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Irreversibility
❖ Irreversibility is one of the most fundamental concepts in 

thermodynamics.

❖ Quantifying the degree of irreversibility of a general process is a task of 
great technological importance. 

❖ This idea was originally developed for macroscopic systems. 

❖ However, it also finds broad applications in micro and mesoscopic 
systems. e.g.:

❖ Molecular motors.

❖ Nano-devices.

❖ Open quantum systems.



Micro and meso heat engines



Fluctuations of heat and work





Open quantum systems
❖ Here we address the question of how to quantify the 

degree of irreversibility of a quantum system 
undergoing open dynamics.

❖ The interesting aspect about quantum dynamics is the 
possibility of constructing engineered/non-equilibrium 
reservoirs:

❖ Zero temperature baths (vacuum fluctuations).

❖ Decoherence baths.

❖ Squeezed thermal baths.











❖ In general, the environment is a problem for quantum computing 
because it destroys coherences.

❖ In this paper they show that the environment can actually be used to 
make the quantum computation itself.

❖ Any universal quantum gate implementable as a unitary dynamics 
can also be implemented by an engineered reservoir.

❖ If we could engineer reservoirs we would be able to do quantum 
computing where noise is not a problem, but instead is the solution.



How to quantify irreversibility



How to quantify irreversibility?
❖ The energy of a system satisfies a continuity equation:  
 

❖ For the entropy that is not true: 
 

❖ Π represents the entropy production rate due to the 
irreversible dynamics:

dhHi
dt

= ��E

dS

dt
= ⇧� �

⇧ � 0 and ⇧ = 0 only in equilibrium



Example: RL circuit
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Example: two inductively coupled RL circuits
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E2
1

R1T1
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E2
2

R2T2
+

m2R1R2

(L1L2 �m2)(L2R1 + L1R2)

(T1 � T2)2

T1T2

GTL, T. Tomé, M. J. de Oliveira, J. Phys. 46 (2013) 395001 



Π and the relative entropy
❖ There is a famous formula which has been used both in the 

classical and quantum cases:  
 

❖ which is written in terms of the Kullback-Leibler divergence 
(relative entropy):  
 

❖ When the density matrices are both diagonal we obtain instead:

⇧ = � d

dt
S(⇢||⇢eq)

S(⇢||⇢eq) = tr(⇢ ln ⇢� ⇢ ln ⇢eq)

S(p||peq) =
X

n

(pn ln pn � pn ln p
eq
n ) pn = hn|⇢|ni





Example: master equation
dpn
dt

=
X

m

�
W (n|m)pm �W (m|n)pn

 

⇧ = � d

dt
S(p||peq) = �

X

n

dpn
dt

ln pn/p
eq
n

=
X

n,m

W (m|n)pn ln

W (m|n)pn
W (n|m)pm

�

J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).

W (n|m)peqm = W (m|n)peqn

where I assumed detailed balance holds



The entropy flux then becomes

If
peqn =

e��En

Z

we get 

� = � 1

T

X

n

En
dpn
dt

=
�E

T

This is the standard thermodynamic relation 
between dS and dE 

� = ⇧� dS

dt
=

X

n

dpn
dt

ln peqn



Open quantum dynamics
❖ Here we will be interested in the dynamics of a 

quantum system in contact with a reservoir. 

❖ We will assume that this dynamics can be modeled by a 
Lindblad master equation  
 

❖ where D is called the Lindblad dissipator

d⇢

dt
= �i[H, ⇢] +D(⇢)



❖ To be concrete, let us first consider the simplest example 
possible: a quantum harmonic oscillator

H = !a†a

D(⇢) = �(n̄+ 1)


a⇢a† � 1

2
{a†a, ⇢}

�
+ �n̄


a†⇢a� 1

2
{aa†, ⇢}

�

❖ If we look at the diagonal elements of the density matrix

hn|d⇢
dt

|ni = dpn
dt

= hn|D(⇢)|ni

❖ We then get the standard master equation for the 
harmonic oscillator
dpn
dt

= �(n̄+ 1)


(n+ 1)pn+1 � npn

�
+ �n̄


npn�1 � (n+ 1)pn+1

�

n̄ =
1

e�! � 1



Problems with the standard formulation

❖ Not clear how to extend to multiple 
reservoirs.

❖ Not clear how to extend to engineered/
non-equilibrium reservoirs.

❖ Π and Φ diverge when T → 0.

dS

dt
= ⇧� �

⇧ = � d

dt
S(⇢||⇢eq)

� =
�E

T

❖ Zero temperature limit is extensively used in experiment 
(vaccum fluctuations). 

❖ Everything is well behaved. Even dS/dt. Only Π and Φ diverge.



Example: evolution of a coherent state
❖ Consider the evolution of a harmonic 

oscillator starting from a coherent 
state:  
 

❖ The evolution remains as a (pure) 
coherent state:

⇢(0) = |µihµ|

-� -� � � �
-�

-�

�

�

�

��(α)

��
(α
)

⇢(t) = |µtihµt|

µt = µe�(i!+�/2)t

❖ The entropy is zero throughout, but Π and Φ would both be infinite.

❖ This is clearly an inconsistency of the theory.



Rényi-2 and Wigner entropy
❖ We propose an alternative to describe the entropy production and 

entropy flux.

❖ We do not attempt to define a thermodynamic entropy. Instead, we 
adopt the pragmatic point of view of choosing one of several entropic 
measures which characterize the disorder in the system.

❖ Instead of using the von Neumann entropy, we use the Rényi 
entropy: 
 

❖ When alpha = 1, we recover the von Neumann entropy:  
 

S↵ =
1

1� ↵
ln tr⇢↵

S1 = �tr(⇢ ln ⇢)



❖ Recently there has been some proposals on how to 
construct the laws of thermodynamics using the Rényi 
entropy:

❖ In the classical limit all Rényi entropies converge to the 
von Neumann entropy.



❖ The most convenient entropy is the Rényi-2, which is directly related 
to the purity of a quantum state:

S2 = � ln tr⇢2

❖ We consider a single bosonic system for simplicity (the extension 
to several bosonic modes is straightforward).

❖ We also work in phase space by defining the Wigner function:

W (↵,↵⇤) =
1

⇡2

Z
d2�e��↵⇤+�⇤↵tr

⇢
⇢e�a

†��⇤a

�

❖ It was shown in PRL 109, 190502 (2012) that for Gaussian states 
this coincides with the Wigner entropy:

S = �
Z

d2↵W (↵,↵⇤) lnW (↵,↵⇤)



Quantum Fokker-Planck equation
❖ In phase space 

the Lindblad Eq. 
becomes a 
quantum Fokker-
Planck Eq.:

@tW = �i!


@↵⇤(↵⇤W )� @↵(↵W )

�
+D(W )

D(W ) = @↵J(W ) + @↵⇤J⇤(W )

J(W ) =
�

2


↵W + (n̄+ 1/2)@↵⇤W

�

❖ This is a continuity equation and 
J(W) is the irreversible component 
of the probability current.

⇢eq =
e��!a†a

Z
Weq =

1

⇡(n̄+ 1/2)
exp

⇢
� |↵|2

n̄+ 1/2

�

J(Weq) = 0



Wigner entropy production and flux
❖ Now we define the entropy production rate as:

⇧ = � d

dt
S(W ||Weq)

⇧ =
4

�(n̄+ 1/2)

Z
d2↵

|J(W )|2

W

� =
�

n̄+ 1/2


ha†ai � n̄

�

❖ Substituting the Fokker-Planck equation we get 

❖ The entropy flux rate then becomes



❖ In this model the energy flux is given by 

�E = �!


ha†ai � n̄

�

� =
�E

!(n̄+ 1/2)

� =
�E

!(n̄+ 1/2)
' �E

T

❖ Thus the entropy flux and energy flux will be related by 

❖ At high temperatures                           so we get!(n̄+ 1/2) ' T

❖ But now both Π and Φ remain finite at T = 0. 



Stochastic trajectories and fluctuation theorems

❖ We can also arrive at the same result using a completely 
different method. 

❖ We analyze the stochastic trajectories in the complex plane. 

❖ The quantum Fokker-Planck equation is equivalent to a 
Langevin equation in the complex plane:

dA

dt
= �i!A� �

2
A+

p
�(n̄+ 1/2)⇠(t)

h⇠(t)⇠(t0)i = 0, h⇠(t)⇠⇤(t0)i = �(t� t0)



❖ We can now define the entropy produced in a trajectory 
as a functional of the path probabilities for the forward 
and reversed trajectories:

⌃[↵(t)] = ln
P[↵(t)]

PR[↵⇤(⌧ � t)]

he�⌃i = 1

❖ This quantity satisfies a fluctuation theorem

⇧ =
hd⌃[A(t)]i

dt

❖ We show that we can obtain exactly the same formula for 
the entropy production rate if we define it as 



Dephasing bath
❖ A dephasing bath is one which does not affect the populations of the 

energy levels, but eliminates coherences (off-diagonal elements). 

❖ For the harmonic oscillator the dephasing bath reads:

D(⇢) = �


a†a⇢a†a� 1

2
{(a†a)2, ⇢}

�

❖ For this bath, applying a similar procedure we find that 

I(W ) = �↵(↵⇤@↵⇤W � ↵@↵W )/2

⇧ =
2

�

Z
d2↵

|↵|2
|I(W )|2

W
, � = 0



❖ For the dephasing bath there is no entropy flux, only a 
production.

❖ Sometimes “dephasing” is defined as a noise for which 
there is no flow of energy. But that is not always true. 

❖ Now we find a more general definition: dephasing is a type 
of bath for which there is no entropy flux.

❖ This also matches with the definition of dephasing as a 
unital map (a map which has the identity matrix as a fixed 
point). 

❖ It is know that the entropy of a unital map can never 
decrease. This agrees with the idea of no flux.



Squeezed bath
❖ A general dephasing bath can be represented by the 

dissipator

Dz(⇢) = �(N + 1)


a⇢a† � 1

2
{a†a, ⇢}

�

+�N


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2
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�

��Mt


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2
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�

��M⇤
t


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2
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�

N + 1/2 = (n̄+ 1/2) cosh 2r

Mt = �(n̄+ 1/2)ei(✓�2!st) sinh 2r



❖ For the squeezed bath we find that the entropy 
production rate is given by 

⇧ =

4

�(n̄+ 1/2)

Z
d2↵

W

��Jz cosh r + J⇤
z e

i(✓�2!st)
sinh r

��2

Jz(W ) =
�

2


↵W + (N + 1/2)@↵⇤W +Mt@↵W

�

❖ The entropy flux rate is given by 

� =

�

n̄+ 1/2


cosh(2r)ha†ai � n̄+ sinh

2
(r)� Re[M⇤

t haai]
n̄+ 1/2
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Pumped cavity under a squeezed bath

❖ We consider a cavity pumped by 
a laser and subject to a squeezed 
bath at zero temperature.

H = !ca
†a+ i(Ee�i!pta† � E⇤ei!pta)

�E =

⌧
@H

@t

�
=

2!p|E|2

2 +�2
cp

❖ The energy flux is given by 

It is zero when 
there is no pump



⇧ =

2�2
sc

2
+�

2
sc

sinh

2
(2r) +

4|E|2

2
+�

2
cp

cosh(2r) + 4Re


E2e�i(2�pst+✓

(+ i�cp)
2

�
sinh(2r)

❖ In the steady-state Π = Φ and we get

❖ First term remains even when there is no pump

⇧ =
2�2

sc

2 +�2
sc

sinh2(2r)

❖ This means there is an entropy production even though there is 
no energy flux.

❖ The system is at a NESS because of a frequency mismatch.

❖ This is a clear exception to the paradigm that non-equilibrium 
steady-states must be associated with macroscopic currents.

�sc = !s � !c



To appear soon in PRL as an editor suggestion.



Experiment
❖ We have estimated the total entropy production rate for 

two experimental systems presenting a NESS



Optomechanical oscillator BEC in a high-finesse 
cavity

group of M. Aspelmeyer,  
University of Vienna

group of T. Esslinger, 
ETH Zürich

❖ In both cases one bath describes the loss of photons 
from the cavity, which is a bath at zero temperature.



❖ In the steady-state the entropy production rate equals 
the entropy flux rate.

⇧ = � = 4aha†ai+
2�b

n̄b + 1/2
(hb†bi � n̄b)

❖ Estimating the entropy production experimentally is not 
so easy because all parameters are not actually constant.

Optomechanical oscillator BEC



❖ At the time of these experiments we were not able to 
measure the individual contribution to the entropy 
production. 

❖ We measured only the individual entropy fluxes. 

❖ To measure each entropy production rate we need to 
know the entire covariance matrix of the system, which 
is harder.

❖ But now we know how to do it.

❖ Would be very nice to do this experimentally in the 
future.



Conclusions
❖ Irreversibility can be quantified by the entropy production. 

❖ The theory of entropy production for open quantum 
systems is not complete. 

❖ Quantum systems are interesting due to the possibility 
of constructing engineered/non-equilibrium reservoirs.

❖ We have proposed an alternative to this problem based on 
the Rényi-2 entropy and phase space measures.

❖ Our approach works at T = 0 and is applicable to different 
types of non-equilibrium baths.



Future perspectives
❖ We have also constructed a similar theory for spin 

systems using spin coherent states.

❖ In the future, our goal will be to relate entropy 
production with loss of coherence and loss of 
entanglement. 

❖ We also want to investigate the connection between 
entropy production and non-Markovian dynamics. 



Thank you.


