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Abstract Accurate species delimitations are crucial for
ecological and conservation studies, assessments of biotic
diversity, and identifying factors driving diversification.
Estimates suggest that the vast majority of fungal species
are currently unknown. Although many undescribed fungal
taxa are expected to be indentified within understudied
groups and from underexplored areas, mounting evidence
suggests a substantial number of unrecognized fungal
species are likely hidden within traditional phenotype-
based species in lichen-forming fungi. Molecular genetics
has revolutionized our ability to assess traditional species
concepts and provides additional tools for robust species
delimitation. In general, lichens display few taxonomically
usefully characters; therefore molecular data have gained
great importance in delimiting fungal species in lichen
symbioses. As a result, the taxonomic value of phenotypical
characters is now much better understood, and in many
cases previously overlooked characters have been identified
supporting molecular-based species circumscriptions.
Although in some cases molecular research has verified
traditional hypotheses, most studies repeatedly show that
our current interpretation of morphological and chemical
characters is inadequate to accurately characterize diversity.
Here we report on the role of molecular data in under-
standing species-level diversity in lichenized fungi by
reviewing current literature, focusing primarily on Asco-
mycota. While finding and applying the appropriate
character sets and analytical tools remains one of the
greatest challenges to empirical species delimitation in

lichen-forming fungi, the available literature indicates that
the inclusion of molecular data in species circumscription is
crucial to establish robust hypotheses of species boundaries
in this important group of fungi.
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Introduction—Diversity in lichenized fungi

Accurate species delimitations are crucial for ecological and
conservation studies, assessing biotic diversity, and identi-
fying factors driving diversification. The number of fungi
worldwide has been estimated as being about 1.5 million
species (Hawksworth 1991, 2001), while more conservative
estimates give a minimal number of 700,000 species
(Schmit and Mueller 2007). However, results from recent
environmental sampling projects indicate that the number
of fungal species may even be much higher than 1.5 million
(Blackwell 2011). Since approximately only 100,000
species are currently described (Kirk et al. 2008), it is
reasonable to believe that the vast majority of fungal taxa
are currently unknown. A large proportion of the unde-
scribed fungal species is expected to be identified in poorly
studied areas, such as tropical forests or in underexplored
habitats, for example fungi growing in insects, plants or
lichens (Hawksworth and Rossman 1997; Frohlich and
Hyde 1999; Aptroot 2001; Sipman and Aptroot 2001;
Lawrey and Diederich 2003; Arnold and Lutzoni 2007;
Arnold et al. 2009). However, there is a growing body of
evidence that in different groups of fungi, including lichens,
species are hidden under names of supposedly widely
distributed species. The phenotype-based approach to
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species recognition vastly underestimates the number of
species. For example, about 80 cryptic lineages are
estimated being hidden under widely distributed or disjunct
species in a sole family, Parmeliaceae (Crespo and
Lumbsch 2010).

Lichenized fungi are an ecologically and evolutionary
successful and diverse group of fungi forming mutualis-
tic relationships with photoautotroph organisms (photo-
bionts). More than 16,000 fungal species have been
described that form lichens (Kirk et al. 2008). The
photobionts are mostly green algae (Trebouxiophyceae
and Ulvophyceae) and/or cyanobacteria, but rarely also
species of xanthophytes and brown algae are used as
symbiotic partners. Lichens occur in all terrestrial ecosys-
tems on all continents and dominate the landscape in
extreme environments, such as polar and alpine vegeta-
tions, but are especially diverse in tropical habitats
(Sipman and Aptroot 2001). Since the fungi obtain carbon
in the form of sugar or sugaralcohols from the photobiont,
lichens can grow on any substrate, from rocks in alpine
habitats, soil in deserts, and leaves in tropical rainforests.
They play important ecological roles, including being
pioneers of bare soil and rocks, helping to stabilize soil in
arid and semi-arid regions, and contribute to the nitrogen
influx in some ecosystems.

Lichen-forming fungi belong to the crown group of true
fungi with the majority of them belonging to Ascomycota
and only about 2% of species belonging to Basidiomycota.
Within Ascomycota, lichen-forming fungi are found in five
classes in the derived superclass Leotiomyceta, while the
early-diverging subphyla Taphrinomycotina and Saccharo-
mycotina, and the Pezizomycetes lack any lichenized taxa
(Schoch et al. 2009; Lumbsch and Huhndorf 2010). This
review focuses on the lichenized ascomycetes based on the
experience of the authors, and also because the vast
majority of studies aiming at addressing species delimita-
tion in lichenized fungi has dealt with Ascomycota.

Lichen-forming fungi are important in understanding
the evolution of fungi in general, especially Ascomycota.
They represent the most diverse group of mutualistic
ascomycetes and hence are important for an understand-
ing of the transitions of antagonistic to mutualistic life-
styles (and vice versa) in this organismal kingdom
(Gargas et al. 1995; Lutzoni et al. 2001, 2004; Schoch et
al. 2009). They have also been shown to be crucial in
understanding the ascoma-evolution (Schmitt et al. 2005,
2009) and ascoma-ontogeny in ascomycetes (Lumbsch
and Huhndorf 2007) and the evolution of chemical
diversity in fungi (Schmitt and Lumbsch 2009). As in
other groups of fungi, molecular data have revolutionized
our understanding of the evolution of lichenized fungi as
discussed in several recent reviews (DePriest 2004;
Lumbsch 2006; Printzen 2010).

Results and discussion

Morphological and chemical characters used in species
delimitation

While ascomatal characters have traditionally played the
major role in the higher-level classification of lichenized
(and non-lichenized) fungi (Ott and Lumbsch 2001;
Printzen 2010), species-level classification in lichen-
forming fungi often include a wide array of vegetative
characters as well. Morphological thalline characters used
to distinguish species in lichen-forming fungi include
various characters, such as thallus form and size, pres-
ence/form/color of attachment organs (e.g., rhizines, hold-
fast) and other supplementary organs (cilia, hairs, etc.),
presence and form of pseudocyphellae and maculae, and
the reproductive mode. In the latter, the type of reproduc-
tion (ascomata vs. vegetative diaspores), and the form and
location of the reproductive structures are used to distin-
guish species. This includes different morphological types
of vegetative diaspores, mainly corticated isidia and
ecorticate soredia that are often formed in morphologically
characteristic soralia, and the location and form of
ascomata. Differences in ascoma morphology may include
a number of characteristics, including location of ascomata
(e.g., laminal or marginal on thallus), their position (e.g.,
sessile or immersed in areoles), presence or absence of
thalline margins of ascomata, or the color of an apothecial
disc and presence and color of a pruina. Anatomical thalline
characters include the presence, size and type of a cortex of
the thallus and/or thalline ascomatal margin, presence and
form of crystals in the thallus and/or thalline ascomatal
margin, and thickness of thalline layers. These vegetative
characters are widely used by lichenologists to distinguish
species in addition to ascomatal characters that are also
widely used by mycologists studying non-lichenized asco-
mycetes. The latter include the form, color, size, and
septation of ascospores, size and form and structure of
asci, the hamathecium, type of epihymenium and hypothe-
cium and the type of excipulum or peridium. Further,
conidiomatal characters, especially form and size of
conidia, are commonly used to distinguish species.

Ever since Nylander (Nylander 1866a,b) introduced
simple spot tests for chemical examination of lichens,
chemistry has played an important role in identification and
classification of these organisms. Highlighting the role of
chemistry in modern lichen taxonomy, Hawksworth (1976:
139) stated “any taxonomic revision not considering
chemical data is likely to be regarded as incomplete”.
Extrolites (secondary metabolites) found in lichens belong
to various substance classes, most diverse are depsides,
depsidones, and in some clades chlorinated xanthones or
anthraquinones are common and diverse. Presence or
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absence of specific substances or their replacements by
another substance are widely used to distinguish species
when correlated with geographic differences. If no mor-
phological or geographical differences between populations
containing different extrolites are found, the taxonomic
significance has been disputed, with some authors distin-
guishing them as species and others preferring to regard
them as chemical races within a species. The use of
chemistry has been discussed in detail in numerous reviews
(e.g., Culberson 1969, 1970; Hawksworth 1976; Brodo
1978; Leuckert 1985; Brodo 1986; Egan 1986; Rogers
1989; Lumbsch 1998a,b) and this is not reiterated here in
detail. In addition to using the presence of substances, it has
been proposed to arrange lichen substances into chemo-
syndromes of closely related substances (Culberson and
Culberson 1976). The presence or absence of these chemo-
syndromes may potentially be used as characters to delimit
species (Gowan 1986; Lumbsch 1994), while chemical
differences involving the same chemosyndromes are often
regarded as intraspecific variation.

It has long been known to evolutionary biologists that
distinct species do not need to have diagnosable morpho-
logical differences, as summarized e.g. by Mayr (1942,
1963). This may be due to a selective advantage of
maintaining a specific phenotype, parallel or convergent
evolution. In a number of species, phenotypical differences
are correlated with distinct lineages and this is the reason
for a persistence of the pre-Darwinian morphological
species concept (Ray 1686) in biological systematics. In
contrast to other groups of fungi, the biological species
concept, which includes members of populations that
actually or potentially interbreed in nature within a species
(Mayr 1942, 1963), has only rarely been used in lichenol-
ogy. Notable exceptions are the studies by the Culberson’s
on gene flow and sibling speciation (Culberson et al. 1977;
Culberson 1986; Culberson et al. 1993).

Cryptic and sibling species clearly demonstrate the
inability of a morphological species concept to accommo-
date biological processes that are known to occur in
speciation of all major clades of organisms. While the two
terms were used interchangeably by numerous authors,
including Mayr himself, others prefer to keep those terms
separate (de Sa et al. 2005; Bickford et al. 2007). In the
more restricted sense, the term sibling species is restricted
to cryptic species that share a most recent common
ancestor. In sibling species, the phenotypical similarity of
distinct lineages is due to a morphological stasis. It was
argued that this morphological stasis may be due to strong
selective pressure on physiological characters for adaptation
to a specific host (Schröngge et al. 2002) or to extreme
environments (Nevo 2001). The discovery of many cryptic
species in Polar Regions or other extreme habitats is
consistent with this view (Vrijenhoek et al. 1994; Grundt

et al. 2006; Lefebure et al. 2006; Vrijenhoek 2009).
However, other studies suggest that cryptic species are
homogeneously distributed among taxa and biogeographi-
cal regions (Pfenninger and Schwenk 2007). If cryptic
species are not closely related, i.e. not sibling species, we
expect the morphology to have a specific adaptive value to
a habitat (Bickford et al. 2007).

Species delimitation and biogeography

In spite of the controversial issues associated with
attempts to empirically circumscribe species, contempo-
rary species concepts share the common view that
species are segments of separately evolving metapopula-
tion lineages, termed the general lineage concept, GLC;
(de Queiroz 2007). This concept allows researchers to
delimit species using different empirical properties asso-
ciated with lineage formation and has facilitated the
development of novel methods to test hypotheses of
lineage separation (de Queiroz 2007). The continued
interest in species delimitations has resulted in recently
developed approaches used to investigate species bound-
aries using genetic data (Sites and Marshall 2004;
Knowles and Carstens 2007; O’Brien et al. 2009; Vieites
et al. 2009; Carstens and Dewey 2010; Yang and Rannala
2010). Under the GLC, more properties (e.g. monophyly,
coalescence, morphology, geographic range, host prefer-
ence, chemistry, etc.) supporting putative lineages are
associated with a higher degree of corroboration (de
Queiroz 2007). In lichen-forming fungi finding and
applying the appropriate character sets and analytical
tools remains one of the greatest challenges to empirical
species delimitation (Wirtz et al. 2008; Crespo and Perez-
Ortega 2009). Cross-validation using inferences from
multiple empirical operational criteria and datasets have
been shown to establish robust hypotheses of species
boundaries (Dayrat 2005; Duminil et al. 2006; O’Brien et
al. 2009; Ruiz-Sanchez and Sosa 2010).

Having knowledge about the circumscription of species
is of major importance for evolutionary biology and
diversity research, since species are the basic units of
biodiversity and linked to the study of the process of
speciation (de Queiroz 2005). This knowledge is also of
crucial importance to other fields of biology, including
ecology and conservation biology. This is especially true for
a group of organisms, such as lichens, which are widely
used in ecological studies. Lichenized fungi are ubiquitous
elements in all terrestrial ecosystems and are important
bioindicators for air pollution, forest age and health, and
soil quality (Nash 2008). Hence, there is an increasing
interest in documenting their diversity to understand the
role of these organisms in ecosystems and their potential as
sources of antibiotics or biocontrol agents.
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Traditionally, biogeographical patterns were often
neglected in both lichenized and non-lichenized fungi, and
researchers accepted wide distribution ranges of species
occurring on different continents. This was due to a
common belief among mycologists and lichenologists that
the “everything is everywhere” hypothesis applied to fungi.
The “everything is everywhere” hypothesis, which claims
that microorganisms have basically a worldwide distribu-
tion and that geographic patterns are only due to ecological
requirements was revived by Finlay (2002). He suggested
that eukaryotic microorganisms have global distributions.
Advocates of the hypothesis that small eukaryotes lack
endemism base this on studies of morphological species of
ciliates (Fenchel and Finlay 2004). However, the validity of
the morphology-based species recognition in these organ-
isms has been challenged by recent molecular studies
(Weisse 2006; Chantangsi et al. 2007), suggesting that the
widespread occurrence of some microorganisms may be an
artifact of inappropriate species circumscriptions. Further,
several studies in different groups of microorganisms,
including fungi, demonstrated geographically restricted
distributions (e.g., Geiser et al. 1998; Kasuga et al. 1999;
Koufopanou et al. 2001; Papke et al. 2003; Whitaker et al.
2003). The results of these recent studies indicate that a part
of the undiscovered fungal diversity is to be found in
widely distributed groups of species that are currently
classified as single species based on morphological simi-
larity. Specific cases in which molecular data to better
understand the biogeography of lichenized fungi are
discussed in the following chapter.

Molecular studies addressing species delimitations
in lichenized ascomycetes

A number of studies using DNA sequence data have
demonstrated incongruence between the phenotype-based
species circumscriptions and the molecular phylogenetic
reconstructions, often revealing the presence of distinct
lineages within a single nominal taxon. Among those
studies, several revealed subtle morphological or previously
overlooked chemical differences between distinct lineages.
These taxa are often referred to as “semi-cryptic” and have
been identified in a wide array of species groups in different
families of lichenized fungi. It may be expected to find
cryptic species among the morphologically simple crustose
lichens. These include for example, fungi in Acarospor-
aceae (Wedin et al. 2009), Graphidaceae (Lumbsch et al.
2008), and Lecanoraceae (Leavitt et al. 2011c), Lecideaceae
(Ruprecht et al. 2010), and Teloschistaceae (Muggia et al.
2008; Vondrak et al. 2009); cryptic species with subtle
morphological or chemical differences have also frequently
found in foliose and fruticose lichens. These include, for
example, species complexes in Lobariaceae (McDonald et

al. 2003), several genera in Parmeliaceae (Kroken and
Taylor 2001; Molina et al. 2004; Divakar et al. 2005b;
Seymour et al. 2007; Wirtz et al. 2008; McCune and
Schoch 2009), Peltigeraceae (Goffinet et al. 2003; O’Brien
et al. 2009), some genera in Physciaceae (Cubero et al.
2004; Divakar et al. 2007; Lücking et al. 2008; Elix et al.
2009), and Sphaerophoraceae (Högnabba and Wedin 2003).

In some cases, the distinct clades were shown to have
different distributions, such as Melanelixia glabra and M.
californica, occurring in western Europe and western North
America, respectively (Divakar et al. 2010). Other exam-
ples are disjunct species in Xanthoparmelia that represent
distinct, cryptic species on different continents (Thell et al.
2009; Hodkinson and Lendemer 2011) or distinct species
on different continents in the genus Physcia (Elix et al.
2009). In the Leptogium furfuraceum-L. pseudofurfuraceum
complex sister-group relationships were found between
populations from the same hemispheres, incongruent with
previous classifications based on morphological differences
(Otalora et al. 2010). The results of a dating estimate suggest
that the species migrated via transoceanic dispersal with
subsequent diversification on different continents. The most
spectacular example, however, is the collective species
Parmelina quercina sensu lato (s. l.), which was considered
to be a single subcosmopolitan species, occurring in areas
with Mediterranean climate in Europe and the Mediterra-
nean, North America, and Australia. Molecular data clearly
demonstrated that the populations on each continent repre-
sent distinct lineages, with two species present in western
Europe and the Mediterranean (Arguello et al. 2007). The
distinct clades were also supported by ultrastructural charac-
ters of the epicortex, and the size and form of the ascospores.
Subsequent studies demonstrated that the Australian clade
actually belongs to an unrelated clade of parmelioid lichens
that was placed in the new genus Austroparmelina, which
accommodates a number of species with a distribution center
in Australasia and adjacent areas of the southern Hemisphere
(Crespo et al. 2010a). This genus was shown to be unrelated
to Parmelina but belonging to the Parmotrema clade as
sister-group to a clade consisting of the genera Flavoparme-
lia and Parmotrema, while Parmelina forms the Parmelina
clade with species of the genera Bulbothrix, Myelochroa, and
Remototrachyna (Crespo et al. 2010b). This is a remarkable
case highlighting the potential impact of convergent evolu-
tion of thallus morphology on species circumscriptions using
morphological characters alone.

The frequency of the discovery of the so called “semi-
cryptic” species indicates that our current interpretation of
lichen morphology is inadequate, and numerous
morphology-based species delimitations are based on over-
simplifications. Currently, we lack a general understanding
of the adaptive value of similar morphologies of distantly
related taxa. At this point, limited studies explicitly

62 Fungal Diversity (2011) 50:59–72



addressing growth forms and their adaptive value are
available. For example, ecophysiological studies demon-
strated that deeply divided fruticose lichens are able to
use fog, snow or dew very efficiently (Lange and Redon
1983; Lange et al. 2006, 2007). Central cords are formed
in unrelated groups of lichens and are either interpreted as
ensuring stability of—an often large and hanging—
fruticose thallus (Usnea spp.) or as water reservoirs in
the genera Seirophora and Simonyella (Poelt 1983; Feige
et al. 1992). However, for example, the adaptive value of a
highly similar foliose thallus form in divergent lineages
within the Parmelina quercina species-complex found in
similar winter rain climates in Australia, western Europe,
the Mediterranean, and western North America is com-
pletely unknown. An exciting new avenue of research in
lichenology is assessing the adaptive value of morphologies,
requiring closer collaborations between evolutionary biolo-
gists and ecophysiologists to adequately address these
research questions.

Recently, an increasing number of studies have revealed
the presence of cryptic species in lichen-forming fungi,
without any recognizable morphological, chemical, or
biogeographic support for distinct taxa within species
complexes. Cryptic lineages have been reported in various,
unrelated groups of fungi, including the Cladia aggregata
group (Parnmen 2011), the genus Letharia (Kroken and
Taylor 2001), the Parmelina tiliacea aggr. (Crespo and
Lumbsch 2010), the Parmotrema reticulatum group
(Divakar et al. 2005a), and the Rhizoplaca melanophthalma
complex (Leavitt et al. 2011c). Further, there is evidence
for the presence of cryptic lineages in tropical Porina
spp. (Baloch and Grube 2009). The variability of mt SSU
rDNA sequences within morphologically-based Porina
spp. was found to be higher or about the same as the
genetic divergence among distinct lineages in other
genera of lichen-forming fungi (Högnabba and Wedin
2003; Divakar et al. 2005a). The studies on the Cladia
aggregata and the Rhizoplaca melanophthalma com-
plexes indicated the presence of a large number of
cryptic species in these complexes. In the Cladia
aggregata complex Parnmen (2011) found at least eleven
putative species, all except one, being cryptic. In the
Rhizoplaca melanophthalma complex, a total of ten
candidate species were identified, four of which were
previously recognized as distinct taxa, and six previously
unrecognized lineages within what has thus far been
considered a single nominal species (Fig. 1; Leavitt et al.
2011a,b,c). All cryptic R. melanophthalma s. l. species
were chemically and morphologically polymorphic,
although the greatest morphological and chemical varia-
tion was restricted to the most closely related lineages
(R. melanophthalma ‘cryptic species’ 4–6 and vagrant
forms in Fig. 1). These studies underscore the fact the

cryptic species often remain undiscovered even within
many well-known lichen taxa.

However, there are also other cases, in which molecular
data indicate that putative morphologically/chemically
distinct species likely belong to a single polymorphic
lineage. This is especially true for species with different
modes of reproduction. Traditionally, morphologically
identical samples that form either ascomata or form
vegetative diaspores (soredia), which propagate the fungal
and photosynthetic partner simultaneously, were classified
as distinct species (Poelt 1972). The taxonomic status of
those so-called “species-pairs” has often been disputed
(Tehler 1982; Mattsson and Lumbsch 1989), but molecular
phylogenetic reconstructions often recover specimens with
different reproductive modes together within a single
monophyletic group (Lohtander et al. 1998a,b; Myllys et
al. 1999, 2001; Articus et al. 2002; Molina et al. 2002;
Cubero et al. 2004; Ott et al. 2004; Buschbom and Mueller
2006). These results suggest that species-pairs, i.e. mor-
phologically and chemically identical populations that only
differ in their reproductive mode (sorediate vs. fertile),
usually represent a single species with variable reproductive
mode. It was hypothesized that the changing reproductive
mode in lichenized fungi can be explained by conflicting
reproductive (favoring sexual reproduction) and nutritional
(favoring vegetative reproduction that disperses both
symbiotic partners) requirements imposed by the obligate
symbiotic life-style of these fungi. These interacting
constraints are interpreted as producing recurring selective
sweeps within predominantly vegetatively reproducing
lineages (Buschbom and Barker 2006; Buschbom and
Mueller 2006). However, this phenomenon appears to be
largely restricted to sorediate/fertile species pairs, while
isidiate species have generally been confirmed as form-
ing distinct lineages in phylogenetic studies (Crespo and
Perez-Ortega 2009).

While most studies showing overestimation of diversity
based on a morphological species delimitation focus on
species pairs, some recent results indicate that the
phenotype-based species delimitation in the hyper-diverse
genus Xanthoparmelia with approximately 800 described
species (Hale 1990; Elix 2003) led to an overestimation of
the true diversity. In this genus, morphological and
chemical characters, such as substrate, life-form (vagrant
vs. attached to substrate), color of lower surface, form of
rhizines, mode of reproduction, presence of conidiomata,
and the presence of extrolites, were used in combination to
delimit species. However, recent molecular studies do not
support this classification (Leavitt et al. 2011a,b). In many
cases, species-level genetic clusters inferred from six
nuclear loci were shown to be morphologically and
chemically polymorphic, containing up to eight traditional-
ly circumscribed Xanthoparmelia species within individual
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lineages. The results from this study indicate that frequent
changes in morphological and chemical characters obscure
the recognition of natural lineages with Xanthoparmelia
(Fig. 2), and call for a major taxonomic revision within one
of the best-studied genera of lichen-forming fungi.

Interestingly, chemical characters often outperform mor-
phology in corroborating distinct lineages identified in
molecular phylogenetic reconstructions, especially when
different chemosyndromes are involved. For example, the
distinction of the chemically distinct species Parmeliopsis
ambigua and P. hyperopta (presence of usnic acid or
atranorin in the upper cortex) was confirmed in a molecular
study (Tehler and Kallersjo 2001). Other studies confirmed
chemically distinct populations to represent different spe-
cies (Lücking et al. 2008; Elix et al. 2009). However, in
some groups no correlation of presence of extrolites and
phylogenetic lineages could be found, indicating chemical
polymorphism among interbreeding populations (LaGreca

1999; Wirtz et al. 2008; Nelsen and Gargas 2009; Parnmen
2011). Another study addressed putative species in the
genus Bryoria that were distinguished based on the
occurrence of the yellow pigment vulpinic acid (Velmala
et al. 2009). While in B. fremontii the yellow pigment is
restricted to the soralia and ascomata, it occurs throughout
the thallus in B. tortuosa (Brodo and Hawksworth 1977).
Molecular data did not support this distinction but rather
demonstrated some genetic differentiation between Europe-
an and North American populations of vulpinic acid-
containing populations.

Using phylogenetic- and cohesion-based methods
to address species delimitation

While it has become increasingly clear with recent studies
that in many cases traditional phenotype-based species
delimitations do not accurately reflect the true diversity of

Fig. 1 Cryptic diversity within the Rhizoplaca melanophthalma
species-complex shown in the multilocus species tree inferred from
three ribosomal loci and two protein coding markers using a
multispecies coalescent approach. The R. melanophthalma species-
complex includes morphologically diverse taxa, including (a) Leca-
nora novomexicana, (b) Rhizoplaca melanophthalma sensu lato, and
known vagrant Rhizoplaca species (c-e). A posteriori examinations of

cryptic R. melanophthalma lineages did not reveal diagnostic
morphological characters supporting distinct lineages within the
nominal taxon R. melanophthalma. Thickened branches indicate
posterior probability support >0.95, and speciation probabilities at all
nodes (see Yang and Rannala [2010] were greater than 0.95. Images
(a, c, d, e) are provided by S. Sharnoff. (see Leavitt et al. 2011a for
complete details)
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lichen-forming fungi, the delimitation of species based on
molecular data is not without problems either. There may be
problems with the molecular data themselves, particularly
in recently diverged lineages (Knowles and Carstens 2007).
In some cases the selected loci may simply not be variable
enough to distinguish among closely related species or
multiple copies of a target locus may be present. This could
be due to a relaxation of concerted evolution in ribosomal
DNA that has been demonstrated in different groups of
fungi (O’Donnell and Cigelnik 1997; Rooney and Ward
2005; Simon et al. 2005; Chang et al. 2008; Simon and
Weiss 2008) or presence of paralogous copies of duplicated,

protein-coding genes (Landvik et al. 2001; Opanowicz et al.
2006; Feau et al. 2011).

As discussed elsewhere in detail, single-gene approaches
cannot accommodate for incomplete lineage sorting between
closely related species (Grube and Kroken 2000; Taylor et al.
2000). While single gene studies may be sufficient to support
the distinction of disputed species, they fail to provide
sufficient evidence to show that populations belong to a
single species. Therefore approaches using multiple inde-
pendent loci are necessary to test species delimitations.
Further, application of a strict phylogenetic species recogni-
tion based solely on monophyly of taxa is problematic, since

Fig. 2 The multilocus species tree, representing relationships between
species-level genetic clusters inferred from four ribosomal loci and
two protein coding markers generated from Xanthoparmelia speci-
mens collected in western North America, estimated using a
multispecies coalescent approach. Traditional combinations of mor-
phological and chemical characters used for species recognition in
Xanthoparmelia were not supported. Major diagnostic characters are
distributed across divergent lineages, including (a) presence of isidia;

(b) maculate upper cortex (in vagrant forms); (c) emaculate vagrant
growth form; and (d) emaculate saxicolous forms. Underlined
terminal labels indicate chemically polymorphic genetic clusters.
Thickened branches are proportional to the level of posterior
probability support, and speciation probabilities at all nodes (see
[Yang and Rannala 2010] were greater than 0.95. (see Leavitt et al
2011b for complete details)
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it is unclear where the limit is between structured populations
and cryptic lineages. Recently, the genealogical concordance
phylogenetic species recognition has been employed to test
species delimitations (Taylor et al. 2000). This recognition
method uses concordance or discordance among loci as
indication for the isolation of clades. If different gene trees
have the same tree topologies it is assumed that this
concordance is due to fixation of previously polymorphic
loci following genetic isolation. Discordance, i.e. conflict
among the gene trees of different loci is interpreted as being
the result of recombination among individuals within a
species. The transition from concordance to discordance
determines the limits of species under this recognition
method. Strong support for clades in nodes in multi-locus
phylogenies is used as an indicator of species boundaries.
The problem with this approach is, however, that homoplasy
that leads to low support values can be caused by numerous
factors, including parallel evolution, reversals or small
number of differences.

Other methods attempt to circumvent these problems.
Evaluation of gene flow among clades with population
genetics statistics has been used in a study addressing
species delimitation in the genus Peltigera (O’Brien et
al. 2009). Another method, the general mixed Yule
coalescent method, aims at identifying the transition of
tokogenetic (intraspecific) and phylogenetic relationships
on a chronogram (Pons et al. 2006; Monaghan et al.

2009). The most recent common ancestral node at the
transition point is interpreted as distinguishing species.
This method has been used to delimit species and detect
cryptic species in various organisms, such as insects in
Madagascar (Monaghan et al. 2009), skinks (Miralles et
al. 2011), amphibians (Crawford et al. 2010), or rotifers
(Fontaneto et al. 2011), and has recently also been
applied to lichenized fungi (Parnmen 2011). However,
this method also assumes monophyly of species and can
only detect the minimal number of species present in the
data set.

Among other scenarios, monophyly of species cannot
be expected in the presence of peripatric speciation
(Fig. 3; see Funk and Omland [2003] for detailed
discussion). If speciation takes place in small, peripheral
populations, these are expected to undergo rapid genetic
change due to genetic drift, resulting in the founder-effect
(Mayr 1963). There is evidence for the presence of
peripatric speciation in ascomycetes (Wang et al. 2010)
and hence non-tree based methods are an attractive
alternative to accommodate for this speciation process.
Network-based approaches, including the cohesion species
recognition (Templeton 2001), have recently been used
exclusively or in addition to phylogenetic methods to
address species delimitation in lichen-forming fungi
(Printzen and Ekman 2002; Printzen et al. 2003; Wirtz et
al. 2008; Leavitt et al. 2011a,c).

Fig. 3 A hypothetical example
of peripatric speciation in which
a small population along the
periphery of a species range
becomes isolated and undergoes
speciation due to genetic drift
and selective pressures. a The
large circle represents the broad
distribution of the ‘parental’
species, ‘A’, recovered as a
monophyletic clade in phyloge-
netic reconstructions. In (b) the
small circle represents a small
and locally isolated population,
species ‘B’, derived from the
parental species. Phylogenetic
reconstructions results in a
monophyletic set of haplotypes,
species ‘B’—indicated by bar,
nested within a widely distrib-
uted and paraphyletic parental
species, ‘A’
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A further issue is the identification of problematic
species complexes. If DNA sequence data are already
available, a rapid and powerful method relying on compar-
isons of genetic distances can be used (Del-Prado et al.
2010). Intra- and interspecific distances derived from
maximum-likelihood phylogenetic trees inferred from
DNA sequences are compared. Based on these distance,
the method uses thresholds of genetic distances to identify
species. The method has been demonstrated to be powerful
in identifying species complexes with unusually high
genetic diversity in parmelioid lichens.

Since the distance-based method can be used with single
gene data sets, it will be useful in evaluating DNA barcode
data (Seifert et al. 2007; Seifert 2009) that will soon be
developed with the expected announcement of a fungal
barcoding gene. DNA barcoding is aiming at providing a
universal tool for identification of organisms. However,
DNA barcoding studies have also been instrumental in
identifying cryptic species in a variety of organisms (e.g.,
Saunders 2008; Chantangsi et al. 2007; Le Gall and
Saunders 2010; Johnson et al. 2008; Zemlak et al. 2009;
Burns et al. 2008; Gomez et al. 2007; Moura et al. 2008).

Conclusion

Species delimitation in lichenized fungi remains a challenge
in the molecular era. However, the appropriate use of DNA
sequence data, in conjunction with other lines of evidence,
allows researchers to identify species and to rigorously test
species boundaries with precision that had been unimagin-
able a decade ago.

Although different datasets and operational criteria may
give conflicting or ambiguous results due to multiple
evolutionary processes associated with speciation, the use
of independent suites of data and multiple empirical
methods have been shown to establish robust species
boundaries in many lichen-forming fungal lineages. Our
current interpretation of morphological characters has been
shown to vastly underestimate the diversity of lichenized
fungi. However, the widespread occurrence of cryptic
species, supported by previously unrecognized subtle
morphological and/or chemical differences identified a
posteriori with the help of a molecular phylogenetic
hypothesis, demonstrate that finding and applying the
appropriate morphological character sets may be a major
reason for the discrepancies of traditional species concepts
and molecular-based species delimitations. Also the sche-
matic use of morphological characters in favor of an
approach that uses a gestalt concept, has led to a
misunderstanding of the diversity of lichen-forming fungi.

These are exciting times for lichenologists and new
data will help us to better understand the evolution and

diversity of lichenized fungi, appropriately interpret
distribution patterns, more thoroughly assess ecological
roles of lichen symbioses, and play an important role in
effective conservation practices. We are hopeful that
lichenologists, who traditionally have been eager to
include new methods, such as chromatography, in their
routine identifications, will be amenable to include
molecular techniques to their routine examination of
specimens for identification and classification. Although
this may prove difficult to achieve by single individuals,
especially civic scientists that traditionally play and
important role in lichen taxonomy (Poelt 1992), the
increasing number of collaborative projects in lichenology
(e.g., Gueidan et al. 2009; Crespo et al. 2010b; Lumbsch
et al. 2011) make us optimistic that broad-scale collabo-
rative approaches will facilitate the inclusion of molecular
data in lichen research at all levels. This approach is
essential to successfully increase our knowledge of the
diversity of lichenized fungi on this planet.
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