M2 events, and
also the S and B events. The is a strong overlap of events on both the train and
test distributions. The No-cut category BDT output distribution of the M1 and M2
shows that the model failed to distinguish M2 events from M1 events. The distribu-
tions shows that the M2 events are misclassified as M1 events. The S and B output
distribution shows a separation of the S and B events, with the B events correctly
classified and fewer S events correctly classified. The No-cut model is bias towards
the B events.

33

FIGURE 4.4: S and B Output distributions

34

4.2 Deep Neural Networks Results

The DNN results presented in this Section illustrate the performance of the DNN
models implemented following the supervised approach and WSL approach. Sub-
section 4.2.1 presents the results of the supervised DNN models and the WSL results
are presented in Subsection 4.2.2.

4.2.1 Supervised Learning

Table 4.3 shows a summarised classification results of the DNN supervised learn-
ing approach. The is a slight bias towards S observed in the Low category where
80% of S are correctly classified and 37% of B are misclassified as S. 63% of B are
classified correctly and only 20% of S events are misclassified as B. The Int category
achieved 77% and 62% of correctly classified S and B events, respectively. The High
category shows bias towards S, where 82% of S are correctly classified and 66% of
B events are misclassified as S. The No-cut category achieved 84% and 90% S and
B events classified correctly, respectively, with only 16 % of S misclassified as B and
10% of B misclassified as S.

TABLE 4.3: DNN supervised learning Table of Results

Correctly Classified Misclassified
S B S B

Low Category 0.80 0.63 0.20 0.37
Int Category 0.77 0.62 0.23 0.38

High Category 0.82 0.34 0.18 0.66
No-cut Category 0.84 0.90 0.16 0.1

The ROC curves in Figure 4.5 summarises Table 4.3. The Low category represented
by the blue curve shows that the model achieved 78% AUC. This means the is a
22% likelihood of misclassifying events with the Low category model. The Int cate-
gory represented by the green curve shows that the model achieved 75% AUC. The
High category model achieved 61% AUC which illustrate that the is 39% likelihood
of misclassifying events and only 61% likelihood of correctly classifying the events.

35

The No-cut category represented by the red curve shows a high likelihood of cor-
rectly classifying the events. The model achieved 94% AUC.

FIGURE 4.5: ROC curves illustrating the performance of the DNN su-
pervised learning model.

The DNN output distribution in Figure 4.6 shows the S and B separation achieved
by the DNN models. The Low and Int category distributions shows that the models
could separate the S and B events uncertainty, demonstrated by the overlapping S
and B events. The is close fit of the test distribution to the train, with overtraining
observed on both the Low and Int Categories. The High category model performed
poorly, with the S and B strongly overlapping. The No-cut category distribution
shows a clear separation of the S and B and an almost perfect fit on the B region
with slightly-to-no overtraining observed on the S region.

36

FIGURE 4.6: S and B Output distributions

4.2.2 Weakly Supervised Learning

The WSL tabulated results in Table 4.4 shows the performance of the models on the
Low, Int, High and No-cut category. The Low category model demonstrate a strong
bias towards the B where 97% of B is classified correctly as B and only 3% is mis-
classified as S. The model misclassified 82% of S as B and only 18% of S is correctly
classified. The Int category shows that the model achieved 67% and 71% of S and
B events correctly classified. The High category correctly classified 99% of S with
96% of misclassified B, demonstrating a strong bias towards S. The No-cut model
is also bias towards the B. The is 97% of B events classified correctly and only 58%
of S is correctly classified. The is a strong bias demonstrated by the WSL models.

37

TABLE 4.4: DNN WSL Table of Results

Correctly Classified Misclassified
S B S B

Low Category 0.18 0.97 0.82 0.03
Int Category 0.67 0.71 0.33 0.29

High Category 0.99 0.04 0.01 0.96
No-cut Category 0.58 0.97 0.42 0.03

Figure 4.7 shows that ROC curves and AUC of the WSL models. The Low and Int
categories achieved 77% and 72% AUC represented by the blue and green curves,
respectively. The Low and Int models have 23% and 28% likelihood of misclas-
sifying events. The High category achieved 60% AUC and the No-cut category
achieved 93% AUC. The No-cut category represented by the red curve shows that
the is low likelihood of misclassifying events. The high AUC score achieved by the
models shows that the is a high ratio of B over S as Table 4.4 demonstrated a strong
bias in the Low, Int and No-cut categories.

FIGURE 4.7: ROC curves illustrating the performance of the DNN WSL
model.

38

FIGURE 4.8: S and B Output distributions

39

Figure 4.8 represent the WSL DNN output distributions. The Low category M1 and
M2 train shows a strong overlap on the M1 and M2, demonstrating that the model
cannot distinguish the events. The S and B test distribution shows an improvement
from the train distribution. The is an ideal separation of S and B observed with
a slight moderate of events overlapping. The Int category shows that the model
could distinguish the M1 and M2, S and B events with less uncertainty. The High
category performed poorly with no separation achieved and a strong overlap of the
M1 and M2 events and also the S and B events. The No-cut category performed
poorly on the M1 and M2 train. The model failed to distinguish M2 events from
M1 events. The S and B test shows a separation of the events with the model bias
towards the B.

4.3 Discussion

The performance achieved by the supervised BDT and DNN models shows that
the models can distinguish S and B will less uncertainty in the results. The output
distributions shows that the Low and Int categories could distinguish the S and B,
observed from separation achieved, with a closely moderate amount of events still
overlapping. A threshold is demonstrated by the distributions where a cut can be
applied to minimize B and maximize S. The No-cut category for both BDT and
DNN shows a clear separation of the S and B with high certainty. A cut can be
applied to separate the B from S. The BDT and DNN results of the No-cut category
shows an ideal measure of separability and that the models are able to discriminate
S and B events to almost perfection when no pre-selection cuts are applied and the
Emiss

T variable is used as a feature. The WSL approach results demonstrate a strong
bias in the models for both BDT and DNN. The is a high likelihood of misclassifying
S as B with the WSL models which shows the is high uncertainty in the results. The
low category models misclassified 84% and 80% of BDT and DNN S as B, respec-
tively. The strong bias in the No-cut category is visually demonstrated by the BDT
and DNN output distributions where B events are well distributed and separated
from the S region, while the S distribution is almost flat and overlapping with B.

40

The BDT and DNN results discussed in Section 4.1 and Section 4.2, respectively,
illustrates that the BDT models performs better than the DNN model with a higher
AUC, however, more overtraining is observed on the BDT supervised learning re-
sults than on the DNN as BDT is prone to overtraining. This makes DNN a better
model for the WSL approach since it can be optimized to achieve better results with
little to no overtraining, assuring certainty in the results. The output distributions
and ROC curves on the Low and Int categories show that the model can discrimi-
nate S and B events with more than 70% discrimination capacity. This means that a
cut can be applied where there is maximum B and less S to disregard the B without
loosing a lot of S events. An ideal discrimination capacity means that when a cut is
applied to maximize S and minimize B, only insignificant amount of S statistics will
be lost and less B events overlapping the S region, thereby improving the purity of
the S. DNN performed poorly on the High category, with 61% and 60% AUC on
the supervised and WSL, respectively, showing that both models are slightly doing
better than a random guess. This poor performance may have been due to fewer
events present on the High category as DNN performance improves with more
statistics.

The performance achieved with the WSL using BDT and DNN shows that the WSL
approach can achieve results close to the supervised learning on the Int category.
The is a strong bias observed on the Low, High and No-cut categories due to the
high imbalance in the S and B events.

41

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The supervised learning approach results discussed in Chapter 4 show that the BDT
and DNN models can achieve an ideal discrimination capacity, with the No-cut
category model outperforming the Low, Int and High categories. There is a strong
bias observed in the Low, High and No-cut categories when implementing the WSL
approach models for both the BDT and DNN models. Although the AUC and ROC
curves achieved by the WSL approach models are close to the AUC and ROC curves
achieved by the supervised learning approach, the output distributions and the
table of results show a strong bias towards the B on the WSL approach. This shows
that there is a high ratio of B over S and the WSL approach cannot discriminate S
from B events when trained on weak-labeled highly imbalanced dataset.

5.2 Future Work

Further tests still need to be performed to optimize the WSL approach. S events will
be injected on the training samples in small increment to observe how the model
performs as S increases in the training samples, and optimize the method. The re-
sults will be compared with a well defined anomaly detection approach to validate
the results obtained with the WSL approach in order to have a well defined model
that can be implemented on real data.

42

Appendix A

Appendix A shows the figures of the 1-Dimensional distributions variables used in
this study, described in Chapter 3.

A.1 1D Distributions

43

FIGURE A.1: 1 Dimensional distributions of the input variables

44

Bibliography

[1] Georges Aad et al. “The ATLAS experiment at the CERN large hadron col-
lider”. In: Jinst 3 (2008), S08003.

[2] Christopher Rhodes. “Large Hadron Collider (LHC)”. In: Science progress 96
(Mar. 2013), pp. 95–109. DOI: 10.3184/003685013X13623370524107.

[3] Asmaa Abada et al. “HE-LHC: The high-energy large hadron collider”. In:
The European Physical Journal Special Topics 228.5 (2019), pp. 1109–1382.

[4] Giorgio Apollinari et al. High-luminosity large hadron collider (HL-LHC): Prelim-
inary design report. Tech. rep. Fermi National Accelerator Lab.(FNAL), Batavia,
IL (United States), 2015.

[5] “High Luminosity LHC”. In: ().

[6] CMS collaboration et al. “Measurement of differential top-quark pair pro-
duction cross sections in pp collisions at sqrt (s)= 7 TeV”. In: arXiv preprint
arXiv:1211.2220 (2012).

[7] Avita Katal, Mohammad Wazid, and RH Goudar. “Big data: issues, chal-
lenges, tools and good practices”. In: 2013 Sixth international conference on con-
temporary computing (IC3). IEEE. 2013, pp. 404–409.

[8] Donald Michie, David J Spiegelhalter, CC Taylor, et al. “Machine learning”.
In: Neural and Statistical Classification 13 (1994).

[9] Ian H Witten et al. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2016.

[10] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic par-
ticles in high-energy physics with deep learning”. In: Nature communications
5 (2014), p. 4308.

https://doi.org/10.3184/003685013X13623370524107

45

[11] Byron P Roe et al. “Boosted decision trees as an alternative to artificial neural
networks for particle identification”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 543.2-3 (2005), pp. 577–584.

[12] W Noel Cottingham and Derek A Greenwood. An introduction to the standard
model of particle physics. Cambridge university press, 2007.

[13] CERN Collaborators. Feedforward Deep Learning Models. 2019. URL: https://
home.cern/science/physics/standard-model (visited on 11/06/2019).

[14] Georges Aad et al. “Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC”. In: Physics
Letters B 716.1 (2012), pp. 1–29.

[15] I Sackmann, Arnold I Boothroyd, William A Fowler, et al. “Our sun. I-The
standard model: Successes and failures”. In: The Astrophysical Journal 360 (1990),
pp. 727–736.

[16] Stefan Von Buddenbrock et al. “The compatibility of LHC Run 1 data with a
heavy scalar of mass around 270\, GeV”. In: arXiv preprint arXiv:1506.00612
(2015).

[17] Stefan Von Buddenbrock et al. “Phenomenological signatures of additional
scalar bosons at the LHC”. In: The European Physical Journal C 76.10 (2016),
p. 580.

[18] Mukesh Kumar et al. “The impact of additional scalar bosons at the LHC”. In:
Journal of Physics: Conference Series. Vol. 802. 1. IOP Publishing. 2017, p. 012007.

[19] Željko Ivezić et al. Statistics, data mining, and machine learning in astronomy: a
practical Python guide for the analysis of survey data. Princeton University Press,
2019.

[20] “Introduction to statistical Machine learning”. In: ().

[21] Taiwo Oladipupo Ayodele. “Types of machine learning algorithms”. In: New
advances in machine learning. IntechOpen, 2010.

[22] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning (chapelle, o. et al., eds.; 2006). Vol. 20. 3. IEEE, 2009, pp. 1–3.

https://home.cern/science/physics/standard-model
https://home.cern/science/physics/standard-model

46

[23] Zoubin Ghahramani. “Unsupervised learning”. In: Summer School on Machine
Learning. Springer. 2003, pp. 72–112.

[24] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Tech. rep. Univer-
sity of Wisconsin-Madison Department of Computer Sciences, 2005.

[25] Xiaojin Zhu and Andrew B Goldberg. “Introduction to semi-supervised learn-
ing”. In: Synthesis lectures on artificial intelligence and machine learning 3.1 (2009),
pp. 1–130.

[26] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning”. In: Na-
tional Science Review 5.1 (2017), pp. 44–53.

[27] Mostafa Dehghani et al. “Neural ranking models with weak supervision”.
In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM. 2017, pp. 65–74.

[28] Jérôme Rony et al. “Deep weakly-supervised learning methods for classi-
fication and localization in histology images: a survey”. In: arXiv preprint
arXiv:1909.03354 (2019).

[29] Earl B Hunt, Janet Marin, and Philip J Stone. “Experiments in induction”. In:
(1966).

[30] J Ross Quinlan. “Simplifying decision trees”. In: International Journal of Human-
Computer Studies 51.2 (1999), pp. 497–510.

[31] Harris Drucker. “Improving regressors using boosting techniques”. In: ICML.
Vol. 97. 1997, pp. 107–115.

[32] Leo Breiman. Classification and regression trees. Routledge, 2017.

[33] Neeraj Bhargava et al. “Decision tree analysis on j48 algorithm for data min-
ing”. In: Proceedings of International Journal of Advanced Research in Computer
Science and Software Engineering 3.6 (2013).

[34] S Rasoul Safavian and David Landgrebe. “A survey of decision tree classi-
fier methodology”. In: IEEE transactions on systems, man, and cybernetics 21.3
(1991), pp. 660–674.

[35] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

47

[36] Wikipedia. Gradient Boosting. 2019. URL: https://en.wikipedia.org/wiki/
Gradient_boosting (visited on 11/04/2019).

[37] Patrick T Komiske, Eric M Metodiev, and Matthew D Schwartz. “Deep learn-
ing in color: towards automated quark/gluon jet discrimination”. In: Journal
of High Energy Physics 2017.1 (2017), p. 110.

[38] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination
press San Francisco, CA, USA: 2015.

[39] Warren S Sarle. “Neural networks and statistical models”. In: (1994).

[40] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural networks 61 (2015), pp. 85–117.

[41] Rene Vidal et al. “Mathematics of deep learning”. In: arXiv preprint arXiv:1712.04741
(2017).

[42] UC Business Analytics R Programming Guide. The Standard Model. 2019. URL:
http://uc-r.github.io/feedforward_DNN (visited on 11/04/2019).

[43] S Haykin et al. “Neural networks and learning machines. vol. 3 Pearson”. In:
Upper Saddle River, NJ, USA (2009).

[44] Forest Agostinelli et al. “Learning activation functions to improve deep neu-
ral networks”. In: arXiv preprint arXiv:1412.6830 (2014).

[45] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 2011, pp. 315–323.

[46] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines”. In: Proceedings of the 27th international conference on ma-
chine learning (ICML-10). 2010, pp. 807–814.

[47] wikipedia. Vanishing Gradient Problem. 2018. URL: https://en.wikipedia.
org/wiki/Vanishing_gradient_problem (visited on 11/06/2019).

[48] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters
27.8 (2006), pp. 861–874.

[49] David Martin Powers. “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation”. In: (2011).

https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
http://uc-r.github.io/feedforward_DNN
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

48

[50] Jack H Collins, Kiel Howe, and Benjamin Nachman. “Extending the search
for new resonances with machine learning”. In: Physical Review D 99.1 (2019),
p. 014038.

[51] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. “Borderline-SMOTE: a new
over-sampling method in imbalanced data sets learning”. In: International con-
ference on intelligent computing. Springer. 2005, pp. 878–887.

[52] Lucio Mwinmaarong Dery et al. “Weakly supervised classification in high
energy physics”. In: Journal of High Energy Physics 2017.5 (2017), p. 145.

[53] Eric M Metodiev, Benjamin Nachman, and Jesse Thaler. “Classification with-
out labels: Learning from mixed samples in high energy physics”. In: Journal
of High Energy Physics 2017.10 (2017), p. 174.

[54] Johan Alwall et al. “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton shower
simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79.

[55] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “A brief introduction
to PYTHIA 8.1”. In: Computer Physics Communications 178.11 (2008), pp. 852–
867.

[56] David J Lange. “The EvtGen particle decay simulation package”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 462.1-2 (2001), pp. 152–155.

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Research Question
	Research Aims
	Objectives
	Overview
	Outline

	Literature Review
	Introduction
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Weakly Supervised Learning
	Boosted Decision Trees (BDT)
	The Mathematics of Decision Trees and Gradient Boosting

	Deep Neural Networks
	The Mathematics of Neural Networks

	Activation Functions
	Classifier Performance

	Related Studies

	Research Methodology
	Data
	Methods
	Supervised Learning
	Weakly Supervised Learning
	Application
	Application of Boosted Decision Trees
	Application of Deep Neural Network

	Performance Metrics

	Summary

	Results and Discussion
	Boosted Decision Trees Results
	Supervised Learning
	Weakly Supervised Learning

	Deep Neural Networks Results
	Supervised Learning
	Weakly Supervised Learning

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	
	1D Distributions

	Bibliography

