
 

 

 

  

Abstract—Imaging in X-pinch rays produces records of 
several superimposed components of an object image from 
several radiation focuses separated in space. The present 
paper studies the feasibility of restoring an arbitrary chosen 
true component through the removal of the non-true one by 
the example of two experimental images with two 
superimposed components. The generalized discrete blurring 
model and iterative restoration algorithm used are described. 
It is shown that standard boundary conditions give 
satisfactory results for “Ant” image but “Pinch” image 
requires a special image extrapolation approach based on the 
fitting of reflection direction relative to the boundary for each 
reproduced structure. 

I. INTRODUCTION 
ECENT research in high energy density physics offers a 
fundamental possibility of developing relatively 

inexpensive and powerful sources for X-ray radiography. 
Indeed, X-pinch produced by the electric explosion of crossed 
metal wires emits soft X-rays of high intensity [1-3]. X-pinch 
is peculiar in the generation of not one but usually several 
radiation focuses separated in space. As a result, the X-ray 
photograph contains several (usually two or three) 
superimposed image components displaced relative to each 
other. So, it is necessary to restore an arbitrary selected true 
component (usually most bright) by removal of the rest, non-
true components which make it difficult to recognize the 
details of reproduced structures. Given space invariance, this 
image blurring can be described with a convolution model 
which represents the blurred image as the convolution of the 
point spread function (PSF) and the true image. Here the PSF 
is a sum of Dirac delta functions one of which (in the origin of 
coordinates) reproduces the true component and the rest ones 
remove (maximally clear) the non-true components: 
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where ),( iii yxr  is a vector defining the displacement of the 
i -th non-true component relative to the true one, and N  is 
the number of non-true components. The convolution is 
usually reversed with iterative deconvolution algorithms, for 
example, the expectation-maximization maximum likelihood 
(EMML) algorithm [4]. What makes the convolution model 
severely disadvantageous is the impossibility to consider 
boundary conditions which provide a priori information on 
the image extrapolated beyond the boundaries. Indeed, for 
correct restoration points near the boundary of a blurred 
image are likely to have been affected by information outside 
the field of view. If this information is not taken into 
account, the results of restoration of images with contrast 
low-frequency spatial structures near boundaries may 
contain Gibbs bandpass artifacts which strongly distort the 
true image. In this work we used the blurring model by Nagy 
et al. [5] which considers boundary conditions. Restoration 
results obtained with the residual norm steepest descent 
(RNSD) algorithm implemented in [6] are provided for two 
experimental images, “Ant” and “Pinch”, taken in X-pinch 
rays. It is shown that the use of standard boundary conditions 
allows satisfactory results to be obtained for “Ant” image, 
while a special approach to image extrapolation is needed to 
satisfactorily restore “Pinch” image. 

II. BLURRING MODEL AND RESTORATION ALGORITHM 
The generalized discrete blurring model by Nagy et al. [5] 

is described by a system of linear algebraic equations  

xAb ⋅= ,                      (2) 

where b  and x  are vectors representing, respectively, the 
blurred and the true image, and A  is a large, ill-conditioned 
matrix describing blurring; its non-zero elements are defined 
by the PSF. The code package by Nagy et al. [6] implements 
three type of “standard” boundary conditions: zero, periodic 
and reflexive. The zero boundary conditions correspond to 
image extension by zeros (Fig. 1(a)). The periodic boundary 
conditions assume that the image is periodically repeated 
(extended) in all directions (Fig. 1(b)). Finally, the reflexive 
boundary conditions mean that the image is specularly (i.e., 
normally) reflected at the boundary (Fig. 1(c)). The matrix 
A  is banded block Toeplitz matrix with banded Toeplitz 
blocks [7] if the zero boundary conditions are used, or the 
banded block circulant matrix with banded circulant 
blocks [8] for the periodic boundary conditions, or the sum 
of banded block Toeplitz matrix with banded Toeplitz blocks 
and the banded block Hankel matrix with banded Hankel 
blocks [9] for the reflexive boundary conditions. The 
extension of the image domain and the matrix A  means that 
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Fig. 1. Standard boundary conditions: (a) zero, (b) periodic, 
(c) reflexive (fc is obtained by the transposition of columns f,  fr by the 
transposition of rows f,  frc by the transposition of rows and columns). 

 
in the iterative inversion of system (2), the result of the 
matrix-vector multiplication zA ⋅ , where z  is a vector of b  
(or x ) dimension, depends on the elements z  corresponding 
to not only the restored region of the image but also to that one 
extrapolated in accord with the boundary conditions chosen. 
The dimension of the extrapolation region is defined by the 
PSF size. The matrix-vector multiplication is implemented in 
the package by Nagy et al. with the 2-D discrete fast Fourier 
transform; its detailed description can be found in [10]. 

To solve system (2), we have chosen the iterative RNSD 
algorithm [11] as it is easy to implement and converges 
much faster than, for example, the EMML algorithm. 
Moreover, the RNSD algorithm exhibits a semi-convergence 
behavior [12] with respect to the relative error xxx −k , 
where kx  is approximation to x  at the k -th iteration. This 
means that the dependence of the error on the number of 
iterations has a global minimum. If iterations are terminated 
after the minimum has been reached, the solution will be 
regularized. This is extremely important as the matrix A  is 
ill-conditioned, and the solution requires regularization. 
Since the blurred initial images are binary and do not take 
negative values, the algorithm was implemented so as to 
artificially enforce a nonnegativity constraint on the solution 
approximation at each iteration. The RNSD algorithm can be 
represented by the following sequence of steps: 
 

bx =  
b)(AxAg −= T  

)(xX diag=  
XggT=γ  

for K,2,1=k  
Xgs −=  

Asu =  
 

sxx α+=  
)(xX diag=  

uAz T=  
zgg α+=  

XggT=γ  
end. 

 
The function “diag(·)” generates a diagonal matrix 
containing the initial vector. 

Figs. 2 and 3 show the images “Ant” and “Pinch”, 
respectively, obtained in Cornell University on XP generator 
and restored with the above algorithm. In both cases, the 
number of iterations is equal to 3. It is seen from Fig. 2 that for 
“Ant” image, the bandpass artifacts are present if only the 
periodic boundary conditions are used (Fig. 2(c)). The zero and 
reflexive boundary conditions give quite good results (Fig. 2(b) 
and (d)). As for “Pinch” image, it is seen that none of the 
standard boundary conditions gives an artifact-free restoration 
(Fig. 3). It is clear that some special boundary conditions are 
needed in this case. 

III. FITTING OF BOUNDARY CONDITIONS FOR “PINCH” 
RESTORATION 

It is seen from Fig. 3 that the best result of “Pinch” 
restoration is get with the reflexive boundary conditions, 
i. e., in one of the three cases where contrast low-frequency 
structures in the extrapolation region are adjacent to the 
boundary. So, it is naturally to assume that the structures 
should be extended beyond the boundaries as it is done for 
the reflexive boundary conditions. However, the direction of 
structure reflection relative to the boundaries should differ 
from the normal direction and be selected separately for each 
structure. Information on the reflection direction and on the 
“useful” size of the extrapolation region can be obtained 
from, for example, Fig. 3(b) or (c). Indeed, using the restored 
image with distinct bandpass artifacts, for each the j -th 
boundary structure it is easy to create a vector 

 that defines in which direction and for how 
many pixels the image should be extrapolated to neutralize 
the boundary effect (Fig. 4). Thereto it is convenient to 
produce a segmentation of the boundary structures limited by 
the artifact strips. Then we can approximate each segmented 
structure by a quadrangle. Desired vector jr∆ coincides with 
the line segment that connects the midpoints of the 
quadrangle sides parallel to the boundary.  

Let ),,,( maxminmaxmin yyxx  be Cartesian coordinates of 
the boundaries of “Pinch” image. To extrapolate the upper 
structure on the top of the image, first reflect the initial 
image relative to the left boundary in the direction 1r∆  (Fig. 
5(a)) and then relative to the upper boundary in the same 
direction (Fig. 5(b)). The corresponding affine coordinate 
transformations ),(),( bb yxyx →  can be written as 
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Fig. 2. The initial “Ant” image (a) and its restorations with standard 
boundary conditions: (b) zero, (c) periodic, and (d) reflexive. 

Fig. 3. The initial “Pinch” image (a) and its restorations with standard 
boundary conditions: (b) zero, (c) periodic, and (d) reflexive. 

 

 
 

Fig. 4. Vectors defining the reflection direction and “useful” size 
of the extrapolation region. 

To extrapolate the image beyond the right boundary, first 
reflect the upper structure relative to this boundary in the 
direction 2r∆  (Fig. 5(c)) and then the lower structure in 
the direction 3r∆  (Fig. 5(d)). Coordinate transformations 
have the form as follows 
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Here j =2 in the first case and j =3 in the second one. 
The discrete values for pixels should be found through 
“nearest-neighbor” interpolation. The other values in the 
extrapolation region including values beyond the lower 
boundary may be taken zero. 

Fig. 6 shows the result of “Pinch” image restoration 
with the use of the RNSD algorithm and the boundary 
conditions synthesized as described above. It is seen that 
the restored image of the true component looks quite 
satisfactory being free of the bandpass artifacts. 
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Fig. 5. Extrapolation steps: (a) the upper structure is extrapolated 
beyond the left boundary; (b) the upper structure beyond the upper 
boundary; (c) the upper structure beyond the right boundary; 
(d) the lower structure beyond the right boundary. 

IV. CONCLUSION 
Using two experimental X-ray images taken in X-pinch 
rays as an example, we have shown the possibility of 
restoring the true component of image blurred due to 
superposition of non-true components from “spurious” 
radiation focuses. It is shown that the generalized discrete 
model by Nagy et al. [5] and the residual norm steepest 
descent algorithm [11] are quite useable for restoration. 
However, in the general case, the boundary conditions 
implemented in Nagy’s code package [6] do not give images 
that are free of Gibbs bandpass artifacts. These artifacts 
can be eliminated if use the image extrapolation method 
described in the present paper. The method is based on the 
fitting of the direction of image reflection relative to 
boundaries separately for each reproduced structure. The 
restoration approach presented seems to be applicable to 
any image blurred due to spatially invariant superposition 
of its several components. 
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Fig. 6. “Pinch” image restored with the boundary conditions 
selected as described in the paper. 
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