

APRIL 6, 2006 PREPARED BY WINDSOR SOLUTIONS, INC

XML Schema Design Rules
and Conventions (DRC)
Interim Update
For the Exchange Network

Version: 1.1

DEPRECATED

Revision Date: 04/06/2006

APRIL 6, 2006 PREPARED BY WINDSOR SOLUTIONS, INC

ACKNOWLEDGEMENTS

This document was developed with invaluable input and support from the following
individuals:

Andrew Battin U.S. EPA
Charles Freeman U.S. EPA
Chris Clark U.S. EPA
Dennis Murphy Delaware DNR
Dennis Burling Nebraska DEQ
Connie Dwyer U.S. EPA
Glen Carr Oregon DEQ
Joe Wilson U.S. EPA
Nathan Wilkes U.S. EPA
Nick Mangus U.S. EPA
Randy Moody North Carolina DENR
Scott Totten Missouri DNR
Tom Aten Wisconsin DNR
Maryane Tremaine U.S. EPA
Mitch West Oregon DEQ

Prepared By

4000 Kruse Way Place
Building 2, Suite 285

Lake Oswego, OR 97035
(503) 675-7833

http://www.windsorsolutions.com/

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 PREPARED BY WINDSOR SOLUTIONS, INC

Table of Contents

1. INTRODUCTION... 1

1.1. Overview ... 1
1.2. How to Use this Document.. 1
1.3. Exchange Network Schema Types... 1

2. DRC CHANGE SUMMARY .. 3
3. UPDATED SCHEMA DESIGN RULES .. 5

3.1. General XML Design .. 5
3.1.1. Multiple References to Global Complex Elements ...5
3.1.2. Implementing Recurring Elements with Simple Content8
3.1.3. Element Declaration in Exchange Network Schema10
3.1.4. Schema Documentation ...10

3.2. File Naming Rules and Guidelines ... 12
3.3. XML Tag Naming Conventions... 14
3.4. Namespaces... 15

3.4.1. Namespaces in Exchange Network Schema ..15
3.4.2. Target Namespaces ..16
3.4.3. Schema Location Attribute ..16

3.5. Shared Schema Components (SSCs) ... 18
3.6. Schema Versioning.. 20
3.7. Exchange Network Header ... 24

APPENDIX A – SUMMARY OF XML RULES.. 26
APPENDIX B – DEPRECATED DESIGN RULES ... 34
APPENDIX C – REFERENCES... 35

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 PREPARED BY WINDSOR SOLUTIONS, INC

THIS PAGE INTENTIONALLY LEFT BLANK

APRIL 6, 2006 P. 1 PREPARED BY WINDSOR SOLUTIONS, INC

1. Introduction

1.1. Overview
The XML Design Rules and Conventions v1.0 (DRCs) were published in September, 2003 to
define the standards for designing XML Schema for the Exchange Network (Network). Since
that time, Network participants have gained a wealth of experience creating XML schema and
implementing data exchanges. Also during this period, Network governance and associated
workgroups have issued guidance to schema developers which supersede the information
provided in the original DRCs.

The evolution of the Network has rendered portions of the original DRCs outdated, leaving
schema developers with the task of collecting and reconciling the various guidance in order to
determine the correct methods for constructing XML schema for the Network. This document
attempts to unify the original DRCs with the latest developments in network guidance into a
single resource, thus providing schema developers with a single, simple tool for building
Network-compliant schema.

This document represents an interim update to the DRCs. A major DRC update (v2.0) will be
performed following the release of the final Core.gov schema XML design rules. While all of the
original DRCs are listed in this document (see Appendix A), it does not replicate the discussions
in the original document describing examples, rationale and benefit/drawback of each approach.
The DRC v1.0 should be referenced if this information is sought. However for new rules and
significantly altered original rules, discussion is provided which explains the basis of the change.

1.2. How to Use this Document
This document is intended for use by Exchange Network schema developers. Developers should
use this document as the point of reference for approved design conventions against which all
Network schema must conform. This document should be consulted prior to beginning
development on a new schema or modifying an existing schema. After the schema has been
developed, this document should be used to check conformance of the schema with design rules,
subject to the Network schema review process.

1.3. Exchange Network Schema Types
The following terms are used within this document to refer to schema based on their content or
usage. Developers should be familiar with each of these terms in order to understand which
schema types are affected by a given rule or guideline.

Schema Type Definition
Default File A schema with the name “index.xsd”. This schema points to the root

schema for the given namespace using the W3C include construct. This
file allows the recipient to load all definitions for a namespace without
needing to know the filename of the root schema. Additionally, it
allows viewers of the Exchange Network repository to easily locate the
root schema by reading the name of the file referenced in the schema’s
include construct. The Exchange Network schema repository is
configured to return this document when the namespace URL is
requested.

Root Schema A schema which either directly or indirectly references (includes) all

APRIL 6, 2006 P. 2 PREPARED BY WINDSOR SOLUTIONS, INC

schema constructs in the given namespace. The Root Schema can be
used to validate any XML instance document which references the
namespace. Each namespace must have a single Root Schema. The Root
Schema should reference one or more Message Schemas. A given
namespace must have only one root schema.

Message Schema A schema which is used to convey a payload in Exchange Network
transactions. Each namespace must have at least one Message Schema
but may have more than one. A Message Schema references (includes)
one or more Component Schema.

Component Schema A schema which defines a data structure only. One or more Component
Schemas are referenced in one or more Message Schema to build a
complex representation of data. Component schema may reference
(include) other component schema. Component schema should only
contain complex datatype definitions, not elements or simple types.

Local Shared
Schema

A schema which defines a list of generic simple or complex datatypes
which are referenced within one or more Component Schema in the
namespace. Local Shared Schema are typically simple in nature and do
not “include” any other schema. They are the lowest level in the
Network schema hierarchy. In some instances, a namespace may not
have any Local Shared Schema. There should only be one Local Shared
Schema in a given namespace.

EN Shared Schema
Components (SSCs)

Schema components that have been standardized by the Exchange
Network for use in all registered schema that need to define a common
feature such as an address, geographic coordinate or facility. All schema
developers must evaluate the suitability of existing SSCs for inclusion
into new or modified schema. SSCs reduce effort by allowing
developers to consume standard XML structures into their schema
without having to reinvent them. SSCs are the product of the Exchange
Network Core Reference Model (CRM) project.

The following diagram illustrates the relationship between each schema type:

Relationship between Schema Types (Hypothetical Example)

APRIL 6, 2006 P. 3 PREPARED BY WINDSOR SOLUTIONS, INC

2. DRC Change Summary
The following list highlights the significant changes to the Network schema design rules from
Section 3 of this document as compared to the DRC v1.0.

Section 3.1 - General XML Design

Several new guidelines have been added which address general XML structure. Firstly,
creating multiple references to global elements with complex content which recur
(maxOccurs > 0) is now discouraged. Secondly, it is now recommended to nest recurring
elements within a container element. Thirdly, it is recommended that Component Schema
only include datatypes, not elements. Lastly, guidelines regarding comments in schema
have been updated.

Section 3.2 - File Naming Rules and Guidelines

 File naming rules have been updated to be consistent with the new Exchange Network

schema versioning strategy. These rules supersede the file naming rules in the DRC v1.0.

Section 3.3 - XML Tag Naming Conventions

Two simple changes have been made to the rules regarding XML tag naming
conventions. It is now mandatory that all element, attribute, and datatype tag names be
unique within a namespace. Datatypes names must now end in either “Type” or
“DataType”.

Section 3.4 - Namespaces

The namespace guidance provided in the DRC v1.0 has been superseded by new
guidance. All Network schema must implement a URL-formatted namespace structured
as http://www.exchangenetwork.net/schema/(category)[/(subcategory)]/(version).
Additional namespace rules and guidance are provided in the corresponding section of
this document.

Section 3.5 - Shared Schema Components (SSC)

It is now required that schema developers reuse (include) Network SSCs whenever a
“good fit” exists. SSCs describe such common features as facilities, individuals, permits
and other features common to the environmental arena.

Section 3.6 - Schema Versioning

Specific guidance on schema versioning schema is now provided. Developers are urged
to pay close attention to proper versioning since significant repercussions can arise from
improper implementation of these guidelines.

Section 3.7 - Exchange Network Header

APRIL 6, 2006 P. 4 PREPARED BY WINDSOR SOLUTIONS, INC

Schema developers may choose to implement the Exchange Network Header in their
schema although it is not required. Note that discussions regarding header use and
possible revisions are ongoing at the time of this writing which may result in revised
guidance.

Removal of Document-centric Schema References

The original DRC divided all guidance between two schema types; data-centric schema
and document-centric schema. In the four years which have passed since the DRC
release, no document-centric schemas have been produced for the Network. The focus of
schema development has been on “data-centric schema” as defined by the original DRC.

References to document-centric schema have been removed in this version. As a result,
readers of the Summary of Design Rules in Appendix A may notice that nearly every
other DRC number is missing (i.e. SD2-2, SD2-4). This is due to the removal of all
document-centric rules. Furthermore, rules which have remained unchanged from DRC
v1.1 still contain the term “data-centric schema”. In this document, “data-centric schema”
is analogous to “Exchange Network schema”.

APRIL 6, 2006 P. 5 PREPARED BY WINDSOR SOLUTIONS, INC

3. Updated Schema Design Rules

3.1. General XML Design

3.1.1. Multiple References to Global Complex Elements
Design Rules and Conventions dictate that all elements must be declared as global (SD3-1).
These elements must then be referenced by other elements in order to create complex data
structures. For example, a schema developer may create a global, complex element named
PermittedFeature which describes some physical object which is subject to environmental
regulation. In the following example, the PermittedFeature element is a global element:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" <!-- namespaces omitted for clarity -->>
 <xsd:element name="PermittedFeature">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="PermittedFeatureIdentifier"/>
 <xsd:element ref="PermittedFeatureName"/>
 <xsd:element ref="PermittedFeatureDescription"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="PermittedFeatureIdentifier" type="xsd:string"/>
 <xsd:element name="PermittedFeatureName" type="xsd:string"/>
 <xsd:element name="PermittedFeatureDescription" type="xsd:string"/>
</xsd:schema>

The developer may then wish to implement the PermittedFeature element as a child of both a
Facility element and a Permit element within the schema. Assume that the developer wishes to
allow the PermittedFeature element to occur more than once in both instances. In the following
example, both the Facility element and the Permit element reference the global PermittedFeature
element:

 <xsd:element name="Permit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="PermittedFeature" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Facility">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="PermittedFeature" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

While this scenario is quite practical and does not violate W3C standards, it may create problems
for exchange implementers. The source of the problem is that two complex elements with
repeating content (PermittedFeature in this case) share the same name.

Many developer tools attempt to represent each of these objects as “tables” in the relational
database paradigm (or more accurately, two classes in the same namespace). This structure
would result in the tool attempting to create two “tables” with the same name; one as a child of

APRIL 6, 2006 P. 6 PREPARED BY WINDSOR SOLUTIONS, INC

Permit and one as a child of Facility. This results in a name collision which cannot be resolved
by the tool. Two approaches to resolving this situation are provided below.

Approach #1 – Create separate elements for each reference
Instead of creating a global element named PermittedFeature, create a global complex type
named PermittedFeatureDataType. Then create two global elements with different names which
reference the newly created type. The elements could be named “PermitPermittedFeature” and
“FacilityPermittedFeature”. This would enable the same structure to be reused but given
different names based upon its implementation. In the following example, the developer uses the
approach outlined above:

 <?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" <!-- namespaces omitted for clarity -->>
 <!-- complex global types -->
 <xsd:complexType name="PermittedFeatureDataType">
 <xsd:sequence>
 <xsd:element ref="PermittedFeatureIdentifier"/>
 <xsd:element ref="PermittedFeatureName"/>
 <xsd:element ref="PermittedFeatureDescription"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- simple global elements -->
 <xsd:element name="PermittedFeatureIdentifier" type="xsd:string"/>
 <xsd:element name="PermittedFeatureName" type="xsd:string"/>
 <xsd:element name="PermittedFeatureDescription" type="xsd:string"/>
 <!-- complex global elements -->
 <xsd:element name="PermitPermittedFeature" type="PermittedFeatureDataType"/>
 <xsd:element name="FacilityPermittedFeature" type="PermittedFeatureDataType"/>
 <xsd:element name="Permit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="PermitPermittedFeature" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Facility">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="FacilityPermittedFeature" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This is a good approach when the same data structure exists for two separate types of things. For
example, a given schema might have a Facility Address and a Contact Address. Both have the
same structure, but have different meaning based on the implementation.

Approach #2 – Use KEY and KEYREF to create multiple references to a single element list
The second option is to define a single list of referenced items within the schema. Items within
the list can then be referenced using the W3C schema KEY and KEYREF constructs. This
approach is very similar to what might be done in a relational database when a given table is a
child to multiple other tables.

In the following example, the schema defines unbounded Facility and Permit elements. Assume
that both the Facility and Permit may have a contact (specified in FacilityContactIdentifier and
PermitContactIdentifier respectively). Also assume that the contact may be the same person for
both the permit and facility. The developer has chosen to use the KEY/KEYREF technique to
link a permit and facility contact to an item in the ContactList element. Note that this example

APRIL 6, 2006 P. 7 PREPARED BY WINDSOR SOLUTIONS, INC

uses a local ContactList element for improved readability although global elements are required
for Exchange Network schema.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" <!—namespaces omitted for clarity -->
>elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:element name="NPDES">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Facility" maxOccurs="unbounded"/>
 <xsd:element ref="Permit" maxOccurs="unbounded"/>
 <xsd:element name="ContactList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Contact" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContactIdentifier"/>
 <xsd:element name="ContactName"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:keyref name="FacilityContactForeignKey" refer="ContactKey">
 <xsd:selector xpath="Facility"/>
 <xsd:field xpath="FacilityContactIdentifier"/>
 </xsd:keyref>
 <xsd:keyref name="PermitContactForeignKey" refer="ContactKey">
 <xsd:selector xpath="Permit"/>
 <xsd:field xpath="PermitContactIdentifier"/>
 </xsd:keyref>
 <xsd:key name="ContactKey">
 <xsd:selector xpath="ContactList/Contact"/>
 <xsd:field xpath="ContactIdentifier"/>
 </xsd:key>
 </xsd:element>
 <xsd:element name="Facility">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FacilityIdentifier" type="xsd:integer"/>
 <xsd:element name="FacilityName" type="xsd:string"/>
 <xsd:element name="FacilityContactIdentifier"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Permit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PermitIdentifier" type="xsd:integer"/>
 <xsd:element name="PermitNumber" type="xsd:string"/>
 <xsd:element name="PermitType" type="xsd:string"/>
 <xsd:element name="PermitContactIdentifier"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The following example shows an instance file in which a single contact is linked to both a
facility and a permit:

<?xml version="1.0" encoding="UTF-8"?>
<NPDES xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Facility>
 <FacilityIdentifier>111</FacilityIdentifier>

APRIL 6, 2006 P. 8 PREPARED BY WINDSOR SOLUTIONS, INC

 <FacilityName>ACME Industries, Inc.</FacilityName>
 <FacilityContactIdentifier>123</FacilityContactIdentifier>
 </Facility>
 <Permit>
 <PermitIdentifier>1111</PermitIdentifier>
 <PermitNumber>WA0000123</PermitNumber>
 <PermitType>Individual Permit</PermitType>
 <PermitContactIdentifier>123</PermitContactIdentifier>
 </Permit>
 <ContactList>
 <Contact>
 <ContactIdentifier>123</ContactIdentifier>
 <ContactName>Joe Smith</ContactName>
 </Contact>
 </ContactList>
</NPDES>

If the instance document contained a FacilityContactIdentifier or PermitContactIdentifier other
than “123”, the document would not pass schema validation. Note that working with KEY and
KEYREF can be challenging because the developer must be familiar with XPath expressions.
The KEY and KEYREF constructs also have important scope limitations which must be
understood by the developer. Furthermore, validation of XML documents that use KEY and
KEYREF takes significantly more time than those do not. This is due to the fact that the parser
must scan the entire document to ensure the uniqueness of every KEY field. For this reason,
developers may consider using Approach #1, especially when it is anticipated that large
messages are expected using the schema.

Either solution presented here is an acceptable method of handling multiple references to a
complex global structure. The developer will need to determine which method is most suitable
for the given situation.

3.1.2. Implementing Recurring Elements with Simple Content
In XML schema, it is possible to indicate that a given element may appear one or more times
within a sequence of other elements. In the following example, the schema developer has
indicated that an individual may have one or more phone numbers:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" <!—namespaces omitted for clarity -->>
 <xsd:element name="Person" type="PersonDataType"/>
 <xsd:complexType name="PersonDataType">
 <xsd:sequence>
 <xsd:element ref="FirstName"/>
 <xsd:element ref="LastName"/>
 <xsd:element ref="PhoneNumber" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="LastName" type="xsd:string"/>
 <xsd:element name="PhoneNumber" type="xsd:string"/>

Rules and Guidelines
Rule Description
[GD1-A] Elements with recurring, complex content SHOULD NOT be referenced more than

once within the same root document, even if the element exists in different schema
files. When the same structure needs to be reused in multiple areas, either create a
new element with a different tag name utilizing a common datatype or use the KEY
and KEYREF construct to represent the element in a single list.

APRIL 6, 2006 P. 9 PREPARED BY WINDSOR SOLUTIONS, INC

</xsd:schema>

An XML instance document which conforms to this schema might look like the following:

<Person>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <PhoneNumber>123-111-1111</PhoneNumber>
 <PhoneNumber>123-222-2222</PhoneNumber>
 <PhoneNumber>123-333-3333</PhoneNumber>
</Person>

While this is acceptable schema design by W3C standards, it can be more challenging for
developers to compose and decompose the instance document since the list is embedded in a
series of other sibling elements. It also makes browsing the instance document less intuitive for a
human reader since most XML viewers (including Web browsers) allow the viewer to expand
and collapse nodes in the instance document for easier viewing. When recurring content occurs
inline with single-instance content it cannot be collapsed, requiring the user to scroll past the
recurring content to look further down the document.

To address this issue, developers are encouraged to create a separate container element for any
content which is expected to recur within a parent element. In the following example, the schema
developer has chosen to place the phone numbers in a special PhoneNumberDetails element:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema” <!—namespaces omitted for clarity -->>
 <!-- Complex Global Types -->
 <xsd:complexType name="PersonDataType">
 <xsd:sequence>
 <xsd:element ref="FirstName"/>
 <xsd:element ref="LastName"/>
 <xsd:element ref="PhoneNumberDetails"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- simple global elements -->
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="LastName" type="xsd:string"/>
 <!-- complex global elements -->
 <xsd:element name="Person" type="PersonDataType"/>
 <xsd:element name="PhoneNumberDetails" type="PhoneNumberDetailsDataType"/>
 <xsd:complexType name="PhoneNumberDetailsDataType">
 <xsd:sequence>
 <xsd:element ref="PhoneNumber" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="PhoneNumber" type="xsd:string"/>
</xsd:schema>

Using the revised schema, note the new structure of the phone numbers in an example instance
document:

<Person>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <PhoneNumberDetails>
 <PhoneNumber>123-111-1111</PhoneNumber>
 <PhoneNumber>123-222-2222</PhoneNumber>
 <PhoneNumber>123-333-3333</PhoneNumber>
 </PhoneNumberDetails>
</Person>

APRIL 6, 2006 P. 10 PREPARED BY WINDSOR SOLUTIONS, INC

3.1.3. Element Declaration in Exchange Network Schema
In the Definition of Schema Types Used in this Document section of this document (section 1.3),
six schema types are introduced depending on the role of the schema file within a given flow; the
Default File, the Root Schema, Message Schemas, Component Schemas, Local Shared Schemas,
and Shared Schema Components (SSCs).

Component Schemas are intended to store modular structures only. These structures should
describe a single feature or activity such as a facility or inspection. These structures can then be
assembled into larger structures in Message Schemas. Given this design approach, developers are
encouraged to only declare XML datatypes within Component Schema. Whenever possible, all
elements should be defined in a given Message Schema within the namespace. This helps reduce
the possibility of multiple elements with the same name being declared in separate Message
Schema which may cause confusion for implementers and lead to redundant element
declarations.

As a corollary to this statement, it is also important to define the root element for a Message
Schema within the Message Schema itself. Burying the root element within a schema other than
the Message Schema make it difficult for schema implementers to determine which schema
element is the root element. Since all elements must be global, any element can be a valid
instance document root element. Placing the true root element for a given message within the
Message Schema itself makes it clear which element is intended to be the root element.

Rules and Guidelines
Rule Description
[GD1-B] Recurring elements (maxOccurs > 1) SHOULD be nested within their own container

element.

Rules and Guidelines
Rule Description
[GD1-C] Wherever possible, component schema SHOULD NOT define any elements, only

datatypes.
[GD1-D] Message-level root elements MUST be defined in the message schema.

3.1.4. Schema Documentation
This section contains minor clarifications to design rules specified in DRC v1.0.

The W3C schema specification allows for documentation to be included in schema. This allows
the schema to contain embedded descriptions of each construct. Since Exchange Network
schema are intended to be implemented by multiple partners, documentation is needed to
communicate the context and usage of elements in schema to the consumer who may not have
the same background or business expertise that the schema developer has. Note that
documentation should NOT be used to store code lists or information which is not relevant to the
construct which is being documented.

In the following example, documentation is provided for the ViolationDeterminationDate
element from the SC_SimpleContent_v2.0.xsd schema:

APRIL 6, 2006 P. 11 PREPARED BY WINDSOR SOLUTIONS, INC

…
<xsd:element name="ViolationDeterminedDate" type="ViolationDeterminedDateDataType">
 <xsd:annotation>
 <xsd:documentation>The calendar date the Responsible Authority determines that a regulated entity is
 in violation of a legally enforceable obligation.
 </xsd:documentation>
 </xsd:annotation>
</xsd:element>
…

XML schema may also contain HTML-style comments (i.e. <!—comment -->). It is
recommended that schema developers avoid using this technique, especially if the purpose of the
comment is to describe some aspect of a given schema construct. In this case, the documentation
construct should be used as described above.

There may be times when HTML-style comments are acceptable such as when the developer
wishes to insert visual delimiters between constructs such as elements and datatypes.

Rules and Guidelines
Rule Description
[SD5-28] All schema SHOULD include schema construct documentation using the W3C

documentation element. Documentation SHOULD only describe the element or
datatype and SHOULD NOT contain lists of acceptable codes, implementation details
or other information not directly related to the meaning of the construct.

[SD5-30] HTML-style comments (<!--comment -->) SHOULD NOT be used in schema.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.12 PREPARED BY WINDSOR SOLUTIONS, INC

3.2. File Naming Rules and Guidelines
Schema file naming conventions are an important part of the schema versioning strategy for the
Exchange Network. Schema file names must be implemented consistently to ensure the Exchange
Network registry and users can differentiate between schema versions. Rules in this section are
closely related to the rules in the Schema Versioning section of this document. Please note that the
file naming convention outlined here supersedes the file naming convention in the DRC v1.0.

Naming rules vary depending on the schema type1. The following list provides examples of the
proper naming convention for each schema type:

Schema Type Convention Examples
Default File “index.xsd” index.xsd
Root Schema FlowName

[+ “_” + FlowCategoryName]
+ "_v" + Version + “.xsd”.

NPDES_v1.0.xsd

Message Schema

FlowName
[+ “_” + FlowCategoryName]
+ “_” + MessageName
+ "_v" + Version + “.xsd”.

NPDES_Permit_v1.1.xsd
NPDES_Inspection_v1.1.xsd

Component schema FlowName
[+ “_” + FlowCategoryName]
+ “_” + ComponentName
+ "_v" + Version + “.xsd”.

NPDES_MonitoringPointDetails_v1.1.xsd

Local Shared
Schema

FlowName
[+ “_” + FlowCategoryName]
+ ”_Shared”
+ "_v" + Version + “.xsd”.

NPDES_Shared_v1.1.xsd

Each component of the name is defined as follows:

Component Name Description/Usage
FlowName The name of the data exchange.
FlowCategoryName An optional naming component to be used only if the data exchange is subdivided

into smaller parts. This naming component should only be used if the namespace
contains a flow category “subdirectory” in the namespace name (i.e.
http://www.exchangenetwork.net/schema/RCRA/Handler/2).

MessageName A term describing the data carried by the schema (i.e. inspection).
ComponentName A term describing the structure contained within the schema.
Version The major and minor version number of the schema file starting with “v” and

separated by a period.

Ensure that case (capitalization) is used consistently when naming schema files and referencing
schema using include and import statements. Some Web servers are case-sensitive and will not
return a document if “index.XSD” is requested, but the actual file is named “index.xsd”.

1 Please refer to the Section 1.3 Exchange Network Schema Types for more information

Rules and Guidelines
Rule Description
[GD2-A] Each namespace must contain a default schema named “index.xsd” which contains

only an include construct referencing the Root Schema.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.13 PREPARED BY WINDSOR SOLUTIONS, INC

[GD2-B] Root Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + "_v" + Version + “.xsd”.

[GD2-C] Message Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + “_” + MessageName + "_v" + Version + “.xsd”.

[GD2-D] Component Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + “_” + ComponentName + "_v" + Version + “.xsd”.

[GD2-E] Local Shared Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + ”_Shared” + "_v" + Version + “.xsd”.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.14 PREPARED BY WINDSOR SOLUTIONS, INC

3.3. XML Tag Naming Conventions
Two simple changes have been made to the rules regarding XML tag naming conventions. It is
now mandatory that all element, attribute, and datatype tag names be unique within a namespace.
In contrast, W3C guidelines allow both an element and a datatype to have the same name2.

To further clarify schema constructs for exchange implementers, all datatype names must end with
either “Type or “DataType”. The latter is preferred since element names may already end in
“Type”.

Elements and Datatypes are often paired. In such instances, the naming convention is identical
with the datatype name being post-fixed with “DataType”. In the following example from the
Shared Schema Components SC_CountryIdentity_v2.0.xsd, the schema developer creates an
element to describe a country (CountryIdentity) and also defines a datatype for the element
(CountryIdentityDataType):

<xsd:complexType name="CountryIdentityDataType">
 <xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="1" ref="CountryCode"/>
 <xsd:element minOccurs="0" maxOccurs="1" ref="CountryCodeListIdentifier"/>
 <xsd:element minOccurs="0" maxOccurs="1" ref="CountryName"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="CountryIdentity" type="CountryIdentityDataType">
 <xsd:annotation>
 <xsd:documentation>
 A designator and associated metadata used to identify a primary geopolitical unit of the world.
 </xsd:documentation>
 </xsd:annotation>
</xsd:element>

Rules and Guidelines
Rule Description
[GD3-8] Within a namespace, all element, attribute, and datatype tag names MUST be unique.
[GD3-A] All datatype names MUST end with either “Type” or “DataType”.

2 Two constructs of the same type (such as elements) may also have the same name, but only if the elements’ scope
does not overlap. Since all elements and types must be globally defined per Exchange Network rules, this situation
should never occur.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.15 PREPARED BY WINDSOR SOLUTIONS, INC

3.4. Namespaces

3.4.1. Namespaces in Exchange Network Schema
In January 2006, the EN Network Technology Group (NTG) released final guidance on the use of
namespaces in Exchange Network Schema. Because namespace names are an important part of the
Exchange Network schema versioning strategy, it is imperative that schema developers follow the
namespace naming rules when designing schema. It is highly recommended that schema
developers review the Guidance on Namespace Organization, Naming, and Schema File Location
v1.11 document (Namespace Document) located on the Exchange Network Web site (see
Appendix C).

As stated in the Namespace Document, Exchange network namespaces are URL formatted. The
rationale for choosing a URL-formatted namespace (over a URN-formatted namespace) is as
follows:

• URL formatted namespaces are simple, and intuitive to internet users and developers
• Meet namespace requirements set out by the W3C

o By their nature URLs refer to a unique internet location
o Within the scope of the EN, URLs pointing to

http://www.exchangenetwork.net/schema, will be persistent
• Namespaces will be unique to flows determined by the inherent structure of the repository
• URL namespace resolution is universally supported by all web applications

o Secondary registration is not required with IANA – reducing administrative
overhead

o On-the-spot resolution prevents naming errors – users get instantaneous feedback if
they misspell a namespace by accessing the URL as a hyperlink

• The ability to resolve namespaces to a network location within the EN repository supports
other EN priority initiatives including:

o Schema management and versioning
o Improving the Schema Repository

• Standardized implementation of URL formatted namespaces supports future development
initiatives based upon resolution of namespaces (e.g. RDDL3)

Examples of Exchange Network Namespaces are as follows:

http://www.exchangenetwork.net/schema/AQS/3
http://www.exchangenetwork.net/schema/RCRA/Handler/1

In the following example, a properly-formed Exchange Network namespace is shown:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:TRI="http://www.exchangenetwork.net/schema/TRI/2" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- information removed for example purposes -->
</xsd:schema>

3 See http://www.rddl.org/

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.16 PREPARED BY WINDSOR SOLUTIONS, INC

Please note that regardless of the minor version number of the given schema, the namespace must
only contain the major version number. For more information on this decision, please refer to the
Schema Versioning section of this document.

3.4.2. Target Namespaces
The DRC v1.0 declares that schemas MUST use target namespaces4. This rule is further restricted
to state that the target namespace must match one of the declared namespace qualifiers. This
ensures that included schemas which do not themselves have a declared target namespace (as the
Shared Schema Components 2.0 will be structured) will in essence become a member of one of the
local target namespace.

In the following example, the schema declares a target namespace which matches the declared
namespace:

<xsd:schema xmlns:TRI=”http://www.exchangenetwork.net/schema/TRI/2”

targetNamespace="http://www.exchangenetwork.net/schema/TRI/2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- information removed for example purposes -->
</xsd:schema>

Rules and Guidelines
Rule Description
[SD4-A] The schema namespace name MUST be URL-formatted as

“http://www.exchangenetwork.net/schema/{category}[/sub-category]/Version”.
[SD4-B] Exchange Network namespaces MUST contain a category term which clearly and

uniquely defines the type of data being exchanged.
[SD4-C] Exchange Network namespaces MAY contain a subcategory term which further

divides the data exchange into smaller components.
[SD4-D] Exchange Network namespaces MUST contain a major version number as the last

part of the namespace name.
[SD4-E] Exchange Network namespaces MUST NOT contain a minor version number in the

namespace name.

Rules and Guidelines
Rule Description
[SD4-F] The schema’s targetNamespace MUST match the namespace name of one of the

declared namespace qualifiers, but not the w3c qualifier.

3.4.3. Schema Location Attribute
Please note that this rule applies only to XML instance documents, not XML schema.

The DRC v1.0 declares that MUST use the schemaLocation construct when listing the storage
location of the schema to which the XML instance document validates5. This rule is further
extended to state that the value specified in the schemaLocation attribute must match the
namespace URL. The following example shows an example of proper use of the schema location
attribute:

4 See [SD4-13] for more information.
5 See [SD4-37] for more information.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.17 PREPARED BY WINDSOR SOLUTIONS, INC

<?xml version="1.0" encoding="UTF-8"?>
<FacilityContact xmlns="http://www.exchangenetwork.net/schema/NPDES/1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.exchangenetwork.net/schema/NPDES/1
http://www.exchangenetwork.net/schema/NPDES/1">

 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <!-- information removed for example purposes —>
</FacilityContact>

Note that the schemaLocation attribute is formatted to repeat the namespace name and the schema
location, separated by a space character. This is an acceptable format according to W3C
specifications6. In this example, the first string defines the namespace name while the second
string identifies the resolvable location where the schema can be retrieved. The Exchange Network
repository will be configured to return the Default File (index.xsd) for the namespace which will
enable the parser to validate the instance document against the Message Schema(s) in the given
namespace.

This rule has a basis in historical problems whereby instance documents contained the local path to
the schema on the sender’s system (i.e. c:\myschema\index.xsd) in the path portion of the attribute
value. Of course, the receiver can not locate the schema at the location specified, causing schema
validation to fail.

If the schemaLocation tag is used to refer to an EN schema, then the location must match the
namespace.

 Rules and Guidelines
Rule Description
[SD4-H] If a schemaLocation is specified in an XML instance document, the location MUST

match the namespace URL address.

6 The schemaLocation attribute is of type anyURI which specifically allows this syntax.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.18 PREPARED BY WINDSOR SOLUTIONS, INC

3.5. Shared Schema Components (SSCs)
The Exchange Network Shared Schema Components (SSCs) are a product of the Exchange
Network’s Core Reference Model (CRM), which provides groupings of related data elements and
data blocks into what are referred to as Major Data Groups. These Major Data Groups more fully
describe business areas, functions, and entities where EPA and its Partners have an environmental
interest.

SSCs are reusable XML schema that organize related data elements common to multiple
environmental data flows. Shared schema components:

• Incorporate Environmental Data Standards Council (EDSC) data standards for data element
grouping, data element names, and definitions

• Facilitate the creation of XML schema for environmental data flows
• Improve the quality of exchanged data

The Network Operations Board (NOB) released a decision memorandum in October, 2005
mandating the usage of SSC in schema where possible. The memorandum is quoted in part below:

“The Shared Schema Components (SSC) are an important tool for promoting
Exchange Network consistency and interoperability. SSC incorporate approved data
standards – the Exchange Network’s fundamental vocabulary – and streamline
schema development by organizing related data elements common to multiple data
exchanges. Use of SSC leads to more stable schema and improved data quality
over time.”

“Consequently, developers must use SSC in schema when they are an appropriate fit
for the targeted business process. Neither conformance to the data model of an
underlying system nor the presence of unneeded individual XML tags are sufficient
reasons to reject SSC usage. Alternatively, the use of SSC could be rejected when
the basic component or data element definitions do not fit the business process’
context.”(NOB 2005-02)

As is made clear by the memorandum, it is imperative that schema developers thoroughly examine
the elements and datatypes available in the SSCs and evaluate their fitness for use in the target
schema.

There are three levels in which SSCs may be integrated into a target schema. All options begin by
including one or more SSC 2.0 schemas in the target schema. Each option is listed below:

High Integration Instances where SSC elements or data types with complex content

are directly integrated into the target schema without modification.

Medium Integration Instances where SSC elements or data types with complex content
are modified through the process of XML extension and/or
restriction before being included into the target schema.

Low Integration Instances where elements or data types with simple content are
integrated into the target schema.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.19 PREPARED BY WINDSOR SOLUTIONS, INC

In the following example, the SSC v2.0 FacilitySiteName and LocationAddress schemas are
integrated into the definition of a Facility element in the example TRI v2.0 schema:

<xsd:schema xmlns:TRI="http://www.exchangenetwork.net/schema/TRI/2" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- include other TRI component schemas -->
 <xsd:include schemaLocation="TRI_MailingAddress_v2.0.xsd"/>
 <xsd:include schemaLocation="TRI_GeographicLocationDescription_v2.0.xsd"/>
 <!-- bring desired SSCs into the TRI namespace -->
 <xsd:include schemaLocation="http://www.exchangenetwork.net/schema/SC/SC_SimpleContent_v2.0.xsd"/>
 <xsd:include schemaLocation="http://www.exchangenetwork.net/schema/SC/SC_LocationAddress_v2.0.xsd"/>
 <xsd:element name="Facility" type="TRI:FacilityDataType">
 <xsd:annotation>
 <xsd:documentation>Facility Identification data</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:complexType name="FacilityDataType">
 <xsd:sequence>
 <xsd:element ref="TRI:FacilityIdentifier" minOccurs="0"/>
 <xsd:element ref="TRI:FacilitySiteName" minOccurs="0"/>
 <xsd:element ref="TRI:LocationAddress" minOccurs="0"/>
 <xsd:element ref="TRI:MailingFacilitySiteName" minOccurs="0"/>
 <xsd:element ref="TRI:MailingAddress" minOccurs="0"/>
 <xsd:element ref="TRI:FacilitySICDetails" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="TRI:GeographicLocationDescription" minOccurs="0"/>
 <xsd:element ref="TRI:ParentCompanyNameNAIndicator" minOccurs="0"/>
 <xsd:element ref="TRI:ParentCompanyNameText" minOccurs="0"/>
 <xsd:element ref="TRI:ParentDunBradstreetCode" minOccurs="0"/>
 <xsd:element ref="TRI:FacilityDunBradstreetCodeDetails" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--information removed for example purposes -->
</xsd:schema>

Note that FacilitySiteName is an element declared in SC_SimpleContent_v2.0.xsd. The
LocationAddress element is defined in the SC_LocationAddress_v2.0.xsd schema. Note that
because SSC 2.0 do not have a declared namespace, they assume the namespace of the target
schema, in this case, TRI.

Rules and Guidelines
Rule Description
[SD5-A] Developers MUST use SSC in schema when they are an appropriate fit for the

targeted business process.
[SD5-B] Developers SHOULD create custom datatypes and elements only after determining

that no existing SSC adequately describes the given construct.
[SD5-C] Existing schema SHOULD be evaluated for SSC compatibility and subsequently

updated to include SSC elements and/or datatypes at the time of the next revision.
[SD5-D] Developers SHOULD use XML datatype extension and restriction to modify SSC

types.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.20 PREPARED BY WINDSOR SOLUTIONS, INC

3.6. Schema Versioning
NOTE: The Exchange Network Versioning strategy has not been finalized at the time of this
writing, although the guidelines provided in this section are consistent with the strategy as it exists
to date. Note that there may be a revision to this guidance in the future.

There are several components to the Exchange Network schema versioning strategy:

1. Schema namespace naming conventions
2. Schema file naming conventions
3. Use of the built-in XML schema version attribute
4. The use of a developer-defined schemaVersion attribute in the root element of each

message schema in the namespace
5. Guidelines as to what constitutes a major or minor version change in a schema
6. Configuration of the Exchange Network schema repository

Each component is elaborated upon in the following section.

The role of namespace in schema versioning
As described in the Section 3.4.1 Namespaces in Exchange Network Schema, the namespace name
must contain only the major version number of the schema. This is important to maintain
compatibility between minor versions of schema. Since older minor version instance files must
continue to validate against newer minor versions of the schema, the namespace must be retained
between minor versions. The namespace naming rules set forth in Section 3.4 are consistent with
the Exchange Network schema versioning strategy.

Because namespaces only contain a major version number, the namespace alone can not be used to
readily identify the exact version of a given schema or instance document. This is where other
aspects of schema versioning become important, as described below.

The role of file naming conventions in schema versioning
As described in Section 3.1.4, schema file names must contain both a major and minor version
number. This will enable a schema developer to easily identify the version of a schema by
examining the file name. The file naming rules set forth in section 3.1.4 are consistent with the
Exchange Network schema versioning strategy.

The role of the built-in XML schema “version” attribute in schema versioning
The W3C Schema specification allows for a “version” attribute to be defined in the root element of
an XML schema. The DRC v1.0 specifies in rule [SD5-20] that schemas MUST include a version
number using the W3C Schema version attribute. This rule has been retained and is consistent with
the Exchange Network schema versioning strategy. In the example below, the built-in schema
version attribute is used to indicate the schema version:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:NPDES="http://www.exchangenetwork.net/schema/NPDES"
xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.1">
 <!—information removed for example purposes—>
</xsd:schema>

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.21 PREPARED BY WINDSOR SOLUTIONS, INC

While the built-in version attribute is very straightforward for a human reader, it is not natively
enforced by an XML parser. Furthermore, the value of this attribute as defined in the schema is
never visible in a given XML instance document. This requires that yet another strategy be used to
ensure that a given instance document directly references a specific schema version. The
developer-defined schemaVersion attribute addresses this need as described below.

The role of the developer-defined schemaVersion attribute in schema versioning
Because namespace alone cannot be used to identify the schema version against which an instance
document will validate, a separate mechanism has been established to identify the version of a
schema that the instance document targets. Developers must create a required attribute in the root
element of each message schema named schemaVersion. This attribute will then clearly define the
schema version which the instance document targets.

In the example below, usage of the schemaVersion attribute is illustrated:
<xsd:element name="TRI">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="TRI:TRIDataType">
 <xsd:attribute name="schemaVersion" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:pattern value="2\.\d*"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

In this example, the schemaVersion attribute has been restricted using a pattern (i.e. regular
expression). The pattern requires that the instance document contain a value for the schemaVersion
attribute in the format “2.x” where x is one or more digits. The pattern is not required by the design
rules, however if it is to be used, it is recommended to fix the major version number while
allowing variations in the minor version component.

The following example displays portion of an instance document that properly implements this
attribute and pattern:

<TRI xmlns="http://www.exchangenetwork.net/schema/TRI/2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
schemaVersion="2.1">
 <!—information removed for example purposes—>
</TRI>

Major versus minor version changes in a schema
In order for a schema change to be considered a minor version change, the following must be true:

• The namespace must remain unchanged from previous minor versions
• Only new, optional elements can be added
• Existing required elements may be made optional
• Restrictions may be loosened, such as eliminating a facet restriction or pattern from an

existing element

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.22 PREPARED BY WINDSOR SOLUTIONS, INC

If revisions to a schema are exceed those listed above, then the schema must be given a new major
version number. The namespace must also be changed to reflect the new major version number.

To test whether a schema has met the criteria for a minor version, attempt to validate a prior-
version instance document against the revised schema. This will require modifying the
schemaLocation attribute in the instance document to point to the location of the new schema. To
best ensure compatibility, the test instance document must be fully populated with data for all
elements and attributes defined in the prior-version schema7.

A second test may be performed to ensure that no elements which were previously optional have
become required in the new schema. This test should utilize an instance document containing only
the required elements from the prior-version schema. Again, attempt to validate this document
against the latest schema. If it fails validation, the new schema requires elements to be present
which were not required in the prior-version schema. This would violate the rule for a minor
version schema change.

If schema versioning rules are followed, then in theory receivers of XML instance documents can
continue to validate, parse and utilize new minor version of instance documents using toolsets built
against previous minor versions of the schema. This gives data exchange implementers more
flexibility in choosing when to upgrade parsing routines for inbound XML documents. However,
these parsing routines will not be able to take advantage of new data elements added to the latest
minor version of the schema.

Configuration of the Exchange Network schema repository
The Exchange Network schema repository will be structured in a manner which will always return
the root schema for the latest production minor schema version in a given namespace. For
example, assume the latest version of a given schema is 1.2 and the namespace is defined as
http://www.exchangenetwork.net/schema/myflow/1. When the namespace URL is resolved, the
repository will return http://www.exchangenetwork.net/schema/myflow/1/index.xsd. Index.xsd
will reference the Message Schema(s) associated with the latest version, 1.2. If the schema are
correctly versioned according to the rules defined in this document, any instance document
(regardless of the minor version) will validate against the schema located in the namespace URL.

A broader discussion of the Exchange Network repository can be found in the Guidance on
Namespace Organization, Naming, and Schema File Location v1.11 document referenced in
Appendix C of this document. While no specific schema design rules hinge on this information, it
is useful to understand how schema are stored in the Exchange Network schema repository.

7 Tools such as Altova XMLSpy can generate a sample instance document with sample data for all elements and
attributes in a given schema. This document can then be validated against the newer schema to ensure compatibility.

Rules and Guidelines
Rule Description
[SD5-21] The W3C Schema version attribute MUST include both a major version component

and a minor version component for each schema file root.
[SD5-22] Data-centric schemas MUST include a major and minor version number in their

filename.
[SD5-26] Data-centric schemas MUST define a required attribute named "schemaVersion" in

the root element of all message schema.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.23 PREPARED BY WINDSOR SOLUTIONS, INC

[SD5-E] New minor versions of schema MUST be able to validate instance documents created
with preceding minor versions of that schema. However, instance documents should
not be expected to validate against versions of schema preceding the one they were
created with.

[SD5-F] New minor versions of a schema MUST only add new optional elements and/or
attributes to prior minor versions.

[SD5-G] New minor versions of a schema MUST NOT remove elements and/or attributes from
prior minor versions.

[SD5-H] New minor versions MUST utilize the exact same namespace as prior minor versions.
[SD5-I] All existing instance documents in the same namespace MUST validate against the

new minor version.
[SD5-J] The schema major version MUST be incremented if any elements or attributes are

removed or if new mandatory elements or attributes are added.
[SD5-K] The schema file name, XSD version attribute, header documentation, and namespace

MUST all contain matching version information.
[SD5-L] When any schema construct is altered in a given namespace, all schema in the

namespace MUST undergo a version increment.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P.24 PREPARED BY WINDSOR SOLUTIONS, INC

3.7. Exchange Network Header
The Exchange Network Header provides information to identify the contents of a data payload.
The Header was developed to further automate the data exchange process so that data can be more
readily identified during transport and at its processing destination. The generic nature of the
Header gives it the flexibility to meet the needs of many operational scenarios.

The Header describes the sender, receiver, and message metadata. Metadata includes information
such as what a data payload contains, as well as instructions on processing payload contents, such
as whether the contents are additions, deletions, or updates.

The following example illustrates the implementation of the Header in an example RCRA XML
instance document:

<Document xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.exchangenetwork.net/schema/v1.0/ExchangeNetworkDocument.xsd">
 <Header>
 <Author>John Doe.</Author>
 <Organization>State Environmental Commission</Organization>
 <Title>HandlerSubmission</Title>
 <CreationTime>2004-09-09T14:05:20.4259708-07:00</CreationTime>
 <DataService>HandlerSubmission</DataService>
 <Sensitivity>Unclassified</Sensitivity>
 <Property>
 <name>RCRAInfoUserID</name>
 <value>JIL</value>
 </Property>
 <Property>
 <name>RCRAInfoStateCode</name>
 <value>MI</value>
 </Property>
 </Header>
 <Payload Operation="RCRA-Transactional|HD">
 <!—payload instance document removed for example purposes—>
 </Payload>
</Document>

The Header is independent of any particular data exchange. If a schema developer chooses to
implement the Header in a given data exchange, the Header schema file should not be included
with the schema package. Many flows do not utilize the Header, and use of the header is not
required.

Some data exchange scenarios require that the submitter include metadata about whether the
receiver is to insert, update or delete data in the receiving system based on the message contents.
Two common approaches exist for specifying this information. Some developers choose to include
a TransactionType element on each “record” in the XML document indicating the action to be
taken by the receiver. Alternatively, the Header can be used to separate transactions into different
payloads, each indicating a different transaction type. For example, the first payload may represent
inserts and updates while the second payload represents data to be deleted in the receiving system.
The Payload element’s Operation attribute may be used to indicate the operation to be performed.

Note that since the Header was created before many of the current design rules were enacted; it
does not comply with many of design rules outlined in this document. The header may be revised

E

A

XCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

PRIL 6, 2006 P.25 PREPARED BY WINDSOR SOLUTIONS, INC

Rules and Guidelines
Rule Description
[SD5-P] Schema developers MAY implement the EN Header as a method of adding metadata

to one or more payloads.
[SD5-Q] The Header MAY be used to include message metadata (sender identification,

transaction type such as INSERT or DELETE, and other message-level parameters)
or to bundle multiple XML messages into a single XML document.

in the near future to align it with current design rules and to meet a more structured
implementation guideline.

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Appendix A – Summary of XML Rules
This table contains the complete list of updated XML design rules and conventions. Note that document-centric rules from DRC v1.0 have been
omitted. New rules are printed in dark blue bold print. The Rule ID indexing convention uses the same categorization approach as the DRC v1.0
(i.e. SDx or GDx) however rules are now are post-fixed with an alpha character. Blue, bold rules which do not have an alpha-character postfix
are a modified version of the original rule or guideline.
Topic Sec. Rule ID Rule
General XML Design
General XML Design

[GD1-1] All Exchange Network schema MUST be based on the W3C suite of technical specifications that hold

Recommendation status.

[GD1-2] Only W3C technical specifications holding Recommendation, Proposed Recommendation, or Candidate

Recommendation status shall be used for production activities.

[GD1-3] W3C technical specifications holding Draft status MAY be used for prototyping. Such prototypes will not be
put into production until the associated specifications reach a Recommendation, Proposed
Recommendation, or Candidate Recommendation status.

[GD1-4] All XML parsers, generators, validators, enabled applications, servers, databases, operating systems, and
other software acquired or used by partners’ activities shall be fully compliant with all W3C XML
specifications that hold a Recommendation status.

[GD1-5] The normative schema documents that implement the partner document types shall conform to XML
Schema Part 1: Structures and XML Schema Part 2: Datatypes.

[GD1-6] Each message MUST represent a single logical unit of information (such as facility permit compliance data)
conveyed in the root element.

[GD1-7] The business function of a message set MUST be unique and must not duplicate the business function of
another message.

 [GD1-8] The name of the message set MUST be consistent with its definition.

[GD1-9] Each message set SHOULD correspond to a business process model or models in the ebXML catalog of

business processes.
 [GD1-10] Messages MUST use the UTF-8/UNICODE character set.

[GD1-11] XML instance documents conforming to schemas SHOULD be readable and understandable, and should

enable reasonably intuitive interactions.
 [GD1-12] Messages shall be modeled for the abstractions of the user, not the programmer.

[GD1-13] Messages shall use markup to make data substructures explicit (that is, distinguish separate data items as

separate elements and attributes).
 [GD1-14] Messages shall use well-known datatypes.
 [GD1-15] EPA messages shall reuse registered datatypes to the maximum extent practicable.

[GD1-16] In a schema, information that expresses associations between data elements in different classification
schemes (in other words, “mappings”) MAY be regarded as metadata. This information should be
accessible in the same manner as the rest of the information in the schema.

APRIL 6, 2006 P. 26 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
 3.1.1 [GD1-A] Elements with recurring, complex content SHOULD NOT be referenced more than once within the

same root document, even if the element exists in different schema files. When the same structure
needs to be reused in multiple areas, either create a new element with a different tag name utilizing
a common datatype or use the KEY and KEYREF construct to represent the element in a single list.

 3.1.2 [GD1-B] Recurring elements (maxOccurs > 1) SHOULD be nested within their own container element.
 3.1.3 [GD1-C] Wherever possible, component schema SHOULD NOT define any elements, only datatypes.
 3.1.3 [GD1-D] Message-level root elements MUST be defined in the Message Schema.
File Naming Rules and Guidelines
File Naming Rules and
Guidelines

 [GD2-2] File names MUST NOT use abbreviations unless their meaning is beyond question (EPA, GSA, FBI).

 3.2 [GD2-A] Each namespace must contain a default schema named “index.xsd” which contains only an include
construct referencing the Root Schema.

 3.2 [GD2-B] Root Schema MUST utilize the following naming format: FlowName [+ “_” + FlowCategoryName] +
"_v" + Version + “.xsd”.

 3.2 [GD2-C] Message Schema MUST utilize the following naming format: FlowName [+ “_” + FlowCategoryName]
+ “_” + MessageName + "_v" + Version + “.xsd”.

 3.2 [GD2-D] Component Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + “_” + ComponentName + "_v" + Version + “.xsd”.

 3.2 [GD2-E] Local Shared Schema MUST utilize the following naming format: FlowName [+ “_” +
FlowCategoryName] + ”_Shared” + "_v" + Version + “.xsd”.

XML Tag Naming Conventions
XML Tag Naming
Conventions

[GD3-1] Element names MUST be in “Upper Camel Case” (UCC) convention, where UCC style capitalizes the first
character of each word and compounds the name. Example: <UpperCamelCaseElement/>

 [GD3-2] Schema type names MUST be in UCC convention. Example: <DataType/>

[GD3-3] Attribute names MUST be in “Lower Camel Case” (LCC) convention where LCC style capitalizes the first
character of each word except the first word. Example: <UpperCamelCaseElement
lowerCamelCaseAttribute=“Whatever”/>

[GD3-4] Acronyms SHOULD NOT be used, but in cases where they are used, the capitalization SHALL remain
Example: <XMLSignature/>, and the acronym SHOULD be defined in the comments of the DTD or Schema
or in a separate document noted in the DTD or Schema as providing a tag dictionary so that the meaning of
the acronym is clear.

[GD3-5] Abbreviations SHOULD NOT be used. In cases where they are used, they MUST be a major part of the
federal or data standards vocabulary, and the abbreviation SHOULD be defined within the comments of the
DTD or Schema or in a separate document (noted in the DTD or Schema) as providing a tag dictionary so
that the meaning of the abbreviation is clear. An exception to this rule is when identifier is used as a
representation term, ID SHOULD be used as part of the tag name.

 [GD3-6] Underscores (_), periods (.) and dashes (-) MUST NOT be used.
 [GD3-7] Verbosity in tag length SHOULD be limited to what is required to conform to the Tag Name Content

APRIL 6, 2006 P. 27 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
recommendations. When tags will be used in database structures, a limit of 30 characters is recommended.

Tag Name Content
(Semantic Guidelines)

3.3 [GD3-8] Element, attribute, and datatype tag names MUST be unique.

[GD3-10] High-level parent element tag names SHOULD consist of a meaningful aggregate name followed by the
term “Details”. The aggregate name may consist of more than one word. Example: <SiteFacilityDetails/>

 [GD3-11] Tag names SHOULD be concise and MUST NOT contain consecutive redundant words.

[GD3-12] Lowest level (it has no children) element tag name SHOULD consist of the Object Class, the name of a
Property Term, and the name of a Representation Term. An Object Class identifies the primary concept of
the element. It refers to an activity or object within a business context and may consist of more than one
word. Example: <LocationSupplementalText/>

[GD3-13] A Property Term identifies the characteristics of the object class. The name of a Property Term SHALL
occur naturally in the tag definition and may consist of more than one word. A name of a Property Term
shall be unique within the context of an Object Class but may be reused across different Object Classes.
Example: <LocationZipCode/> and <MailingAddressZipCode/> may both exist.

[GD3-14] If the name of the Property Term uses the same word as the Representation Term (or an equivalent word),
this Property Term SHALL be removed from the tag name. In this case, only the Representation Term word
will remain.

[GD3-15] A Representation Term categorizes the format of the data element into broad types. A list of UN/CEFACT
Representation Terms is included at the end of this list of rules, but the EPA and its partners may need to
augment this list to accommodate the specific needs for environmental data. When possible the pre-defined
UN/CEFACT list SHOULD be used. Proposed additions should be submitted to the TRG for consideration.

 [GD3-16] The name of the Representation Term MUST NOT be truncated in the tag name.
 [GD3-17] A tag name and all its components MUST be in singular form unless the concept itself is plural.
 [GD3-18] Non-letter characters MUST only be used if required by language rules.
 [GD3-19] Tag names MUST only contain verbs, nouns and adjectives (no words like “and”, “of”, “the”).
 3.3 [GD3-A] All datatype names MUST end with either “Type” or “DataType”.
Datatypes
Simple Datatypes [SD2-1] Data-centric schemas MUST use simple datatypes to the maximum extent possible.
Global Complex
Datatypes

[SD2-3] Data-centric schemas that employ complex datatypes MUST define the complex datatypes as global.

Local Complex Datatypes [SD2-5] Data-centric schemas SHOULD NOT use local complex datatypes.
Elements and Attributes
Global Elements [SD3-1] Data-centric schemas MUST use global elements.
Local Elements [SD3-3] Data-centric schemas SHOULD NOT use local elements.
Occurrence Indicators [SD3-5] Data-centric schemas SHOULD use occurrence indicators.

[SD3-6] Data-centric schemas SHOULD NOT use occurrence indicators when the required values are the default

values.

APRIL 6, 2006 P. 28 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
Attributes (General) [SD3-9] Data-centric schemas MUST NOT use attributes in place of data elements.
 [SD3-10] Data-centric schemas MAY use attributes for metadata.
Global Attributes [SD3-12] Data-centric schemas MUST NOT use global attributes in place of data elements
 [SD3-13] Data-centric schemas MAY use global attributes for metadata.
Local Attributes [SD3-15] Data-centric schemas MUST NOT use local attributes in place of data elements.
 [SD3-16] Data-centric schemas MAY use local attributes for metadata.
use Indicator [SD3-18] Data-centric schemas SHOULD use the "use" indicator.
 [SD3-19] Data-centric schemas SHOULD NOT use the "use" indicator when the required value is the default value.
sequence Compositor [SD3-22] Data-centric schemas SHOULD use the "sequence" compositor.
choice Compositor [SD3-24] Data-centric schemas SHOULD use the "choice" compositor.
all Compositor [SD3-26] Data-centric schemas MUST NOT use the "all" compositor.
Model Groups [SD3-28] Data-centric schemas MAY use model groups.
Attribute Groups [SD3-30] Data-centric schemas MUST NOT use attribute groups in place of data elements.
 [SD3-31] Data-centric schemas MAY use attribute groups for metadata.
Namespaces
Exchange Network
Namespaces

3.4.1 [SD4-A] The schema namespace name MUST be URL-formatted as
“http://www.exchangenetwork.net/schema/{category}[/sub-category]/Version”.

 3.4.1 [SD4-B] Exchange Network namespaces MUST contain a category term which clearly and uniquely defines
the type of data being exchanged.

 3.4.1 [SD4-C] Exchange Network namespaces MAY contain a subcategory term which further divides the data
exchange into smaller components.

 3.4.1 [SD4-D] Exchange Network namespaces MUST contain a major version number as the last part of the
namespace name.

 3.4.1 [SD4-E] Exchange Network namespaces MUST NOT contain a minor version number in the namespace
name.

Namespace Declaration
and Qualification-
Schemas

[SD4-1] Data-centric schemas MUST use namespaces.

 [SD4-2] Data-centric schemas MUST use namespace qualification for all schema constructs.
W3C Schema
Namespace

[SD4-5] Data-centric schemas MUST declare the W3C Schema namespace.

 [SD4-6] Data-centric schemas MUST use namespace qualification for all W3C Schema constructs.
The W3C Schema
Datatypes Namespace

[SD4-11] Data-centric schemas SHOULD NOT declare the W3C Schema Datatypes namespace.

Target Namespaces [SD4-13] Data-centric schemas MUST use target namespaces.
 3.4.2 [SD4-F] The schema’s targetNamespace MUST match the namespace name of one of the declared

APRIL 6, 2006 P. 29 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
namespace qualifiers, but not the w3c qualifier.

External Schema
References

 [SD4-15] Data-centric schemas SHOULD reference external schemas.

 [SD4-16] Data-centric schemas MAY use the include construct.
 [SD4-17] Data-centric schemas MAY use the import construct.
Single/Multiple
Namespaces

 [SD4-21] Data-centric schemas SHOULD use a multiple-namespace configuration.

Default Namespaces [SD4-23] Data-centric schemas MUST NOT use default namespaces.
Namespaces and
Attributes

 [SD4-25] Data-centric schemas MUST use namespace qualification for all attributes.

Multiple Namespaces [SD4-27] Exchange Network schemas MAY use multiple namespaces.
 [SD4-30] Each state MAY have one unique namespace for use in Network exchanges.
XML Instance Document
Validation

 [SD4-35] Data-centric XML instance documents MUST be validated against a schema during processing.

 [SD4-36] Data-centric XML instance documents SHOULD list the storage location of the schema where the XML
instance document validates in the root element.

 [SD4-37] Data-centric XML instance documents MUST use the schemaLocation construct when listing the storage
location of the schema to which the XML instance document validates.

 3.4.3 [SD4-H] If a schemaLocation is specified in an XML instance document, the location MUST match the
namespace URL address.

 [SD4-38] Data-centric XML instance documents MUST NOT use the noNamespaceSchemaLocation construct when
listing the storage location of the schema to which the XML instance document validates.

Namespace Declaration
and Qualification-XML
Instance Documents

 [SD4-43] Data-centric XML instance documents MUST use namespace qualification for all elements.

The W3C Schema
Instance Namespace

 [SD4-45] Data-centric XML instance documents MUST declare the W3C Schema Instance namespace when W3C
Schema Instance constructs are used.

 [SD4-46] Data-centric XML instance documents SHOULD use "xsi" as a namespace prefix for all W3C Schema
Instance constructs.

Local Namespace
Declarations

 [SD4-49] Data-centric XML instance documents MUST NOT use local namespace declarations.

Schema Configuration and Documentation
Message-level Schemas [SD5-1] Message-level Schemas SHOULD be used.

[SD5-2] Data-centric Message-level Schemas SHOULD use a target namespace identifier as identified in the

Exchange Network Namespace architecture.
Shared Exchange
Network Schemas

3.5 [SD5-A] Developers MUST use SSC in schema when they are an appropriate fit for the targeted business
process.

APRIL 6, 2006 P. 30 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
 3.5 [SD5-B] Developers SHOULD create custom datatypes and elements only after determining that no existing

SSC adequately describes the given construct.
 3.5 [SD5-C] Existing schema SHOULD be evaluated for SSC compatibility and subsequently updated to include

SSC elements and/or datatypes at the time of the next revision.
 3.5 [SD5-D] Developers SHOULD use XML datatype extension and restriction to modify SSC types.
Functional Area Schemas [SD5-7] Functional Area Schemas MAY be used.
 [SD5-8] Data-centric Exchange Network Schemas SHOULD use a target namespace identifier as identified in the

Exchange Network Namespace architecture.
Voluntary Standards
Body Schemas

 [SD5-10] Appropriate Voluntary Standard Body Schemas SHOULD be adopted, when appropriate.

Federal and State
Government Schemas

 [SD5-12] Federal and state government schemas MAY be used if they are consistent with the guidelines for schema
development as set forth by the Federal CIO XML Working Group or those set forth in this document.

Nested Includes [SD5-14] Exchange Network Schemas SHOULD group like constructs into one schema.
 [SD5-15] Message-level schemas SHOULD maintain a reasonable number of nested includes.
Code Lists [SD5-18] Exchange Network schemas SHOULD support code lists through multiple namespaced types.
Built-In Schema Version
Attribute

 [SD5-20] Data-centric schemas MUST include a version number using the W3C Schema version attribute.

 3.6 [SD5-21] The W3C Schema version attribute MUST include both a major version component and a minor
version component for each schema file root.

 3.6 [SD5-22] Data-centric schemas MUST include a major and minor version number in their filename.
User-Defined Version
Attribute on Instance
Root

3.6 [SD5-26] Data-centric schemas MUST define a required attribute named "schemaVersion" in the root element
of all message schema.

Schema Construct
Documentation

3.1 [SD5-28] All schema SHOULD include schema construct documentation using the W3C documentation
element. Documentation SHOULD only describe the element or datatype and SHOULD NOT contain
lists of acceptable codes, implementation details or other information not directly related to the
meaning of the construct.

 [SD5-29] Data-centric schemas SHOULD use the documentation element for schema construct documentation.
 3.1 [SD5-30] HTML-style comments (<!--comment -->)SHOULD NOT be used in schema.
Minor Version Changes 3.6 [SD5-E] New minor versions of schema MUST be able to validate instance documents created with

preceding minor versions of that schema. However, instance documents should not be expected to
validate against versions of schema preceding the one they were created with.

 3.6 [SD5-F] New minor versions of a schema MUST only add new optional elements and/or attributes to prior
minor versions.

 3.6 [SD5-G] New minor versions of a schema MUST NOT remove elements and/or attributes from prior minor
versions.

 3.6 [SD5-H] New minor versions MUST utilize the exact same namespace as prior minor versions.

APRIL 6, 2006 P. 31 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
 3.6 [SD5-I] All existing instance documents in the same namespace MUST validate against the new minor

version.
Major Version Changes 3.6 [SD5-J] The schema major version MUST be incremented if any elements or attributes are removed or if new

mandatory elements or attributes are added.
Version
Synchronization

3.6 [SD5-K] The schema file name, XSD version attribute, header documentation and namespace MUST all
contain matching version information.

 [SD5-L] When any schema construct is altered in a given namespace, all schema in the namespace MUST
undergo a version increment.

Schema Header
Documentation

 [SD5-34] Data-centric schemas MUST include schema header documentation.

Exchange Network
Header

3.7 [SD5-P] Schema developers MAY implement the EN Header as a method of adding metadata to one or more
schema payloads.

 3.7 [SD5-Q] The Header MAY be used to include message metadata (sender identification, transaction type such
as INSERT or DELETE, and other message-level parameters) or to bundle multiple XML messages
into a single XML document.

Information Association and Uniqueness
ID/IDREF Technique [SD6-1] Data-centric schemas MUST NOT use the ID/IDREF technique for information association.
KEY/KEYREF Technique [SD6-3] Data-centric schemas SHOULD use the KEY/KEYREF technique for information association.

[SD6-4] Extreme caution SHOULD be applied when writing an XPath expression in a selector element to ensure it

specifies the intended range.
 [SD6-5] Special attention SHOULD be paid to the restrictions on KEY and KEYREF declaration names given above.
Key Technique

[SD6-9] Data-centric schemas SHOULD use the KEY technique to enforce uniqueness of values in an XML

instance document when their constructs are required to appear within the specified range.

[SD6-10] Extreme caution SHOULD be applied when writing an XPath expression in a selector element to ensure it

specifies the intended range.
 [SD6-11] Special attention SHOULD be paid to the restrictions on KEY declaration names given above.
XLink/XPointer
Technique

[SD6-15] Data-centric schemas MUST NOT use the XLink/XPointer technique for information association.

UNIQUE Technique

[SD6-17] Data-centric schemas SHOULD use the UNIQUE technique to enforce uniqueness of values in an XML
instance document when their constructs are not required to appear within the specified range.

[SD6-18] Extreme caution SHOULD be applied when writing an XPath expression in a selector element to ensure it
specifies the intended range.

 [SD6-19] Special attention SHOULD be paid to the restrictions on UNIQUE declaration names given above.
Advanced W3C Schema Concepts
Simple Datatype
Restriction

[SD7-1] Data-centric schemas SHOULD NOT use simple datatype restriction when a data standard or an approved
schema exists.

 [SD7-2] Data-centric schemas MUST use global simple datatypes.
 [SD7-3] Data-centric schemas MUST NOT use local simple datatypes.

APRIL 6, 2006 P. 32 PREPARED BY WINDSOR SOLUTIONS, INC

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

Topic Sec. Rule ID Rule
List Technique [SD7-7] Data-centric schemas MAY use the list technique.

[SD7-8] Data-centric schemas MUST NOT use the list technique if the values within the list may contain spaces

themselves(e.g., a person's first and last name).
Union Technique [SD7-11] Data-centric schemas MAY use the union technique.
Complex Datatype
Restriction

[SD7-13] Data-centric schemas MAY use complex datatype restriction.

Complex Datatype
Extension

[SD7-15] Data-centric schemas MAY use complex datatype extension.

Prohibiting Complex
Datatype Derivation

[SD7-17] Data-centric schemas MAY use the final attribute derivation.

Prohibiting Use of
Derived Complex
Datatypes

[SD7-19] Data-centric schemas MAY use the block attribute.

Abstract Datatypes [SD7-21] Data-centric schemas MUST NOT use abstract datatypes.
Wildcards [SD7-23] Data-centric schemas MUST NOT use wildcards.
Default Element Values [SD7-25] Data-centric schemas SHOULD NOT use default element values.
Fixed Element Values [SD7-27] Data-centric schemas SHOULD NOT use fixed element values.
Default Attribute Values [SD7-29] Data-centric schemas SHOULD NOT use default attribute values.
Fixed Attribute Values [SD7-31] Data-centric schemas SHOULD NOT use fixed attribute values.
Substitution Groups [SD7-33] Data-centric schemas MUST NOT use substitution groups.
W3C Schema appinfo
Element

[SD7-38] Data-centric schemas MUST NOT use the appinfo element.

Notations [SD7-40] Data-centric schemas MUST NOT use notations.

APRIL 6, 2006 P. 33 PREPARED BY WINDSOR SOLUTIONS, INC

E

A

XCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

PRIL 6, 2006 P. 34 PREPARED BY WINDSOR SOLUTIONS, INC

Appendix B – Deprecated Design Rules
The following rules have been either removed or modified. An explanation of why each rule has been omitted or modified is included below.

Rule ID Rule Description Modification Reason
[GD2-1] Schemas and style sheets MUST follow a four part, hierarchical naming

convention, based on responsible party, data flow, root, and version (for
message-level schemas) or responsible party, data flow or CRM, Major Data
Group and version (for shared schemas).

deleted While the basic composition of file names is
unchanged, new rules allow for naming
variation based on schema type.

[GD1-3] Message-level schemas SHOULD have their versions changed when a
referenced external modular schema is updated.

Deleted Replaced by [SD5-L] which clarifies the rule.

[GD3-8] Element, attribute, and datatype tag names SHOULD be unique. Updated Updated to MUST
[GD3-9] Element tag names MUST be extracted from the Environmental Data

Registry (EDR) where possible.
Deleted The EDR is still a valuable resource for

environmental data standards, the shared
schema components (SSCs) are the primary
source for tag names. New tags should use
the UN/CEFACT naming methods.

[SD4-7] Data-centric schemas SHOULD use "xsd" as a namespace prefix for all
W3C Schema constructs

Deleted Prefix “xsd” can add 10% or more to schema
file size. By removing this rule, developers
may use any namespace prefix or none at all.

[SD4-28] Exchange Network schemas MUST use urn:us:net:exchangenetwork as the
target namespace.

Deleted Superseded with new naming conventions

[SD4-29] EPA schemas MUST use urn:us:gov:epa as the target namespace. Deleted Superseded with new naming conventions
[SD4-37] Data-centric XML instance documents MUST use the schemaLocation

construct when listing the storage location of the schema to which the XML
instance document validates.

Updated Clearer rule provided by new namespace
guidance

[SD5-4] Shared Exchange Network Schemas MUST be used when available. Deleted Vague. SSC guidelines are much clearer
[SD5-5] Data-centric Shared Exchange Network Schemas SHOULD use a target

namespace identifier of "urn:us:gov:epa".
Deleted Superseded by new namespace guidance

[SD5-21] The version number MUST include both a major version component and a
minor version component.

Updated Clarified to mention schema version attribute

[SD5-22] Data-centric schemas SHOULD include a version number in their filename. Updated Updated to MUST
[SD5-26] Data-centric schemas MUST define a schema version attribute for use on

the instance root.
Updated Clarified to include exact syntax and make

attribute required
[SD5-28] Data-centric schemas SHOULD include schema construct documentation. Updated Added detail about what type of information

should be included in schema documentation.
[SD5-30] Data-centric schemas MAY use DTD-style comments for comments

pertaining to the structure of the schema.
Updated

Changed to SHOULD NOT

EXCHANGE NETWORK XML SCHEMA DESIGN RULES AND CONVENTIONS V1.1

APRIL 6, 2006 P. 35 PREPARED BY WINDSOR SOLUTIONS, INC

Appendix C – References

• XML Design Rules & Conventions for the Exchange Network version 1 (2003)

http://www.exchangenetwork.net/dev_schema/EN_xml_drc_v1.0.pdf

• Guidance on Namespace Organization, Naming, and Schema File Location

http://www.exchangenetwork.net/dev_schema/Network_Namespace_v1.11.pdf

• Shared Schema Components (SSC) Usage Guide 1.0

http://www.exchangenetwork.net/registry/SharedSchemaComponents-UsageGuide.pdf

• Shared Schema Components (SSC) Technical Reference 1.0

http://www.exchangenetwork.net/registry/SchemaSchemaComponents-
TechnicalReference.pdf

• Data Exchange Design Guidance and Best Practices Document v1.1

http://www.exchangenetwork.net/dev_schema/exchange_design_guidance_v1.1.pdf

• Network Operations Board (NOB) Decision Memoranda

o 2005-02: Shared Schema Component Usage

 http://www.exchangenetwork.net/operations/nob/DM_2005_02_SSCUsag
e_final.doc

o 2006-01: Exchange Network XML Namespaces
 http://www.exchangenetwork.net/operations/nob/DM_2006_01_Namespa

ce.pdf

• Exchange Network Frequently Asked Questions (FAQ) – Header

http://test.epacdxnode.net/faq/ch03s12.html

http://www.exchangenetwork.net/dev_schema/EN_xml_drc_v1.0.pdf
http://www.exchangenetwork.net/dev_schema/Network_Namespace_v1.11.pdf
http://www.exchangenetwork.net/registry/SharedSchemaComponents-UsageGuide.pdf
http://www.exchangenetwork.net/registry/SchemaSchemaComponents-TechnicalReference.pdf
http://www.exchangenetwork.net/registry/SchemaSchemaComponents-TechnicalReference.pdf
http://www.exchangenetwork.net/dev_schema/exchange_design_guidance_v1.1.pdf
http://www.exchangenetwork.net/operations/nob/DM_2005_02_SSCUsage_final.doc
http://www.exchangenetwork.net/operations/nob/DM_2005_02_SSCUsage_final.doc
http://www.exchangenetwork.net/operations/nob/DM_2006_01_Namespace.pdf
http://www.exchangenetwork.net/operations/nob/DM_2006_01_Namespace.pdf
http://test.epacdxnode.net/faq/ch03s12.html

	Introduction
	Overview
	How to Use this Document
	Exchange Network Schema Types

	DRC Change Summary
	Updated Schema Design Rules
	General XML Design
	Multiple References to Global Complex Elements
	Implementing Recurring Elements with Simple Content
	Element Declaration in Exchange Network Schema
	Schema Documentation

	File Naming Rules and Guidelines
	XML Tag Naming Conventions
	Namespaces
	Namespaces in Exchange Network Schema
	Target Namespaces
	Schema Location Attribute

	Shared Schema Components (SSCs)
	Schema Versioning
	Exchange Network Header

	Appendix A – Summary of XML Rules
	Appendix B – Deprecated Design Rules
	Appendix C – References

