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Irreversibility

« Irreversibility is one of the most fundamental concepts in
thermodynamics.

* Quantifying the degree of irreversibility of a general process is a task of
great technological importance.

* This idea was originally developed for macroscopic systems.

* However, it also finds broad applications in micro and mesoscopic
systems. e.g.:

» Molecular motors.
+ Nano-devices.

* Open quantum systems.
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Open quantum systems

+ Here we address the question of how to quantify the
degree of irreversibility of a quantum system
undergoing open dynamics.

* The interesting aspect about quantum dynamics is the
possibility of constructing engineered/non-equilibrium
1reservoirs:

« Zero temperature baths (vacuum fluctuations).
+ Decoherence baths.

* Squeezed thermal baths.
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Quantum computation and quantum-state
engineering driven by dissipation

Frank Verstraete'*, Michael M. Wolf? and J. Ignacio Cirac®*

* In general, the environment is a problem for quantum computing
because it destroys coherences.

« In this paper they show that the environment can actually be used to
make the quantum computation itself.

“ Any universal quantum gate implementable as a unitary dynamics
can also be implemented by an engineered reservoir.

« If we could engineer reservoirs we would be able to do quantum
computing where noise is not a problem, but instead is the solution.



How to quantly irreversibility



How to quantily irreversibility?

* The energy of a system satisfies a continuity equation:

d({H)

elsdsiin s
dt =

* For the entropy that is not true:

s

= _[-&
dt

« T1 represents the entropy production rate due to the
irreversible dynamics:

I >0 and II =0 only in equilibrium



Example: RL circuit

Steady-state
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Example: two inductively coupled RL circuits

T 2 m? Ry Ry (Ty — Tp)?
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GTL, T. Tomé, M. J. de Oliveira, J. Phys. 46 (2013) 395001



I1 and the relative entropy

+ There is a famous formula which has been used both in the

classical and quantum cases:

d

1 = ——S(p||oe
(0l pea)

* which is written in terms of the Kullback-Leibler divergence
(relative entropy):

S| lp =it plnio=)

* When the density matrices are both diagonal we obtain instead:

S(pHpeq) = Z(pn lnpn = i lnpqezq) Pn = <n|p|n>

n
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Example: master equation

s =3 {Wnimlpn ~ Wminipa )
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where I assumed detailed balance holds
W(n|m)p,, = W (m|n)p;’

J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).



The entropy flux then becomes

If -—BEx

we get

This is the standard thermodynamic relation
between dS and dE



Open quantum dynamics

* Here we will be interested in the dynamics of a
quantum system in contact with a reservoir.

* We will assume that this dynamics can be modeled by a
Lindblad master equation

AT —i[H,p] D(p)

“ where D is called the Lindblad dissipator



To be concrete, let us first consider the simplest example
possible: a quantum harmonic oscillator

; 1 ; _ : :
D(p) =(n+1)|apa’ — Z{a'a,p}| +yn|a'pa - {ad’, p}
: : 2 :

H =wad'a =
If we look at the diagonal elements of the density matrix

(n) Lin) = B2 = (ulD(p)In)

We then get the standard master equation for the
harmonic oscillator

dpn
dt

o ’y(ﬁ I 1) (n o 1)pn—|—1 D A T s (n -k 1)pn—|—1



Problems with the standard formulation

* Not clear how to extend to multiple a5 =11 — @
reservoirs. 4
+ Not clear how to extend to engineered / T d g
non-equilibrium reservoirs. B (r] \,Oeq)
« ITand @ diverge when T — 0. o Qg
B

« Zero temperature limit is extensively used in experiment
(vaccum fluctuations).

“ Everything is well behaved. Even dS/dt. Only IT and ® diverge.



Example: evolution of a coherent state

+ Consider the evolution of a harmonic

o
oscillator starting from a coherent 7
state: i \
p(0) = ) * A |
§ 0’ ’I/ .,’,':\l \I ll
‘ - - | PRl
The evolution remains as a (pure) S T
coherent state: \
_1l ©
p(t) = |pae) (i | & |
. _2 e el W o g ‘ e
1y = Me_(zw—l-’Y/Q)t =i v 1 :

* The entropy is zero throughout, but I'T and ® would both be infinite.

This is clearly an inconsistency of the theory:.



Rényi-2 and Wigner entropy

* We propose an alternative to describe the entropy production and
entropy flux.

+ We do not attempt to define a thermodynamic entropy. Instead, we
adopt the pragmatic point of view of choosing one of several entropic
measures which characterize the disorder in the system.

* Instead of using the von Neumann entropy, we use the Rényi

entropy:

1
S In trp®
l -«

* When alpha =1, we recover the von Neumann entropy:

51 = —tr(pln p)



« Recently there has been some proposals on how to
construct the laws of thermodynamics using the Rényi
entropy:

The second laws of quantum thermodynamics

Fernando Brandao®', Michat Horodecki®, Nelly Ng¢, Jonathan Oppenheim“%?, and Stephanie Wehner“®

PNAS | March 17,2015 | vol. 112 | no. 11 | 3275-3279

* In the classical limit all Rényi entropies converge to the
von Neumann entropy.



* The most convenient entropy is the Rényi-2, which is directly related
to the purity of a quantum state:

Soi——Intro

* We consider a single bosonic system for simplicity (the extension
to several bosonic modes is straightforward).

* We also work in phase space by defining the Wigner function:

1 * * )
Wi(a,a™) = = /dQ)\e_m A O‘tr{peMT_)‘ a}

T

+ It was shown in PRL 109, 190502 (2012) that for Gaussian states
this coincides with the Wigner entropy:

S —/dQOzW(a,a*)ln Wia,a™)



(Quantum Fokker-Planck equation

* Inphase space 9, = —iw|dur (W) — Bu(aW)| + D(W)
the Lindblad Eg. — -
becomes a D(W) = 0aJ (W) + 0a-J" (W)
quantum Fokker- |
Planck Eq.: _ J

* This is a continuity equation and
J(W) is the irreversible component J(Weq) =0
of the probability current.

~pwalo 1 a?
&
v S e I,
oAl et T (R +1/2) eXp{ n+1/2}




Wigner entropy production and flux

* Now we define the entropy production rate as:

d
H: T s e
< S(W(|Weo)

* Substituting the Fokker-Planck equation we get

e
H_v(frH—l/Q)/d W

* The entropy flux rate then becomes

i t -
P = i
ﬁ+1/2_<aa> n




* In this model the energy flux is given by

Op =wl|{a'a) — 7

* Thus the entropy flux and energy flux will be related by

OF5

R

“ At high temperatures w(n +1/2) ~ T so we get

T

e s

+ But now both I'T and ® remain finite at T = 0.



Stochastic trajectories and fluctuation theorems

* We can also arrive at the same result using a completely
different method.

* We analyze the stochastic trajectories in the complex plane.

* The quantum Fokker-Planck equation is equivalent to a
Langevin equation in the complex plane:

o :
v —jwA — 514 +/y(n+ 1/2)E(t)

(@) =0,  (£@)& 1)) =68t —1)



* We can now define the entropy produced in a trajectory
as a functional of the path probabilities for the forward
and reversed trajectories:

 Pla)
PR[O&*(T —t)]

Yla(t)] =1

« This quantity satisfies a fluctuation theorem
€2) =1

* We show that we can obtain exactly the same formula for
the entropy production rate if we define it as

(d]A#)])

=
dit




Dephasing bath

* A dephasing bath is one which does not affect the populations of the
energy levels, but eliminates coherences (off-diagonal elements).

* For the harmonic oscillator the dephasing bath reads:

: : :
D(p) = A|a'apa’a— {(a'a)®, p}

* For this bath, applying a similar procedure we find that

T 2 d?a | I(W)]|?

b =0
Nl U

I(W) = Aa(a*8ae W — aBy W) /2



* For the dephasing bath there is no entropy flux, only a
production.

* Sometimes “dephasing” is defined as a noise for which
there is no flow of energy. But that is not always true.

* Now we find a more general definition: dephasing is a type

of bath for which there is no entropy flux.

* This also matches with the definition of dephasing as a
unital map (a map which has the identity matrix as a fixed
point).

* It is know that the entropy of a unital map can never

decrease. This agrees with the idea of no flux.



Squeezed bath

* A general dephasing bath can be represented by the
dissipator

= e e
D.(p) —’Y(N‘Fl){ p 2{ ,p}} N +1/2 = (n+1/2)cosh2r

1
e '
+yN _a pa Q{aa 7,0}} M, = —(7+ 1/2)e"9=2%s1) ginh 27

; 1
—~v M, |a'pa’ — i{aTaT,p}}

=" 1
—’}/Mt apa — §{CLCL, p}:l



For the squeezed bath we find that the entropy

production rate is given by

4
S ey
>
JZ(W) =F 9

aW + (N 4+ 1/2)00+ W + M8, W

d? o

5T |JZ coshr + JFetlf—2wst) si]f1h7°|2

The entropy flux rate is given by

o

¢ = cosh(2r)(a'a) — A + sinh®(r)

A= L2,

Re[M} (aa)]
T 12




Pumped cavity under a squeezed bath

* We consider a cavity pumped by

a laser and subject to a squeezed

bath at zero temperature.

Br=wandsilce g =500

* The energy flux is given by

D = <8H> 22 2"‘*"p‘£|2 It is zero when
LG

e eA, there is no pump



* In the steady-state IT = ® and we get

526—z'(2Ap3t—|—9
(K + 1Acp)?

e
2T Az,

4k|E|?
pe N

JEl= sinh?(2r) 4 cosh(2r) + 4/1Re{ ] sinh(2r)

* First term remains even when there is no pump

DA

i
7+ O,

sinh?(2r) AN

* This means there is an entropy production even though there is
no energy flux.

* The system is at a NESS because of a frequency mismatch.

* This is a clear exception to the paradigm that non-equilibrium
steady-states must be associated with macroscopic currents.
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Experimment

* We have estimated the total entropy production rate for
two experimental systems presenting a NESS

Measurement of irreversible entropy production in mesoscopic quantum systems out
of equilibrium

M. Brunelli,"* L. Fusco,’* R. Landig,2 W. Wieczorek,® J. Hoelscher-Obermaier,** G. Landi,’
F. L. Semiao,” A. Ferraro,' N. Kiesel,®> T. Donner,? G. De Chiara,' and M. Paternostro’
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Optomechanical oscillator BEC in a high-finesse
cavity
group of M. Aspelmeyer, group of T. Esslinger,
University of Vienna ETH Ziirich

“ In both cases one bath describes the loss of photons

from the cavity, which is a bath at zero temperature.



* In the steady-state the entropy production rate equals
the entropy flux rate.

27 5
e VALURLD

« Estimating the entropy production experimentally is not
so easy because all parameters are not actually constant.
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“ At the time of these experiments we were not able to
measure the individual contribution to the entropy
production.

* We measured only the individual entropy fluxes.

* To measure each entropy production rate we need to
know the entire covariance matrix of the system, which
is harder.

+ But now we know how to do it.

* Would be very nice to do this experimentally in the
future.



Conclusions

+ Irreversibility can be quantified by the entropy production.

# The theory of entropy production for open quantum
systems is not complete.

+ Quantum systems are interesting due to the possibility
of constructing engineered / non-equilibrium reservoirs.

+ We have proposed an alternative to this problem based on
the Rényi-2 entropy and phase space measures.

« Our approach works at T = 0 and is applicable to different
types of non-equilibrium baths.



Future perspectives

* We have also constructed a similar theory for spin
systems using spin coherent states.

« In the future, our goal will be to relate entropy
production with loss of coherence and loss of
entanglement.

* We also want to investigate the connection between
entropy production and non-Markovian dynamics.






