

APROL R 4.0 - Extended Engineering
F1 Drivers for B&R Connections

F1 Drivers for B&R Connections
ii

We reserve the right to change the contents of this manual without warning. The information
contained herein is believed to be accurate as of the date of publication; however, Bernecker +
Rainer Industrie-Elektronik Ges.m.b.H. makes no warranty, expressed or implied, with regards to
the products or the documentation contained within this book. In addition, Bernecker + Rainer
Industrie-Elektronik Ges.m.b.H. shall not be liable in the event of incidental or consequential
damages in connection with or resulting from the furnishing, performance, or use of these
products. The software names, hardware names, and trademarks used in this document are
registered by the respective companies.
The following documentation F1 Drivers for B&R Connections
(Version 4.06 / 25.08.2014) refers to APROL R 4.0
 2013 Bernecker + Rainer Industrie-Elektronik Ges.m.b.H.
The Connectivity manual group contains the following manuals
 F1 Drivers for B&R Connections
with the order number:
 MAAPCONN40-ENG

i

Content

F1 Drivers for B&R Connections V4.06

1 AnslDriver 1-1

1.1 Basic method of operation of the AnslDriver 1-1
1.1.1 General information about client redundancy 1-1
1.1.2 Notes for operation of the driver 1-1
1.1.3 What are 'READ', 'WRITE' and 'SYNC' variables? 1-1
1.1.4 What is the benefit of the TCP/IP protocol which is used in comparison to

the INA UDP/IP protocol? 1-3
1.1.5 How is the connection monitoring implemented, so that the large TCP/IP

timeouts do not have a negative effect? 1-3
1.1.6 How are event variables updated on the controller and what effect does

the client redundancy have on the event variables? 1-3
1.1.7 Which benefits does the poll mode have in comparison to the event

mode? 1-4
1.1.8 Which system variables are basically made available and where do they

get their information? 1-4
1.2 AnslDriver in CC 1-5
1.3 ApDrvAnsl diagnosis (ANSL cross-communication) 1-5

2 dcs2000Driver 2-15

2.1 General information about dcsDriver driver package 2-15
2.2 Installation of the dcsDriver software 2-15

2.2.1 Installing the dcsDriver driver package 2-15
2.2.2 Delivery contents of the dcsDriver driver package 2-16
2.2.3 Configuration after the installation 2-17

2.3 Description and start options for the tools 2-18
2.3.1 General information about the start options for the tools 2-18
2.3.2 Communication parameters 2-18
2.3.3 The tools and their options 2-19

2.4 Configuration of the PVs for the dcsDriver 2-22
2.4.1 Configuration of the PVs in the engineering system 2-22
2.4.2 Configuration with dcsExport 2-27

2.5 Debugging and error handling 2-27
2.5.1 The dcsDriver status variables 2-27
2.5.2 dcsDriver error numbers and error messages 2-28

3 dcsEventDriver 3-1

3.1 General information - dcsEventDriver 3-1
3.2 Configuration of the dcsEventDriver 3-1

3.2.1 Structure of the configuration file on the control computer 3-2
3.3 Interfaces 3-4
3.4 Procedure from the configuration to active connection 3-5
3.5 dcsEventDriver status messages 3-5

F1 Drivers for B&R Connections
ii

4 Dispatcher 4-1

4.1 General information about the Dispatcher 4-1
4.1.1 Functionality of the Dispatcher 4-1
4.1.2 Requirements / Limitations 4-2
4.1.3 Dispatcher delivery contents 4-3

4.2 Configuration of the Dispatcher on the control computer 4-3
4.2.1 Dispatcher start options 4-3
4.2.2 Configuration of the Dispatcher 4-5
4.2.3 Configuration of the Dispatcher jobs 4-5
4.2.4 Configuration of the Dispatcher groups 4-9

4.3 Possible diagnostics when implementing the Dispatcher on the control
computer 4-11

4.4 Driver configuration example (Dispatcher) 4-13
4.5 Dispatcher status variables 4-13

5 EventDriver 5-1

5.1 General information about the EventDriver 5-1
5.1.1 Using the EventDriver 5-1
5.1.2 EventDriver operation 5-1
5.1.3 Technical note about the usage on the controller 5-2
5.1.4 Schematic overview for EventDriver 5-3

5.2 Contents of the RPM package 5-4
5.2.1 Description of the files included in the package 5-4

5.3 Configuration 5-5
5.3.1 Configuration of the EventDrivers 5-6
5.3.2 Configuration of the driver in the APROL system 5-6

5.4 EventDriver status variables 5-7
5.5 Event variables in external tasks 5-7

5.5.1 Transferring event variables with their own time stamp 5-7
5.5.2 Configuration of the user variables with the Gateway editor 5-9
5.5.3 Testing the software 5-9
5.5.4 Limitations 5-10
5.5.5 ApEvtLink.h 5-11
5.5.6 ApEvtLink.c 5-12
5.5.7 ApDrvLink.c 5-15
5.5.8 Example configuration for the APROL EventDriver 5-16
5.5.9 Creating a task with Automation Studio 5-16
5.5.10 Using the driver with a C block 5-17

6 InaDriver 6-1

6.1 General information about the InaDriver 6-1
6.2 Description of the PC hardware 6-1

6.2.1 Softing PROFIboard 6-1
6.2.2 B&R PC Profibus card 6-2
6.2.3 PC Ethernet card 6-2
6.2.4 Serial interfaces 6-2

6.3 Installation of the PC software 6-3

iii

6.4 Configuration of the controller hardware 6-3
6.4.1 System settings 6-3

6.5 Installation of the controller software 6-4
6.5.1 Description of the individual modules 6-4

6.6 Description of the utilities (InaDriver) 6-4
6.6.1 InaCmd 6-4
6.6.2 CfgInaDriver 6-6
6.6.3 InaConnect 6-7

6.7 Configuration of the APROL driver (InaDriver) 6-11
6.7.1 Description of the InaDriver's start options 6-12
6.7.2 Configuration file of the APROL driver (InaDriver) 6-14

6.8 InaDriver status variables 6-17
6.9 Error 6-25

6.9.1 Error numbers and messages (InaDriver) 6-25
6.10 The InaDriver start script 6-35

6.10.1 Structure 6-35
6.11 Error analysis and handling 6-38

6.11.1 Profibus connection 6-38
6.11.2 Ethernet connection 6-40

6.12 Notes on literature (InaDriver) 6-40

7 Modbus controller driver 7-1

7.1 General information about the Modbus controller driver 7-1
7.1.1 Key data of the Modbus controller driver 7-2

7.2 Data module structure 7-2
7.2.1 Description of the data module entries 7-3

7.3 Creating the data module with the configuration editor 7-8
7.4 Example 7-10
7.5 Modbus controller driver status variables 7-11

8 ModbusPlus driver package 8-1

8.1 General information about the ModbusPlus driver 8-1
8.1.1 Contents of delivery ModbusPlus 8-1
8.1.2 Supported hardware 8-1

8.2 Configuration of the APROL driver on the control computer 8-1
8.3 kMbpManager and mbpManager 8-5
8.4 Possible diagnostics when implementing the driver on the control computer 8-7
8.5 Driver configuration example (ModbusPlus) 8-9
8.6 ModbusPlus driver status variables 8-10

9 OPC server 9-1

9.1 Definition of terms for OPC 9-1
9.1.1 General Information about OPC 9-1
9.1.2 Information about the APROL OPC server 9-2

9.2 Installing and registering the OPC server 9-4
9.3 Information about the configuration file 9-5
9.4 Structure of the configuration file 9-8

F1 Drivers for B&R Connections
iv

9.4.1 Structure of an example configuration file 9-9
9.5 Event Viewer in Windows for diagnosis 9-12
9.6 Debugging the OPC Server 9-12

9.6.1 Changing of the debugging behavior during runtime 9-15
9.6.2 Information about the debug output 9-16

9.7 OPC Server status variables 9-16
9.8 Example for OPC clients with the APROL OPC server 9-17
9.9 Additional information about the OPC server 9-19

9.9.1 Version information 9-19
9.9.2 Licensing information about the iconv library 9-20
9.9.3 Literature notes on the topic of 'OPC' 9-21

10 ProfiboardDriver 10-1

10.1 General information about the ProfiboardDriver 10-1
10.2 Hardware configuration 10-1
10.3 Installing the PROFIboard software 10-3
10.4 Description of the start script 10-5

10.4.1 The start script 10-5
10.5 Software configuration 10-6

10.5.1 Description of the network parameter file profibusx.cfg 10-6
10.5.2 Notes concerning the object file profibusx.ov 10-11

10.6 Description of the utilities (ProfiboardDriver) 10-13
10.6.1 pb_install 10-13
10.6.2 pb_init 10-13
10.6.3 pb_manager 10-13
10.6.4 pb_debug 10-15
10.6.5 pb_netconfig 10-16
10.6.6 pb_list 10-17
10.6.7 pb_history 10-17
10.6.8 pb_controllerreset 10-18
10.6.9 pb_read 10-18
10.6.10 pb_timesync 10-19
10.6.11 pb_settime 10-20
10.6.12 pb_taskmgr 10-20

10.7 Configuration of the APROL driver (ProfiboardDriver) 10-21
10.7.1 General information about the driver configuration 10-21
10.7.2 Description of the ProfiboardDriver's start options 10-21
10.7.3 Configuration file of the APROL driver (ProfiboardDriver) 10-26

10.8 Profiboard driver status variables 10-31
10.9 APROL driver error numbers and error messages 10-32

10.9.1 Error numbers and messages (ProfiboardDriver) 10-32
10.10 Integrating the APROL Profiboard start script 10-33

10.10.1 The APROL start script 10-33
10.11 Error analysis 10-35
10.12 Notes on literature (ProfiboardDriver) 10-37

11 Process bus redundancy for Ethernet connections 11-1

v

11.1 General information about process bus redundancy for Ethernet
connections 11-1

11.1.1 Configuring process bus redundancy with the InaDriver 11-2
11.1.2 Configuring process bus redundancy with the EventDriver 11-2
11.1.3 Configuring process bus redundancy with controller cross-communication11-3

12 RK512 driver 12-1

12.1 General information about the RK512 driver 12-1
12.2 Information about the RK512Driver driver package 12-1
12.3 Delivery contents of the RK512 driver package 12-1
12.4 Installing the RK512Driver RPM package 12-2
12.5 RK512Driver for the control computer 12-3

12.5.1 Launching options RK512Driver 12-3
12.5.2 Creating the rk512.cnf configuration file 12-6

12.6 RK512 driver status variables 12-12
12.7 The ApDrvRK512 driver for controllers 12-12

12.7.1 General information about ApDrvRK512 12-12
12.8 Commissioning and Debugging 12-14
12.9 Scaling values 12-15
12.10 Scaling values 12-16

13 SimaticDriver 13-1

13.1 General information about the SimaticDriver 13-1
13.1.1 SimaticDriver delivery contents 13-1

13.2 Simatic driver for the control computer 13-1
13.2.1 Reference values of the Simatic driver for the control computer 13-1
13.2.2 Driver start options 13-2
13.2.3 Description of the configuration file 13-3
13.2.4 Mode of operation of the different task types 13-6
13.2.5 Additional notes about the mode of operation 13-7
13.2.6 PV declaration 13-8
13.2.7 Scaling formulas 13-9
13.2.8 SimaticDriver's status variables 13-10
13.2.9 Workflow description for the control computer driver 13-11
13.2.10 Driver redundancy 13-12
13.2.11 Configuration of the driver in CaeManager 13-13
13.2.12 Creating a configuration file with the configuration editor 13-13
13.2.13 Notes for starting up the driver 13-15

13.3 Simatic driver for the controller 13-16
13.3.1 Reference values of the Simatic driver for the controller 13-16
13.3.2 General information about the configuration data module 13-16
13.3.3 Configuring the driver for the controller 13-19
13.3.4 Workflow description for the controller driver 13-21
13.3.5 Description and value ranges for status variables 13-22

13.4 Configuration using the Simatic software 13-22
13.4.1 Configuration of the jobs with step 7 -NCM or INAT for S5 13-23

14 TI-Driver 14-1

F1 Drivers for B&R Connections
vi

14.1 General information about the TI driver 14-1
14.1.1 Important information about the TI driver 14-1
14.1.2 Description of driver behavior 14-1

14.2 Installation of the TI driver software 14-1
14.2.1 Delivery contents of the driver packet TI driver 14-2

14.3 Start options and configuration 14-2
14.3.1 Description of TI driver start options 14-2
14.3.2 Creating the configuration file 14-4
14.3.3 TI driver status variables 14-5
14.3.4 Diagnosis of the driver 14-6
14.3.5 Example configuration file TiDriver.cnf 14-6

15 wdpfDriver 15-1

15.1 General information about the wdpfDriver 15-1
15.2 wdpfDriver start options 15-1
15.3 Configuration of the wdpfDriver 15-2
15.4 The wdpfDriver status variables 15-3
15.5 Debugging 15-4
15.6 Additional notes 15-4

16 HPC 16-1

17 Dflt 17-1

17.1 Dflt in CC 17-1
17.2 Dflt in Plc 17-1

18 DrvEthDp 18-1

19 Et200 19-1

20 Appendix 20-2

20.1 Typical reported problems / solutions (FAQ) 20-2
20.2 Revision history 20-3
20.3 Document information 20-6

21 Glossary 21-1

vii

APROL Documentation
F1 Drivers for B&R Connections V4.06

belongs to the manual set
Connectivity

Target group, conventions, and format
The target group for the manual F1 Drivers for B&R Connections is users that deal with the
topic "interfaces" between the control computer and controller, and who are responsible for
connecting other systems using the APROL standard driver.
In this documentation the following formatting is used:

Key [Esc]-Key
Menu item "Module-Groups/open"
Directory name HOME/ENGIN/HTML/049

In this manual the following icons are used to highlight special information:

Listing

Listing

Listing

 Tipp or suggestion

 Note

Warning

Reference

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

This point is to be carried out by the user

List of necessary configuration steps
Next step
Configuration finished

 AnslDriver
1-1

1 AnslDriver

.

1.1 Basic method of operation of the AnslDriver
.

1.1.1 General information about client redundancy
In the case of client redundancy there are normally two AnslDrivers started on two different
control computers and they establish a connection to the same controller. One AnslDriver is the
master (has process control) and the other is the slave.
The '-connectTimeout' option is used to switch between both AnslDrivers. The AnslDriver with
process control (master) gives up its process control after it has expired. The slave registers this
and turns into the driver with the process control. The '-connectTimeout' begins when the
AnslDriver with process control can no longer reach the controller.
The '-slaveConnect' option is used when both AnslDrivers are started on one control computer.
This can be done for testing purposes. The second AnslDriver is thus informed that it should
start in slave mode.

1.1.2 Notes for operation of the driver
The AnslDriver monitors its configuration file for changes. If it recognizes a change in a
configuration file it re-reads the corresponding file. The driver signs off objects which are no
longer needed, and registers new ones. Existing objects without changes continue to be used
without a new registration. The result is a reduction in the load of the entire controller
communication during the download process.
It is possible to turn off this behavior with this if a complete new configuration is desired, instead
of a part configuration. Upon detecting the change in a configuration file, the driver is completely
re-started after a delay of 2 seconds, i.e. all objects are first signed off the controller and then
registered again after the automatic restart.

Notes for the '-noOnlineReconfiguration' option:
The '-noOnlineReconfiguration' option deactivates the automatic reading of the configuration
files if they have been changed in the file system.
The AnslDriver must be restarted if the option is set, so that its configuration files take effect
after having been changed.

1.1.3 What are 'READ', 'WRITE' and 'SYNC' variables?

 READ variables
READ variables are only transferred from the controller to the control computer. READ
variabels are 'provided' by the driver.

Operating mode 'Event mode':

F1 Drivers for B&R Connections
1-2

READ variables are registered on the controller in 'Event mode' and are monitored for
changes there. A change in value is transferred from the controller to the control
computer.
Special feature: Each event variables which is registered influences the response
behavior of the controller. There are 6000 event checks per second per default,
whereby each registration triggers one check (and therefore several checks if the
same variable is registered many times). If there are less than 6000 variables
registered, the checking of the individual variables increases respectively.
Disadvantage of this type of operation:
The checking of event variables is at the cost of CPU idle time, because the controller
must do the work of checking.
Advantage of this type of operation:
Possibly quicker reaction times compared with the poll mode.

Operating mode 'Poll mode':
READ variables are queried cyclically by the driver in 'Poll mode' (the '-eventMode'
option is not set). The driver must send a request telegram for each PV to the
controller and it creates a response with the current value.
Advantage of this type of operation: Load reduction on the controller, because the
cyclic value check is dropped.
Disadvantage of this type of operation:
- Slow response behavior
- The value detection of the individual variables is not deterministic, i.e. the current
value of individual variables may have slightly different times.
Basically, for both types of operation, the time stamp of the time detection is
currently created in the driver and the time stamp of the controller is not relevant. The
event driver must still be used for high resolution events with the time stamp of the
controller.

 WRITE variables:
WRITE variables are only transferred from the control computer to the controller. They
are either 'not supplied' or supplied by a control computer task.

WRITE variables are only transferred to the controller when necessary. The value in
the process control system is compared with the value on the controller upon each
connection establishment. If there is a deviation, the control computer value is sent to
the controller.
The driver then only writes the variable to the controller if a change has taken place on
the control computer, either due to a calculation in the control computer task ot the
setting of a value in a faceplate.

 SYNC variables:
SYNC variables are a combination of the above mentioned variable types. They are
transferred, according to the type of operation, cyclically or via event monitoring from
the controller to the control computer and kept there. If the value of such a variable is
changed by an application on the control computer, the driver writes the variable to the
controller.
SYNC variables are normally variables for CFC debugging.
The variables configured in the driver are only registered as objects on the controller
when they are actually needed by the system. Variables which are marked as being

 AnslDriver
1-3

'Idle' in the system (see relevant documentation) are not registered on the controller
and therefore do not need any resources. A registration takes place after the IDLE flag
has gone and remains until the IDLE flag reappears. Remanent variables are handled
as if they were never IDLE, i.e. they are always registered.

1.1.4 What is the benefit of the TCP/IP protocol which is used in
comparison to the INA UDP/IP protocol?

The INA protocol uses the UDP/IP protocol, which is not connection orientated and does not
monitor the connection via the operating system. This protocol does not ensure that telegrams
are received by the partner. The protocol must create its own solution for receipts. A loss in
connection is recognized through a missing connection monitoring telegram. A maximum of 240
bytes of reference data can be transferred per INA telegram.

ANSL communicates via the TCP/IP protocol. This protocol ensures that messages are
'received' with several receipts, whereby the telegram traffic increases on the network. An ANSL
telegram segment can contain 1400 bytes of reference data, whereby several segments can
constitute one telegram (they are only transferred separately). The TCP/IP connection
monitoring does not suffice for APROL and this is the reason why a corresponding
mechanism was created for a quick cyclic connection monitoring.

 A much larger flow of data as INA is possible, because of the much larger telegrams.

1.1.5 How is the connection monitoring implemented, so that the large
TCP/IP timeouts do not have a negative effect?

The telegrams are swapped cyclically (0.5 * ANSL_TIMEOUT) between both partners. If a
telegram is not received within the ANSL_TIMEOUT then the connection is disconnected and
must be re-established. This mechanism is necessary, because the connection monitoring of the
operating system only offers reaction times in the scope of minutes. A connection monitoring
telegram is not sent if another telegram with reference data has already been sent within this
time period.

ANSL_TIMEOUT can be set for all customer connections. A sensible value is one that
is not under two second, due to the nature of the system.

1.1.6 How are event variables updated on the controller and what effect
does the client redundancy have on the event variables?

Also see the description of the READ variables in event mode.
In case a second driver is started on a redundant system and it works with the '-eventMode' and
'-slaveConnect' options, its READ variables are already registered on the controller in an inactive
state. In the worst case, the number of event variables is doubled, whereby the sampling rate
(default 60000 PVs per second) is cut in half for each variable!

F1 Drivers for B&R Connections
1-4

1.1.7 Which benefits does the poll mode have in comparison to the event
mode?

The poll mode queries the value of a PV cyclically. The value is transferred even when there is
no change in value.
Also see the description of the READ variables in poll mode.

1.1.8 Which system variables are basically made available and where do
they get their information?

The system variables have the following syntax: 'S2A_<CTRL instance>_M_<name>'
Information from the driver (local):

Description: Name: Data type:

Number of connection attempts _CntReCon Integer

Configured READ PVs _CntRead Integer

Configured WRITE PVs _CntWrite Integer

Configured SYNC PVs _CntSync Integer

Configured EVENT PVs _cntEvent Integer

Currently active PVs _CntPvAct Integer

Number of cyclic updates _CntReadCycl Integer

Average value 'Events per second' from
controller

_CntEvt_s Integer

Average value 'Events per minute' from
controller

_CntEvt_m Integer

Number of write events sent to the
controller

_CntWrtEvt Integer

Active connection parameters _connectString String

Current connection status _connectState String

Last error _DrvErr Integer

Last error (text) _DrvErrTxt String

Information from the controller):

Description: Name: Data type:

Current load of the controller _CtrlLoad Integer

Current controller run mode _CtrlMode String

Controller node number _CtrlNode Integer

Configured controller host name _CtrlHost String

Configured controller IP address _CtrlIP String

 AnslDriver
1-5

Description: Name: Data type:

Type of controller _CtrlType String

'Short name' of the controllers _CtrlShortName String

Current battery status _CtrlBatteryStatus Integer

Current backplane battery status _CtrlBatteryStatusBP Integer

1.2 AnslDriver in CC

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

1.3 ApDrvAnsl diagnosis (ANSL cross-communication)
You can carry out an application-related diagnosis of the ApDrvAnsl configuration without
involving an application. You can see how an application-related diagnosis (the use of diagnostic
PVs in the driver configuration) can be carried out in the chapter for configuring a connection.

The ControllerManager Watch can be used for a manual diagnosis of the ApDrvAnsl. It is better
to use two Watch windows and save them as a Watch group after they have been configured.
The Watch group can then be loaded with the ApDrvAnsl context menu at any time, and shows
all of the Watch windows in the last composition.

The names of the driver variables which can be used for diagnosis purposes all begin with
'ApDrvAnsl_Diag'.

The ApDrvAnsl_DiagHelp variable should be placed in the first Watch window and all elements
set to a string output. A long cycle time should be set, e.g. 60 seconds, so that the system is not
disturbed unnecessarily. The displayed variables are constant help texts, which are useful for
the analysis in the second Watch window.

F1 Drivers for B&R Connections
1-6

Illustration 1: Definition of the memory area for global remanent variables in the sysconf

The variables which are necessary for the diagnosis can be placed in the second Watch window.
6 independent variables are available, depending on the demands of the diagnosis.

Each of these three FUBs are programmed to access an element directly, or repeatedly through
a filter which can be set.

ApDrvAnsl_DiagClient, ApDrvAnsl_DiagClientAll
ApDrvAnsl_DiagConn, ApDrvAnsl_DiagConnAll
ApDrvAnsl_DiagPv, ApDrvAnsl_DiagPvAll

The 'All' variables use filter attributes which meet the search requirements of the elements, e.g.
all elements with an error status.

Important:
Activating one or more diagnosis FUBs affects the timing of the driver. The diagnosis
should therefore not be used in a critical environment. The ApDrvAnsl is operated in task
class 8 and normally has a large tolerance, so that a cycle time violation is unlikely when
using diagnosis FUBs, but is possible.

The diagnosis variables which can be written by the user in the Watch are not the variables
which are transferred to the FUB afterwards. This avoids letting users destroying a variable
(status range) in critical areas.
The variables consist of an input range (inVar) and an output range (outVar). The user fills out
the inVar range and the result is shown in the outVar after processing.

 AnslDriver
1-7

Illustration 2:

A 'date' variable is stored in each outVar range, is interpreted in the Watch, and corresponds to
the value of clientTimestamp.timeStampSec. The nanoseconds there are not taken into account!

The dataObjName field should be filled out in almost every inVar range. The name of the
configuration data module where the connections and PVs are to be diagnosed must be
specified there. There are two data module names in an APROL environment: ApCnfAnslS is
the automatically generated data module where the physical view-spanning controller-controller
connections are configured (connections tab in the CaeManager controller view). ApCnfAnslC is
the data module where the user-specific connections are configured (APROL connections tab in
the CaeManager controller view).

Note:
The driver diagnosis carries on as long as at least one of the FUBs below has 1 set on the
enable bit. Ensure that the enable bits of all FUBs are set back to 0 before the Watch is
closed, in order to end all diagnosis activities.
The following diagnosis FUBs are available:

AsANSLClientDiag
With the AsANSLClientDiag function block, it is possible to detect the basic information of an
ANSL client. The FUB configuration is made via the ApDrvAnsl_DiagClient variable.
The name of the configuration module is specified in the inVar range and the diagnosis is started
by setting the enable bit.
The status field in the outVar range signals that the query was processed. A status value 0
means that the query was finished successfully and all other elements in the outVar structure
contain useful information. The other elements do not contain useful information if there is an
error (Status not equal to null); the status should be evaluated with ApDrvAnsl_DiagHelp in the
other Watch window

F1 Drivers for B&R Connections
1-8

Illustration 3:

ClientDiagInfo:
Parameter Description

clientDataObjName Name of the data module

ClientTimeStamp Time stamp of the last initialization in seconds and nanoseconds
since 1.1.1970.

clientConn Number of connections of this module

clientConnErr Number of currently erroneous connections of this module

AsANSLClientDiagAll
This FUB is identical to AsANSLClientDiag. The ApDrvAnsl_DiagClientAll variable is used for
configuration. A numerical value must be specified in the index field instead of the name of the
data module. This value (0 or 1 as a rule) specifies which data module must be analyzed. The
name of the data module which is found can be read on the
outVar.ClientDiagInfo.clientDataObjName output variable. If an invalid index is entered, a status
31877 – END_OF_LIST is invoked and the other output variables do not have a usable content
or that of the last call.

Illustration 4:

ClientDiagInfo:
Parameter Description

clientDataObjName Name of the data module

 AnslDriver
1-9

ClientTimeStamp Time stamp of the last initialization in seconds and nanoseconds
since 1.1.1970.

clientConn Number of connections of this module

clientConnErr Number of currently erroneous connections of this module

Note:
The index value is only used for repetitions over the data modules.
There is no fixed relation between the index value and the name of the data module. If a
configuration module is removed from the controller, the index value of the remaining data
modules may change!

AsAnslClientDiagConn
With the AsANSLClientDiagConn function block, it is possible to detect the basic connection
information of an ANSL client. The FUB configuration is made via the ApDrvAnsl_DiagConn
variable.
The name of the module, the name of the connection, and the enable bit must be set in the inVar
range.
The status field in the outVar range signals that the query was processed. A status value 0
means that the query was finished successfully and all other elements in the outVar structure
contain useful information. The other elements do not contain useful information if there is an
error (Status not equal to null); the status should be evaluated with ApDrvAnsl_DiagHelp in the
other Watch window.

Illustration 5:

ClientDiagConnInfo:
Parameter Description

connName Connection name

connTargetAddr Configured IP address or host name of the remote station

connStatus Status of the connection
0 = not connected

F1 Drivers for B&R Connections
1-10

1 = connected

connError Error codes of the connection
0 = No error

The rror number used corresponds to the documented ANSL error
numbers and is not part of this document.

ConnPvRead Number of configured read variables

ConnPvReadErr Number of existing erroneous read variables

ConnPvWrite Number of configured write variables

ConnPvWriteErr Number of existing erroneous write variables

ConnNumReadJobs Number of read jobs executed since the connection was initialized

ConnNumWriteJobs Number of write jobs executed since the connection was initialized

ConnNumErr Number of lost connections /errors since the connection was
initialized

AsAnslClientConnAll
This FUB is identical to AsANSLClientConn. The ApDrvAnsl_DiagConnAll variable is used for
configuration. A numerical value must be specified in the index field instead of the name of the
connection. This value selects which connection must be analyzed. The name of the connection
which is found can be read on the outVar.ClientDiagConnInfo.connName output variable. If an
invalid index is entered, a status 31877 – END_OF_LIST is invoked and the other output
variables do not have a usable content or that of the last call.
The filterOption specifies if the erroneous or correct connection should be taken into account.
The filterOption field should have a string notation in the Watch. The meaning of the filter value
can be understood better in this way, as when the decimal display is selected.

filterOption:
Value Description

0 APDRVANSL_FILTER_ALL

Display of all configured connections

1 APDRVANSL_FILTER_NOERROR

Display of all connections which currently have no errors

2 APDRVANSL_FILTER_ERROR

Display of all connections which currently have an error

 AnslDriver
1-11

Illustration 6:

ClientDiagConnInfo:
Parameter Description

connName Connection name

connTargetAddr Configured IP address or host name of the remote station

connStatus Status of the connection
0 = not connected
1 = connected

connError Error codes of the connection
0 = No error

The error number used corresponds to the documented ANSL error
numbers and is not part of this document.

ConnPvRead Number of configured read variables

ConnPvReadErr Number of existing erroneous read variables

ConnPvWrite Number of configured write variables

ConnPvWriteErr Number of existing erroneous write variables

ConnNumReadJobs Number of read jobs executed since the connection was initialized

ConnNumWriteJobs Number of write jobs executed since the connection was initialized

ConnNumErr Number of lost connections /errors since the connection was
initialized

Note:
The index value is only used for repetitions over the connections.

F1 Drivers for B&R Connections
1-12

There is no fixed relation between the index value and the name of the connection. If a
configuration is changed on the controller, the index value of the last analyzed connection may
change! There will also be a change if the filterOption field is changed.

AsANSLClientDiagPv
With the AsANSLClientDiagPv function block, it is possible to detect the information of an
individual PV connection. The FUB configuration is made via the ApDrvAnsl_DiagPv variable.
The name of the module, the name of the connection, the local name of the variable, the
variable name on the remote station, and the enable bit must be set in the inVar range.
The status field in the outVar range signals that the query was processed. A status value 0
means that the query was finished successfully and all other elements in the outVar structure
contain useful information. The other elements do not have information which can be evaluated
if there is an error (Status not equal to null); the status should be evaluated with
ApDrvAnsl_DiagHelp in the other Watch window.

Illustration 7:

ClientDiagPvInfo:
Parameter Description

pvNameLocal Name of the local variables

pvNameRemote Name of the variables on the remote station

pvStatus Status of the connection
0 = not connected
1 = connected

pvError Error codes of the connection
0 = No error

The error number used corresponds to the documented ANSL error
numbers and is not part of this document.

pvDirection Information if write or read variable
1 = read variable
2 = write variable

 AnslDriver
1-13

AsANSLClientDiagPvAll
This FUB is identical to AsANSLClientPv. The ApDrvAnsl_DiagPvAll variable is used for
configuration. A numerical value must be specified in the index field instead of both variable
names. This value selects which variable must be analyzed. The name of the variables which
are found can be read on the outVar.ClientDiagPvInfo.pvNameLocal and
outVar.ClientDiagPvInfo.pvNameRemote output variables.
The filterOption specifies if the erroneous or correct connection variables should be taken into
account. The filterOption field should have a string notation in the Watch. The meaning of the
filter value can be understood better in this way, as when the decimal display is selected.
If an invalid index is entered, a status 31877 – END_OF_LIST is invoked and the other output
variables do not have a usable content or that of the last call.

filterOption:
Value Description

0 APDRVANSL_FILTER_ALL

Display of all configured variables

1 APDRVANSL_FILTER_NOERROR

Display of all variables which currently have no errors

2 APDRVANSL_FILTER_ERROR

Display of all variables which currently have an error

Illustration 8:

ClientDiagPvInfo:
Parameter Description

pvNameLocal Name of the local variables

pvNameRemote Name of the variables on the remote station

pvStatus Status of the connection
0 = not connected

F1 Drivers for B&R Connections
1-14

1 = connected

pvError Error codes of the connection
0 = No error

The rror number used corresponds to the documented ANSL error
numbers and is not part of this document.

pvDirection Information if write or read variable
1 = read variable
2 = write variable

Note:
The index value is only used for repetitions over the variables.
There is no fixed relation between the index value and the name of the variable. If a
configuration is changed on the controller, the index value of the last analyzed variable may
change! There is also a change if the filterOption field is changed or if the error status of the
variable changes, so that the result changes the filtering.

 dcs2000Driver
2-15

2 dcs2000Driver

.

2.1 General information about dcsDriver driver package

 Information about the revision history can be obtained in the chapter Revision history in
the appendix.

The driver package described here is used for connecting B&R DCS2000 system controllers to
APROL via an ARCNET connection. An ARCNET card must be used in the control computer.
The following cards can be used in the control computer (PC):

SH ARC-PCI PCI card

SH ARC-PCIu PCI card

SH ARC-PCMCIA PCMCIA card

A maximum of 3 PCI or 1 PCMCIA cards can be used per computer.
All cards will be delivered by SOHARD AG, in Fuerth.
In the engineering system, the dcsDriver is to be taken from the CC modules (DCS2000
connection) and used on the control computer (runtime system).
To connect DCS2000 systems, the user must be familiar with the documentation in the
DCS2000 system and operator manuals. The user must know how to connect stations via
ARCNET, and also be able to define routing parameters and be familiar with the structure of
data points on the controllers!

2.2 Installation of the dcsDriver software
.

2.2.1 Installing the dcsDriver driver package

 The installation should take place on a PC with the APROL runtime system because
the drivers and utilities are only needed there.
The installation can only be carried out by the super-user (root).

The installation procedure:

Step Description

1 Insert the diskette and mount the disk drive to the /media/floppy directory.
2 Then go to the /media/floppy directory.

F1 Drivers for B&R Connections
2-16

Step Description

3 Install the required package(s) with the rpm command.

Example:
rpm –i <RPM-FILENAME> - -nodeps - -force

With the command rpm –e <PACKAGE_NAME>, you can uninstall a package if necessary.

 Please note the difference between RPM-FILENAME and PACKAGE_NAME!

Examples:
Install:
rpm -i APROL-DCS2000_ARCNET-1.X-Y.noarch.rpm --nodeps --force

Uninstall:
rpm -e APROL-DCS2000_ARCNET

After the installation, use umount to remove the disk drive from the file system and take the
diskette out of the drive.

2.2.2 Delivery contents of the dcsDriver driver package

The following files are on the runtime computer after installation of the RPM package (with path):

File with path Description

/etc/init.d/aprolArcnet Start script for integrating the
ARCNET card in the Linux computer.
The configuration comes from
/etc/rc.ARCNET, and is created using
pccArcnetInstall
(see below).

/lib/modules/*/kernel/drivers/aprol/aprolArcnetDriver.o
/lib/modules/*/kernel/drivers/pcmcia/PCM20.o
Note:
The stars stand for the various kernel versions
e.g. 2.4.20-4GB

Various kernel modules for different
Linux kernels. The hardware is
accessed using these modules.
aprolArcnetDriver supports the PCI
cards and also provides functions for
the PCMCIA connection.
PCM20 extends the aprolArcnetDriver
to include access of the PCMCIA
cards.

 dcs2000Driver
2-17

File with path Description

/opt/aprol/lib/libPccTelsys.so
/opt/aprol/lib/libPccTelsys.so.1
/opt/aprol/lib/libPccTelsys.so.1.1p1-1

Note:
The numbers after so. may be different that the
numbers for your version. These numbers come from
version numbers of the libraries.

Library with access functions for the
DCS2000 system. This is a library file
and the symbolic links required by the
system.

/opt/aprol/cnf/dcsDriver/example/dcsDriver.cnf
/opt/aprol/cnf/dcsDriver/example/dcsDriver.types
/opt/aprol/cnf/dcsDriver/example/startup.cnf

Example files for configuring and
starting the driver.

/opt/aprol/bin/dcsDriver APROL driver for reading and
writing the process variables

/opt/aprol/bin/dcsExport Tool to read the list of all process
variables from a controller. All PVs
and their structure elements are
prepared. The exported data can be
imported in the APROL system
using an import mechanism and the
PVs can then be used in the charts.

/opt/aprol/bin/dcsDpDir Tool used to read all data points on a
controller.

/opt/aprol/bin/dcsDpRead Tool used to read data points on a
controller (that can be read!). This tool
allows changes to event variables on
the controller to be read cyclically and
also displayed.

/opt/aprol/bin/dcsDpWrite Tool used to write to data points on a
controller (that can be written to!).

/opt/aprol/bin/aprolArcnetInstall
Note:
aprolArcnetInstall creates the file /etc/rc.ARCNET with
your hardware settings.

Configuration tool that must be used
to configure the device drivers and
therefore also the ARCNET cards on
the control computer.

2.2.3 Configuration after the installation
After the installation, the system must be configured with aprolArcnetInstall (Release < 2.4
pccArcnetInstall).
First, the major device number must be assigned. In most cases, the default major number is ok
(set to 80 as default) and should not be changed. Then it is necessary to specify how many
PCMCIA cards or PCI cards should be used.
Operating both card types together is not permitted, therefore the number of PCI cards can only
be set if PCMCIA cards will not be used.
After this is done, the ARCNET address and the station name must be set for each card. After
this is confirmed, the configuration file (/etc/rc.ARCNET) is created and the device driver is started.
You can use the "dmesg" command to view the console outputs in order to check if all cards
were found.

F1 Drivers for B&R Connections
2-18

An output showing an ARCNET card that was found looks similar to this:

Arcnet Driver for COM20020-PCI V 2.0.0 Copyright 1995-2004 Bernecker + Rainer Industrie-Elektronik GmbH
register major number 80
supports 3 devices
send timeout set to 10000 milliseconds
found arcnet card (SH-ARC PCIu in slot 5) at address 0x00001490, irq = 18

 The ARCNET cards are found in the order in which they are installed in the PCI slots:
the smallest slot first, then the next slot, etc. The station addresses and the station
names are allocated in this order.

2.3 Description and start options for the tools
.

2.3.1 General information about the start options for the tools
The start options for the tools can be separated into communication parameters and application-
dependent parameters. The communication parameters are identical for all of the tools
described here, the other parameters differ according to the specific applications. Each
application can be started with the –help option in order to output a list of all start options that
can be used including a short description.

2.3.2 Communication parameters
Communication between two DCS2000 partners takes place either directly or using one or more
gateway controllers. The connection is defined using the station address of the partner and,
when using gateways (not APROL gateways), using the routing for both directions. When
communication parameters are mentioned in the following sections, then the following
parameters are meant.

Parameter Description

-board <BOARD> The device driver used supports several ARCNET cards
on a PC. They are numbered internally from 0 to n-1 (for n
cards). The BOARD parameter defines the starting point
for a communication line. If it is not used, then the first
card (Board 0) is used for access.
Value range: 0 - 2, max. of 3 cards

-dbServAddr <ADDRESS> The ARCNET address for the communication end point
(the controller).
Default value: None
This parameter always has to be specified.

 dcs2000Driver
2-19

Parameter Description

-netPath <NETPATH> Specifies the routing path for the connection from
controller to the control computer (runtime system).
Example: -netPath /n0/APROL
The station named APROL must be able to be identified
by the controller. The ARCNET card must be configured
with aprolArcnetInstall APROL.
Default value: Empty string

-routePath <ROUTEPATH> Specifies the routing path for the connection to the
controller. This parameter only has to be set if
communication takes place via a gateway controller.
Default value: Empty string

-os9Timeout <SEC> The time in seconds that the application on the control
computer waits for the confirmation from the controller that
the telegram was received. After this confirmation, the
respective request must be forwarded to the application
on the controller, and the application may have to return a
response telegram.
Default value: 10 seconds

-appName <APPLICATION> Name of the application as it appears in the process list on
the controller.
Default value: APROL

-systemName <SYSTEM> Name of the Arcnet station in the network. It corresponds
to the last part of the netPath, "APROL" in the example
above. The station named "APROL" must be known on
the controller. The Arcnet card must be configured as
"APROL" with aprolArcnetInstall.
Default value: APROL

2.3.3 The tools and their options
The additional tools for the ARCNET connection and their extra options are described in the
following sections.

2.3.3.1 aprolArcnetInstall
Script for the installation of the device driver for dcsDriver.

Parameter Description

-noStart Configures the device driver that must be used for the
ARCNET cards without restarting it.
Normally, the corresponding device driver (kernel module)
is started automatically after the configuration.

2.3.3.2 dcsDpDir
dcsDpDir is a command line program that is used to read all data points on a controller and
output them using standard-out.

F1 Drivers for B&R Connections
2-20

Parameter Description

No further options

2.3.3.3 dcsDpRead
dcsDpRead is a command line program that provides the possibility to read information (data)
from individual PVs on the controller.

Parameter Description

-dpName <PV name> Provides the name of the PV to be read.
Example: -dpName ANA_IN_01.VALUE

-ext If this option is also used, additional process variable
information is output.
This is information about the decimal places and the item
status.

-hex The data bytes are output in hexadecimal.
-event The data to be read is registered on the controller and

value changes are automatically sent from there.
In normal mode, data is requested from the application
cyclically.

2.3.3.4 dcsDpWrite
dcsDpWrite is a command line program for entering and setting PVs, i.e. the opposite of
dcsDpRead.

Parameter Description

-dpName <PV name> Provides the name of the PV to be written.
Example: -dpName ANA_IN_01.VALUE

-value <value> Value the PV should be set to. See -mode for additional
parameters or options.

-mode <char> Specifies how the new value should be set.
I > Increases the current value for the variable by the
amount specified in "value" (see above)
D > Subtracts "value" from the current value
S > Sets the process variable on the controller to "value"
T > Toggles the value
A > Links the current value of the PV with "value" using
an AND function
O > Links the current value of the PV with "value" using
an OR function
X > Links the current value of the PV with value using an
EXCLUSIVE OR function

 dcs2000Driver
2-21

2.3.3.5 dcsExport
This program should only be used for customer-specific projects.

Parameter Description

-controllerName <NAME> Sets the name of the controller to NAME.
NAME is entered in the export where the name of
the controller must be set.

-ignoreCnfPath If this option is set, all configuration files are
searched for relative to the current directory,
otherwise they are searched for in the current
APROL environment.

-typesFile <TYPES_FILE_NAME> Specifies the name of the variable description file
(also see section Description of the Types file)

-exportFile <EXPORT_FILE_NAME> Specifies the name of the export file where the
variables that are found are written.

-cnfFile <CNF_FILE_NAME> Specifies the name of the configuration file to be
created.

-ignoreString <IGNORE_STRING> Replaces all the characters of the variable name
that correspond to a character from the
IGNORE_STRING with the character ‘_’
(underline). This is necessary because certain
characters such as decimal points are not
permitted in the variable name.

-search <SEARCH_PATTERN> Exports only the variable names that correspond
to the SEARCH_PATTERN. All others are
suppressed during output.

2.3.3.6 dcsDriver
dcsDriver is the driver that establishes the connection to the B&R controller (DCS2000 system)
in the runtime system. This driver is active during runtime on the PCS.

Parameter Description

-cfgFile <CNF_FILE_NAME) Specifies the name of the configuration file for the
driver.
The entry is made as follows:
<Controller name>/<CNF_FILE_NAME>

-typesFile <TYPES_FILE_NAME> Specifies the name of the description file used to read
the structure types for a variable.

-aliveTime <MILL_SEC> Time (in milliseconds) in which the driver uses a
GetStat telegram to cyclically check if the partner
station is still available.

-respTimeout <RESP_TIMEOUT> Maximum amount of time (in milliseconds) that the
driver waits until it shows that the partner station is no
longer available. If a response to the GetStat telegram
is not received within RESP_TIMEOUT milliseconds,
then it sets the corresponding error variable.

F1 Drivers for B&R Connections
2-22

Parameter Description

-restartTimeout <RST> Time (in seconds) after which the driver automatically
initiates driver redundancy switching if it cannot
establish a connection to the partner station.
Value range: 30 – 600 seconds,
Default: 60 seconds

-setTz <TZ_STRING> Sets the time zone for this driver to TZ_STRING.
TZ_STRING is used to calculate switching over to
daylight savings time and back.

-ignoreString <IGNORE_STRING> Replaces all the characters of the variable name that
correspond to a character from the IGNORE_STRING
with the character ‘_’ (underline). This is necessary
because certain characters such as decimal points
are not permitted in the variable name.

-d DEBUG_FILTER Activates the driver in debug mode and outputs
filtered texts. the respective text output can be
switched on or off by setting or deleting the respective
bit. The individual bits must be given as an ORed (OR
operation) debug filter. Using the debug filter PV for
the driver, the debug filter can also be changed after
the driver is started, however it must be taken into
consideration that some bits are only evaluated when
the driver is started.

The following debug filters are available:

DEBUG_FILTER Description

0x00000001 Output of error texts
0x00000002 Outputs normal messages
0x00000004 Output of the types file configuration
0x00000008 Output of the PV configuration
0x00000010 Show the internal connection list
0x00000040 Show open status messages
0x00000080 Show Iosys PV messages

2.4 Configuration of the PVs for the dcsDriver
.

2.4.1 Configuration of the PVs in the engineering system
The PVs with data that will be exchanged between the controller and the runtime system during
PCS runtime are created in the CaeManager. The Control Computer (runtime system) part of
the project is opened and the APROL connection (device-free connection) is used to generate
the PVs required in the CAE system. Engineering can start after the generation.

 dcs2000Driver
2-23

During runtime, the dcsDriver driver expects two files that must also be created in the
engineering system and provided to the runtime system and the driver when downloading.
These are the files with the variable types (types file) and the configuration file dcsDriver.cnf

2.4.1.1 Description of the types file
A description must exist in the types file for each variable type used in the system. This 'types'
file (default name = dcsDriver.types) is available globally for all controllers in the DCS2000
system and must be in the following directory in the engineering system:

$(HOME)/ENGIN/PROJECTS/<Project name>.pgp/pgm/
 PLS01/APROL/cnf/dcsDriver/

It can be created with a text editor that does not add special characters to the text (e.g. vi).
A description begins with the keyword VAR_TYPE and then the list of elements used inside curly
brackets. The keywords "INTERN:" and "EXTERN:" have no meaning and only refer to the
DCS2000 system manual description. Each element line consists of the element name, the PV
type in the Iosys, the PV type on the controller (resulting valid value range, e.g. –128 to 127 for
SINT type) and finally the direction of data flow. The '#' character indicates a comment;
everything after this character is ignored.

Valid entries for IOS_TYPE:
 STRING_TYPE for STRING variables in the Iosys
 REAL_TYPE for FLOAT variables in the Iosys,
 INT_TYPE for INTEGER variables in the Iosys.

Valid entries for variable types on the controller are:
 BOOL, Measuring range 0-1
 BYTE, Measuring range 0 to 255
 SINT, Measuring range -128 to 127
 USINT, Measuring range 0 - 255
 WORD, Measuring range 0 - 65535
 INT, Measuring range -32768 to 32767
 UINT, Measuring range 0 - 65535
 DWORD, Measuring range 0 to 4294967295
 DINT, Measuring range -2147483648 to 2147483647
 UDINT, Measuring range 0 to 4294967295
 REAL
 TIME
 DATE
 DT
 TOD
 STRING

The types file must be completely customized by the user to match the requirements. All
variables that are not needed in the control system should be commented out for performance
reasons!

F1 Drivers for B&R Connections
2-24

 dcs2000Driver
2-25

VAR_TYPE DIG8
{
INTERNAL:
NOTE STRING_TYPE STRING RW # Long text
LONG_NOTE STRING_TYPE STRING RW # Description
MAN INT_TYPE BOOL RW # Manual/Auto
 VALUE INT_TYPE BYTE RW # Measurement value
M_VALUE INT_TYPE BYTE RW # Substitute value
I_VALUE INT_TYPE BTYE RW # Initial value
RANGE INT_TYPE BYTE RW # Steps
VAL_TEXT STRING_TYPE STRING R # Status text
PAR_TEXT[1] STRING_TYPE STRING RW # Status text
PAR_TEXT[2] STRING_TYPE STRING RW # Status text
PAR_TEXT[3] STRING_TYPE STRING RW # Status text
PAR_TEXT[4] STRING_TYPE STRING RW # Status text
PAR_TEXT[5] STRING_TYPE STRING RW # Status text
PAR_TEXT[6] STRING_TYPE STRING RW # Status text
PAR_TEXT[7] STRING_TYPE STRING RW # Status text
PAR_TEXT[8] STRING_TYPE STRING RW # Status text
VAL_FLAG[1] INT_TYPE BOOL R # State
 VAL_FLAG[2] INT_TYPE BOOL R # State
VAL_FLAG[3] INT_TYPE BOOL R # State
VAL_FLAG[4] INT_TYPE BOOL R # State
VAL_FLAG[5] INT_TYPE BOOL R # State
VAL_FLAG[6] INT_TYPE BOOL R # State
VAL_FLAG[7] INT_TYPE BOOL R # State
VAL_FLAG[8] INT_TYPE BOOL R # State

EXTERNAL:
&VALUE struct # Raw value
{
VALUE INT_TYPE BYTE RW 0
}
}

VAR_TYPE ANA4
{
INTERNAL:
NOTE STRING_TYPE STRING RW
Long text
LONG_NOTE STRING_TYPE STRING RW
Description
MAN INT_TYPE BOOL RW # Hand/Auto
 VALUE REAL_TYPE REAL RW # Measurement value
M_VALUE REAL_TYPE REAL RW # Substitute value
MAX.VALUE REAL_TYPE REAL RW # Upper limit
MAX.FLAG INT_TYPE BOOL R # Upper limit
MIN.VALUE REAL_TYPE REAL RW
Lower limit
MIN.FLAG INT_TYPE BOOL R
Lower limit
LIMIT.HH REAL_TYPE REAL RW
uppermost limit
LIMIT.H REAL_TYPE REAL RW # upper limit
LIMIT.L REAL_TYPE REAL RW # lower limit
LIMIT.LL REAL_TYPE REAL RW
lowermost limit
LIMIT.FLAG[1] INT_TYPE BOOL R # Messeage status
LIMIT.FLAG[2] INT_TYPE BOOL R # Messeage status
LIMIT.FLAG[3] INT_TYPE BOOL R # Messeage status
LIMIT.FLAG[4] INT_TYPE BOOL R # Messeage status
LIMIT.STATE INT_TYPE BYTE R # Indicated state
CONV.RAW_1 REAL_TYPE REAL RW # Raw value 1
CONV.FINAL_1 REAL_TYPE REAL RW # Final value 1
CONV.RAW_2 REAL_TYPE REAL RW # Raw value 2
CONV.FINAL_2 REAL_TYPE REAL RW # Final value 2
DIM_TEXT STRING_TYPE STRING RW # Unit
I_VALUE REAL_TYPE REAL RW # Initial value

EXTERNAL:
&VALUE struct # Raw value
{
VALUE REAL_TYPE REAL R 0
}

F1 Drivers for B&R Connections
2-26

}

Excerpt from a types file for variable type DIG8

 All characters after the '#' to the end of the line are considered comments.

2.4.1.2 Description of the dcsDriver configuration file
A configuration file must be available in the engineering system for each DCS2000 controller
used in the system. This configuration file (default name = dcsDriver.cnf) is to be created in the
PCS for each controller in the DCS2000 system and must be in the following directory in the
engineering system:

$(HOME)/ENGIN/PROJECTS/<Project name>.pgp/pgm/
 <Control computer name>/APROL/cnf/dcsDriver/<Controller name>/

It can be created with a text editor that does not add special characters to the text (e.g. vi).
Excerpt of a dcsDriver.cnf configuration file for station PU_01

Configuration file for dcsDriver
=================================

Structure:

SPS_NAME:VAR_NAME1 VAR_TYPEx
SPS_NAME:VAR_NAME2 VAR_TYPEy
SPS_NAME:VAR_NAME3 VAR_TYPEz

SPS_NAME:VAR_NAME4 NO_TYPE IOS_TYPE
... ...

with VAR_TYPE = element in types file
or "NO_TYPE" for a single element without type description

with IOS_TYPE = INT_TYPE, REAL_TYPE, STRING_TYPE

PU_01: DIG_EIN_01 DIG8
PU_01: ANA_EIN_01 ANA4

 All characters after the '#' to the end of the line are considered comments.

List of the process variables created, handling information and the direction of data flow
PU01_DIG_IN_01_VALUE, handled by driver, bidirectional variable (read and write)
PU01_DIG_IN_01_VAL_FLAG_2_, handled by the driver, read only
PU01_ANA_IN_01_VALUE, handled by the driver, bidirectional variable (read and write)

 Variables that are only written are handled by the control computer task!

2.4.1.3 Operation of the dcsDriver driver
The driver reads the dcsDriver.cnf file in line for line, gets the structure description for each
variable from the dcsDriver.types file and creates each element of the structure as a process
variable in the Iosys. Invalid special characters such as ".", "&", or "/" are replaced by the "_"

 dcs2000Driver
2-27

character. The list of the characters to be replaced is found in the IGNORE_STRING (see
above). The name of the controller is also included in order to differentiate between the process
variables.
The driver is completely event-driven. It only writes variable changes to the controller, and only
registers variables that are to be read on the controller. The controller decides itself when a
value has changed and sends the current value to the control system.
Variables received from the controller are handled by the driver. Their value can only be set by
the driver. If the variables are bi-directional then the surface only sends the desired changes to
the driver, and it decides if the value can be written. Then the driver sets the value in the control
computer and thus confirms the validity of the value.
Variables that are only written are handled by the control computer task. The control computer
task sets the value in the control computer and it must be sent by the driver. If an error occurs,
the driver indicates that the variable is invalid which causes it to be set again by the control
computer task and therefore written again.

2.4.2 Configuration with dcsExport
The dcsExport tool is used when an existing and working controller from the DCS2000 system
is connected to APROL. It is then used for support and fast configuration of the control
computer and the dcsDriver.
With dcsExport, it's possible to read a list of data from the controller and export it in a file. The
tool establishes the connection to the controller automatically.
In the CaeManager configuration editor, this file can be imported for the control computer under
APROL connections. It is then a device-free connection element. After generating the control
computer, the imported process variables are available for engineering; they are then gateway
I/Os. At the same time, this tool can be used to create the configuration file for the dcsDriver
(dcsDriver.cnf) between the control computer and the controller.
Before working with dcsExport, a description file must be prepared and the desired structure
elements must be declared; the types file described above.
dcsExport is an expansion of the dcsDpDir tool. After establishing a connection, all process
variables on the controller are read and the types file is used to create an import list for the
configuration editor and a configuration file for the dcsDriver.
The configuration file for the dcsDriver must be copied to the engineering system in the driver
directory so that it can also be used as target platform during download.
The corresponding directory is:
$(HOME)/ENGIN/PROJECTS/<Project name>.pgp/pgm/
 PLS01/APROL/cnf/dcsDriver/<Station name>/.

2.5 Debugging and error handling
.

2.5.1 The dcsDriver status variables

To control or analyze the dcsDriver, each driver creates a number of status variables that can be
used with pio or IosEv for the evaluation. The status variables can also be stored in a CFC and
shown in a process graphic for monitoring.
The names of these status variables include the name of the driver (start option –appName).

F1 Drivers for B&R Connections
2-28

Status variable name Description

APP_NAME_pidPID_debugFilter This variable always mirrors the current debug settings.
When set, these settings are changed and it's possible
to influence the debug outputs for the driver after
starting in debug mode.
ATTENTION:
If you forget to set the debug settings back to 0, the
hard drive can become full if the messages are being
written to a file!

APP_NAME_reconnect This variable triggers a controller reconnect.
1 = Reconnect,
The driver resets the variable to 0.

APP_NAME_connStatus Variable that mirrors the current connection status for
the controller.
This variable is only set by the active driver (if driver
redundancy is implemented).
The following values occur:

0: the driver is shutting down
1: the driver is booting up
2: the driver has read in its configuration
3: the driver is establishing a connection
4: the driver is connected to the controller

2.5.2 dcsDriver error numbers and error messages
An error message for an application, e.g. dcsDpDir, is output on the console. This type of error
message consists of an error text with "ret =", "errno=" and "errValue=".
It's possible to determine the cause of the error using of the returned values and the error text.
Unfortunately not all cases are documented, but the most important error messages should be
described here:

Return value Description
pccInitDbserv failed
... ret = -1 The connection to the device driver could not be opened.

Check for the cause using dmesg, maybe the card cannot be
found or too many applications are started. Errno may provide
help, also see /usr/include/asm/errno.h

... ret = -2 The connection to the station could not be reserved. Is an identical
application already running?

... ret = -3 An OPEN request could not be sent or a response was not
received within the timeout time or a negative response was
received.
Are the settings for the netPath correct?

... ret = -4 An ATTACH request could not be sent or a response was not
received or a negative response was received.

 dcs2000Driver
2-29

Return value Description

... ret = -5 An expected OPEN REMOTE request was not received within the
reaction time.
Are the settings for the Routing-Path correct?

... ret = -6 An expected ATTACH REMOTE request was not received within
the reaction time.

... ret = -7 An Init for the dbServ on the controller could not be carried out.
Either writing failed or there was no reaction from the partner
station or the partner station sent a negative response.

pccArcnetRemoteService
failed

... ret = -1 A send telegram could not be sent successfully

... ret = -3 Timeout when waiting for a response telegram

pccArcnetService failed
... ret = -1 A write telegram could not be sent
... ret = -3 Timeout when waiting for a response telegram

 dcsEventDriver
3-1

3 dcsEventDriver

.

3.1 General information - dcsEventDriver
The dcsEventDriver is used for establishing an event-driven connection from the APROL
system to the B&R controller according to the DCS2000 system EVT.DRV concept. The
DCS2000 manual is used as the foundation of this concept.
The driver consists of two parts; one part runs on the control computer and handles the
connection to the APROL system, the other part runs on the controller and makes it possible
to connect to the task on the controller. Communication between the parts of the driver takes
place using the TCP/IP protocol and is based on Ethernet.

 To connect DCS2000 systems, the user must be familiar with the documentation in
the DCS2000 system and operator manuals.
Additionally, the user should be familiar with the structure of the data points on the
controllers!

3.2 Configuration of the dcsEventDriver
The configuration of the dcsEventDriver takes place in the CaeManager within the framework of
the CC modules.
The following tables contain a short description of the driver options:

Option Value range Description
-cfgFile Specifies the name of the configuration file for the

driver. The path consists of
...RUNTIME/cnf/dcsEventdriver/[<Driver
name>]/file.

-genImport If a file is specified here, then the current PV
configuration is written to it when the driver is started.
This can also be read as a device-free link in APROL.
The file can be found in the configuration file path.

-iosys port [0 -15] This option determines the program connection to the
specified Runtime System with Iosys and its port. The
Iosys port must always correspond to the Iosys port
specified when the control computer master or slave is
configured.
When using a redundant Runtime System, the name
and port number of the redundant computer must be
separated from the first computer using a comma.
This entry is usually taken automatically from the
content of the Communication field, meaning that
changes don't normally need to be made here.

F1 Drivers for B&R Connections
3-2

Option Value range Description
-n This allows you to specify a driver name. It is

incorporated into the configuration files when forming
the path. (see –cfgFile)

-
controllerIpAdd
r

Entry for the IP address of the controller.

-controllerPort Specifies the TCP/IP port number of the controller.
-restart [0 – 20] This option makes it possible for the application to be

restarted automatically using the APROL startup
mechanism if the application has been closed
externally.
This option is not activated by default.
If the specified value is exceeded, automatic restarts no
longer take place. This mechanism is only switched
back to active after manually resetting it with the
StartManager or carrying out a new download.

-self The Self ID is a unique identifier for the program
instance and is specified by the system, which
increments this two-digit number for each instance.
The Self ID identifies the instance using a character
string which is attached to the name of the application in
the operating system process list when the application
has been started. If several instances of this application
run on the same computer, these instances can be told
apart using the different Self IDs.
The Self ID can also be overwritten with a name so the
string is more descriptive.

-typesFile Specifies the name of the TYPE file where the
DCS2000 types are defined. The path is the same as
for -cfgFile.

The driver is configured on the control computer using a cfg file; the controller part is configured
dynamically when establishing a connection with the control computer.

 An example configuration file (APROL.cfg) can be found in directory
/opt/aprol/doc/packages/dcsEventDriver/.

3.2.1 Structure of the configuration file on the control computer
The structure of the configuration file is clarified using the following example:

 dcsEventDriver
3-3

configId: 995275737
StatusVar: 1
setTime: 40
upBuffer: event_up
downBuffer: downBuffer

Name IOType AnlNr UstNr Art DpNr TypeEVT

AnlNr R 1 1 1 1 ANA
Spannung W 1 1 2 2 ANA4
Zähler S 1 1 2 2 ZA1

The entries in the configuration file have the following meanings:
Configuration file entry Description
configID The configID must change for each new configuration.
StatusVar StatusVar is used to determine if a status variable is created

for each data point.

0 = no status variables
1 = a status variable is created for each data point that is
made up of 'Name' + '_STAT'.(e.g. Voltage_STAT)

setTime The value setTime specifies if a time adjustment should be
made from the driver to the controller:

-1 time not supplied
0 ... 32000 time correction in ms

upBuffer / downBuffer Specifies the name of the communication buffer on the
controller. The names can have a maximum of 32
characters.

Name Name includes the data points in the APROL system
IOType The IOType can be

R = read
W = write
S = read/write

SysNo System number
SstNo Substation number
Type Substation type
DpNo Data point number
TypeEVT The TypeEVT must be found in the DCS type file that is

described in the following section.

 An example DCS type file (APROL.types) can be found in directory
/opt/aprol/doc/packages/dcsEventDriver/.

F1 Drivers for B&R Connections
3-4

Example of a DCS type file:
#Name of the DCS type
VAR_TYPE ZA1
{
WertName PV_Type I/O off DCS-Wert

 ZL REAL_TYPE R 0 UINT24 # Comment
 RESET INT_TYPE W 3 UBYTE #
 LAST REAL_TYPE R 4 UINT24 #
 OG REAL_TYPE S 7 UINT24 #
 GMLD INT_TYPE R 10 UBYTE #
}

The entries in the DCS type file have the following meanings:
ValueName
If a DCS type has multiple values, then the DCS value name is added as a suffix after a "_" (e.g.
Counter_RESET)

The following are possible PV_types:
REAL_TYPE
INT_TYPE

The I/O entry specifies the direction data is transferred:

Entry Description
R read only
W write
S read/write

off specifies the position of the value for a structure
The following DCS values exist

Type Length Signed Yes/No
FLOAT 4 0
ULONG 4 1
LONG 4 0
UINT24 3 1 ! is for the 3 byte UCHAR
UINT 2 1
INT 2 0
UBYTE 1 1
BYTE 1 0

3.3 Interfaces
The controller side is specified using the EVT.DRV concept. Each data point is uniquely
labeled with a SYS number, SST number, Data point number and the Data point type. The
length of the data point data is also known. One read and one write buffer are available for
exchanging data. This buffer is only one entry in size, so only one data point can be exchanged
per double cycle time.
On the APROL side, the interface is specified by the connection to the Iosys.

 dcsEventDriver
3-5

3.4 Procedure from the configuration to active connection
After starting the driver, the DCS2000 system types are read in (i.e. the actual event
configuration is read in). This is used to create the control computer structure.
A data point can also contain a structure, so it is possible for a data point to have several PVs.
Each PV is registered on the Iosys – or created if it does not yet exist.
Then a connection to the controller is established. When the connection is active, the configID
(configuration identification) is compared with the ID on the controller.
If the IDs are the same, normal operation starts. If the IDs are different, a new configuration is
sent to the controller. If a new configuration is sent, the old event buffer is deleted and all data
points are read in a complete read procedure. Even data points that are only designed to be
written are read first and then written to the control computer (to APROL). Normal operation
starts for all data points that respond to the read procedure. Then all controller events are
transferred to the control computer. If the connection is not active, the data is placed in a buffer
(400 entries).
The other direction is a little bit different. All Iosys events are sent to the controller using two
buffers. The first buffer is on the controller and can hold 400 entries. If the buffer is filled to more
than 90 percent during a "slow collector task", the rest of the events are buffered on the control
computer. If the buffer status is < 10 percent, it is filled up again from the control computer
buffer. The controller sends the data point to the other tasks using the event buffer.
If a write acknowledgement is received for this task, then it is sent from the controller to the
control computer with the value. The control computer driver "remembers" the acknowledged
value for the data point. If the connection to the controller is broken now, the control computer
driver returns the last acknowledged value to the Iosys for each Iosys change. When the
connection is reestablished, the procedure continues as described above.

3.5 dcsEventDriver status messages

The following states can be read from the status PV for a data point:

Bit State
bit 0 Substation on the data point is not functioning
bit 1 Data point is not functioning
bit 2 Connection to the APROL controller is faulty

A PV with the name "drivername_STAT" is also created. This PV provides information about the
driver status on the PCS and on the controller.
Bits 0-15 provide information about the PCS status.

Bit State
bit 0 Driver has a connection to the Iosys
bit 1 Read valid DCS types
bit 2 Read valid configuration

F1 Drivers for B&R Connections
3-6

Bit State
bit 3 Connection to the controller exists
bit 4 A new configuration was created the last time the driver was started
bit 5 The old configuration was used the last time the driver was started
bit 6 The controller driver is configured and started
bit 7 Shows when an event is received from the controller (toggle)
bit 8 Shows when an event is sent to the controller (toggle)

 Bits 9-15 are not used.

Bits 16 - 31 show the controller status (only valid if bit 3 is set)

Bit State
bit 16 downBuffer is not enabled (no task on the other side)
bit 17 The write buffer for DownEVT on the controller is filled to over 90% (bit is

cleared when under 10 %)
bit 18 UpEVTs on the controller have been lost.

(cleared when a new connection is established)
bit 19 downBuffer not found on the controller.
bit 20 upBuffer not found on the controller.

 Bits 21-31 are not used.

 Dispatcher
4-1

4 Dispatcher

.

4.1 General information about the Dispatcher
.

4.1.1 Functionality of the Dispatcher
The Dispatcher serves as an engineering simplification, and has been developed for certain
project specific characteristics. One characteristic is for example that the execution of the same
functions in connection with several similar pieces of equipment, which are not in use at the
same time. In this case the Dispatcher can be used, by a simple change of a name, to switch the
logic of all of the connections from one piece of equipment to another.
In order to realize such demands with the Dispatcher it is possible to connect two process
variables with another in a logic controlled way for each task. The variable that is to be allocated
can be chosen using a variable name. The name to be selected is made available to the job by
another process variable. Several jobs per configuration can be edited simultaneously with the
Dispatcher. Several jobs can be influenced by a selection variable by grouping in the
configuration. With the appropriate validation pattern in the configuration, the Dispatcher can
check a selection name, and impede the connection to the resulting process variable.
If a connection is established between two process variables, the value of the selected process
variable is made available in pure read-only process, e.g. in a configured input variable. Only
reading, or additionally writing can be explicitly allowed for this job.
The driver configuration is carried out in the control computer in the APROL connections tab.
The Dispatcher is configured here with the usual dialog.
The Dispatcher is a pure control computer driver, and therefore can only connect process
variables that are available on the control computer. As with all of the available system drivers in
the APROL system, the Dispatcher supports process redundancy, and can be deployed in a
control computer redundancy cluster.

Example of a Dispatcher configuration
Group configuration G1

Group Tank
Selection validator T[0-9]
Job type: Read task
Selection variable T_NAM
Access variable T_ZUG

Task configuration A1 A2

Task ID ANST_V RÜCK_V
IEC type BOOL BOOL

F1 Drivers for B&R Connections
4-2

Prototype AV_@ RV_@
Selection validator <group settings> <group settings>
Job type: Write task Group settings
Selection variable --- ---
Access variable A_ZUG R_ZUG
Input variable --- R_INP
Output variable A_OUT ---

Illustration 9: Functionality of the APROL Dispatcher

4.1.2 Requirements / Limitations
The following requirements are to be observed by the user:

- Changing process variables that are already supplied by other APROL processes is
not supported by the Dispatcher!

- A job can only write to one process variable, which already exists due to other
configurations in the APROL system, and is labeled as remanent. This is possible via a
device-free connection in the control computer. Already existing connectors that are on
the controller can be used. We recommend the use of gateway variables on the border of
CFCs, as it is only possible to stipulate a clear direction of data using the device-free
connections, and it is only there that all of the benefits such as import, export, etc. are
available.

- A task can only read process variables, which have already been created by other
configurations in the APROL system. If the variable is labeled as "not valid" in the
Iosys, this leads to an error message.

- The Dispatcher is solely suitable for use on the control computer.
- Different pieces of equipment, which are controlled by a logic from the Dispatcher, cannot

be processed simultaneously.
- At present, a maximum of 5000 jobs are allowed.

 Dispatcher
4-3

Due to the virtual addressing of the connection for input and output variables, the following
limitations are to be observed during the project analysis and monitoring.

- A sensible plan debugging of the job variables in use is not possible!
- A signal tracing of the job variables is not possible!
- A documentation of the connection paths is not possible!
- When using connectors as the selected process variables, a documentation of these

variables is not possible!

4.1.3 Dispatcher delivery contents
The software package is delivered as an RPM package. The following files are created when
installing the package:

File name Description

/opt/aprol/bin/Dispatcher Application Dispatcher, which is started
on the runtime system.

/opt/aprol/doc/packages/Dispatcher/ver.txt
/opt/aprol/doc/packages/Dispatcher/version.txt

Version information about the drivers
contained.

/opt/aprol/cnf/Dispatcher.cnf Example configuration

4.2 Configuration of the Dispatcher on the control computer
.

4.2.1 Dispatcher start options
The configuration of the Dispatcher's start options takes place in the usual manner, in the scope
of the CC modules.

 Starting a driver beyond the control of the AprolLoader is only allowed to be done by
an experienced APROL user! The system can be put into an unsafe state with a
false configuration, or drivers that are running twice.

The following table contains a list of the start options and the respective descriptions:

Option Value range Description

-cfg <name> The name of the driver's configuration file is set with
this option. This file must be located in the directory
of the entry -plc.
Default value: driver.cfg

F1 Drivers for B&R Connections
4-4

Option Value range Description

-iosys
<server1:port,
server2:port>

port [0 -15] This option determines the program connection to
the specified Runtime System with Iosys and its port.
The Iosys port must always correspond to the Iosys
port specified when the control computer master or
slave is configured.
When using a redundant Runtime System, the name
and port number of the redundant computer must be
separated from the first computer using a comma.
This entry is usually taken automatically from the
content of the Communication field, meaning that
changes don't normally need to be made here.

-plc < driver-
name >

 This parameter defines the environment where the
driver should be started.
The driver searches for its configuration file in the
…/RUNTIME/cnf/Dispatcher/<driver-name>
directory. At the same time, the driver is registered in
the system with this name for the Iosys and forms
the name of its status variables (see below) via
driver-name. This parameter must be set!
Default value: CFG1

-restart <value> [0 – 20] This option makes it possible for the application to be
restarted automatically using the APROL startup
mechanism if the application has been closed
externally. The value entered defines the maximum
amount of restarts since the last start of the instance
via the AprolLoader.
This option is not activated by default.
If the specified value is exceeded, automatic restarts
no longer take place. This mechanism is only
switched back to active after manually resetting it
with the StartManager or carrying out a new
download.

-retrytimer <time
[ms]>

 With this option the time in [ms] is set, in which a re-
connect is attempted after an error (for example with
an unsuccessful validator check).
Default value: 1000

-self <id> The Self ID is a unique identifier for the program
instance and is specified by the system, which
increments this two-digit number for each instance.
The Self ID identifies the instance using a character
string which is attached to the name of the
application in the operating system process list when
the application has been started. If several instances
of this application run on the same computer, these
instances can be told apart using the different Self
IDs.
The Self ID can also be overwritten by a named
string to make it more descriptive.

 Dispatcher
4-5

4.2.2 Configuration of the Dispatcher

The Dispatcher configuration is takes place in the APROL system in the APROL
connections tab. A configuration must be created for each Dispatcher that is started.

Illustration 10: Configuration view of a Dispatcher

A short description, and a comment about the configuration can be made. Furthermore, the
name of the configuration file used is stated. As is usual with the connections, a preview of the
configuration that has been made can be created here.
Individual or grouped jobs can be configured underneath this entry.

4.2.3 Configuration of the Dispatcher jobs
A job configures exactly one dynamic connection between a process variable defined by name
and a Dispatcher input or output variable.

Illustration 11: Configuration view of a job

The following attributes and variables must be configured in each job for this purpose.

Attribute Example Description Required

Job name Disp_Cnf_1_1 This is the name of the task. The debug
output, for example, can be filtered
according to this.

yes

F1 Drivers for B&R Connections
4-6

Attribute Example Description Required

IEC type BOOL The IEC type of the selected process
variable is entered here.
This type must correspond to the input
and output variables.

yes

Prototype VENTIL_@ Name pattern of the process variables to
be selected.
The place holder "@" that is to be stated
in the pattern will be replaced later by
the content of selection variable.

yes

Selection
validator

MSR_[0-9][0-9] This value is used for validation of the
selection variable.
This validator can be a "regular
expression", and is checked before the
connection establishment.

This attribute can be omitted
underneath a configuration and is
then taken from the group
configuration!

yes

Job type: Write task This setting defines the task's data
direction. There is a choice between

− Read task
− Write task
− Read/write task
− Group setting

(only exists below a group)

The configuration of the respective
in/output variable is released depending
on these settings.

This attribute can be omitted
underneath a configuration and is
then taken from the group
configuration!

yes

Description A short description of the job can be
entered here.

no

Variable Direction IEC type Description

Selection variable Output STRING The process variable to be selected
is defined with this process variable.
The resulting name is made up of a
combination of the content of the
selection variable and the attribute
prototype. The content must match
the selection validator attribute.

 Dispatcher
4-7

Variable Direction IEC type Description

This variable can be omitted
underneath a configuration and is
then taken from the group
configuration!

Access variable Output INT The access to the selected process
variable is controlled with the value
of this process variable. The
following values are possible:
0 = Job inactive, no connection to
the selected process variable.

1 = Read connection and value of
the selected process variable. If the
value read is "not valid", an error
message is generated.

2 = Additionally to 1, if the task type
contains write, the value of the
output variable is written in the
selected process variable.
If the selected process variable has
not been created by another project
part, this leads to an error message.

This variable can be omitted
underneath a configuration and is
then taken from the group
configuration!

Input variable Input <job type>
INT,REAL,...

The value read from the selected
process variables is written in this
variable, which is usual situated on
the chart's input border.
The value is only actualized when
the access variable has a value >0.
The IEC type corresponds to the
task IEC type.

Only configured with

− Read task
− Read/write task

possible.
Output variable Output <job type>

INT,REAL,...
The value of this variable is read
from the chart's output border when
the access variable is set to 2, and
written to the selected process
variable, which is generally in the
chart's input border. The value is
actualized until the access variable
has a value <2.

F1 Drivers for B&R Connections
4-8

Variable Direction IEC type Description

The IEC type corresponds to the
task IEC type.

Only configured with

− Write task
− Read/write task

possible.
Status variable Input INT This state variable detects the state

of the job, and can adopt the
following values:
0 = "no error"
 Errorless state
1 = „compile of regular
 expression failed“

Validation of the regular
expression show errors,
meaning that an invalid regular
expression has been
configured

2 = "execute of regular
 expression failed“

The content of the selection
variable does not match the
selection validator

3 = "duplicate dispatcher”
There are simultaneously
several active tasks for one and
the same selected process
variable.

4 = "wrong dispatcher state”
This marks the desired loss of a
pending write task when
changing the access variable
quickly to a read-only access.

5 = "wrong command state”
The value of the access
variable is outside the valid
range [0, 1, 2]

6 = "wrong IOSYS type”
The type of the connected
variable (input, output variable)
does not match the configured
type of the selected variable.

7 = "IOSYS value is not valid”
The value of the process
variable that has been selected
for reading is not valid.

8 = "dispatcher pv is not

 Dispatcher
4-9

Variable Direction IEC type Description
 remanent”

The selected process variable
has not been created by any
CAE project part.

9 = "dispatcher pv is not
 sourced”

The process variable that is to
be written cannot be supplied
by the Dispatcher, i.e. another
process is already supplying
this variable

10 = "no dispatcher pv in IOSYS
 found”

The selected process variable
could not be connected

11 = "no inpv in IOSYS found”
The input variable could not be
created, e.g. because there is
no memory available to the
system in the Iosys.

4.2.4 Configuration of the Dispatcher groups
The group configuration simplifies the creation of many tasks, which for example have the same
choice validator and the same choice variable.

Illustration 12: Configuration view of a group

The choice validator and the task type, as well as the choice variable and the access variable for
all of the sub-tasks, can be stipulated in the group configuration. The attributes and variables
that are named in the group can then be omitted in the tasks. When necessary, the group
information that is in these tasks can be overwritten.

F1 Drivers for B&R Connections
4-10

Attribute Example Description Necessary

Group Grp_1 Name of the group. The debug output,
for example, can be filtered according
to this.

Yes

Selection validator MSR_[0-9][0-
9]

This value is used for validation of the
selection variable.
This validator can be a "regular
expression", and is checked before the
connection establishment.
This attribute can be overwritten in
the tasks that lie under this group.

Yes

Type of
Communication

Write task The data direction of all tasks under
this group can be pre-defined with this
setting. There is a choice between

− Read task
− Write task
− Read/write task

The configuration of the respective
in/output variable under this group is
released depending on this setting.
This attribute can be overwritten in
the tasks that lie under this group.

Description A short description of the job can be
entered here.

no

Variable Direction IEC type Description

Selection variable Output STRING The process variable to be selected is
defined with this process variable. The
resulting name is made up of a
combination of the content of the selection
variable and the attribute prototype. The
content must match the selection validator
attribute.
This attribute can be overwritten in the
tasks that lie under this group.

 Dispatcher
4-11

Variable Direction IEC type Description

Access variable Output INT The access to the selected process
variable is controlled with the value of this
process variable. The following values are
possible:
0 = Job inactive, no connection to the
selected process variable.
1 = Read connection and value of the
selected process variable. If the value read
is "not valid", an error message is
generated.
2 = Additionally to 1, if the task type
contains write, the value of the output
variable is written in the selected process
variable.
An error message is generated when the
selected process variable is not
"remanent".

This variable can be overwritten in the
tasks that lie under this group.

Status variable Input INT The status of the group can be detected
with this status variable. The variable can
adopt the following values:
0 = All group tasks OK
1 = At least one group task erroneous

Status variable
(text)

Input STRING The status of the erroneous group entries
can be accessed as a text string here. If
more than one task is erroneous then the
status of each is output cyclically.

4.3 Possible diagnostics when implementing the Dispatcher on the
control computer

As with all processes in APROL, the Dispatcher also writes its start/stop messages, and
eventual errors and warnings, in the local system messages of the respective APROL server.
The evaluation takes place in the normal way on the APROL system with 'APROL /
Diagnostic / System messages (local)', or on an external APROL system with 'APROL /
Reports / Detail report / System messages (central)', if forwarding has been configured.
In order to obtain more detailed information about the Dispatcher and its configured tasks during
a start-up it is possible to extend the Dispatcher's tasks with a dialog. For this purpose, the
Dispatcher can be started on the console of the respective APROL runtime system with the
following additional option
 -d_local <debugFilter>.
The debug filter can be set to the integer value of the <debugFilter> with the APROL tool pio
via an Iosys variable (DebugFilter variable) that has the name
 DRIVER_<Driver name>_<Process ID>_debugFilter.
The <debugFilter> is a bit mask with which the different outputs can be controlled.

F1 Drivers for B&R Connections
4-12

A further Iosys variable with the name
 DRIVER_<Driver name>_<Process ID>_debugRegex
can be created for a special filtering in the DBG_ONLINE mode. When using a regular
expression with this variable, the active outputs in the DBG_ONLINE mode can be filtered for
certain groups and/or tasks.
Additionally, all DBG_ERROR and DBG_ONLINE outputs are written in a process variable with
the name
 DRIVER_<Driver name>_<Process ID>_errorTxt. The error text can be read from this
variable with IosEv.
The following filtering is controlled with the <debugFilter>:

debugFilter Description

1 (0x01) (%0000 0001) DBG_ERRORS
The extended error and warning messages are
output here.
Example:
"no persist flag for pv VENTIL_T1"
"wrong iosys type for pv VENTIL_T2"

2 (0x02) (%0000 0010) DBG_NORMAL
This filter provides messages, which can be helpful
for analysis in the start-up phase.
Example:
"ACCESS PV: VENTIL_T1"
"RELEASE PV: VENTIL_T1"

4 (0x04) (%0000 0100) DBG_IOSYS
The value and status changes of the configured
Iosys variables are shown with this.
Example:
"changed_cmdgrp for CMD_TANK1 (-VS—P)"
"changed_cmdpv for VENTIL_T1 ((-VS—P)"

8 (0x08) (%0000 1000) DBG_ONLINE
All of the individual task variables are recorded with
regard to their connection and value changes with
this filter. With the above mentioned Iosys variable
 "DRIVER_<name>_<pid>_debugRegex",
the output can be limited to certain tasks and/or
groups.

Because these tasks can have a large scope,
this operation should only be carried out for
short periods, or with a limited group/task filter,
otherwise an overflow of the SysLogging could
occur.

16 (0x10) (%0001 0000) DBG_CONFIGURATION
The start configuration that was found by the driver
is output with this.

 Dispatcher
4-13

4.4 Driver configuration example (Dispatcher)

Illustration 13: XML code of the configuration file

The following table gives an overview of XML tags and the equivalent variable identifiers on the
surface.

XML tag Variable

<SelPv> Selection variable
<CmdPv> Access variable
<StatePv> Status variable
<StateTxtPv> Status variable (text)
<Validator> Selection validator
<InPv> Input variable
<OutPv> Output variable

4.5 Dispatcher status variables

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL
documentation on our internet side www.br-automation.com, in the area Material
related downloads.

 EventDriver
5-1

5 EventDriver

.

5.1 General information about the EventDriver

 Please read the information about process bus redundancy in chapter Process bus
redundancy for Ethernet connections in this manual!
Please also note the information in chapter Technical notes about the use of controllers.

5.1.1 Using the EventDriver
Each value change or status change (event) for a process variable within the process control
system is assigned a time stamp (date, time). This time stamp is assigned by the control
computer (runtime system) using its system time. This type stamp is used when archiving the
data.
The EventDriver described here is used to evaluate event type process variables on B&R
controllers; the time stamp is created on the respective controller.

The expansion of the communication level with this driver has the big advantage that time-critical
processes on the controller can now be analyzed. It is possible to follow signals in a time pattern
of approx. 10 ms and check if e.g. a programmed signal sequence with certain timing is being
executed properly during runtime.
The connection to the control computer (communication) is handled exclusively via Ethernet
using the TCP/IP protocol. Using this driver does not exclude the usage of other drivers on this
controller.

5.1.2 EventDriver operation
The driver works together very closely with the modules on the controller. For optimal use, a
short description of the operation of this driver, which only used read access, is provided:

 The driver inspects a maximum of 2000 PVs per task cycle.

If all PVs change at the same time, the software creates a load of approx. 25 % of the CPU time
(CP360). The system load is less with powerful CPUs.
If more than these 2000 PVs were checked, it could result in a cycle time overrun because of
other tasks that are running at the same time. The driver processes the PV list like a ring buffer
due to the other cyclic tasks, i.e. it starts at the beginning again after the end of the list has been
reached.
This results in a guaranteed resolution of
T=[(PV_ANZAHL - (MAX_PV -1)) / MAX_PV] * 10 milliseconds
with MAX_PV = 2000

F1 Drivers for B&R Connections
5-2

The expression in [....] is a whole number division without remainder, therefore T is always a
whole number.
The driver does not send its event buffer to the control computer (runtime system)
cyclically with the latest value change, instead it always sends it when it has at least 68
entries (80%) or when it has at least one entry and the last send was at least 100
milliseconds earlier. This results in a runtime delay for data transfer that is a maximum of 100
milliseconds, which is added to the runtime delay for the control computer applications.

 The clocks on the controllers and the control computer must be synchronized using
standard APROL mechanisms so that the timing for a group of events (values) can
be analyzed accurately!

5.1.3 Technical note about the usage on the controller
The EventDriver for controllers uses a buffer system that is comprised of 100 buffers,
which can each contain a maximum of 85 event entries. With this there is the chance of
catching a data-loss if a connection fails.

A telegram which is to be sent contains a completely filled event buffer in order to achieve
a high data throughput.

The EventDriver can manage a maximum of 4096 event PVs.
An event entry is either created by the EventDriver itself, or by the so-called Event link
mechanism (see below) of a task (the EventDriver's task class).
The transfer of event buffers is solely carried out by the EventDriver.
The EventDriver sends an event buffer when

no buffer has been sent for at least 10 cycles, and the buffer contains at least one entry,

 Either one telegram can be received per task cycle from the control computer, or one
buffer containing change events sent, in order to keep the system load low. A maximum of
1000 value checks are carried out in this case. If there is no communication, then all of the
2000 checks are carried out.

As each telegram which the control driver sends must be confirmed in the control computer by
the EventDriver, and a simultaneous receiving and sending is not possible, there is a resulting
steady load of 85/2 events, i.e. 42 events per task cycle. The sum of the EventDriver and
EventLink events are contained in this number!

 If more than 42 events are continuously created, then a data-loss occurs due to
buffer overflows.

 EventDriver
5-3

5.1.4 Schematic overview for EventDriver
The driver's buffer system consists of three queues.

The first (Empty queue) contains all of the currently unused and partial filled event
buffers.

The second (send queue) contains all of the completely filled, but not yet sent event
buffers. These should be sent as quickly as possible to the control computer.

The third (Unconfirmed queue) contains all of the event buffers which have been sent to
the control computer, but have not been acknowledged by it.

The accumulating data is written to the next free event buffer. If this buffer is full it is removed
from the free buffers, and moved to the send queue. Data can still be sent in the case that an
acknowledgement telegram has not already been processed by the control computer:
The first send buffer is sent when it exists. If the send queue is empty then the first partly filled
buffer can be sent. Pre-requisition for this is that it has a content of at least 80 percent, or that no
data have been sent for a period of > 100 ms.
A sent buffer is moved to the 'unconfirmed queue'. It stays there until the confirmation from the
control computer arrives. It is then released for re-use afterwards.
If the connection to the control computer is lost in the meantime then all of the 'unconfirmed
buffers' are transferred again after a reconnection. In this way a loss of data should be avoided.
These data are eventually sent to a redundancy driver, if it connects to the controller because of
the APROL redundancy mechanism.
If new events are created and there is no free buffer then the oldest 'unconfirmed buffer' is used.
In certain circumstances, this buffer's data may have already been transferred to the control
system but not yet acknowledged.
If there are also no 'unconfirmed buffers' available then the oldest send data is
overwritten.
In this case, all 85 entries of the respective buffer are lost! In this case there will be an
unavoidable loss of data!

F1 Drivers for B&R Connections
5-4

Illustration 14: EventDriver functionality

5.2 Contents of the RPM package
.

5.2.1 Description of the files included in the package
The RPM package is identified as the 'APROL EventDriver'.
It contains the following described files:

File name Description

 EventDriver
5-5

File name Description

ApDrvEvt.br The module monitors the process variables on the controller
which have event time stamps that are taken from the controller.
The controller module is configured by the control computer
driver. It runs cyclically in task class 1 (10 milliseconds) on the
CPU. In each cycle, the values of the variables are compared
with the states from the last cycle. If a minimum deviation from
the last value exists, an entry is made in the event buffer. The
event buffer is sent to the control computer if at least 68
entries are in the event buffer, or after 100 milliseconds at
the latest.
A maximum of 2000 variables are compared per task cycle.
If more variables are configured, then it will continue in the next
cycle where it left off in the last cycle. It is clear that the timing
resolution becomes coarser when more variables have to be
compared.
The module on the controller works with interlinked lists and
requires 32 bytes of memory per process variable.
Directory /opt/aprol/br/aprol/Vxxx/i386/module/

EventDriver The control computer driver for receiving process variables from
the controller. After establishing a connection, the control
computer driver and the controller compare their configurations
and create a new configuration is they are different. If the
configurations on both sides are identical, the controller can
send the contents of its event buffers to the control computer.
When a new configuration is made, all existing entries in the
event buffer on the controller are lost.
Directory: /opt/aprol/bin/

libEventDriver.so

Shared library used by the APROL driver on the control
computer to communicate with the controller.
Directory: /opt/aprol/lib/

EventDriver.README

README file with a description of the RPM package.
Directory: /opt/aprol/doc/packages/EventDriver/

The following files – which are not described in detail – are also on the APROL computer after
the installation of the software package:

/opt/aprol/cnf/EventDriver/examples/ApEvtLink
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/Link.cfg
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApDrvLink.c
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApEvtLink.c
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApEvtLink.h
/opt/aprol/doc/packages/EventDriver

5.3 Configuration
.

F1 Drivers for B&R Connections
5-6

5.3.1 Configuration of the EventDrivers
The following modules (and conditions) are required for operation of the EventDriver:

ethsock.br
AR-OS system module

A valid TCP/IP configuration

sys_lib.br
AR-OS system module

ApDrvEvt.br
AR-OS system module

If these modules are not installed on the controller, then the individual modules must be
transferred to the CPU using the engineering system. The data module must be generated
before transferring it to the respective controller!
The ncessary TCP/IP configuration is made with the help of the CaeManager.

 In order to test if the TCP/IP connection is operating on the controller without problems,
send a ping instruction to the corresponding controller address. If the ping instruction is
not answered, then the configuration of the driver and the hardware used for the
connection must be checked!

5.3.2 Configuration of the driver in the APROL system

The control computer driver for receiving process variables from the controller is configured in
the scope of the CC modules.

 The launching options of the EventDriver can be found in the manual 'X99 CC Modules',
chapter Launching Options EventDriver

An event variable type can be of the type 'Hardware I/O'!
To create an event variable, it's necessary to activate the "Event Variable" type when configuring
the I/O module!

Illustration 15: Creating an event variable

Variables that are recognized as event type process variables are no longer in the configuration
file for the cyclic driver during runtime on the runtime system.

 EventDriver
5-7

 The 'event' type process variables that should be transferred must be use used as
'global variables' in the CFCs.

5.4 EventDriver status variables

The names of the EventDriver status variables begin with the prefix 'S2E_'.
The string "DRIVER_", together with the "-controller" start option entry, is used. For example, if
the driver is started with -controller controller1, then a variable with the prefix
DRIVER_controller1 is created.

Name of the
status variable

Description

<Prefix>_connStatus

e.g.
DRIVER_PLC1_connStatus

Integer type

Value 0: Boot phase of the driver
Value 1: Connection not yet established
Value 2: Connection to the controller established

<Prefix>_numEventsLost This variables shows how many events have been lost since
the control computer driver was started. The variable is
increased with each event that could not be recorded on the
controller because of lack of space.
The last time that an event was lost can be detected with the
changed time stamp of the variable (e.g. with IosEv).

<Prefix>_reduConfigured Value 0: No redundant IP address configured
Value 1: Redundant IP address configured

<Prefix>_connUsed IP address currently being used
(the address is being used even if a connection is not
currently active)

<Prefix>_debugFilter Variables that can be switched on or off using 'pio' debug
outputs. They are output to stderr using fprintf and, if
necessary, can be read from there by redirecting the data.
Error outputs are also written to the Syslog container.

5.5 Event variables in external tasks

 Please note the information in chapter Technical notes about the use of controllers.

.

5.5.1 Transferring event variables with their own time stamp
The following section describes how event variables are transferred from external tasks to the
control computer.

F1 Drivers for B&R Connections
5-8

Illustration 16: Schematic diagram of the ApEvtLink module

In the following description, it is necessary that the external task is created with Automation
Studio.

 Controller global variables cannot be used!

In the example, the file
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApDrvLink.c

will be used to clarify the use of the link module.

The files:
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApEvtLink.c
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx/ApEvtLink.h

must be integrated in the external task!
The software package provides the application programming with two routines that must be used
in the software created. First, the routine ApEvtLink_Initialize is used to initialize a local
variable with the name evtLink and type T_AP_EVT_LINK (also see include file ApEvtLink.h).
This routine should be called from the Init SP for the application task and must be repeated until
evtLink.pEvBufPtr has a value other than 0. This is the case when the Init UP has successfully
finished processing the APROL event driver. In this way, it is clear that the APROL event
driver always has to be loaded to the controller before the application task!
The second routine ApEvtLink_MakeEventEntry (DINT pvId, T_PLC_TIME *pPlcTime,
UDINT *pValue) creates an event entry in the ring buffer for the APROL event driver. The
transfer includes a unique variable identification number that must be created by the user and
configured in the Gateway editor, the address of a time structure with a time stamp that must be
entered by the user as a "local time" and the address of a 4 byte variable that contains the
variable value. The user does not have to take the byte order into consideration because the
routine places the bytes in the order that is needed. Take note that Define BR_controller_IX86
must be set for Intel CPUs!
The list of the H and C files as well as an example application is also provided.

 EventDriver
5-9

 Because of the locking mechanism used, the external task and EventDriver must run in
the same task class.
If these instructions are not adhered to, there may be occurences ranging from
errors in the controller memory mangement to a CPU crash.
The transfer of the values to the event driver requires a 4 Byte variable value (Float,
INT32, UINT32, DATE), so that a conversion must eventually take place in the user task.

5.5.2 Configuration of the user variables with the Gateway editor
The configuration of the link variables for the APROL event driver consists of a list of variables
(one per line) each having four entries:
PV_NAME PV_ID CONTROLLER_TYP IEC_TYP

The entry PV_NAME specifies the name of the PV in the Iosys. The PV is handled by the driver,
i.e. writing to the PV on the controller is not possible and also does not make sense!
The PV_ID is sent to the control computer driver by the controller driver for identification. The
internal ID in the control computer driver is generated from the sum of the LINK_OFFSET (see
above) and the configured PV_ID. The sum ID must be given to the routine
ApEvtLink_MakeEventEntry, not the PV_ID listed in the configuration file. This method has the
advantage that the PV can be easily moved within the user task (e.g. using Define function).
Take note that the IDs for APROL event variables are assigned dynamically and therefore it
may be necessary to move them if more than 32767 APROL event variables should be used!
The VARIABLE_TYPE entry specifies how the variables are to be interpreted by the control
computer driver and which Iosys data type should be used. Three variable types can be defined:

In the Iosys, FLOAT variables use the DOUBLE data type.

In the Iosys, INT32 variables use the INTEGER data type

In the Iosys, UINT32 variables use the INTEGER data type.

DATE on the controller corresponds to a UINT32, is depicted as a data type INTEGER in
the Iosys.

The desired IEC data type must be set for IEC_TYP. This ensures that a variable of the name
with the corresponding IEC type can be used in the CFC.
This entry does not appear in the configuration file of the driver and cannot be seen in the
configuration preview! The driver can carry out a limit value check, i.e. it is possible that a USINT
has the value 65535 assigned! It is the responsibility of the user to adhere to the limits!

5.5.3 Testing the software
The configuration can be checked with the IosEv tool.
IosEv –pv PV_NAME

or
IosEv –mask PV_NAME

shows a corresponding list of variables and incoming value changes including time stamp. When
the controller time changes, the time stamp must change as well.

F1 Drivers for B&R Connections
5-10

5.5.4 Limitations
The following limitations need to be taken into account:

The event task on the controller is only configured using the variable address and
variable type. Event variables always have to be controller global variables. Only global
variable addressed can be accessed by the control computer without communication
with the controller.

It is currently not possible to define a hysteresis. The minimum value change that
generates an event on the controller is permanently set to 0.

One connection is possible per controller. Redundancy or controller cross
communication is not implemented.

A check is not made to determine if the memory addresses to be transferred are actually
being used on the controller. The values shown are not valid if communication is
activated without the respective tasks running on the controller.

 EventDriver
5-11

5.5.5 ApEvtLink.h
#ifndef AP_EVT_LINK_H
#define AP_EVT_LINK_H

#ifndef PLCTASK
#define PLCTASK
typedef void * PTR;
#endif

#include <PccEventDriverTypes.h>
#include <PccEventDriverLib.h>

#ifndef BR_PLC_IX86
#ifndef BR_PLC_M68K
#error Missing target information - define either BR_PLC_IX86 or BR_PLC_M68K
#endif
#endif

#ifdef BR_PLC_IX86
#define swapLong(x) ((((x)<< 24) & 0xFF000000) | \
 (((x)<< 8) & 0x00FF0000) | \
 (((x)>> 8) & 0x0000FF00) | \
 (((x)>> 24) & 0x000000FF))

#define swapShort(x) (((x << 8) & 0xFF00) | \
 ((x >> 8) & 0x00FF))

#define ntohs htons
#define ntohl htonl
#define htonl(x) swapLong(x)
#define htons(x) swapShort(x)

#define T_TIME_ENTRY T_PLC_TIME

#else

#define ntohs(x) x
#define ntohl(x) x
#define htons(x) x
#define htonl(x) x

#define T_TIME_ENTRY T_PLC_TIME_SG3

#endif

typedef struct
{
 T_PLC_EVENT_BUFFER **pEventBufferPtr;
 T_PLC_EVENT_BUFFER **pSendQueuePtr;
 UINT *pSendQueueLen;
 T_PLC_EVENT_BUFFER **pFreeBuffersPtr;
 T_PLC_EVENT_BUFFER **pUnconfirmedPtr;

 UINT *pNumEventsLostPtr;

 BOOL isInitialized;
 UDINT lastError;
 UINT maxEventEntries;

} T_AP_EVT_LINK;

#define AP_EVT_LINK_ERR_BASE 50000
enum
{
 AP_EVT_LINK_NO_ERR = AP_EVT_LINK_ERR_BASE,
 AP_EVT_LINK_SIZE_ERR,
 AP_EVT_LINK_CONNECT_FAILED,
};

/* Funktions-Prototypen */
BOOL ApEvtLink_Initialize (void);
UINT ApEvtLink_ConnectPv (UDINT *varAddr, char *varName, UDINT expectedLen);
void ApEvtLink_MakeEventEntry (DINT pvId, T_TIME_ENTRY *pPlcTime, UDINT *pValue);

#endif /* AP_EVT_LINK_H */

F1 Drivers for B&R Connections
5-12

5.5.6 ApEvtLink.c
#include <plc.h>
#include <plctypes.h>

#ifdef APROL
#include <iectypes.h>
#endif

#include <sys_lib.h>

#ifdef AS_PROJECT /* Set define AS_PROJECT if you are using an Automation Studio project.
 Disable this define if you are using this file as an APROL CaeManager
 library import */
#include <ApEvtLink.h>
#endif

static T_AP_EVT_LINK evtLink; /* This variable is only visible in this library. It is not visible
 in a controller watch! */

BOOL ApEvtLink_Initialize (void) /* Should be called from the INIT section of the task / function block */
{
 BOOL initializeSuccess;

 evtLink.isInitialized = 0;

 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pSendQueuePtr,
 "ApDrvEvt:pSendQueue", 4) == AP_EVT_LINK_NO_ERR);
 if (initializeSuccess)
 {
 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pSendQueueLen,
 "ApDrvEvt:sendQueueLen", 2) == AP_EVT_LINK_NO_ERR);
 }

 if (initializeSuccess)
 {
 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pEventBufferPtr,
 "ApDrvEvt:pEventBuffer", 4) == AP_EVT_LINK_NO_ERR);
 }

 if (initializeSuccess)
 {
 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pFreeBuffersPtr,
 "ApDrvEvt:pFreeBuffers", 4) == AP_EVT_LINK_NO_ERR);
 }

 if (initializeSuccess)
 {
 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pUnconfirmedPtr,
 "ApDrvEvt:pUnconfirmed", 4) == AP_EVT_LINK_NO_ERR);
 }

 if (initializeSuccess)
 {
 initializeSuccess = (ApEvtLink_ConnectPv ((UDINT *) &evtLink.pNumEventsLostPtr,
 "ApDrvEvt:pccEventDriverNumEventsLost", 2) == AP_EVT_LINK_NO_ERR);
 }

 if (initializeSuccess)
 {
 evtLink.maxEventEntries = MAX_SEND_EVENTS;
 evtLink.isInitialized = 1;
 }

 /* Must be called again from CYCLIC if return value is FALSE */
 return initializeSuccess;
}

UINT ApEvtLink_ConnectPv (UDINT *varAddr, char *varName, UDINT expectedLen)
{
 /* This routine gets the address of variables from ApDrvEvt and checks
 * if len is as expected
 */

 UDINT pvLen;

 evtLink.lastError = PV_xgetadr (varName, varAddr, &pvLen);
 if (evtLink.lastError == 0)
 {
 if (pvLen == expectedLen)
 return AP_EVT_LINK_NO_ERR; /* Got address and len check successful */
 else
 { /* Fails due to different length */
 evtLink.lastError = AP_EVT_LINK_SIZE_ERR;
 return AP_EVT_LINK_SIZE_ERR;
 }
 }
 /* Variable not found. Is ApDrvEvt already
 * on target?
 */
 return AP_EVT_LINK_CONNECT_FAILED;
}

void ApEvtLink_MakeEventEntry (DINT pvId, T_TIME_ENTRY *pPlcTime, UDINT *pValue)

 EventDriver
5-13

{
 /* This routine makes an event entry in ApDrvEvt's event buffer and updates
 * it's internal management variables
 */

 if (evtLink.isInitialized)
 {
 T_PLC_EVENT_BUFFER *pEvBuffer = *(evtLink.pEventBufferPtr);
 int numEventsLost = 0;
 int numEvents = 0;

 if (! pEvBuffer)
 {
 if (*(evtLink.pFreeBuffersPtr))
 {
 pEvBuffer = *(evtLink.pFreeBuffersPtr);
 *(evtLink.pFreeBuffersPtr) = pEvBuffer->next;
 }
 else if (*(evtLink.pUnconfirmedPtr))
 {
 pEvBuffer = *(evtLink.pUnconfirmedPtr);
 *(evtLink.pUnconfirmedPtr) = pEvBuffer->next;
 numEventsLost += ntohs (((T_EVENT_IND *) &pEvBuffer->data[HDR_SIZE])->numEvents);
 }
 else if (*(evtLink.pSendQueuePtr))
 {
 pEvBuffer = *(evtLink.pSendQueuePtr);
 *(evtLink.pSendQueuePtr) = pEvBuffer->next;
 numEventsLost += ntohs (((T_EVENT_IND *) &pEvBuffer->data[HDR_SIZE])->numEvents);
 }
 else
 numEventsLost++;

 if (pEvBuffer)
 {
 if (pEvBuffer->next)
 pEvBuffer->next->prev = NULL;

 pEvBuffer->next = 0;
 pEvBuffer->prev = 0;

 ((T_EVENT_IND *) &pEvBuffer->data[HDR_SIZE])->numEvents = 0;
 *(evtLink.pEventBufferPtr) = pEvBuffer;
 }
 }
 else
 numEvents = ntohs (((T_EVENT_IND *) &pEvBuffer->data[HDR_SIZE])->numEvents);

 if (numEventsLost)
 *(evtLink.pNumEventsLostPtr) = numEventsLost + *(evtLink.pNumEventsLostPtr);

 if (pEvBuffer)
 {
 T_EVENT_IND *pInd = (T_EVENT_IND *) &pEvBuffer->data[HDR_SIZE];
 T_EVENT_ENTRY *pEntry = (T_EVENT_ENTRY *) &pEvBuffer->data[HDR_SIZE+sizeof (T_EVENT_IND)];

 pEntry+= numEvents;

 pEntry->pvId = htonl (pvId);
#ifdef BR_PLC_IX86 /* SG4 */
 pEntry->time.tv_sec = htonl (pPlcTime->tv_sec);
 pEntry->time.tv_usec = htonl (pPlcTime->tv_usec);

#else /* SG3 */

 memcpy (&pEntry->time, pPlcTime, sizeof (T_TIME_ENTRY));
 memcpy (&pEntry->value, pValue, 4);
#endif

 *((unsigned int *) pEntry->value) = htonl (*((unsigned int *) pValue));
 pInd->numEvents = htons ((1 + numEvents));

 if ((1 + numEvents) == MAX_SEND_EVENTS)
 {
 T_PLC_EVENT_BUFFER *pSend = *(evtLink.pSendQueuePtr);
 *(evtLink.pEventBufferPtr) = 0;
 if (pSend)
 {
 while (pSend->next)
 pSend = pSend->next;

 pSend->next = pEvBuffer;
 pEvBuffer->prev = pSend;
 }
 else
 {
 *(evtLink.pSendQueuePtr) = pEvBuffer;
 }

 *(evtLink.pSendQueueLen) = 1 + *(evtLink.pSendQueueLen);
 }
 }
 }
}

F1 Drivers for B&R Connections
5-14

 EventDriver
5-15

5.5.7 ApDrvLink.c

#include <plc.h>
#include <plctypes.h>

#ifdef APROL
#include <iectypes.h>
#endif

#include <sys_lib.h>

#define PLCTASK
typedef void * PTR;

#include <ApEvtLink.h>

#ifdef BR_PLC_IX86
#include <astime.h>
#endif

#ifdef LOG_ERRORS
#define LOG_ERROR(line, format, args...) \
 { \
 char buffer[80]; \
 sprintf (buffer, format, args); \
 ERRxwarning (50000, line, buffer); \
 }
#else
#define LOG_ERROR(line, format, args...);
#endif

_LOCAL UINT myTaskCounter;
_LOCAL UINT numEventsPerLoop;
_LOCAL UINT myLinkOffset;
_LOCAL BOOL enabled;
_LOCAL BOOL initialized;

_INIT void ApEvtLink_Init (void)
{
 myTaskCounter = 0;
 numEventsPerLoop = 25;
 myLinkOffset = 50000;

 enabled = 0;
 initialized = 0;

 initialized = ApEvtLink_Initialize ();
 LOG_ERROR(__LINE__, "isInitialized = %d", evtLink.isInitialized);
}

_EXIT void ApEvtLink_Exit (void)
{
}

_CYCLIC void ApEvtLink_Cyclic (void)
{
 if (! initialized)
 ST_tmp_suspend (0);

 if (enabled) /* Set enabled true in watch to create event entries */
 {
 if ((myTaskCounter = (++myTaskCounter % 100)) == 0)
 {
 UDINT value;
 int i;

#ifdef BR_PLC_IX86
 DTStructure utcTime;
 UtcDTStructureGetTime_typ UtcDTStructureGetTime_Var;
 T_PLC_TIME plcTime;

 UtcDTStructureGetTime_Var.pDTStructure = (UDINT) &utcTime;
 UtcDTStructureGetTime_Var.enable = 1;
 UtcDTStructureGetTime(&UtcDTStructureGetTime_Var);

 plcTime.tv_sec = htonl (DTStructure_TO_DT ((unsigned long) &utcTime));
 plcTime.tv_usec = htonl (utcTime.millisec);

 value = plcTime.tv_usec;
#else
 T_PLC_TIME_SG3 plcTime;
 RTCtime_typ currentTime;

 RTC_gettime(¤tTime);
 plcTime.year = currentTime.year - 1970;
 plcTime.mon = currentTime.month;
 plcTime.day = currentTime.day;
 plcTime.hour = currentTime.hour;
 plcTime.min = currentTime.minute;
 plcTime.sec = currentTime.second;
 plcTime.milliseconds = htons (currentTime.millisec);

 value = plcTime.milliseconds;

F1 Drivers for B&R Connections
5-16

#endif

 for (i=0; i<numEventsPerLoop; i++)
 {
 value = myLinkOffset+i;

 if (i == 2 || i == 5)
 {
 float f = myLinkOffset + i;
 memcpy (&value, &f, 4);
 }

 ApEvtLink_MakeEventEntry (myLinkOffset+i, &plcTime, &value);
 }
 }
 }
}

5.5.8 Example configuration for the APROL EventDriver

PvId VarName VarType

0x0000 TestVar0 INT32
0x0001 TestVar1 UINT32
0x0002 TestVar2 FLOAT

PvIds are used internally together with linkOffset,
so that PvId = PvId + linkOffset is used internally!!!

VarName specifies the PV names in the Iosys.

VarType is used for evaluating values, casting may be necessary on the controller!!!
Valid VarTypes are FLOAT, INT32 and UINT32. In the Iosys, they are
FLOAT, INT and FLOAT, (internally, FLOAT is type double) because only
double variables can represent the full value range for UINT32.

0x0000 TestVar0 INT32
0x0001 TestVar1 UINT32
0x0002 TestVar2 FLOAT
0x0003 TestVar3 INT32
0x0004 TestVar4 UINT32
0x0005 TestVar5 FLOAT
0x0006 TestVar6 INT32
0x0007 TestVar7 INT32
0x0008 TestVar8 FLOAT
0x0009 TestVar9 INT32
0x000A TestVar10 INT32
0x000B TestVar11 FLOAT
0x000C TestVar12 INT32
0x000D TestVar13 INT32
0x000E TestVar14 FLOAT
0x000F TestVar15 INT32
0x0010 TestVar16 INT32
0x0011 TestVar17 FLOAT
0x0012 TestVar18 INT32
0x0013 TestVar19 INT32
0x0014 TestVar20 FLOAT
0x0015 TestVar21 INT32
0x0016 TestVar22 INT32
0x0017 TestVar23 FLOAT
0x0018 TestVar24 INT32
0x0019 TestVar25 INT32
0x001A TestVar26 FLOAT
0x001B TestVar27 INT32
0x001C TestVar28 INT32
0x001D TestVar29 FLOAT
0x001E TestVar30 INT32

 The PvId can be entered in hexadecimal (see example) and also in decimal!

5.5.9 Creating a task with Automation Studio
The short overview in the following section explains how to create a task with Automation Studio
(Version 2.3) using the example test file ApDrvLink.c:

 EventDriver
5-17

Create a new project in Automation Studio with the name ApDrvLnk.

Create a new cyclic task (TC1) after uploading the hardware.

Add the files ApDrvLink.c, ApEvtLink.c and ApEvtLink.h.

Add the library sys_lib as well as the files sys_lib.h and sys_lib.a.

If you are using an Intel CPU:
In the compiler options under "Project/Settings", the DBR_controller_IX86 setting must
be added.

Add the files controller.h and controllertypes.h from your Automation Studio environment.

Select "Build" (F7) to create the cyclic task.

Replace the file ApDrvLink.c with your application and add the necessary calls.

 1. ApEvtLink_Initialize() should not be called in the INIT_SP in order to guarantee that
the EventDriver is finished with its initialization.
2. Call this routine repeatedly in the cyclic section until all values in the structure have a
value "not equal to 0"!

5.5.10 Using the driver with a C block
Transferring data with a time stamp that has been set explicitly is also possible via a C block
from a CAE library. In this case, the same basic requirements and limitations apply as described
in the previous chapter.

The above mentioned ApEvtLink.h and ApEvtLink.c files are integrated as library-global project
parts in a library in order to allow a library block to address the necessary driver routines. For
this, proceed as follows:

Eventually create a new library group, e.g. with the name 'GlobalLibs', in the CaeManager

Select the group and choose
File => New => Library-Global Header
from the menu. Give the new project part a name, e.g.
'GlobalEvtLink_H'

Activate the 'Code for the controller' in the project part's master data; deactivate 'Code for
the control computer'

Select the 'Program' tab. Select 'Import from file' from the context menu (right mouse-click
in the editor window)

Navigate to
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx
in the file selection dialog, and choose the file 'ApEvtLink.h' to be 'opened'. Its content is
then imported into the new project part.

Save the created library-global header module and compile it.

F1 Drivers for B&R Connections
5-18

The integration of the driver C routine is carried out in the same way:

Select the 'GlobalLibs' group and choose
File => New => C Module
from the menu. Give the new project part a name, e.g.
'GlobalEvtLink_C'

Activate the 'Code for the controller' in the project part's master data; deactivate 'Code for
the control computer'

Select the 'Program' tab. Select 'Import from file' from the context menu (right mouse-click
in the left window) of the 'C Code' editor area.

Navigate to
/opt/aprol/cnf/EventDriver/examples/ApEvtLink/V02xx
in the file selection dialog, and choose the file 'ApEvtLink.c' to be 'opened'. Its content is
then imported into the new project part.

Complete the following lines in the 'Header' area (right editor window):
#include "GlobalEvtLink_H.h"

Save the created library-global C module and compile it.

The routines for using the driver for the library's C function blocks are now available.

The basic structure of the program code of a C block is similar to that of the above mentioned
ApDrvLink.c file. A function block for use on the B&R SG4 platform is created in the following
manner.
Select the 'Declarations' tab after creating the block (only for a controller, master data) and
create the following entries:

Includes & Defines for the local header file

#include <astime.h>
#include <asarcfg.h>

Includes & Defines for the local C file

#include "GlobalEvtLink_C.h"

Local variables of the block instance

Name Category Data type
LinkInit IEC type BOOL
UtcDTStructureGetTime_Obj IEC structure UtcDTStructureGetTime
utcTime IEC structure DTStructure

Further column values for all entries:
Usage : only CTRL
Remanent : OUT
Default value : 0
Dimension :

 EventDriver
5-19

The driver is initialized in the 'Init Code' tab:

Init Code

LinkInit = ApEvtLink_Initialize(void);
return (0);

The basic structure of the C code may look as follows:
REAL realVal, nullVal = 0.0; /* Example declaration of a user variable
 Declare your desired variables instead
 */
T_PLC_TIME plcTime;

if (! LinkInit)
{
 ST_tmp_suspend (0); /* Stop task if driver is not initialized
 Alternatively you can try to reinitialize with
 LinkInit = ApEvtLink_Initialize(void);
 */
}
else
{
 /* Place your program code here */

 /* Example to read the current time of the controller */

 UtcDTStructureGetTime_Obj.pDTStructure = (UDINT) &utcTime;
 UtcDTStructureGetTime_Obj.enable = 1;
 UtcDTStructureGetTime(&UtcDTStructureGetTime_Obj);

 /* Converts a DTStructure to seconds since 1970-01-01 (UTC) */
 plcTime.tv_sec = DTStructure_TO_DT ((unsigned long) &utcTime);
 plcTime.tv_usec = utcTime.millisec * 1000;

 /* Example to write a value with timestamp to the event link buffer */

 ApEvtLink_MakeEventEntry (VarOffset + VarID, &plcTime, (UDINT *) &realVal);

}

The two variables 'VarOffset' and 'VarID' that are marked in color are configuration data that are
held as best as block pins:

Block inputs

Name Data type Default value
VarOffset UINT 50000
VarID UINT

'The default value for the variable offsets must be the same as the '-linkOffset' parameter of the
driver instance in the control system catalog. Furthermore, the '-useLinkDir' driver parameter
must be activated; its default value is "." (point).
The driver does not address variables with their name, but with their configured ID in the
'APROL couplings / EventDriver / <Controller instance>':

List of PVs

PV name ID of the system
var.

Data Type (controller) IEC Data type

Temperature 0 FLOAT LREAL
Printing 1 UINT32 UINT

F1 Drivers for B&R Connections
5-20

If you want to address the 'Druck' variable, the 'VarID' in the block code is '1'.
The IEC data type is relevant for use in the CFC. You can access the PV with the name 'Druck'
from the list of gateway variables on the input border of a CFC; the data type there is REAL.

 You will only obtain the explicitly set time stamp of the variable event by accessing the
border directly. Each block that is placed in between is an allocation to a task, and
results in the local time stamp!

 The CFC, in which a block for the use of the Event link mode is placed, must be
allocated to a controller task with the class 1, parallel to the 'ApDrvEvt' driver.

 InaDriver
6-1

6 InaDriver

.

6.1 General information about the InaDriver

 APROL drivers convert data types when instance transitions take place, if necessary
automatically. The data type and respective size depends on the respective control
computer / controller.
The values transferred are limited to the minimum, or maximum values of the
corresponding target system.
Please take note that there can be a limitation in the value range, or the accuracy.
An overview page for the IEC types can be reached in the CaeManager with the menu
item 'Help/IEC type info'!
Different data sizes between control computer and controller are marked in the help
page with a yellow triangle.

The software package works with various I/O modules (e.g. Profibus cards, Ethernet cards,
serial interfaces). This documentation provides a description of the hardware, the installation and
configuration routines in the "InaDriver" software package for APROL running in LINUX and
also notes concerning various additional packages. The package consists of the kernel drivers
that handle access of the hardware, various utilities for configuration and network analysis and
also the APROL driver for communication with the I/O modules. The installation of the
software, the configuration of the hardware and the network parameters for a few selected
network settings are also described. This can be used as an aid when solving problems if errors
occur.

 The program package requires a LINUX kernel with Version 2.2.0 or higher. The kernel
must be compiled and started with the option "enable loadable module support" and
without the option "set version information on all symbols for modules". Please check
your SuSE LINUX documentation to see how a corresponding LINUX kernel is
structured.

 Please read the information about process bus redundancy in chapter Process
bus redundancy for Ethernet connections in this manual!

6.2 Description of the PC hardware
.

6.2.1 Softing PROFIboard
One I/O module that can be used is the PROFIBUS card from Softing. This is an ISA card that
requires a 4 byte IO area, a free interrupt line as well as a 16 KB address area in the first MB on
your PC in order to operate. The device driver supports parallel operation of two PROFIBUS

F1 Drivers for B&R Connections
6-2

cards on a PC that can share a common interrupt. A detailed specification of the hardware can
be found in the PROFIBUS FMS for softing PROFIboards section.

6.2.2 B&R PC Profibus card
The second PROFIBUS card to be used is a B&R company product. This is an ISA card that
requires a 16 KB address area in the first Megabyte of your PC in order to operate. The device
driver supports parallel operation of two PROFIBUS cards. A detailed specification of the
hardware can be found in the APROL Profibus Package for B&R Hardware documentation.

6.2.3 PC Ethernet card
Any PC Ethernet card that can run in Linux can be used for the InaDriver; it should be installed
and configured according to the Linux installation manual.
An overview of the hardware types that are supported can be found in the SuSE installation
manual. If Ethernet is correctly detected by the kernel, corresponding messages are generated
when the system is booted.
For example:
eth0: Digital DS21143 Tulip rev 65 at 0xa800, 00:00:1C:B5:F4:D1, IRQ 10.
eth0: EEPROM default media type Autosense.
eth0: Index #0 - Media MII (#11) described by a 21142 MII PHY (3) block.
eth0: MII transceiver #5 config 3000 status 7829 advertising 01e1.

After successfully configuring the kernel, the parameters for this Ethernet device can be set
using the YaST program. After the parameters have been set for the device, the ifconfig
program returns the configuration of the Ethernet device.
For example:
eth0 Link encap:Ethernet HWaddr 00:00:1C:B5:F4:D1
 inet addr:192.168.2.35 Bcast:192.168.2.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:15041342 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15484661 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1705 txqueuelen:100
 Interrupt:10 Base address:0xa800

6.2.4 Serial interfaces
In order to use a serial interface for the InaDriver, it must be detected and supported by the
Linux system. It is important that other processes (e.g. modem driver) do not access this
interface. If the kernel supports the serial interface, which is normally the case, then the
operating system generates for example the following message when booting:

ttyS00 at 0x03f8 (irq = 4) is a 16550A
ttyS01 at 0x02f8 (irq = 3) is a 16550A

Then the serial interfaces ttyS00 and ttyS01 are available on the PC (COM1 and COM2 in
DOS). Setting the parameters for the interfaces is described in the installation manual.

 InaDriver
6-3

6.3 Installation of the PC software
The software is installed using the YaST installation tool for the SuSE Linux version. Now insert
the APROL installation CD in your CD drive and choose the "settings for installation" menu
item after starting the YaST installation tool. The software is installed using the YaST installation
tool for the SuSE Linux version. If you are installing via FTP or NFS, please check the SuSE
installation manual.
To install the software, go to "Define/start installation" and select the "Change/create
configuration" menu item.

One of the following packages must be installed depending on the I/O module used:

InaDriver as serial driver: Series 5dr - InaDriver
InaDriver as Ethernet driver: Series 5dr - InaDriver
InaDriver as Profibus driver with B&R PC card: Series 5dr - InaDriver and BuRProfiboard
InaDriver as Profibus driver with SOFTING Profiboard: Series 5dr - InaDriver and PROFIboard
If you have decided to use the driver via Profibus, you will be asked to make some system
settings after the installation (see respective documentation for detailed information).

6.4 Configuration of the controller hardware
.

6.4.1 System settings
In the controller operating system, corresponding configuration entries must be made for the
various 2000 series hardware modules. Operating system (controller software) version 2.20 or
higher is required.
In the system configuration, the following entries must be checked and adjusted if necessary:

Connections:
Number of parallel connections (sum of client and server connections)

Communication Channels :
5 + number of parallel connections + 1 for each PB card being used.

Interfaces:
Each InaDriver interface must be enabled in the system settings for the communication,
with the exception of the online interface on the CPU, which is always enabled.

Example:.
Ethernet interface IF2 on the interface module for a CPU is enabled as follows:
Interface=IF2; Typ: Ethernet; Slot: Local; Subslot: SS1.
Ethernet interface IF4 on the interface module is enabled as follows:
Interface=IF4; Typ: Ethernet; Slot: Local; Subslot: no SS.

F1 Drivers for B&R Connections
6-4

6.5 Installation of the controller software
.

6.5.1 Description of the individual modules
In order for the controller to operate as an InaDriver server, the corresponding modules must be
"burned" on the CPU according to the application (serial, Profibus, Ethernet).

Ethernet:

tcpipcfg.br
User configuration (data module); contains the IP address, network mask, etc.

fbtpip.br
Routing module for INA communication

tcpipmgr.br
TCP/IP protocol software

Profibus:

fbpb.br
Routing module for INA communication

Serial:

No additional modules needed

6.6 Description of the utilities (InaDriver)
.

6.6.1 InaCmd
The InaCmd utility is used to perform actions with the help of the APROL driver described in
chapter Configuration of the APROL driver. This tool establishes a connection to the APROL
driver via the Iosys and uses the connection made by the APROL driver to transmit INA
services. For this to work, the Runtime system must be fully configured and already started. One
advantage is that additional connections to the controller are not needed and the Runtime
system does not have to be stopped when using serial communication so that another tool can
establish a connection to the controller via the serial interface.
The program is required for performing the download to the controller in the APROL system.
The Iosys environment variable must be set to a valid value
(Iosys="ComputerName":"IosysPort") so that the program can connect to the APROL driver's
Iosys.
The following section offers a brief description of the individual services and options.

The following options are supported:

Option Short description Description

-help Shows help info

 InaDriver
6-5

-driver DRV Connects to the DRV driver

The program attempts to establish
a connection with the DRV driver.
DRV is the value used to call the
driver when using the switch –n.

-download FILE Controller task download

The program loads a controller
task to the CPU connected to the
APROL driver. Generally, the
entire path plus file name must be
entered for FILE, because the
APROL driver opens the BR file.
The BR file must be located on a
file system which the driver can
access directly.

-burn "Burning" the controller task

If this option is used, then the
controller task is saved in the
USER_FLASH (cold restart safe),
otherwise the task is saved in the
USER_RAM, which means that it
is battery buffered but is deleted at
cold restart.

-init MODE Resets the CPU

The program executes a reset
command. Possible reset modes:
NORMAL: Warm restart (restart)
TOTAL: Cold restart (RAM
deleted, restart)
DIAGNOSE: Diagnostics start
(RAM deleted, restart in diagnose
mode, no user applications are
started).

-dom_info MODULE Module info for a controller
task

A variety of information is provided
about type, size and other
properties of the controller module.

-delete MODULE Deletes the module MODULE is deleted from the CPU.

-stop_drv MODULE Stops module
communication

The APROL driver stops
communication for the MODULE
controller task.

-start_drv MODULE Starts module
communication

The APROL driver starts
communication for the MODULE
controller task, if contained in the
driver configuration.

-meminfo Shows the memory usage
info for the CPU

Depending on the type of memory,
this information includes the start
address, total length and available
length.

Example of module info:

MODULE INFO:

1. DOM INDEX / STATE: 0x00000723 / 6
2. PI INDEX / STATE / COUNT: 0x00000581 / 3 / 1

F1 Drivers for B&R Connections
6-6

3. ADDRESS / LENGTH: 0x0024ed94 / 80872
4. NAME: ST_ALLG
5. VERSION 0.000
6. CREATION DATE: 31.07.2000 12:02:38
7. MODIFICATION DATE:
8. CREATED BY:
9. MODIFIED BY:
10. TASK CLASS: 3
11. INSTALL NO: 128
12. PV INDEX: 0x0c00
13. PV COUNT: 1376
14. LOCAL ANA-ADDR: 0x00f17230
15. LOCAL DIG-ADDR: 0x00000000
16. MEM LOCATION: 3
17. MODULE TYPE: 17

Description:
1. Domain invocation index (module) with status (0:NON_EXISTENT 1:EXISTENT
 2:LOADING 3:INCOMPLETE 4:COMPLETE 5:READY 6:IN_USE)
2. Program invocation index (task) with status (0:NON_EXISTENT
 1:UNRUNNABLE 2:IDLE 3:RUNNING 4:STOPPED 5:STARTING 6:STOPPING 7:RESUMING
 8:RESETTING) and program invocation with value>0 when domain is used
3. Physical start address of the module and length of the module in bytes
4. Module name
5. Module version
6. Creation date
7. Name of the person who programmed the module (optional)
8. Name of person making changes (optional)
9. Date when changes were made (optional)
10.Task class (0:NOT_VALID 1:TC1 2:TC2 3:TC3 4:TC4 17:SS1 18:SS2 19:SS3
 20:SS4 21:INTERRUPT 22:EXCEPTION)
11.Start sequence within a task class (optional)
12.Start index for PV - Table for this module
13.Number of PVs in this module
14.Start address of local analog memory
15.Start address of local digital memory
16.Location where the module is saved (2:USER_FLASH 3:USER_RAM 4:MEMCARD 5:FIXRAM
 65:DRAM)
17.Modultyp (u.a. 17: controller task 28 : system task module 22: exception task 65:
 data module)

6.6.2 CfgInaDriver
The CfgInaDriver utility combines many of the functions of the InaCmd utility in a menu-guided
interface. The CfgInaDriver requires the ncurses package from Linux. This usually comes
already installed.
The CfgInaDriver is controlled by selecting menu items instead of using start options. A base
menu is provided where the individual commands can be selected. This works the same way as
the InaCmd tool. A connection is established to the APROL driver and the services are
delivered via this program. After starting the CfgInaDriver tool, the user is asked to enter the
name of the APROL driver. The name of the APROL driver is entered here the same as the
–driver switch in the InaCmd program.

The following section offers a brief description of the individual services:

Menu item Description

RESET controller
Triggers a reset on the CPU connected to the APROL driver.
NORMAL (warm restart), TOTAL (cold restart) and DIAGNOSE are the
possible reset modes.

UPLOAD TASK

Uploads a controller module. The module that should to be processed
must be specified, and the filename must be entered for the file where
the module will be saved on the hard drive (the file is saved in the
driver's working directory if the file name is entered without a
directory).

 InaDriver
6-7

DOWNLOAD TASK

Loads a controller task to the CPU connected to the APROL driver.
Generally, the entire path plus file name must be entered for FILE,
because the APROL driver opens the BR file. The BR file must be
located on a file system which the driver can access directly. You can
also define whether or not to save the module (i.e. it is saved in the
USER_FLASH by setting the BURN item). Otherwise, it is placed in
the USER_RAM.
The domain and program index is shown after a successful action.

READ LOGBOOK
Reads the previous 10 entries from the CPU logbook. Error number,
error information, the affected task and the event date are output. If
available, the corresponding error text is also displayed.

MODULE INFO Reads the module info for a specific controller module. See InaCmd.

SET TIME Sets the date and time on the controller. The date and time from the
PC where the APROL driver was started is used as reference.

CPU INFO
Outputs CPU-specific information such as the operating system
version, type of CPU or AWS, start and status of the CPU, as well as
the battery status.

LIST MODULES Outputs all of the modules on the controller. MODULE INFO provides
more detailed information.

SHOW MEM INFO Depending on the type of memory, this information includes the start
address, total length and available length.

LIST FORCED
VARS

The physical addresses of the forced PVs and the corresponding task
classes are output.

6.6.3 InaConnect
Unlike InaCmd and CfgInaDriver, the InaConnect utility is a program, which establishes a
connection to the controller on its own. As a result, this program can also be used to integrate
individual controllers in a network, or to perform actions without having to start an APROL
Runtime system. The program can be used two ways:

1. As a command shell (ideal for diagnostics and error analysis).
2. Direct command execution (ideal for use in scripts)
Generally, the individual services are called up in the command shell and directly. There are two
types of options when calling up the program: options that define the connection type and
connection parameter and the options that described the individual services.
The following section describes how to define a connection:
The respective connection parameters must be set according to the medium used to establish
the connection with the controller:

Ethernet:

Specification of the partner IP address (not the name – names are not resolved) or
specification of the defined node number used for the partner station and the IP broadcast
address of the network, if it is not 255.255.255.255 (when multiple networks are defined,
each network has its own broadcast address).

F1 Drivers for B&R Connections
6-8

Specification of the station's own node number, so that the software (when there is more
than one connection to a partner station) can correctly assign the packages (the number
used should be unique in the respective network).

Specification of the partner station's socket port number; the port for Ethernet
communication on controllers is configured with 0x2b97 by default. This is why the port
number specification can be considered optional.

Serial:

The serial interface name is the only parameter. The DOS/Windows names are entered
(COM1, COM2 etc.), which corresponds to the respective Linux devices /dev/ttySx
(default settings for the interface are: baud rate=57600 , data bits=8 ; parity=2 [EVEN] ;
stop bit=1).

Profibus:

The user must decide which Profibus card should be used, the Profibus card from the
manufacturer Softing or the B&R Profibus card.

Which Profibus card should be accessed. By default, the first PB card of a type is
accessed, but up to 3 boards per type are supported.

Specifies the partner's station address. When using the Softing card, a specific LSAP
(Local Service Access Point) can be defined (optional).

General:

When the bus is under high load, it is possible to increase the timeout for the response to
the request, to prevent disconnection.

The B&R-2000 series can be routed from the connected CPU to other CPs.

Example: There is a connection between a PC and an interface card. The routing text
"CP" can be used if a connection is to be established with this controller's central CPU.
When routing from a central CPU to the parallel processor on slot 2, the routing string
could be called "PP2".

If a service is also specified directly with the correct connection parameters, then an attempt is
made immediately when starting the program to establish a connection and the service is
transmitted. The program is exited after successful processing. The program starts in the
command shell if a service is not specified. The selected options for establishing a connection
replace the default values upon startup.

The following table provides an overview of the currently available connection parameters and
implemented services. Some of these are predefined as option when starting the program and/or
shell command:

Option Command Description Default

-help / -h ? Displays the available options and
commands.

 InaDriver
6-9

Option Command Description Default

-medium o

Selects which medium should be
addressed:
-Ethernet medium or o 1 as
command
-Profibus medium or o 2 as
command
-serialPort medium or o 3 as
command

-

"Ethernet" "o 1" If Ethernet is selected, then the
following parameters can be set:

-socket No 3:socketNo Port for INA communication with the
partner station (controller) 0x2b97

-ip IP 4:ipAddress IP address of the partner station -
-node NODE 5:node Node number of the partner station -

-mynode NODE 6:myNode Own node number (important for
response telegrams) -

-bcast BCAST 7:bcastAdr

Broadcast address when working
with node number and the
broadcast address is not
255.255.255.255

-

"Profibus" "o 2" If Profibus is selected, then the
following parameters can be set:

-softing 3:useSofting
Determines if the Softing Profiboard
or the B&R Profibus card should be
used for access

B&R card

-pbAddr ADDR 4:pbAddress Specifies the partner's station
address -

-pbBoard No 5:pbBoard Specifies which Profibus card in the
PC should be used for access (0-2) 0

-pbLsap LSAP 6:pbLsap

When using the Softing card, a
special LSAP can be used in
addition to access via station
addresses (optional).

-

"serialPort" "o 3" If serialPort is selected, then the
following parameters can be set:

-comport COM 3:comIf

Specifies the serial interface in
DOS/Windows – COMx type which
corresponds to the Linux devices
ttySx - 1.

COM1

 4:comBd
specification of Baud rate (110, 300,
600, 1200, 2400, 3600, 4800, 9600,
19200, 38400 ,57600 ,115200)

57600

 5:comPa Parity (0 =NO, 1=ODD , 2=EVEN) 2
 6:comIt Timeout (0 – 60000 ms) 14
 "o [1|2|3]" Connection parameters
-setRT VAL 1:rtValue Timeout for response telegrams 165

F1 Drivers for B&R Connections
6-10

Option Command Description Default

-route ROUTE 2:routeInfo Routing information e.g. "CP" -

 "c" Attempts to establish a connection
using the defined parameters

 "d" Disconnects

 "s"

Displays the connection status
CONN_establish_connection
CONN_stable_connection
CONN_lost_connection
CONN_disconnecting
CONN_disconnected

-download FILE
-burn "p"

Downloads a B&R module, with
specification about whether or not to
"burn" the module

-upload Module
-file FILE "g"

Uploads a B&R module from the
controller, with a specified file name
where the module should be saved
on the hard drive

-reset MODE "r"
Resets the CPU connected to the
program. Possible MODE (TOTAL,
NORMAL, DIAGNOSE)

-logbook NUM "l"

Reads the CPU's error logbook with
specification about the number of
entries that should be read (max.
39)

-cpuinfo "i" Reads CPU information (software
version, type, etc.)

-meminfo "m" Reads the CPU's memory
information

-dom_info MODUL "lm"

Outputs module information. All
modules are output if "*" is entered.
If a specific module is defined, then
detailed information is provided
about that module.

-delete MODUL "dm" Deletes a module on the controller

 "pl"

Outputs a list of global PVs or a
specific PV. The search can be
filtered by specifying the start index
and the range. The PV start index
for a task can be determined using
the command in the "Task".

 "fl" Outputs a list of the forced
addresses and task class

 "fn"
Forces a PV to a whole-number
value by specifying its address and
task class

 InaDriver
6-11

Option Command Description Default

 "ff"

Un-forces a specific PV by
specifying its address and task
class, and all forced PV are deleted
from the force table

-gettime "gt" Outputs the date and time of the
CPU as well as the PC

-settime "st" Sets the PC date and time on the
controller

 "cm"

Deletes memory areas (Caution: all
is deleted). To do this, the controller
must be in Diagnose mode (r
DIAGNOSE). This can only be
performed via a serial connection.
After deleting, the controller should
be reset with a total-Init (r TOTAL)

 "tki"

Supplies the status of the individual
task classes on the connected CPU
with name, number and status
(STOP, RUNNING, IDLE)

 "tkr"

Starts a task class (i.e. if a task
class was stopped with tks "TC",
then it is restarted with tkr "TC").
This means that all of the tasks in
this task class are started again

 "tks"
Stops a TC task class. All tasks in
this task class are stopped and can
be restarted using tkr "TC"

 "tr" Starts a specific task that is
currently stopped

 "ts" Stops a specific task that has been
started and is located on the CPU

 "q" Disconnects and stops the program

-d LEVEL "v" Sets the debug level (1:error ;
2:transactions ; 4: data).

 "t" Displays the debug level

6.7 Configuration of the APROL driver (InaDriver)

The APROL driver can be configured in two ways when starting. Part of the configuration is
transferred to the driver in the form of start options (also see section Description of the driver
launching options), the process variables are configured using a configuration file (also see the
chapter Configuration file of the APROL driver).

F1 Drivers for B&R Connections
6-12

6.7.1 Description of the InaDriver's start options

The following section offers a description of the start options for the driver. The start options can
be combined in any way. Some of the options require additional parameters and some can
simply be called as they are. When parameters are required, symbolic parameter names are
defined that must be replaced by their values. Some of the parameters, such as specification of
the connection name, are mandatory parameters and others are optional:

Option Description

-D Displays the date the driver was created and is then exited (optional
parameter).

-n DRIVER_NAME Sets the name of the driver in the Iosys to DRIVER_NAME. The
status variables for the connection states and error indicators are
generated with this name (optional parameter, default: InaDriver).

-run_task The driver assumes that the configured task on the controller is in a
"running" state and immediately begins communication after starting.
This option is only used in APROL and has no effect on FMS
operation (optional parameter).

-ignoreCnfPath The driver searches for its configuration file relative to the present
position instead of in the default directory (optional parameter).

-set_id CLIENT_ID This option sets the client ID in the Iosys to the value CLIENT_ID.
Which application has set the value of a variable can be detected
with the output of IosEv using the client ID.
(Mandatory parameter, Default: 31263)

-l LOGFILE The driver creates a log file with the name LOGFILE. Start
parameters and status outputs are written here and can be read
during operation (optional parameter).

-i CAE_CONFIG_FILE The driver in the APROL operating mode bases its configuration
on the file CAE_CONFIG_FILE. Also in this case, the location of the
configuration file refers to the default configuration directory if the -
ignoreCnfPath option isn't used. Otherwise, it is relative to the start
position of the driver.

 InaDriver
6-13

Option Description

-d DEBUG_FILTER The driver is started in the debug mode using the -d option (i.e. it
provides permanent status information instead of going into the
background). The information is output either to the log file or to the
screen via stderr. To avoid having all of the output on the screen, you
can tell the driver which information to provide and which to ignore by
specifically setting individual bits in the debug filter. The set bits in
the debug filter allow the following output:
0x00000001: Output of error messages
0x00000002: Output of messages
0x00000004: Output of configuration messages at startup
0x00000002: Configuration of the Iosys objects
0x00000010: Online configuration messages
0x00000020: Iosys event messages
0x00000040: Messages from active read telegrams
0x00000080: Messages about connections
0x00000100: Messages about controller objects
0x00000200: Hex dump for incoming and outgoing data
0x00001000: PV forcing
0x4xxxxxxx: INAFrame debug
0x8xxxxxxx: INAComm debug

-f DEBUG_FILTER The driver enables the debug information output as described above.
This option starts in the background despite the output
(optional parameter).

-delay
DELAY_FACTOR

The driver evaluates all time settings in the configuration file as a
multiple of the DELAY_FACTOR in milliseconds. The default setting
for DELAY_FACTOR is 200 ms. The lowest possible setting for the
DELAY-FACTOR is 100 milliseconds (optional parameter, default:
200).

-r The driver is started in redundancy mode.
(optional parameter)

-slaveNoConnect

If the driver was started in redundancy mode, then the slave usually
establishes a connection, so that direct communication will continue
when a redundancy switch takes place. It can be useful to stop this
when resource problems occur (optional switch).

-forcePrefix PREFIX

Usually, only PVs that start with the prefix RV_ can be forced. This is
a default in the APROL engineering system. This option allows you
to modify this behavior.

-readHigh
By default, read telegrams have a low priority while write, diagnostics
and download telegrams have a high priority. With this switch it is
possible for read telegrams to also become high-priority telegrams.

-medium MEDIUM Chooses the medium over which the driver should communicate
(serialPort, Ethernet, Profibus).

 "Ethernet"

-node NODE Specifies the node number of the partner station (if –ip is not used,
then this switch is mandatory).

F1 Drivers for B&R Connections
6-14

Option Description

-bcast
BROADCAST_ADDR

Sets the broadcast address. If the broadcast address is not
255.255.255.255, then the broadcast address valid for this network
must be defined.

-ip DEST_IP_ADDR Specifies the IP address of the partner station (if –node is not used,
then this switch is mandatory).

-mynode NODE
Assigns your own node number. If several drivers or programs have
established a connection to one controller, then a unique number
must be set here.

-socket SOCKET Specifies which port should be used to communicate to the controller
(default: 0x2b97)

 "Profibus"

-softing Determines if the Softing Profiboard or the B&R Profibus card
(default) should be used for access.

-pbAddr ADDR Specifies the partner's station address

-pbBoard BOARD Specifies which Profibus card in the PC should be used for access
(0-2)

-pbLsap LSAP When using the Softing card, a special LSAP can be used in addition
to access via station addresses (optional).

 "serialPort"

-comport COMPORT Specifies the serial interface in DOS/Windows – COMx type which
corresponds to the Linux devices ttySx - 1.

-setRT RTVAL Timeout for response telegrams (default : 165)
-route ROUTE Routing information e.g. "CP"

6.7.2 Configuration file of the APROL driver (InaDriver)

A configuration file is used to configure the driver's tasks and the process variables that will be
used as well as their positions. The name and position of the configuration file are specified in
the driver at startup using the "-i FILENAME" option. The position is relative to the default
setting for driver configurations in APROL. More information can be found in the respective
documentation. This default setting can be ignored by using the "-ignoreCnfPath" option and
FILENAME describes the absolute position of the configuration file.
The driver configuration consists of a list of PVs. Each individual line is made up of the PV
name, the corresponding task, the physical address, the PV type, the type of task and optional
measurement range specifications. Comment lines begin with the # character and run to the end
of the line.
A driver configuration generally looks something like this:
FILE: T_RIO.br: 13 sections (Ver: 0.0)
TK: 1
Prio: 128
PVs: 36
IOs: 4

Name Task PhysAddr Type Req

 InaDriver
6-15

L2003_RunningLightOff_1_LL_INT T_RIO 0x7c070000 UINT32 W
L2003_RunningLightOff_1_P_ON T_RIO 0x71060003 BIN0 W
L2003_RunningLightOff_1_P_OFF T_RIO 0x71060002 BIN0 W
L2003_HltFbAdjuTime_1.TOn T_RIO 0x70070004 UINT32 S
L2003_HltFbAdjuTime_1.TimeUnit T_RIO 0x70070008 INT16 S
L2003_HltFbAdjuTime_1.TOff T_RIO 0x7007000a UINT32 S
L2003_RunningLight.tout T_RIO 0x7007000e UINT32 S
L2003_RunningLight.step T_RIO 0x70070012 UINT16 S
L2003_RunningLight.time_out T_RIO 0x70070014 UINT32 S
L2003_RunningLight.Enable T_RIO 0x70070018 BIN0 S
L2003_RunningLight.Q1 T_RIO 0x70070019 BIN0 S
L2003_RunningLight.Q2 T_RIO 0x7007001a BIN0 S
L2003_RunningLight.Q3 T_RIO 0x7007001b BIN0 S
L2003_RunningLight.Q4 T_RIO 0x7007001c BIN0 S
L2003_RunningLight.Q5 T_RIO 0x7007001d BIN0 S
L2003_RunningLight.Q6 T_RIO 0x7007001e BIN0 S
L2003_RunningLight.Q7 T_RIO 0x7007001f BIN0 S
L2003_RunningLight.Q8 T_RIO 0x70070020 BIN0 S
L2003_RunningLight.Q9 T_RIO 0x70070021 BIN0 S
L2003_RunningLight.Q10 T_RIO 0x70070022 BIN0 S
L2003_RunningLight.Q11 T_RIO 0x70070023 BIN0 S
L2003_RunningLight.Q12 T_RIO 0x70070024 BIN0 S
L2003_Lauflicht.Q13 T_RIO 0x70070025 BIN0 S
L2003_Lauflicht.Q14 T_RIO 0x70070026 BIN0 S
L2003_Lauflicht.Q15 T_RIO 0x70070027 BIN0 S
L2003_Lauflicht.Q16 T_RIO 0x70070028 BIN0 S
L2003_SR_1_QN T_RIO 0x71060001 BIN0 R
L2003_SR_1_Q T_RIO 0x71060000 BIN0 R
L2003_SR_1.S T_RIO 0x7007002a BIN0 S
L2003_SR_1.R T_RIO 0x7007002b BIN0 S
L2003_SR_1.Q T_RIO 0x7007002c BIN0 S
L2003_SR_1.QN T_RIO 0x7007002d BIN0 S
RV_DO14_4 T_RIO 0x610a0013 BIN0 S
RV_DO14_3 T_RIO 0x610a0012 BIN0 S
RV_DO14_2 T_RIO 0x610a0011 BIN0 S
RV_DO14_1 T_RIO 0x610a0010 BIN0 S
HA_DO14_4 T_RIO 0x71060013 BIN0 S
HA_DO14_3 T_RIO 0x71060012 BIN0 S
HA_DO14_2 T_RIO 0x71060011 BIN0 S
HA_DO14_1 T_RIO 0x71060010 BIN0 S

FILE: Task3_1.br: 13 sections (Ver: 0.0)
TK: 3
Prio: 128
PVs: 10
IOs: 4

Name Task PhysAddr Type Req Mba Mbe Na Ne

TK_4_DIV_REAL Task3_1 0x78070132 FLOAT R 0 2000 0 100
TK_3_DIV_REAL Task3_1 0x7807012e FLOAT R -10 10 0 100
TK_2_DIV_REAL Task3_1 0x7807012a FLOAT R 0 2000 0 200
TK_1_DIV_REAL Task3_1 0x78070126 FLOAT R -10 10 -10 10
ST_R1_AI05_02 Task3_1 0x66f100ee UINT16 S
ST_R1_AI05_01 Task3_1 0x66f100ec UINT16 S
RV_R1_AO07_10 Task3_1 0x6603000e UINT16 S
RV_R1_AO07_09 Task3_1 0x6603000c UINT16 S
RV_R1_AI05_02 Task3_1 0x66010008 UINT16 S
RV_R1_AI05_01 Task3_1 0x66010006 UINT16 S
HA_R1_AO07_10 Task3_1 0x7807247c FLOAT S
HA_R1_AO07_09 Task3_1 0x78072478 FLOAT S
HA_R1_AI05_02 Task3_1 0x7807005c FLOAT R
HA_R1_AI05_01 Task3_1 0x78070058 FLOAT R

In principle, the number of process variables in a task and the number of tasks is unlimited. The
only limitation to the configuration can result from the amount of memory used by the driver and
the general limitation when generating a task.

F1 Drivers for B&R Connections
6-16

PV_NAME:
The PV name is the name of the PV on the controller and the name of the Iosys object on the
PC. According to task generation, a PV cannot be longer than 32 characters on a 2000 system.

Task:
The PVs are organized in tasks. Individual tasks can then be activated and deactivated. If a task
is not available on the controller, then there is no communication with its PVs. This means that
e.g. write events are not executed and the Iosys PV is reset to its previous value.

PV_ADDR:
The physical address of the PV is entered because the Ina driver performs physical access, (i.e.
communication is not made via the PV names). For example when entering 0x78070058, the
leading byte describes the PV type (e.g. hardware-IO or global PV) and the rest is the actual
address (i.e. 0x08070058).

PV_TYPE:
The PV type determines what kind of variable must be found. Among other things, the setting for
the PV type affects the default measuring range of the variables.

The following PV types are recognized:

PV type PV length Default measurement range

BIN0 to BIN7 1 bit 0 to 1
INT8 1 byte -128 to 127
UINT8 1 byte 0 to 255
INT16 2 Bytes -32768 to 32767
UINT16 2 Bytes 0 to 65535
INT32 4 Bytes -2147483648 to 2147483647
UINT32 4 Bytes 0 to 4294967295
FLOAT 4 Bytes -3E38 to 3E38

STRINGxx XX bytes No default measurement range, maximum 64
characters long

According to the configuration, the following Iosys_types are created in the Iosys:
Integer (whole numbers) with all PV types BINx, INTx and UINTx
Real (floating decimal numbers) with PV type S5FLOAT and FLOAT and with all whole number
types if scaling was configured
String type with a maximum of 64 characters with PV type STRINGxx

Types of tasks:
The driver recognizes four different types of tasks:
SYNC Req=S,s,
READ Req=R.r,
WRITE Req=W,w,
IWRITE Req=I,i.

These tasks types are differentiated by their direction of communication:

 InaDriver
6-17

READ tasks read cyclic variables from the controller and update the process variables in the
Iosys. If the variables are changed (written) by another application, then the values are
overwritten the next time the driver reads the values.
WRITE tasks write data to the controller as soon as the process variable is changed. Each PV
must be read just once and compared with the value in the Iosys to align the control computer. If
the PV has a different value than the Iosys, then the PV on the controller is set to the Iosys value
(write task). Variables that for whatever reason could not be written properly are reset to the
previous value.
IWRITE tasks behave mostly like WRITE, but each PV must be read just once to align the
control computer with the controller. This read process generally occurs once after each time the
connection is established. If process variables are changed before the alignment has been
made, then the variables are reset to the previous value.
SYNC tasks allow communication in both directions. This is a combination of cyclic READ
procedures with event-controlled WRITE tasks. Variables can only be written to the controller if
they have been read at least once. If value changes are made before they can be transferred to
the controller, then driver undoes the changes and the previous value is set on the controller.

MBA and MBE or SPS_LOW and SPS_HIGH:
Measurement range for the variables on the controller. The measurement range is used for
scaling to determine the multiplication factor and is also used to prevent operating errors. It only
works in the direction from the control computer to the controller. If a variable value is entered in
the control computer that is outside of the permissible measurement range (directly or as a result
of scaling), then the driver resets the variable to the limit value and the limit value is sent to the
controller. A value from the controller that is outside the limits is transferred to the control
computer as is. SPS_LOW and SPS_HIGH are optional. If not otherwise specified, the default
values from the PV type are used. Both of these values must be explicit if scaling is required!
NA and NE or LS_LOW and LS_HIGH:
LS_LOW and LS_HIGH are the control computer's limit values. Together with SPS_LOW and
SPS_HIGH, they are used to compress or stretch (scaling) a variable. They are optional. When
these values are not specified then there is a 1:1 scale. They can only be specified when
SPS_LOW and SPS_HIGH have also been set.

6.8 InaDriver status variables

Visualization of the status of a controller's CPU
The status of a CPU in the visualization is the combination of the reason for booting
(CpuBootTyp PV) and the state of the processor (CpuSt PV).

Reason for
Initialization

Processor state Status of the CPU for the display

Warm restart Service Service
Cold restart Service Service
Watchdog Service Service
Diagnostics Service Diagnostics
Error Service Service
Boot Service Boot

F1 Drivers for B&R Connections
6-18

Reason for
Initialization

Processor state Status of the CPU for the display

- Run Run
- Stop Stop

The driver creates the following status variables in the Iosys for displaying and analyzing errors.
These are generated and supplied automatically.

Note about the syntax of the status variables:
<CTRL> Instance description of the controller

(The instance is transferred on the driver with
"-plc").

<CC> Instance description of the control computer
<INST> Instance description of the InaDriver

("-self" parameter)
<IP> IP address of the driver
<PID> Process ID

 All counter status variables have the following basic behavior:
The counter counts until an overflow. It begins again at '0' after a stopping or starting the
APROL system.

Variable name Meaning Iosys
data
type

Rec.
IEC
data
type

Values

S2I_<CTRL>_Cnt
Cyc

Watchdog for cyclic
operation
This counter is incremented
by one with each run of the
driver. a run describes the
reading of all the driver's
read PVs (so the polling of
the read PVs, event PVs is
not regarded)

Integer DINT

S2I_<CTRL>_Cnt
Evt

Number of currently active
event variables from the
driver

Integer DINT

S2I_<CTRL>_Cnt
Evt_m

Number of event PVs in the
last minute
Each event that is sent from
the controller as an event
variable is counted.

Integer DINT

S2I_<CTRL>_Cnt
Evt_s

Number of event PVs in the
last second
Each event that is sent from

Integer DINT

 InaDriver
6-19

Variable name Meaning Iosys
data
type

Rec.
IEC
data
type

Values

the controller as an event
variable is counted.

S2I_<CTRL>_Cnt
EvtId

Highest ID that was sent
back from the controller to a
registered variable

Integer DINT

S2I_<CTRL>_Cnt
PvAct

Amount of the driver's
active variables
These are all of the driver's
registered, and
communicated, variables.
All types of variables (read,
write, debugging, and event
PVs) are counted.

Integer DINT

S2I_<CTRL>_Cnt
Rd_m

Amount of variables read in
the last minute
Each reading of a read
variable is counted,
regardless if its value has
changed or not.

Integer DINT

S2I_<CTRL>_Cnt
ReqBad

counter, which is
incremented by one with
each negatively answered
task (indication of network
problems)

Integer DINT

S2I_<CTRL>_Cnt
ReqGood

Counter that is increased
by one after each positive
task response

Integer DINT

S2I_<CTRL>_Cnt
Wr

Number of write tasks sent
to the controller
No distinction is made
about in which memory
area the variables are held
in the CPU (LOCAL;
GLOBAL).

Integer DINT

S2I_<CTRL>_Cnt
Wr_m

Number of variables written
in the last minute
Each writing of a write
variable to the controller is
counted.

Integer DINT

S2I_<CTRL>_Cnt
WrLoc

Number of write tasks sent
to the controller and lie in
the LOCAL area. (This is a
part of the
DRIVER_<CTRL>_wr_cou
nter)

Integer DINT

F1 Drivers for B&R Connections
6-20

Variable name Meaning Iosys
data
type

Rec.
IEC
data
type

Values

S2I_<CTRL>_Cpu
St

Display of the state of the
controller (CPU)

Integer INT 0 = RUN
1 = SERVICE
2 = STOP
-1 = Information not
available

S2I_<CTRL>_Drv
ConPara

Current connection
configuration used by
driver.

String64 SSTRIN
G

Example: “/IF=ETH
/PORT=0x2b97
/IPADDR=rpCTRL1
0 /MYNODE=210”

S2I_<CTRL>_Drv
ConSt

Display of the connection
status of the driver.

Integer INT 7 = being
established
8 = is established
9 = lost
10 = being
disconnected
11 = is
disconnected

S2I_<CTRL>_Drv
ConTxt

Displays the connection
status

String64 SSTRIN
G

CONN_establish_co
nnection = being
established
CONN_stable_conn
ection = is
established
CONN_lost_connect
ion = lost
CONN_disconnectin
g = being
disconnected
CONN_disconnecte
d = is disconnected

S2I_<CTRL>_Drv
ErrTxtCtrl

Displays the previous error
The error text refers to
problems, which occur
during communication with
the controller.

String64 SSTRIN
G

See error message
example: „Read
request failed!“

S2I_<CTRL>_Drv
ErrTxtIos

Error text of the error that
occurred last. This error
text describes problems,
which have mostly to do
with values and states of
Iosys PVs.

String64 SSTRIN
G

See error messages
Example: "unable to
write :
A02A00_PLST32_R
ec_FrmRec"

S2I_<CtrlInst>_Int
DbgMask

Variable for reading and
setting the driver's current
debugging filter

integer DINT 0 = no debug
information

S2I_<CtrlInst>_Sr
cNodeMa

The INA node number that
is current used by the driver

Integer INT

 InaDriver
6-21

Variable name Meaning Iosys
data
type

Rec.
IEC
data
type

Values

(actual node number from -
mynode or -mynodeslave)
<PID> is respectively
replaced by the driver's
actual process ID.
(with 'Ma' for the configured
master, and 'Sl' for the
configured slave)

S2I_<CtrlInst>_Sr
cNodeSl

The INA node number that
is current used by the driver
(actual node number from -
mynode or -mynodeslave).
<PID> is respectively
replaced by the driver's
actual process ID.
(with 'Ma' for the configured
master, and 'Sl' for the
configured slave)

Integer INT

Additional status variables that display the memory load, the time, and the status of the
controller. Also, the number of reconnects to the controller is output.

Variable name Meaning Iosys data
type

Recommende
d IEC data
type

Values

S2I_<CTRL>_CntR
econ

Number of
successful
reconnects
(restoration of the
connection)
Remark:
The counter is
initialized during a
restart or change in
process
redundancy.

INT DINT -1: no connection
established yet
0: (one)
connection could
be established
since process
start
1 ... n: successful
restoration of the
connection

S2I_<CTRL>_Cpu
ArVer

AR version of the
controller

STRING SSTRING (e.g.: R295)

S2I_<CTRL>_Cpu
Batt

Battery status INT INT Bit0=1: Battery
OK, Bit1=1:
Battery OK;

F1 Drivers for B&R Connections
6-22

Variable name Meaning Iosys data
type

Recommende
d IEC data
type

Values

S2I_<CTRL>_Cpu
BootTyp

Booting reason
(warn start, cold
start...) with

INT INT 1 = Warm start,
2 = Cold start, 4
= Watchdog, 32 =
Diagnosis, 64 =
Error, 128 =
BOOT

S2I_<CTRL>_Cpu
NodeNo

Network node
number of the
processor

INT INT

S2I_<CTRL>_Cpu
St

Processor state INT INT 0 = RUN, 1 =
SERVICE, 2 =
STOP

S2I_<CTRL>_Cpu
Tm

Seconds since
1.1.1970; local time
of the processor,
resolution 1 second,
with the uncertainty
of the
communication

INT DINT

S2I_<CTRL>_Cpu
Typ

Description of the
processor

STRING SSTRING (E.g. CP382,
CP260, ...)

S2I_<CTRL>_Mem
DRamFlags

Validity of the
DRAM information
(can be used for
evaluation of the
size and free PV)

INT INT Bit0=1: Start
address valid, but
is not displayed
as PV
Bit1=1: Size PV
valid
Bit2=1: Free PV
valid
Bit3=1: 'Free
block size' valid,
but is not
displayed as PV.

S2I_<CTRL>_Mem
DRamFree

free length of the
memory area

INT DINT Length in bytes

 InaDriver
6-23

Variable name Meaning Iosys data
type

Recommende
d IEC data
type

Values

S2I_<CTRL>_Mem
DRamSize

Complete length of
the memory area

INT DINT Length in bytes
Not supported
on the most
targets (e.g.
SG4 and SGC);
he value -1 or.
0xffffffff is
delivered in this
case and is to
be seen as
invalid although
the respective
'Bit 1' of the
'Flags PV' is set.

S2I_<CTRL>_Mem
SysRomFlags

Validity of the
SYSROM
information
(can be used for
evaluation of the
size and free PV)

INT INT Bit0=1: Start
address valid, but
is not displayed
as PV
Bit1=1: Size PV
valid
Bit2=1: Free PV
valid
Bit3=1: 'Free
block size' valid,
but is not
displayed as PV

S2I_<CTRL>_Mem
SysRomFree

free size of the
memory area

INT DINT Length in bytes

S2I_<CTRL>_Mem
SysRomSize

Complete length of
the memory area

INT DINT Length in bytes
Not supported
on the most
targets (e.g.
SG4 and SGC);
he value -1 or.
0xffffffff is
delivered in this
case and is to
be seen as
invalid although
the respective
'Bit 1' of the
'Flags PV' is set.

F1 Drivers for B&R Connections
6-24

Variable name Meaning Iosys data
type

Recommende
d IEC data
type

Values

S2I_<CTRL>_Mem
UserRomFlags

Validity of the
USERROM
information
(can be used for
evaluation of the
size and free PV)

INT INT Bit0=1: Start
address valid, but
is not displayed
as PV
Bit1=1: Size PV
valid
Bit2=1: Free PV
valid
Bit3=1: 'Free
block size' valid,
but is not
displayed as PV

S2I_<CTRL>_Mem
UserRomFree

free length of the
memory area

INT DINT Length in bytes

S2I_<CTRL>_Mem
UserRomSize

Complete length of
the memory area

INT DINT Length in bytes
Not supported
on the most
targets (e.g.
SG4 and SGC);
he value -1 or.
0xffffffff is
delivered in this
case and is to
be seen as
invalid although
the respective
'Bit 1' of the
'Flags PV' is set.

Further internal variables of the InaDriver:
These variables are solely used for internal communication, and are not allowed to be used in
the application.
These PVs ensure the communication between the driver and the service tools.
Amongst others, the driver is told during the download of tasks via ControllerManager which
task are to be loaded. Thus, the driver does not communicate with this task's PVs during the
download.

Variable name Meaning Iosys data
type

Recommended
IEC data type

Values

<CC>_AppInaDriver_
<INST>

System variable
Details can be
found in chapter
System variables
in the manual "D1
System Manual".

integer INT

 InaDriver
6-25

Variable name Meaning Iosys data
type

Recommended
IEC data type

Values

<CC>_AppInaDriver_
<INST>_UsedMem

System variable
Details can be
found in chapter
System variables
in the manual "D1
System Manual".

<CC>_AppInaDriver_
<INST>_ReduActiv

System variable
Details can be
found in chapter
System variables
in the manual "D1
System Manual".

Integer INT

ReduApp_InaDriver_
<IP>_PID_<PID>

Internal PV for
detecting the client
redundancy

Integer --- 1

ReduGrp_InaDriver_
<INST>

Internal PV for
detecting the client
redundancy

String64 --- actual client
master as text

S2I_<CTRL>_IntCnf
Req

Variable for the
online driver
configuration

Messagebo
x

S2I_<CTRL>_IntCnf
Resp

Variable for the
online driver
configuration

Messagebo
x

S2I_<CtrlInst>_SrcN
ode_<PID>

The INA node
number that is
currently used by
the driver (actual
node number from
srcNode or
srcNodeSlave).
<PID> is
respectively
replaced by the
driver's actual
process ID.

Integer INT 0-254

6.9 Error
.

6.9.1 Error numbers and messages (InaDriver)
The utilities and the APROL driver use different error numbers and handling mechanisms. The
APROL driver works with error texts written to the error variable.

F1 Drivers for B&R Connections
6-26

For communication, the utilities and the driver use libraries whose error numbers are the same
for all utilities.
The library error numbers:

Error
No.:

Error detection Error text

4000 ERR_APIF_CPIN_ENCODE_TEL Error from coding function
4001 ERR_APIF_CPIN_DECODE_TEL Error from decoding function
4002 ERR_APIF_CPIN_UNEXPECTED_TEL Unexpected telegram
4003 ERR_APIF_CPIN_DEFAULT Default error
4010 ERR_APIF_RS_ENCODE_TEL Error from coding function
4011 ERR_APIF_CPIN_DECODE_TEL Error from decoding function
4012 ERR_APIF_RS_UNEXPECTED_TEL Unexpected telegram
4013 ERR_APIF_RS_DEFAULT Default error
4014 ERR_APIF_RS_NO_RIGHTS Password incorrect
4020 ERR_APIF_CMEM_ENCODE_TEL Error from coding function
4021 ERR_APIF_CMEM_DECODE_TEL Error from decoding function
4022 ERR_APIF_CMEM_UNEXPECTED_TEL Unexpected telegram
4023 ERR_APIF_CMEM_DEFAULT Default error
4024 ERR_APIF_CMEM_TYPE Memory type not available or

cannot be deleted
4025 ERR_APIF_CMEM_DIAG Controller must be in diagnose

mode
4030 ERR_APIF_MEMI_ENCODE_TEL Error from coding function
4031 ERR_APIF_MEMI_DECODE_TEL Error from decoding function
4032 ERR_APIF_MEMI_UNEXPECTED_TEL Unexpected telegram
4033 ERR_APIF_MEMI_DEFAULT Default error
4040 ERR_APIF_LIMO_ENCODE_TEL Error from coding function
4041 ERR_APIF_LIMO_DECODE_TEL Error from decoding function
4042 ERR_APIF_LIMO_UNEXPECTED_TEL Unexpected telegram
4043 ERR_APIF_LIMO_DEFAULT Default error
4044 ERR_APIF_LIMO_OBJ_NOT_EXISTS Object does not exist
4050 ERR_APIF_DELM_ENCODE_TEL Error from coding function
4051 ERR_APIF_DELM_DECODE_TEL Error from decoding function
4052 ERR_APIF_DELM_UNEXPECTED_TEL Unexpected telegram
4053 ERR_APIF_DELM_DEFAULT Default error
4054 ERR_APIF_DELM_OBJ_NOT_EXISTS Object does not exist
4055 ERR_APIF_DELM_PI_NOT_STOPPED PI must be stopped
4056 ERR_APIF_DELM_DEINSTALL_FAILED Object cannot be uninstalled?
4060 ERR_APIF_DLM_ENCODE_TEL Error from coding function
4061 ERR_APIF_DLM_DECODE_TEL Error from decoding function
4062 ERR_APIF_DLM_UNEXPECTED_TEL Unexpected telegram
4063 ERR_APIF_DLM_DEFAULT Default error

 InaDriver
6-27

Error
No.:

Error detection Error text

4064 ERR_APIF_DLM_CANCEL DL interrupted by USER
4065 ERR_APIF_DLM_NO_ACCESS Download disabled for USER
4066 ERR_APIF_DLM_NOT_USED_66 Not used
4067 ERR_APIF_DLM_BRM_INVALID No BR module (2b97)
4068 ERR_APIF_DLM_BRM_CS Defective BR module checksum
4069 ERR_APIF_DLM_BRM_INSTALL BR module install error
4070 ERR_APIF_DLM_BRM_LENGTH Incorrect length for BR module
4071 ERR_APIF_DLM_TARGET_SIZE Not enough target memory

available
4072 ERR_APIF_DLM_BURN Error burning the BR module
4073 ERR_APIF_DLM_NO_BRNC NC Manager not installed
4074 ERR_APIF_DLM_BRNC_ERROR Error from the NC Manager

download function
4080 ERR_APIF_ULM_ENCODE_TEL Error from coding function
4081 ERR_APIF_ULM_DECODE_TEL Error from decoding function
4082 ERR_APIF_ULM_UNEXPECTED_TEL Unexpected telegram
4083 ERR_APIF_ULM_DEFAULT Default error
4084 ERR_APIF_ULM_CANCEL UL interrupted by USER
4085 ERR_APIF_ULM_OBJ_NOT_EXISTS Module doesn't exist (incorrect

name)
4086 ERR_APIF_ULM_OBJ_STATE_CONFLICT Module state != READY
4087 ERR_APIF_ULM_OBJ_NO_ACCESS Uploading the module disabled
4088 ERR_APIF_ULM_NO_ACCESS Upload disabled for USER
4090 ERR_APIF_TKIN_ENCODE_TEL Error from coding function
4091 ERR_APIF_TKIN_DECODE_TEL Error from decoding function
4092 ERR_APIF_TKIN_UNEXPECTED_TEL Unexpected telegram
4093 ERR_APIF_TKIN_DEFAULT Default error
4100 ERR_APIF_TKR_ENCODE_TEL Error from coding function
4101 ERR_APIF_TKR_DECODE_TEL Error from decoding function
4102 ERR_APIF_TKR_UNEXPECTED_TEL Unexpected telegram
4103 ERR_APIF_TKR_DEFAULT Default error
4104 ERR_APIF_TKR_PI_RUNNING TC already running
4105 ERR_APIF_TKR_PI_NOT_EXISTS TC does not exist
4110 ERR_APIF_TKS_ENCODE_TEL Error from coding function
4111 ERR_APIF_TKS_DECODE_TEL Error from decoding function
4112 ERR_APIF_TKS_UNEXPECTED_TEL Unexpected telegram
4113 ERR_APIF_TKS_DEFAULT Default error
4114 ERR_APIF_TKS_PI_SUSPENDED TC already stopped
4115 ERR_APIF_TKS_PI_NOT_EXISTS TC does not exist

F1 Drivers for B&R Connections
6-28

Error
No.:

Error detection Error text

4120 ERR_APIF_TR_ENCODE_TEL Error from coding function
4121 ERR_APIF_TR_DECODE_TEL Error from decoding function
4122 ERR_APIF_TR_UNEXPECTED_TEL Unexpected telegram
4123 ERR_APIF_TR_DEFAULT Default error
4124 ERR_APIF_TR_PI_RUNNING Task already running
4125 ERR_APIF_TR_PI_NOT_EXISTS Task does not exist
4130 ERR_APIF_TS_ENCODE_TEL Error from coding function
4131 ERR_APIF_TS_DECODE_TEL Error from decoding function
4132 ERR_APIF_TS_UNEXPECTED_TEL Unexpected telegram
4133 ERR_APIF_TS_DEFAULT Default error
4134 ERR_APIF_TS_PI_SUSPENDED Task already stopped
4135 ERR_APIF_TS_PI_NOT_EXISTS Task does not exist
4140 ERR_APIF_TSSC_ENCODE_TEL Error from coding function
4141 ERR_APIF_TSSC_DECODE_TEL Error from decoding function
4142 ERR_APIF_TSSC_UNEXPECTED_TEL Unexpected telegram
4143 ERR_APIF_TSSC_DEFAULT Default error
4144 ERR_APIF_TSSC_OBJ_NOT_EXISTS Task does not exist
4150 ERR_APIF_LIGV_ENCODE_TEL Error from coding function
4151 ERR_APIF_LIGV_DECODE_TEL Error from decoding function
4152 ERR_APIF_LIGV_UNEXPECTED_TEL Unexpected telegram
4153 ERR_APIF_LIGV_DEFAULT Default error
4160 ERR_APIF_LIFV_ENCODE_TEL Error from coding function
4161 ERR_APIF_LIFV_DECODE_TEL Error from decoding function
4162 ERR_APIF_LIFV_UNEXPECTED_TEL Unexpected telegram
4163 ERR_APIF_LIFV_DEFAULT Default error
4170 ERR_APIF_RV_ENCODE_TEL Error from coding function
4171 ERR_APIF_RV_DECODE_TEL Error from decoding function
4172 ERR_APIF_RV_UNEXPECTED_TEL Unexpected telegram
4173 ERR_APIF_RV_DEFAULT Default error
4174 ERR_APIF_RV_INVALID_OBJ_ID Invalid PV ID
4175 ERR_APIF_RV_OBJ_NOT_EXISTS PV does not exist
4176 ERR_APIF_RV_OBJ_WR_LEN Incorrect PV length
4177 ERR_APIF_RV_OBJ_NIL_PTR Dyn. PV is not used (NULL-Ptr.)
4180 ERR_APIF_WV_ENCODE_TEL Error from coding function
4181 ERR_APIF_WV_DECODE_TEL Error from decoding function
4182 ERR_APIF_WV_UNEXPECTED_TEL Unexpected telegram
4183 ERR_APIF_WV_DEFAULT Default error
4184 ERR_APIF_WV_INVALID_OBJ_ID Invalid PV ID
4185 ERR_APIF_WV_OBJ_NOT_EXISTS PV does not exist

 InaDriver
6-29

Error
No.:

Error detection Error text

4186 ERR_APIF_WV_OBJ_WR_LEN Incorrect PV length
4187 ERR_APIF_WV_OBJ_NIL_PTR Dyn. PV is not used (NULL-Ptr.)
4190 ERR_APIF_FVON_ENCODE_TEL Error from coding function
4191 ERR_APIF_FVON_DECODE_TEL Error from decoding function
4192 ERR_APIF_FVON_UNEXPECTED_TEL Unexpected message
4193 ERR_APIF_FVON_DEFAULT Default error
4194 ERR_APIF_FVON_INVALID_OBJ_ID Invalid PV-ID (Data type, Baseptr,

...)
4195 ERR_APIF_FVON_INVALID_TK Invalid task class
4196 ERR_APIF_FVON_FTAB_OVERFLOW No free entry in the force table
4200 ERR_APIF_FVOFF_ENCODE_TEL Error from coding function
4201 ERR_APIF_FVOFF_DECODE_TEL Error from decoding function
4202 ERR_APIF_FVOFF_UNEXPECTED_TEL Unexpected telegram
4203 ERR_APIF_FVOFF_DEFAULT Default error
4204 ERR_APIF_FVOFF_INVALID_OBJ_ID Invalid PV-ID (Datentyp, Baseptr,

...)
4205 ERR_APIF_FVOFF_INVALID_TK Invalid task class
4206 ERR_APIF_FVOFF_PV_NOT_FORCED PV is not forced
4210 ERR_APIF_DIAGIN_ENCODE_TEL Error from coding function
4211 ERR_APIF_DIAGIN_DECODE_TEL Error from decoding function
4212 ERR_APIF_DIAGIN_UNEXPECTED_TEL Unexpected telegram
4213 ERR_APIF_DIAGIN_DEFAULT Default error
4220 ERR_APIF_DIAGLM_ENCODE_TEL Error from coding function
4221 ERR_APIF_DIAGLM_DECODE_TEL Error from decoding function
4222 ERR_APIF_DIAGLM_UNEXPECTED_TEL Unexpected telegram
4223 ERR_APIF_DIAGLM_DEFAULT Default error
4224 ERR_APIF_DIAGLM_NOT_INITIALIZED Diagnose task not loaded
4230 ERR_APIF_DIAGDM_ENCODE_TEL Error from coding function
4231 ERR_APIF_DIAGDM_DECODE_TEL Error from decoding function
4232 ERR_APIF_DIAGDM_UNEXPECTED_TEL Unexpected telegram
4233 ERR_APIF_DIAGDM_DEFAULT Default error
4234 ERR_APIF_DIAGDM_NOT_INITIALIZED Diagnose task not loaded
4235 ERR_APIF_DIAGDM_INVALID_MODUL DIAG module index invalid, list not

yet read ?
4240 ERR_APIF_DIAGEX_ENCODE_TEL Error from coding function
4241 ERR_APIF_DIAGEX_DECODE_TEL Error from decoding function
4242 ERR_APIF_DIAGEX_UNEXPECTED_TEL Unexpected telegram
4243 ERR_APIF_DIAGEX_DEFAULT Default error
4244 ERR_APIF_DIAGEX_NOT_INITIALIZED Diagnose task not loaded

F1 Drivers for B&R Connections
6-30

Error
No.:

Error detection Error text

4250 ERR_APIF_RLB_ENCODE_TEL Error from coding function
4251 ERR_APIF_RLB_DECODE_TEL Error from decoding function
4252 ERR_APIF_RLB_UNEXPECTED_TEL Unexpected telegram
4253 ERR_APIF_RLB_DEFAULT Default error
4260 ERR_APIF_LHWC_ENCODE_TEL Error from coding function
4261 ERR_APIF_LHWC_DECODE_TEL Error from decoding function
4262 ERR_APIF_LHWC_UNEXPECTED_TEL Unexpected telegram
4263 ERR_APIF_LHWC_DEFAULT Default error
4264 ERR_APIF_LHWC_NO_DATA No HWC determination carried out

on controller (e.g. in Diag.Mode)
4270 ERR_APIF_GT_ENCODE_TEL Error from coding function
4271 ERR_APIF_GT_DECODE_TEL Error from decoding function
4272 ERR_APIF_GT_UNEXPECTED_TEL Unexpected telegram
4273 ERR_APIF_GT_DEFAULT Default error
4280 ERR_APIF_ST_ENCODE_TEL Error from coding function
4281 ERR_APIF_ST_DECODE_TEL Error from decoding function
4282 ERR_APIF_ST_UNEXPECTED_TEL Unexpected message
4283 ERR_APIF_ST_DEFAULT Default error
4284 ERR_APIF_ST_INVALID_TIME Invalid time
4290 ERR_APIF_RMEM_ENCODE_TEL Error from coding function
4291 ERR_APIF_RMEM_DECODE_TEL Error from decoding function
4292 ERR_APIF_RMEM_UNEXPECTED_TEL Unexpected telegram
4293 ERR_APIF_RMEM_DEFAULT Default error
4300 ERR_APIF_WMEM_ENCODE_TEL Error from coding function
4301 ERR_APIF_WMEM_DECODE_TEL Error from decoding function
4302 ERR_APIF_WMEM_UNEXPECTED_TEL Unexpected telegram
4303 ERR_APIF_WMEM_DEFAULT Default error
4310 ERR_APIF_TT_ENCODE_TEL Error from coding function
4311 ERR_APIF_TT_DECODE_TEL Error from decoding function
4312 ERR_APIF_TT_UNEXPECTED_TEL Unexpected message
4313 ERR_APIF_TT_DEFAULT Default error
4321 ERR_APIF_DBEV_DECODE_TEL Error from decoding function
4323 ERR_APIF_DBEV_DEFAULT Default error
4330 ERR_APIF_SEON_ENCODE_TEL Error from coding function
4331 ERR_APIF_SEON_DECODE_TEL Error from decoding function
4332 ERR_APIF_SEON_UNEXPECTED_TEL Unexpected telegram
4333 ERR_APIF_SEON_DEFAULT Default error
4334 ERR_APIF_SEON_OVERRUN Max. number of event masters

reached

 InaDriver
6-31

Error
No.:

Error detection Error text

4341 ERR_APIF_SYEV_DECODE_TEL Error from decoding function
4343 ERR_APIF_SYEV_DEFAULT Default error
4600 ERR_IC_INIT_THREAD No VB thread created
4601 ERR_IC_INIT_EVENT Error from CreateEvent()
4602 ERR_IC_INIT_TIMER Error from timeSetEvent()
4603 ERR_IC_INIT_AL2 Error from AL2_Init()
4604 ERR_IC_INIT_SETCONNECTION Error from

AL2_SetNewConnection()
4605 ERR_IC_INIT_FRAME_DEFAULT INAFrameOpen() – default error
4606 ERR_IC_DEVICE_IN_USE No more VBs can be opened

using the device
4610 ERR_IC_EXIT_EVENT Error from CloseHandle()
4611 ERR_IC_EXIT_TIMER Error from timeKillEvent()
4612 ERR_IC_EXIT_FRAME Error from INAFrameClose()
4620 ERR_IC_AL2_TIMER Error for cyclic ALI-L2 notification
4621 ERR_IC_AL2_TRANSMITTED Error from ALI-L2-transmitted

notification
4622 ERR_IC_AL2_FRM_RECEIVED Error from ALI-L2-frame received

notification
4630 ERR_IC_TX_CMD_STATE_INVALID Invalid tasks state
4631 ERR_IC_RX_CMD_STATE_INVALID Invalid tasks state
4632 ERR_IC_AL2_TX Error from ALI-L2-TX job
4640 ERR_IC_APIF_SRV_NOT_IMPLEMENTED APIF service not implemented
4641 ERR_IC_STM_WRSTATE APIF state machine in invalid state
13000 INAFRM_EC_GenInafrmError Undefined INAFRM.DLL error
13001 INAFRM_EC_ActiveRecvRequest Active request still in progress (in

receive request)
13002 INAFRM_EC_ActiveSendRequest Active request still in progress (in

send request)
13003 INAFRM_EC_CloseCommPort Error while closing the interface
13004 INAFRM_EC_CommRead Error while reading from the

interface
13005 INAFRM_EC_CommWrite Error while writing from the

interface
13006 INAFRM_EC_DriverNotFound Driver not found, cannot be loaded
13007 INAFRM_EC_Ilg_IF_Param Error in the "/IF" parameter (e.g.

wrong COM number)
13008 INAFRM_EC_IlgDataReceived Illegal data received
13009 INAFRM_EC_IlgDeviceHandle Illegal device handle
13010 INAFRM_EC_IlgDstAddress Illegal destination address

F1 Drivers for B&R Connections
6-32

Error
No.:

Error detection Error text

13011 INAFRM_EC_IlgParam Invalid parameter in the
initialization string (open)

13012 INAFRM_EC_IlgParamModification Invalid parameter change (open)
13013 INAFRM_EC_IlgRecvDataLength Illegal data length while receiving

request
13014 INAFRM_EC_IlgSendDataLength Illegal data length while sending

request
13015 INAFRM_EC_IlgScrAddress Illegal source address
13016 INAFRM_EC_IlgStationHandle Illegal station handle
13017 INAFRM_EC_No_ID_ListFound No ID list given
13018 INAFRM_EC_NoFreeRAM Insufficient RAM memory
13020 INAFRM_EC_NoResponseForRecvRequest No confirmation data for receive

request available
13021 INAFRM_EC_NoResponseForSendRequest No confirmation data for send

request available
13022 INAFRM_EC_ReadCommPortParam Error while reading interface

parameter
13024 INAFRM_EC_UnknownDevice Unknown device
13025 INAFRM_EC_Unsupported Function not supported
13026 INAFRM_EC_WriteCommPortParam Error while writing the interface

parameters
13027 INAFRM_EC_WinResource Error in Window resource

(Events....)
13028 INAFRM_EC_StaAlreadyUsed Connection already being used
13029 INAFRM_EC_StartThread Transfer thread cannot be started
13030 INAFRM_EC_UnknownDstAddress Unknown destination address
13035 INAFRM_EC_ReadTimeout Timeout error when reading

(internal timeout)
13036 INAFRM_EC_WriteTimeout Timeout error when writing

(internal timeout)
13040 INAFRM_EC_Pbus_FirmwareDownload Error when downloading the

Profibus firmware.
13041 INAFRM_EC_Pbus_NetwrkConfigDownload Error when downloading Profibus

network configuration module.
13042 INAFRM_EC_Pbus_CreateThread Error when installing the Pbus

read/write threads
13045 INAFRM_EC_TapiInitError error calling lineInitializeEx -->

TAPI not properly installed
13046 INAFRM_EC_TapiNoDevices there are no line (modem) devices

installed
13047 INAFRM_EC_TapiNotModemDevice the given device does not have

the necessary capabilities
13048 INAFRM_EC_TapiModemNotFound specified modem not found

 InaDriver
6-33

Error
No.:

Error detection Error text

13049 INAFRM_EC_TapiIncompVersion the installed TAPI version is not
supported

13050 INAFRM_EC_TapiGeneralError some uncommon TAPI error
occurred

13051 INAFRM_EC_TapiDeviceInUse LineOpen error
(LINEERR_ALLOCATED):Line is
already in use by a

13052 INAFRM_EC_TapiChannelInUse channel 0 of the specified device
is already in

13053 INAFRM_EC_TapiInvalidPhoneNumber the specified phone number does
not have a valid format -->

13054 INAFRM_EC_TapiMakeCall in placing the call
13055 INAFRM_EC_TapiNoAnswer there were no answer from the

modem within a
13056 INAFRM_EC_TapiDialingUnsuccess e.g. if modem not connected to the

line, no
13057 INAFRM_EC_TapiModemNotReady error if modem not ready (switched

off)
13058 INAFRM_EC_TapiVersion wrong TAPI version installed

(e.g.1.4) use 2.0 or better
13059 INAFRM_EC_TapiLostConnection modem connection lost (modem

switched off, telephone line
unplugged)

13060 INAFRM_EC_TapiCreateThread can't create thread or mutex
13061 INAFRM_EC_TapiMissingPara missing parameter, /MO and /TN

are mandatory
13070 INAFRM_EC_WIN_AccessDenied Access denied (5,

ERROR_ACCESS_DENIED)
13071 INAFRM_EC_WIN_BadCommand Device does not recognize

command (22,
ERROR_BAD_COMMAND)

13072 INAFRM_EC_WIN_BadDevice The device entered is invalid
(1200, ERROR_BAD_DEVICE)

13073 INAFRM_EC_WIN_BadUnit The system cannot find the
specified device (20,

13074 INAFRM_EC_WIN_DiskFull Insufficient space on the disk drive
(112, ERROR_DISK_FULL)

13075 INAFRM_EC_WIN_DriverNotFound Specified module not found (126,
ERROR_MOD_NOT_FOUND)

13076 INAFRM_EC_WIN_FileNotFound The specified file cannot be found
(2, ERROR_FILE_NOT_FOUND)

13077 INAFRM_EC_WIN_GenFailure A device in the system is not
functioning (31,
ERROR_GEN_FAILURE)

F1 Drivers for B&R Connections
6-34

Error
No.:

Error detection Error text

13078 INAFRM_EC_WIN_InvalidFlags Invalid flag (1004,
ERROR_INVALID_FLAGS)

13079 INAFRM_EC_WIN_InvalidName Syntax of file name, directory
name or disk drive name incorrect
(123, ERROR_INVALID_NAME)

13080 INAFRM_EC_WIN_InvalidFunction Invalid function (1,
ERROR_INVALID_FUNCTION)

13081 INAFRM_EC_WIN_InvalidAccess The access code is invalid (12,
ERROR_INVALID_ACCESS)

13082 INAFRM_EC_WIN_InvalidHandle Invalid handle (6,
ERROR_INVALID_HANDLE)

13083 INAFRM_EC_WIN_NotEnoughMemory Insufficient memory to execute
command (8,
ERROR_NOT_ENOUGH
_MEMORY)

13084 INAFRM_EC_WIN_NotReady The device is not ready (21,
ERROR_NOT_READY)

13085 INAFRM_EC_WIN_OpenFailed The system cannot open the
device/file (110,

13086 INAFRM_EC_WIN_PathNotFound Path not found (3,
ERROR_PATH_NOT_FOUND)

13087 INAFRM_EC_WIN_ReadFault The system cannot read from the
specified device (30,

13088 INAFRM_EC_WIN_StackOverflow Recursion too deep - stack
overflow (1001,
ERROR_STACK_OVERFLOW)

13089 INAFRM_EC_WIN_WriteFault The system cannot write to the
specified device (29,

13090 INAFRM_EC_TcpIpVersion Unsupported winsock version
(install winsock 2)

13091 INAFRM_EC_TcpIpInit Error while initializing winsock
13092 INAFRM_EC_TcpIpSocket Error creating socket

13093 INAFRM_EC_TcpIpGeneral General error
13094 INAFRM_EC_TcpIpPort Port in use
13095 INAFRM_EC_TcpIpBind Error binding socket
13096 INAFRM_EC_TcpIpCreateThread Can't create thread
13097 INAFRM_EC_TcpIpNoAddress Node-resolution not finished yet

 InaDriver
6-35

6.10 The InaDriver start script
.

6.10.1 Structure
The InaDriver start script is a shell script with the following structure:

Id: InaDriver.sh,v 1.1.1.1 2000/04/20 11:45:23 hschroeter Exp

Log: InaDriver.sh,v
Revision 1.1.1.1 2000/04/20 11:45:23 hschroeter
initial version

#**
COPYRIGHT 1996 – 2000 PCC GmbH. ALL RIGHTS RESERVED
#**
AUTHOR: FELDHAUS
USE FOR: Starting InaDriver
#**
#set –x

VERSION="` echo Revision: 1.1.1.1 | cut -f2 -d " " `"
VDATE="` echo Date: 2000/04/20 11:45:23 | cut -f2-3 -d " " `"

COMP="!= 0"
FILENAME="InaDriver.sh"
DEFFILE="$APROL/etc/globaldefs"
if [! -f $DEFFILE]; then
 Echo "$DEFFILE not found"
 Exit 0
Else
. $DEFFILE
fi

STARTUPFILE="$CNF_USER_PATH/InaDriver/startup.cnf"
LOGFILE=$HOME/tmp/InaDriver.log
TMPFILE=$HOME/tmp/InaDriver.tmp
BIN_DIR="$APROL/bin"

if [! -f $STARTUPFILE]; then
 $ECHO "call -$FILENAME- with -$1- at $DATE" >> $LOGFILE
 getmsg 0019 >> $LOGFILE
 getmsg 0020 >> $LOGFILE
 $ECHO "\n" >> $LOGFILE
 exit 0
else
 . $STARTUPFILE
fi

opt_2=""

#SET REDU-OPTION
if ["$IOSYS_TYPE" = "REDU"] ; then
 opt_2="-slaveNoConnect $opt_2"
fi

setiosysvar

$ECHO "\t\tIOSYS=$IOSYS"

$ECHO "call -$FILENAME- with -$1- at $DATE" >> $LOGFILE
case "$1" in
 'start')
 $ECHO "\t\t$FILENAME $1"
 startupcheck $startup $prog

F1 Drivers for B&R Connections
6-36

 if ["$?" = 0]; then
 exit 0
 fi
 confcheck $instances
 for instance in $instances; do
 eval startup=\$startup_$instance
 if [$startup = "NO" -o "$startup" = "no" -o "$startup" = ""];
 then
 $ECHO "START $prog $instance : NO "
 else
 eval opt=\$opt_$instance
 opt_ps="-self `getoptionvalue -self "$opt"`"
 if ["$?" = 0]; then
 opt_ps=""
 getmsg 0035 -self
 Fi
 # check if program exists and cnf file is readable
 if [-x "$BIN_DIR/$prog"]; then
 # check version of module
 CheckVersion $prog $version
 # check if already running ...
 getpid $prog "$opt_ps"
 if [-z "$PID"]; then
 LOGFILE=$HOME/tmp/"$prog"_"$instance".log
 TMPFILE=$HOME/tmp/"$prog"_"$instance".tmp
 $ECHO ">$prog $instance<\c"
 getmsg 0002
 # call prog
 OLDIR=`pwd`
 cd $BIN_DIR
 $prog $opt $opt_2 1>> $LOGFILE 2>&1
 RET=$?
 tail -4 $LOGFILE > $TMPFILE
 ERROR=`$CAT $TMPFILE | $GREP "error" 2>/dev/null`
 if [-n "$ERROR" -o "$RET" $COMP]; then
 error $prog
 else
 delay 10
 getpid $prog "$opt_ps"
 if [-n "$PID"]; then
 $ECHO "start $prog $DATE" >> $LOGFILE
 $ECHO " ok"
 else
 starterror $prog
 fi
 Fi
 else
 beeper 3
 $ECHO ">$prog $instance<\c"
 getmsg 0005
 Getmsg 0006
 fi
 else
 beeper 2
 getmsg 0007
 getmsg 0009
 Fi
 fi
 Done
 cd $OLDIR
 ;;
 'stop')
 $ECHO "\t\t$FILENAME $1"
 startupcheck $startup $prog
 if ["$?" = 0]; then
 exit 0
 fi
 confcheck $instances
 instances=`swapstring "$instances"`
 for instance in $instances; do
 eval startup=\$startup_$instance
 eval opt=\$opt_$instance
 opt_ps="-self `getoptionvalue -self "$opt"`"
 if ["$?" = 0]; then
 opt_ps=""
 getmsg 0035 -self
 fi
 getpid $prog "$opt_ps"
 if [-z "$PID"]; then
 $ECHO ">$prog $instance<\c"
 getmsg 0004

 InaDriver
6-37

 else
 kill $PID
 $ECHO ">$prog $instance<\c"
 getmsg 0003
 LOGFILE=$HOME/tmp/"$prog"_"$instance".log
 $ECHO "stop $PROGS $DATE" >> $LOGFILE
 TMPFILE=$HOME/tmp/"$prog"_"$instance".tmp
 rm -f $TMPFILE
 mv "$LOGFILE" "$LOGFILE"_old
 fi
 Done
 ;;
 'restart')
 ($SH $0 stop; getmsg 0012; delay 5; $SH $0 start)
 ;;
 '-ver')
 printver $VERSION
 exit 0
 ;;
 '-version')
 printversion $0 $VERSION $VDATE
 exit 0
 ;;
 '-help')
 getmsg 0001
 exit 0
 ;;
 *)
 getmsg 0001
 exit 1
 ;;
esac

If necessary, it is called from the APROL start script.

A typical APROL start-up file with the following structure:
#Enviroment for startup
#Modul : InaDriver
USER=pccrun; LOCALHOST=server1; RUNTIME_USER=pccrun;
IOSYS_HOST='server1'; MASTER=server1; IOSYS_TYPE=LOCAL; IOSYS_PORT=0;
ALARMSERVER=01
#List instance and options for modul
prog="InaDriver"
startup="YES"
version="1.1.0"
instances="01 02 03 04 05 06 07 08"
startup_01="YES"
autostartup_01="NO"

opt_01="-delay 1000 -i SPS1/APROL.cfg -ip 192.168.77.59 -medium
Ethernet -mynode 50 -n DRIVER_SPS1 -route CP -run_task -self 01
-setRT 1000 -set_id 30010 -socket 0x2b97"
startup_02="YES"
autostartup_02="NO"

opt_02="-delay 1000 -i SPS2/APROL.cfg -ip 192.168.77.52 -medium
Ethernet -mynode 50 -n DRIVER_SPS2 -run_task -self 02 -setRT 1000
–set_id 30011 -socket 0x2b97"
startup_03="YES"
autostartup_03="NO"

opt_03="-delay 1000 -i SPS3/APROL.cfg -ip 192.168.77.53 -medium
Ethernet -mynode 50 -n DRIVER_SPS3 -run_task -self 03 -setRT 1000
–set_id 30012 -socket 0x2b97"
startup_04="YES"
autostartup_04="NO"

opt_04="-delay 1000 -i SPS4/APROL.cfg -ip 192.168.77.54 -medium
Ethernet -mynode 50 -n DRIVER_SPS4 -run_task -self 04 -setRT 1000
–set_id 30013 -socket 0x2b97"
startup_05="YES"
autostartup_05="NO"

opt_05="-delay 1000 -i SPS5/APROL.cfg -ip 192.168.77.55 -medium
Ethernet -mynode 50 -n DRIVER_SPS5 -run_task -self 05 -setRT 1000
–set_id 30014 -socket 0x2b97"
startup_06="YES"
autostartup_06="NO"

opt_06="-delay 1000 -i SPS6/APROL.cfg -ip 192.168.77.56 -medium
Ethernet -mynode 50 -n DRIVER_SPS6 -run_task -self 06 -setRT 1000
–set_id 30015 -socket 0x2b97"
startup_07="YES"
autostartup_07="NO"

F1 Drivers for B&R Connections
6-38

opt_07="-delay 1000 -i SPS7/APROL.cfg -ip 192.168.77.57 -medium Ethernet
-mynode 50 -n DRIVER_SPS7 -run_task -self 07 -setRT 1000
–set_id 30016 -socket 0x2b97"
startup_08="YES"
autostartup_08="NO"

opt_08="-delay 1000 -i SPS8/APROL.cfg -ip 192.168.77.58 -medium
Ethernet -mynode 50 -n DRIVER_SPS8 -run_task -self 08 -setRT 1000
–set_id 30017 -socket 0x2b97"

6.11 Error analysis and handling
.

6.11.1 Profibus connection
After the installation, the Livelist cannot be started with pb_manager (Softing card) or br_sys
(B&R Profibus card).
The following points must be checked:
Is the device driver loaded in the LINUX kernel?
Condition: You are logged in as super user.
Start the lsmod command. All modules connected to the kernel are displayed.
A PROFIboard or br_driver module must be present.
If one is not present, then go to the /boot/modules/PROFIboard directory and start insmod
PROFIboard.o or to the /boot/modules/pbbr directory and start insmod br_driver.o.
Analyze the error message
Is there any kernel output?
Condition: You are logged in as super user.
Enter the dmesg command.
Search the kernel driver output. After dmesg, you can browse the output using the Shift/Page-
Up and Shift/Page-Down keys.
The following message should appear after booting. The settings may vary according to your
parameters:

PROFIboard card:
SOFTING PROFIboard DEVICE DRIVER V 3.0.3 (C) 1998-2000 by PCC,
register major number 50
isa_board: io_addr = 0x0240, irq = 5, base = 0x000d0000
found 1 devices
maxWaitLoops = 5

B&R Profibus card:
B&R PROFIBUS DEVICE DRIVER V 3.0.2 LINUX (c) 1998-1999 by pcc,
Created Aug 8 2000 at 08:42:53
poll loop set to 10 ms
register major number 60
found B&R board at 000d8000
device 0, firmware V3.10
status = 0
apb = 0

A corresponding error message is given if the Profibus card was not recognized. The device
driver has probably not been loaded if the above message does not appear.

 InaDriver
6-39

Are the device files present?
Make sure that the entry files are located in the /dev/PROFIboard directory:

ls -la /dev/PROFIboard/PROFIboard*
these files should be located in the following for a B&R Profibus card:
 ls –la /dev/brpb*
If these files are not present or the displayed major number does not match the device drive
message (see inset above: register major number ...) than an error has occurred with pb_install
or br_install. Restart the program and check the error messages.
Is the start script present?
Make sure that the start script is present and contains a link in the start directories.

 ls -la /sbin/init.d/PROFIboard
 ls -la /sbin/init.d/rc2.d/S51PROFI.sh
 ls -la /sbin/init.d/rc3.d/S51PROFI.sh

or
ls -la /sbin/init.d/BuR_PROFIBUS
 ls -la /sbin/init.d/rc2.d/S52PROFI.sh
 ls -la /sbin/init.d/rc3.d/S52PROFI.sh

If the start files are not present then an error has occurred with pb_install or br_install. Restart
the program and check the error messages.
Are the files for network configuration present?
Do the configuration files for the respective PROFIboard exist?

 ls -la /usr/etc/profiboardx.cfg
 ls -la /usr/etc/profiboardx.ov with x = board number, starting with 0

If the files are not present, then you have to create them and start pb_init.
Just like with the PROFIboard, the following must be also be checked when using the B&R
Profibus card:

ls –la /usr/etc/brpb/profibusx.cfg mit x= board number ,
starting with 0

 ls –la /usr/etc/downloads/profibus.fw
Is the Profibus card on the network?
If the card is already on the network and the bus parameters are not accordingly adjusted, then it
is possible that the card is deactivated to prevent a network interruption on this card. Never
perform a reinstallation while the Profibus card is connected to the network. Start the Livelist,
which will run cyclically, and wait until the card can be seen here before plugging in the cable if
necessary. Check the bus parameters again if the Livelist only works when there is no
connection to the Profibus network.

Why can't a connection be established?
Although the controller appears in the Livelist and FMS services are working properly (such as
an Identify), the programs InaDriver and InaConnect cannot establish a connection to the
controller and are showing the connection status lost connection. If this is the case, then check
if the BR module fbpb.br has been burned to the controller and if Profibus devices have been
enabled for communication in the system setting (sysconf).

F1 Drivers for B&R Connections
6-40

6.11.2 Ethernet connection
Problem: A connection cannot be established with the controller?
Are the network interfaces correctly configured?
The installation guidelines from the manual are valid for the PC. It is important to check if the
system correctly recognized the Ethernet card, which the super user can do by looking at the
information output provided by the dmesg command.
For example:
Eth0: Digital DS21143 Tulip rev 65 at 0xa800, 00:00:1C:B5:F4:D1, IRQ 10.
Eth0: EEPROM default media type Autosense.
Eth0: Index #0 - Media MII (#11) described by a 21142 MII PHY (3) block.
Eth0: MII transceiver #5 config 3000 status 7829 advertising 01e1.

If the card has been correctly configured, then the ifconfig program provides output for this
interface with the following structure:
Eth0 Link encap:Ethernet HWaddr 00:00:1C:B5:F4:D1
 inet addr:192.168.2.35 Bcast:192.168.2.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:15041342 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15484661 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1705 txqueuelen:100
 Interrupt:10 Base address:0xa800

If these settings are correct, it should be possible to access the controller via the Ethernet
network, as long as the controller's Ethernet interface has also been configured correctly. The
best way to test this is by using the ping program. If this test is negative, there could be a
problem with the network connection or the hardware being used.

Why can't a connection be established?
Although the controller can be reached via the ping program, the InaDriver and InaConnect
programs cannot establish a connection with the controller and are displaying the connection
status lost connection. If this is the case, then check if the BR module fbtcpip.br is present on
the controller and if Ethernet devices have been enabled for communication in the system
setting (sysconf).
A connection is not established when accessing the controller via node number. In this case you
should check if the correct broadcast address was used. In rare cases this address is
255.255.255.255, otherwise it results from configuration of the individual devices configured on
the PC.

6.12 Notes on literature (InaDriver)
Additional information can be found in the following manuals:
1. Softing documentation for the PROFIboard (free download from Internet at

www.softing.com). Detailed information is provided about the bus parameters and
connection parameters as well as the values for the object descriptions.

2. The B&R PROFIBUS manual for the 2000 System describes the basics of PROFIBUS
such as cable structure, network settings and connection parameters as well as a special
section about the PROFIBUS hardware in the 2000 System.

3. PROFIBUS standard, DIN 19245 parts 1/2/3 and the corresponding EU standards

 InaDriver
6-41

 Modbus controller driver
7-1

7 Modbus controller driver

.

7.1 General information about the Modbus controller driver
The Modbus driver is used to serially couple external stations to a B&R controller, using the
Modbus RTU, or Modbus ASCII protocol. A mixed RTU/ASCII operation is not possible.

 Make sure that the serial interface to be used is correctly configured in the properties of
the CPU (sysconf).
The interfaces that are contained as standard in the CPU module do not have to be
changed.
When using interface modules, which are run on a separate interface module slot,
additional drivers may have to be installed.
For example, the device driver ddsfif6.br must be installed when using the interface
module 3IF060.

Details about the sysconf settings can be taken from the following screenshots:

Illustration 17: Tab "DEVICES"

Illustration 18: Tab "INA-DEVICES"

The driver supports up to 4 serial interfaces, and can be configured as master, or slave,
separately for each interface. In master mode, the driver processes its jobs cyclically, and in
slave mode it only responds to request telegrams from the partner. The configuration of the

F1 Drivers for B&R Connections
7-2

driver takes place in the CaeManager in the corresponding controller, in the tab 'APROL
Couplings'.
The B&R controller emulates the variable environment of a Modicon controller, meaning that
variable ranges are available of the type Coils, Input Status, Input Register und Holding
Register. The driver supports both 16 bit register, and 32 bit register access. For the latter, two
16 bit registers have been combined to one item.

 The corresponding limit values must be observed in the following description of the
data module!

It is presumed that the user has a basic knowledge about the Modicon system, in order to
be able to use the different variable, or register, types.
Function codes supported by the driver ApDrvMb:

Function
code

Description: Range: Limit value
(Remote):

1 Read coil status 0xxxx 1-65535
2 Read input status 1xxxx 1-65535
3 Read holding registers 4xxxx 1-65535
4 Read input registers 3xxxx 1-65535
5 Force single coil 0xxxx 1-65535
6 Preset single register 4xxxx 1-65535
15 Force multiple coils 0xxxx 1-65535
16 Preset multiple registers 4xxxx 1-65535

It is necessary to define a relationship between the emulated data range, and the process
variables that are used in APROL.
This is the only way to write to or read from these variables using the driver.

 Only controller-global variables can be used!
The variables must be created in the configuration editor in the tab 'APROL
Coupling'.

7.1.1 Key data of the Modbus controller driver
The following basic data is valid for the driver:

The ApDrvMb driver supports the RTU mode, as well as the ASCII mode.

The driver supports up to 16 serial interfaces.

The number of coil, and input, status, holding, and input, register can be configured.
However, the total amount cannot exceed 2048 per type.

The driver supports cyclic communication in master mode, and in the slave mode it is
totally passive.

7.2 Data module structure
The Modbus control driver is configured using a data module called ApCnfMb.

 Modbus controller driver
7-3

 The data module is created with a build of any one task belonging to this controller.

This data module contains information about the corresponding interfaces that are used by the
Modbus station, as well as variable assignments to the virtual Modbus data areas. Here, one
has to pay attention to the number of emulated Modbus stations at one time. The variable list
describes how to interpret a variable in a Modbus data module. Downloading a new data module
results in a new reconfiguration. The Modbus driver is stopped if the data module is not present.

The data module has the following structure:
"ApCnfMb"
"<MODE>:x"
"<COMM>:X:PARA:ADDR:obs:To1:C:I:H:R:Mode1:To2:Mode2"
"<AMPLE>:AMPLE-TIME"
"<COMM_STAT>:VAR"
"<COMM_CNT>:VAR"
"<C>:VAR:OFF"
"<I>:VAR:OFF"
"<H>:VAR:OFF:RemType"
"<R>:VAR:OFF:RemType
"<REQ>:ADR:FCT:OFF:NUM:ROFF:CYCLE"
"<REQ_STAT>:VAR"
"<REQ_CNT>:VAR"

 The COMM identifier is contained once in the data module, for each emulated Modbus
station.
Each entry is composed of an identifier, which can be recognized by the angle brackets,
as well as the accompanying settings.

Conventions for text:

: Colons separate the individual parameters.
; Semicolons follow comments.
" Entries in the data module are indicated by quotation marks.

 The driver does not run with a misconfiguration. In this case an entry is written into the
logbook of the controller with a note about the faulty line in the data module!

7.2.1 Description of the data module entries

"ApCnfMb"

Entry: Description: Limit values:

ApCnfMb Identification for the Modbus driver constant

"<MODE>:X"

Entry: Description: Limit values:

<MODE> Identifier -

F1 Drivers for B&R Connections
7-4

X 0=somePVs (The driver should function even
if all of the configured variables have not
been found.)
1=allPVs (The driver should only function if
all of the configured variables were able to be
assigned.)

0 or 1

"<COMM>:X:PARA:ADDR:obs:To1:C:I:H:R:Mode1:To2:Mode2"

Entry: Description: Limit values:

<COMM> Identifier -
X Interface name (e.g. IF1) -
PARA Interface parameters are composed of:

Mode, baud rate, parity, data bits, stop bits
(are automatically established by means of
the parity, and inserted)

-

ADDR Own Modbus address 1 to 247
obs Present due to compatibility reasons with

older driver versions.
Entry is not evaluated.

-

To1 Timeout (maximum waiting time for an
answer telegram in <ms>

-

C Number of emulated coil status variables from
this station

0 to 2048

I Number of emulated input status variables
from this station

0 to 2048

H Number of emulated holding register
variables from this station

0 to 2048

R Number of emulated input register variables
from this station

0 to 2048

Mode1 These settings are only relevant for the slave mode

S=16 bit mode (A register item is composed
of one data word !)
X=32 bit mode (One register item is
composed of two data words, meaning in 32
bit mode that double as many offsets are
used locally as for the 16 bit mode)

S or X

To2 Slave suspension time in seconds
This parameter is only relevant for master
mode. If the corresponding slave does not
respond to demands, then the corresponding
jobs are not carried out for this period.
Through this, the communication is balanced.

-

Mode2 Modbus protocol RTU or ASCII

"<AMPLE>: AMPLE -TIME"

Entry: Description: Limit values:

<AMPLE> Identifier -

 Modbus controller driver
7-5

AMPLE -TIME Delay time in [ms] from the reception of an
answer until the next request telegram.
Only for the master mode.

0 ... 1000

"<COMM_STAT>:VAR"

Entry: Description: Limit values:

<COMM_STAT> Identifier -
VAR Variable name

Used to monitor an interface. The variable
toggles each second between "0" and "1" if
the respective interface has been opened
without error.

-

"<COMM_CNT>:VAR"

Entry: Description: Limit values:

<COMM_CNT> Identifier -
VAR Variable name

In slave mode:
This status variable is a counter that is
incremented after a request has been
received without error.

In master mode:
This status variable is a counter that is
incremented after a request has been
processed without error.

-

"<X>:VAR:OFF:RemType"

Entry: Description: Limit values:

<X> Type:
C = Coil status
I = Input status
H = Holding register
R = Input register

-

VAR Variable name -
OFF Offset in the temp. buffer (local) The number of declared

registers in the <COMM>
identifier cannot be
exceeded

F1 Drivers for B&R Connections
7-6

RemType Valid only for holding and input, registers.

BIT0-15 corresponding BITs of a data
word e.g. BIT7
HINT8 most significant Byte of a data
word: signed
HUINT8 most significant Byte of a data
word: unsigned
LINT8 least significant Byte of a data
word: signed
LUINT8 least significant Byte of a data
word: unsigned
INT16 Data word (signed)
UINT16 Data word (unsigned)
INT32 Double Data word (signed)
UINT32 Double Data word (unsigned)
IEEE Floating point number (IEEE
format)
STRING 64 character inclusive termination
= 65 Bytes
 (is the same as 33 data words)

-

 The Modicon addressing starts at the basis address 1.
E.g. Input status 1 (10001) is equivalent to Offset 0; Holding register 2 (40002) is
equivalent to Offset 1

"<REQ>:Add:Fct:off:len:rem_off:time:Mode"

Entry: Description: Limit values:

<REQ> Identifier for a task line of a master -
Add Address of the slave station from which should

be read from, or written to.
1 to 247

Fct Function:
1: Read Coil Status
2. Read Input Status
3: Read Holding Registers
4: Read Input Registers
5: Force Single Coil (Write)
6: Force Single Register (Hold.Reg.)
15: Force Multiple Coils (Coil Status)
16: Force Multiple Registers (Hold.Reg.)

-

off Data offset in the local register
There is always a BIT or WORD offset
depending ón the mode (16|32 bit).
Possible values are [0 ... 2047].

Example: Holding register '1' (40001)
corresponds to offset '0'.

The number of declared
registers in the <COMM>
identifier cannot be
exceeded

 Modbus controller driver
7-7

len Number of items, which can be transferred with
this job (maximum 250 Bytes)
Dependent on the function, and the mode of
the communication partner (16, or 32 bit mode)
that are maximum possible.

 1: Read Coil Status
2. Read Input Status
3: Read holding registers

4: Read input registers

5: Force Single Coil (Write),
6: Force Single Register (Hold.Reg.)
15: Force Multiple Coils (Coil Status)
16: Force Multiple Registers (Hold.Reg.)

Range 1 - 2000
Range 1 - 2000
for 16 bit: 1- 125,
for 32 bit: 1 - 62
for 16 bit: 1- 125,
for 32 bit: 1 - 62
1
1
Range 1 – 2000
for 16 bit: 1- 125,
for 32 bit: 1 - 62

 When using the 16 bit mode, the sum of <off> and <len> is not allowed to exceed the
number that is entered in <COMM> identifier tab.
When using the 32 bit mode (only with holding and input registers), the sum of <off> and
(<len>*2) is not allowed to exceed the number that is entered in <COMM> identifier tab.

Entry: Description: Limit values:

rem_off Data offset on the conneceted Modbus
station
Possible values are [0 ... 9999]

Example: Holding register '1' (40001)
corresponds to offset '0'.

0 to 65535

time Cycle in <ms> -
Mode S=16 bit mode (a register item is composed of

one data value)
X=32 bit mode (One register item is composed
of two data words, i.e. double as many offsets
are possible locally in 32 bit mode as for the 16
bit mode)

S or X

"<REQ_STAT>:VAR"

Entry: Description: Limit values:

<REQ_STAT> Identifier -

F1 Drivers for B&R Connections
7-8

VAR Variable name
Value of the status variable:
0: OK
2: Timeout error
3: crc error
4: data to short
5: IF error
6: unexpected len
7: response error Fct: 5 ,6, 15, 1

-

"<REQ_CNT>:VAR"

Entry: Description: Limit values:

<REQ_CNT> Identifier -
VAR Variable name

This status variable represents a
counter that is incremented after the
respective request has been processed
without error.

-

7.3 Creating the data module with the configuration editor
The controller driver ApDrvMb is configured in the CaeManager in the 'controller' project part, in
the 'APROL coupling' tab.
To create a new configuration of the ApDrvMb driver for your controller, select the entry
'MODBUS coupling', and call up the menu item 'New' from the short-cut menu with the right
mouse button.

 The coupling name ApCnfMb is automatically allocated, and cannot be changed.

Finally, create a new Modbus station using the menu item "New" in the short-cut menu, and
assign a station address to it.

Illustration 19: Creating a new Modbus station

Hereupon, the global settings of the Modbus station must be adjusted (e.g. the interface
description, as well as the number of registers to be supported). A short description, as well as
possible parameter limit values (e.g. number of holding registers --> 2048) can be found in
chapter Description of data module entries.

 Modbus controller driver
7-9

Illustration 20: Entry in the Modbus station global parameters

Finally, carry out the assignment of the variables to the corresponding Modbus registers.

 A configured input variable (I/O type) for the Modbus driver is not allowed to be described
in the logic diagrams.

Illustration 21: Assignment of the PVs to the corresponding Modbus data areas

If the created Modbus station should be run as master, then one must create the necessary jobs,
otherwise the station will be run as slave.

Illustration 22: Create the task:

The before mentioned status variables <REQ_STAT> and/or <REQ_CNT> can be optionally
created for each job.

F1 Drivers for B&R Connections
7-10

Illustration 23: Preview display of the created Modbus coupling

7.4 Example

Parameters from the configuration example:

 A master-capable Modbus station must be created on the interface IF2 of the CPU.
 Two inputs (coil status) of the controller to be connected should be read every second

from it.
Input 1 (addr 10001), input 2 (addr 10002).
Additionally, a status variable (MB_Cnt) should be incremented for each job that is
executed successfully from these inputs.
Three set values are written cyclically:
Holding register 100 (adr 40100), 101 (adr 40101) und 102 (adr 40102)

 The Modbus address of the slave to be connected is "2".
 The life signal of the driver should be displayed with the help of the MB_Life variables.
 The temporary data areas should be configured as follows:

Coils 0
Inputs 10
Holding Register 200
Input Register 0
Protocol: RTU

 The settings for the interface being used:
Mode RS232, baud rate 9600 bit/sec, no parity, 8 data bits, 2 stop bits, time out 1
second.

 The AMPLE-TIME should be at least 100 ms.

 Modbus controller driver
7-11

The configuration data module has the following contents:
;###
;# APROL R 3.6-0492
;# Coupling type: MODBUS-Kopplung (MB)
;# Coupling name: ApCnfMb
;# Version: V3.1
;# Created: 15.06.2011 11:14:18 CEST Schulte
;###
"ApCnfMb"
"<MODE>:1"
"<COMM>:IF2:/PHY=RS232 /BD=9600 /PA=E /DB=8 /SB=1 :1: obs :1000:128:128:128:128:S:60:RTU"
"<AMPLE>:100"
"<C>:ModInput_1:0"
"<C>:ModInput_2:1"
"<H>:HReg100:99:INT16"
"<H>:HReg101:100:INT16"
"<H>:HReg102:101:INT16"
"<REQ>:2:1:0:2:0:1000:S"
"<REQ_CNT>:MB_Cnt"
"<REQ>:2:16:99:3:99:2000:S"
"<COMM_STAT>:MB_Life"
;###
;# EOF End of the configuration: ApCnfMb
;###

* These variables can also be read by the master. Whether these variables are read or written
depends only on the function code that is received. The Holding register and Coils can be read
and written.

7.5 Modbus controller driver status variables

 This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on
our internet page www.br-automation.com, in the area Material related downloads.

 ModbusPlus driver package
8-1

8 ModbusPlus driver package

.

8.1 General information about the ModbusPlus driver
Unlike the single master system Modbus, the Modbus-Plus network is a multi-master system
with token access methods (i.e. only the request telegram contained by the master token can be
sent). 32 network nodes are allowed per network segment and the network can consist of up to
5 segments.
The software package APROL ModbusPlus driver consists of a kernel driver for the Linux
kernel 2.6, a control computer driver and a diagnostics tool (mbpManager and kMbpManager).
The ModbusPlus driver requires an additional ModbusPlus card for the PC. Further information
about this can be taken from chapter Supported hardware.
The driver is configured using the CaeManager.

8.1.1 Contents of delivery ModbusPlus
The software package is delivered as an RPM file. The following files are created when installing
the package:

File name Description

/etc/init.d/SA85-PCI Start script for installing the kernel driver
/lib/modules/*/kernel/drivers/aprol/SA85-
PCI.ko

Kernel driver for different kernel versions
(*corresponds to the output from the
command "uname –r", which displays the
kernel version).

/opt/aprol/bin/mbpInstall Tool for entering the network address of the
card in the ModbusPlus network.

/opt/aprol/bin/mbpDriver APROL-Driver on the control computer
/opt/aprol/bin/mbpManager Diagnostics tool (console version)
/opt/aprol/bin/kMbpManager Diagnostics tool (console version)
/opt/aprol/cnf/mbpDriver/examples/mbp.cnf Example configuration for the driver on the

control computer

8.1.2 Supported hardware
Currently, the kernel driver only supports the ModbusPlus card from Schneider Electric with the
type ID 416NHM30030A. This is a single-channel PCI card for 5 and 3.3 volts.

8.2 Configuration of the APROL driver on the control computer

F1 Drivers for B&R Connections
8-2

The configuration of the driver on the control computer takes place in two steps:
The driver's start options must be configured in the CaeManager and a configuration file must be
created including all of the information about the process variables.

 If the start options and/or the configuration file are changed, then a runtime
download and the generation of a control computer task are necessary!

The following table contains a list of the start options and the respective descriptions:

 In addition to the options provided in the CaeManager for configuring the driver, the
following table also lists options that can be only called from the console for
debugging purposes!

 A description of the ModbusPlus driver launching options can be found in manual 'X99 CC
Modules', chapter ModbusPlus driver launching options.

In addition to configuring the start options in the CC modules, a driver's tasks also have to be
configured. This takes place in the CaeManager, 'APROL system' project part, APROL
connections, in the MbpDriver entry.

Illustration 24: Configuring the tasks

The different cyclic and non-cyclic task types provided are described here below:

Task type Description

READ Cyclic read task.
WRITE Event-controlled write task, which only writes the most recently

changed area to the controller (i.e. each PV is separately transferred
to the controller in individual write tasks).

 ModbusPlus driver package
8-3

Task type Description

SYNC Cyclic read task with event-controlled writing. This is a combination of
the two types of tasks mentioned above.

A PV changed in the control computer remains locked for read tasks
until all of its value changes have been written to the controller. Write
tasks are then only processed once they have been successfully read at
least one time.

IWRITE InitWrite:
A task that reads from the controller once after a connection has been
established. All controller variables that have different values than the
respective control computer variables are overwritten with the control
computer's values. A setting of the controller variables on the control
computer does not take place!

IBWRITE InitBlockWrite:
Comparable with the task type IWRITE.
Instead of individual PVs, the entire block is transferred to the
controller.

BWRITE BlockWrite:
Comparable with the task type WRITE.
The entire block is transferred to the controller when value changes
are made to individual PVs.

BSYNC Combination of READ and BWRITE. Reading and writing complete
tasks instead of individual PVs.

 The task types READ and (I)WRITE should be primarily used to cut down on system
load because it is not possible to guarantee that multiple value changes can be
transferred in one telegram during block write procedures!

To create a new ModbusPlus connection, select the menu option "New" from the MbpDriver
shortcut menu in the CaeManager.
You are then prompted to enter a directory name.

Enter the name provided in the -controller start option here as name for the configuration
directory.
Tasks can then be created for the different variable types in the Modicon controller. The
variable types include "Coils", "InputStatus", "InputRegister", "HoldingRegister" and
"ExceptionStatus".
After selecting the desired variable type, you can use the shortcut menu (menu option "New") to
start creating variables that are automatically given a numeric identifier.
For analysis purposes, names can be assigned to process variables in which the driver enters
counter values for tasks that were and were not successfully completed.
These variables are handled internally like "unsigned short" variables. That means that their
value range is between 0 and 65535. These process variables are handled according to their
task and might have to be created individually for each task. If these have not been configured,
then statements about tasks that are successfully completed or not successfully completed are
not possible.
Furthermore, a cycle time must be assigned in milliseconds for each task. This cycle time is not
important for write tasks because true write tasks are always event-driven (and never cyclic).

F1 Drivers for B&R Connections
8-4

The cycle time for the READ section is used for mixed tasks (SYNC). The WRITE section here is
also always event-driven.
The process variables must then be created for each task. The name, the address on the
controller, the type on the controller and (if necessary) the scaling information must be specified
for each PV. The direction of data is determined by the respective task type.
Only PVs with the type BOOL can be assigned for Boolean tasks. Any PV can be assigned for
register tasks.
The address on the controller is dependent on the respective task type:
Coils are between 1 and 10000, InputStati between 10001 and 20000, Input-Registers between
30001 and 40000 and Holding-Registers starting at the address 40001. There are different
maximum transfer sizes for the different variable types depending on the type of task (see the
following table).

Variable type Address range Maximum task size (number of items)

Coils 1 – 10000 READ: 2000
BWRITE: 800

Input-Status 10001 – 20000 READ: 2000
BWRITE: -

Input-Register 30001 – 40000 READ: 125
BWRITE: -

Holding-Register 40001 - READ: 125
BWRITE: 100

Exception-Status No address 1 byte
The maximum task size for BSYNC tasks is determined by the write section.
Furthermore, the limit values for the control computer sizes, and the limits for the controller sizes
can be specified for scalable variables. If all four sizes are specified, then the following formulas
apply for the value transfer:
Fur read tasks:

For write tasks:

IosMin and IosMax are the limit values in the Iosys (control computer). controllerMin and
controllerMax are the limit values on the controller.
The control computer sizes are interpreted as the minimum and maximum values. Control
computer values that are smaller than the minimum value and larger than the maximum value
are reset to the respective limit value before being transferred. If no limits are specified, then the
limits of whichever variable type is used apply.

 You can also use the sample configuration file for reference.

 ModbusPlus driver package
8-5

8.3 kMbpManager and mbpManager
The utilities kMbpManager and mbpManager are applications used for diagnostics purposes.
The kMbpManager can only be used with a GUI (together with a graphic interface). The
mbpManager runs as an application on the console.
The following section will only describe the kMbpManager because both utilities provide
essentially the same functionalities, although with different menus.

Illustration 25: The mbpManager

The kMbpManager requires the number of the ModbusPlus interface in the computer. Unlike
the APROL driver, the first board is addressed with the number 1 here.
The routing path to the target device must be entered for functions called via the network. The
Lifelist function always runs locally and does not require specification of a routing path.

Brief description of the functions:

Function Description

Network Info/Lifelist Displays all of the station addresses located on the local
network.

Network Info/RemoteNetstat Network statistics on the target address.
Network Info/ClrRemoteNetstat Deletes the network statistics on the target address (if this

is supported at the target address)
Network Info/SlaveID Current settings / status of the target address (mem

protect, run state, etc.)

F1 Drivers for B&R Connections
8-6

Network Info/ScanSegment Checks the next sub-network behind the target station.
This is essentially used to display a life list behind a
gateway.
Note:
The status of the routing path changes while the scan is
running, (i.e. you can see which address is currently being
checked).
Example:
Routing path: 10.00.00.00.00
Checks all addresses between 10.01.00.00.00 and
10.64.00.00.00.

Coils/Read Reads Coils:
The number of the first Coil and the amount of Coils to be
read must be specified. If any of the entries are incorrect,
then the read button is disabled.
The read procedure is executed cyclically once every
second until the stop button is pressed.

Coils/Write Writes one or more Coils
(with identical value).
Note:
Under certain circumstances, written values are
immediately overwritten by the controller's logic.
Therefore, they cannot be read during the next read
procedure!

InputState/Read Reads the input states:
Behaves the same as Coils/Read.

InputRegister/Read Reads the input states:
Behaves the same as Coils/Read.

HoldingRegister/Read Reads holding registers:
Behaves the same as Coils/Read.

ExceptionStatus/Read Reads the status bytes cyclically from the target station
until the stop button is pressed.

HoldingRegister/Write Writes one or more Holding Registers (with identical
value).
Compare the note for Coils/Write.

 ModbusPlus driver package
8-7

Illustration 26: Completed network scan

8.4 Possible diagnostics when implementing the driver on the control
computer

Each instance of a ModbusPlus driver creates a few PVs in the Iosys for diagnostics purposes:

PV name Description

AppName_successCtr Type: unsigned short
Increased by 1 with each successfully completed
request
Value range: 0 .. 65535

AppName_failedCtr Type: unsigned short
Increased by 1 with each request that is not
successfully completed
Value range: 0 .. 65535

AppName_errorText Type: String
Process variable where the driver writes error
messages.

AppName_connStatus Type: Integer
Value range:
1 = Driver not connected
2 = Driver connected
Note:
"Not connected" is displayed when the local
controller returns the message "Cannot connect
to host".
"Connected" is displayed as soon as a task was
able to be sent successfully.

F1 Drivers for B&R Connections
8-8

AppName_pid%d_useLogfile Type: String
%d stands for the process ID of the driver output
with ps ax.
When a valid file name (including path) is set
using pio, the driver creates a log file of the name
and directs all enabled debug output to this log
file. If a log file was already open, then it is first
closed and can be deleted if necessary.
If an empty string is transferred, then the current
log file is closed and can be deleted.

AppName_pid%d_debugFilter Type: Integer (internal unsigned int)
%d stands for the process ID of the driver output
with ps ax.
Debug output can be enabled or suppressed by
setting or clearing individual bits.
Debug output is placed (when in debug mode) in
the console or in the log file, if open.

The following debug bits are available:
0x00000001: Displays error messages
0x00000002: Displays normal messages
0x00000008: Displays the configuration
0x00000080: Displays the variable names in the
Iosys (only at startup)
0x00000100: Hex display of incoming telegrams
0x00000200: Hex display of outgoing telegrams
0x00000400: Output of Iosys values

Note:
After being set, the config bit (value 8) is
automatically reset once the configuration has
been displayed.

 If debug output is directed to a log file, then it is absolutely necessary to
monitor the available memory space on the hard drive.
Computer failure is a possible result of insufficient memory space!

The driver can be started in debug mode from the console by setting the -d option with a debug
filter made up of enabled debug bits. As a result, the driver does not go into the background and
outputs debug messages directly to the console. This makes it possible to quickly detect errors
when starting up. Once all of the errors have been eliminated, then the driver should be started
normally using the StartManager!
If errors occur during normal operation, then it is recommended to create a log file and enable
debug output. After a while, the log file should be closed again!

/opt/aprol/bin/pio –pv MbpDriver_mbp1_useLogfile -s "/tmp/myLogfile" -setType 3

creates a log file called myLogfile in the /tmp directory for the driver with the cnf file in mbp1 (–
controller option).

 ModbusPlus driver package
8-9

/opt/aprol/bin/pio –pv MbpDriver_mbp1_debugFilter –s 3 –setType 1

enables error and status messages.

/opt/aprol/bin/pio –pv MbpDriver_mbp1_debugFilter –s 0 –setType 1

ends all debug output.

/opt/aprol/bin/pio –pv MbpDriver_mbp1_useLogfile –s "" –setType 3

closes the log file. It can now be analyzed and then deleted.

8.5 Driver configuration example (ModbusPlus)
created 2005.08.16 11:46:29 by Admin

^READ, INPUT_STATUS, 1000
 :REQ_POS_CTR, mbpDrv1_IS1_posCtrPv
 :REQ_NEG_CTR, mbpDrv1_IS1_negCtrPv
 IS1, 10001, BOOL
 IS2, 10003, BOOL
 IS3, 10005, BOOL
 IS4, 10006, BOOL

^READ, INPUT_REGISTERS, 1000
 :REQ_POS_CTR, mbpDrv1_IR1_posCtrPv
 :REQ_NEG_CTR, mbpDrv2_IR1_negCtrPv
 IR1, 30001, INT
 IR2, 30002, DINT
 IR3, 30005, UDINT
 IR4, 30010, REAL , -10000 , 10000 , -1000 , 1000

^READ, HOLDING_REGISTERS, 10000
 :REQ_POS_CTR, mbpDrv1_HR1_posCtrPv
 :REQ_NEG_CTR, mbpDrv1_HR1_negCtrPv
 HR1, 40001, BYTE
 HR2, 40002, BOOL
 HR3, 40005, DINT
 HR4, 40020, REAL , -10000 , 0 , 0 , 10000

^READ, EXCEPTION_STATUS, 60000
 :REQ_POS_CTR, mbpDrv1_EX1_posCtrPv
 :REQ_NEG_CTR, mbpDrv1_EX1_negCtrPv
 EX1, 1, SINT

^READ, COILS, 1000
 :REQ_POS_CTR, mbpDrv1_RC1_posCtrPv
 :REQ_NEG_CTR, mbpDrv1_RC1_negCtrPv
 Coil1, 1, BOOL
 Coil2, 2, BOOL
 Coil3, 3, BOOL
 Coil4, 4, BOOL
 Coil5, 5, BOOL
 Coil6, 6, BOOL
 Coil7, 7, BOOL
 Coil8, 8, BOOL
 Coil9, 9, BOOL

This example shows cyclic READ tasks with different cycle times between 1000 milliseconds
and 60000 milliseconds. All tasks have status variables for the positive and the negative counter
that can be displayed in the IosEv, for example.
IR4 is stretched by a factor of 10 in the control computer. HR4 is moved from a negative to a
positive value range.

F1 Drivers for B&R Connections
8-10

8.6 ModbusPlus driver status variables

This description is under construction at present.
Please inform yourself regularly about the current APROL documentation on our
internet page www.br-automation.com, in the Material related downloads section.

 OPC server
9-1

9 OPC server

.

9.1 Definition of terms for OPC
As a result of the widespread usage of Windows operating systems worldwide and the
standardization in the area of PCs, different technologies have emerged for allowing software
modules to communicate with each other using standardized interfaces.
One of the first milestones on this path was DDE (Dynamic Data Exchange), which was later
replaced by the considerably more powerful OLE technology.
The abbreviation OLE stands for Object Linking and Embedding and describes the dynamic
linking of objects in various office applications.
The term OPC was coined in the mid 1990s, when a number of well-known companies, mainly
software manufacturers, came together to form a task force for the rapidly expanding sector of
SCADA systems using HMI interface (e.g. Fisher-Rosemount, Rockwell, Siemens, etc.).
Against the background of the growing number of different communication protocols and bus
systems, the OPC task force set themselves the goal of developing a standard for accessing
real-time data using Windows operating systems. A basis, OLE for Process Controls (OPC), was
hoped to be created.
Since its establishment in 1996, the OPC Foundation has had the goal of accommodating the
needs of the industry and reflecting them in the form of functional extensions and existing or new
OPC specifications.
Further information about the OPC Foundation can be found on the Internet at:
http://www.opcfoundation.org

9.1.1 General Information about OPC
For manufacturers of OPC servers and OPC clients, the use of OPC base technology allows
greater freedom concerning complexity, functionality and implementation of their OPC
components.
Different types of OPC components from various manufacturers can be used together as long as
the specifications and guidelines for implementation are adhered to.
No additional programming is required for adapting the interfaces between the individual
components.
For example, process data from the field can be displayed in an Excel spreadsheet using OPC.
This process data can be archived effortlessly in a database using OPC or further processed in
a production planning system.
The APROL OPC server offers you the following benefits:

 OPC is quicker and more available than DDE
 Each value that is recorded with OPC has a time stamp and a status.
 OPC uses a block format for communicating and can send several requests in one single

call, and receive several values.

http://www.opcfoundation.org/

F1 Drivers for B&R Connections
9-2

 OPC allows the clients to specify the scan rates that are needed.
 In contrary to DDE, OPC uses binary data representation (IEEE floating comma numbers,

Integer, ...)
 A server's variables can be observed and chosen with a browser.
 The concept of building groups allows different variable blocks with different scan rates.

The APROL OPC server supports the data access specification 2.0.
It concerns the implementation of so called "Custom Interfaces", which as opposed to
"Automation Interface", work using function pointers.
The specification describes "Mandatories"; methods that must be implemented, and "Optionals",
methods that can be implemented, for this implementation. The APROL-OPC-Server does not
support the method IPersistsFile from the "Optionals" IOPCServerPublicGroups,
IOPCBrowseServerAddressSpace and IPersistFile, and returns a corresponding error message
when calling it. There is a so called AutomationWrapper from the OPC foundation for
applications that cannot access using the custom Interface (e.g. Excel-DataAccess-Clients und
VisualBasic-Clients, so clients that cannot work with function pointers), which allows access to
the custom interface.
A description of the OPC standard is not included in this documentation!

9.1.2 Information about the APROL OPC server
The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server allows process variables from process control system created with
APROLFehler! Kein Name für eine Eigenschaft übergeben. to
be evaluated on a Windows based system using a standardized OPC interface.

Illustration 27: Overview of the APROL OPC server

The OPC server was implemented as an OPC data access server. It works as an Iosys client
and makes it possible for OPC clients (applications) to have read and write access to process
variables (PVs) on the process control system.

 OPC server
9-3

The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server is an Iosys OPC interface. All variables that are accessed using OPC have to be
defined in the respective configuration file (see chapter Structure of the configuration file).
The variables that are communicated via OPC receive a time stamp from the APROL OPC
server. This time stamp is used in applications such as the TrendViewer or alarms, and should
therefore be identical with that of the Iosys (see chapter APROL OPC server as NTP client).
The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server is currently available for Microsoft Windows XP, Windows 2008 server, and
Windows 7.
The server is started by starting an OPC client. The OPC server is ended when the last active
client closes.
Possible clients are third-party clients, self-made OPC clients with Visual Basic (also Office
applications), or the OPC sample client of the PVI Development Setup (can be downloaded from
the B&R homepage).

 The OPC server is only called by the operating system after starting a clients and is not
permitted to be started with a "double-click" on AprolOPC.exe.

Term Description

COM It must be understood how platforms interpret an object in order to make objects
that have been implemented on different platforms or computer architectures
compatible with each other.
For this purpose, a so called object model is necessary. OLE uses the COM model
(Component Object Model). It defines a standard for the cooperation of the
components. COM allows calls within one process, and to another process.

DCOM The object model for computer-spanning calls is called DCOM (Distributed
Component Object Model) and is integrated as of the operating system Windows
2000.

Performance specifications:
The APROL Fehler! Kein Name für eine Eigenschaft übergeben.OPC server guarantees
read access to 5000 process variables within one second. The Fehler! Kein Name für eine
Eigenschaft übergeben. OPC server guarantees read access to 5,000 process variables within
a second.

 During the configuration it should be noted that the APROL Fehler! Kein Name für
eine Eigenschaft übergeben.OPC server functions in a polling manner, whereby the
Iosys is event-driven.

Important information about the ports to be used:
The ports which are necessary for the communication between the Iosys on the runtime
system and the OPC server are set up automatically during the installation of the APROL
system software.

In APROL versions lower than R 3.6-10, the 'AprolConfigureNewPortForwarding --
enable' command must be executed on a terminal with root rights. The script is supplied
on demand by B&R.

F1 Drivers for B&R Connections
9-4

As of APROL R 3.6-03, only the ports which are necessary for an APROL system
are not blocked by the firewall. Ports that are not necessary are locked.
The B&R default configuration must not normally be adjusted.
Detailed information about the firewall configuration can be found in the manual 'A2
Getting Started', chapter Optional Adjustments to the Firewall.

 If the port numbers have been adjusted manually, they must be readjusted manually
after each new installation. The same applies for an APROL and OPC server
installation.

9.2 Installing and registering the OPC server
The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server is installed with the help of a Microsoft standard installation package.
The installation file is called 'APROL-OPC-Server-Installer.exe'.

 It is necessary to work with administrator rights for an installation in the Windows 7
operating system. For this, select the installer with the right mouse button and choose
'Run as administrator'.

The installation package consists of the server itself, which is used by libraries, as well as an
example configuration file (AprolOPC.cfg.example).
The following subdirectories are created in a directory that can be chosen by the user during the
installation.

 As default, the Setup Wizard uses "C:/APROL" for the installation directory <InstDir>.

The following subdirectories are automatically created:

 <InstDir>/bin contains the APROLFehler! Kein Name für eine
Eigenschaft übergeben. OPC server and its DLLs.

 <InstDir>/cnf contains an example configuration file called 'AprolOPC.cfg.example'.

 <InstDir>/doc contains this documentation in PDF format.

 <InstDir>/examples

Contains an example for connecting to the OPC server from Excel.

The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server must be registered in Windows. The registration is carried out automatically with the
APROL setup. During the uninstallation, APROL-specific entries are removed again from
the registry.
For manual registration, the OPC server "AprolOPC.exe" must be executed once using the
program argument "/RegServer" or "/Install". The program argument "/UnregServer" or
"/Deinstall" removes the registration.

 OPC server
9-5

9.3 Information about the configuration file

All necessary APROL objects are defined in the configuration file.
You basically have two possibilities for creating the AprolOPC.cfg configuration file, and thus the
OPC server configuration:

 The file can be configured in either an integrated way using the user interface

 or manually as a text file using a text editor of your choice. (You can find the structure of a
configuration file in chapter Structure of the configuration file)

A configuration that is generated by APROLFehler! Kein Name für eine
Eigenschaft übergeben. results from the inputs in the OPC connection (in the
configuration of the APROL system, in APROL connection).

Illustration 28: Creating the OPC configuration

 The name of the configuration is always (AprolOPC) and cannot be changed.

The table below contains the descriptions for the entries that are needed when creating the OPC
configuration and then when creating the variables:

 Short description about the required entries and also tool tips are available.

Description of the entries for defining the configuration:

Entry Description

Connection The name of the connection. This is preset (AprolOPC) and cannot
be changed by the user.

Application The name of the application is stipulated (AprolOPC_EXE) and
cannot be changed by you.

Configuration file The configuration file name for the APROL OPC server is stipulated
(AprolOPC) and cannot be changed by you.

System The system identifier. At the moment, this is only required for
creating and formulating the name of an OPC item.

F1 Drivers for B&R Connections
9-6

Project The project identifier. Similar to System, this identifier is currently
only required for creating and formulating the name of an OPC item.

Iosys Host (or IP) Computer name or IP address of the runtime system (including the
port number of the Iosys).
For redundant systems, both computer names and IP addresses
must be specified. Entries should be separated by a ",". (e.g.
runtime1:0, 10.49.80.80:1).

Connection type
(ConnType)

Connection type for one or more OPC servers
Normal (Default setting) for one single OPC server
Redundant when several OPC servers simultaneously access the
Iosys and interact with the same process variable. In this case, these
OPC servers cannot be started on the same Windows computer!
(please also see the following information text)

TR [s] / Retry Time Retry time (TR) in <seconds>. Time overrun for failed reconnection
attempts (Maximum 3600).

Coding of the target
string

As of APROLFehler! Kein Name für eine
Eigenschaft übergeben. OPC Server V3.0:
When coding the target string, you can select between:
Latin1, Chinese (BIG5), Windows (CP1252), Latin2,
UTF-8

Description A description for OPC connection can be specified here.

 The write PVs are handled as bi-directional PVs when using the "Redundant" setting in the
"ConnType" option. They thus loose their unique direction of communication. The OPC
server still remains as the provider.
Furthermore, process variables are marked with "UNCERTAIN" in OPC clients when the
OPC client is connected to an OPC server, which is not the provider of the write PV, and
the OPC client tries to set it. This state remains until the providing OPC server accepts
either this or another value change for this variable.
The OPC server communicates with the Iosys via a TCP/IP connection. This is monitored
with the Watchdog mechanism, i.e. both applications still swap telegrams, even when no
actual data exists. The cycle of the Watchdog monitoring is fixed at 60 seconds, i.e. if the
amount of time between two telegrams exceeds 60 seconds then the connection to the
Iosys is closed. It is thus possible for a redundant OPC server on another machine to take
over the communication. A connection loss would be detected much later without this
Watchdog mechanism.

 The "!" in the individual connection view in the "Data" tab signals that an entry is
needed in this field.

After creating the OPC configuration, OPC variables can be created using the shortcut menu
[New].

 OPC server
9-7

Illustration 29: Creating the OPC variables

After the connection is created, the OPC variables are added. The required entries have the
following meaning:

Entry Description

Variable name Process variable name. This corresponds to the name of the PV in the
APROLFehler! Kein Name für eine
Eigenschaft übergeben. Iosys.

I/O type OPC variables can be of the types input, output, or bidirectional.
Input = write access
Output = read access
Bidirectional = write and read access

IEC type Data type of the variables in the APROLFehler! Kein
Name für eine Eigenschaft übergeben. system.

OPC Type Data type of the variables in the APROLFehler! Kein
Name für eine Eigenschaft übergeben. OPC
server.

Description Entering a description is optional.

The OPC variables created here can be used in your function charts as Gateway I/O depending
on the Type of input and outputs lines in the function charts.

 A Gateway I/O with type Output is only permitted to be placed on the chart output line
once. For this reason, the outputs that have already been used are not available when
selecting Gateway I/O on the chart output line.

F1 Drivers for B&R Connections
9-8

Illustration 30: Storing the OPC PV on the chart output line

 To quickly find variables, use the search algorithm for the Levenshtein distance.

The AprolOPC.cfg configuration file is created during compilation of the corresponding control
computer and is stored in the directory
 /home/<engin>/ENGIN/EXPORT/
The configuration file must then be copied to your Windows system <InstDir>/cnf.
After an OPC server restart, the configuration file is read and all defined APROLFehler!
Kein Name für eine Eigenschaft übergeben. variables are registered in
the Iosys.

The integrated configuration of the OPC server using the user interface has the following
advantages:

 Versions of the hardware and connection are assigned

 Engineering integration

 Advantages when debugging

 Syntax checking (possible errors are intercepted during input)

9.4 Structure of the configuration file

The configuration data is divided into object entries. Each object entry corresponds to an
APROL process object, including the respective APROL link object.

 Object entries must be made according to the object hierarchy. Process objects with
high priority must be entered in the configuration file first.

Each object entry is divided again into the following sections:

 Name of the process object (PN, Process Name)

 Description of the process object (PD, Process Description)

 Description of the link object (LD, Link Description)

 OPC server
9-9

Each object entry begins with a name section. Then the sections for object descriptions can be
added.

Section 1: Name of the process object (PN)
Syntax: PN: <Object name> OT=<object type>

<Object name> Name of the process object. The entry can be made as a single

name or with the object path (For syntax, see the APROL User
Documentation).

<Object type> Entry for the object type ("line", "conn", etc.).

Section 2: Description of the process object (PD)
Syntax: PD: <Parameter 1> <Parameter 2> ... <Parameter n>

These parameters are identical to those for the object parameter description for the IosysCreate
function (see APROLFehler! Kein Name für eine Eigenschaft
übergeben. User Documentation).
If the object name 'APROL' is entered as the first object entry in the configuration file (name of
the APROLFehler! Kein Name für eine Eigenschaft übergeben.
base object), this section is not interpreted as process object description, but instead as an
APROLFehler! Kein Name für eine Eigenschaft übergeben.
initialization parameter description.
These parameters are identical to those for the initialization parameter description for the
IosysInitialize function. Additionally, the parameters TR=<Retry Time> can also be given:
TR parameter: Time used to repeat user messages in seconds.
OpcServer V3.0 and higher:
Additional entry for target string encoding (e.g. EN=Latin1)
All initialization parameters are described in the APROLFehler! Kein Name für
eine Eigenschaft übergeben. User Documentation.

Section 3: Description of the link object (LD)

Syntax: LD: <Parameter 1> <Parameter 2> ... <Parameter n>

These parameters are identical to those for the connection parameter description for the function
IosysCreate.

9.4.1 Structure of an example configuration file
The structure of a configuration file is explained in an example below.
For documentation purposes, the configuration file is divided into 4 sections:

 Characters between the "#" and the end of the line are considered comments.

F1 Drivers for B&R Connections
9-10

AprolOPC-Server configuration file
generated by Schulte at 2003.10.15 15:20:33

PN: @/Aprol
PD: TR=30 EN=Latin1

Entry Description
PN: @/Aprol This entry is constant!
PD: TR=30 EN=Latin1 Connection value (like with IosysConnect)

TR = Retry time in sec. (max. 3600)

PN: @/Aprol/Essen OT=line
PD: CD=iosys
LD: EV=""

Entry Description
PN: @/Aprol/Essen OT=line The entry in the "System" field when creating the configuration.
PD: CD=iosys This entry is constant!
LD: EV="" This entry is constant!

PN: @/Aprol/Essen/DocProject OT=conn
PD: IP=runtime:0
LD: EV=""

Entry Description
PN: @/Aprol/Essen/Docuproject OT=conn|reduconn Complies with the entries in the "Project" and

"ConnType" fields when creating the configuration.
PD: IP=runtime:0 Computer name and IP address (including Iosys port) for

the runtime system.
LD: EV="" This entry is constant!

Variable List: (this object entry is repeated for each Iosys-PV)
PN: @/Aprol/Essen/Dokuprojekt/AprolOPC_PV1 OT=pvar
PD: CD=AprolOPC_PV1 AT=r
LD: VT=boolean IO=BOOL

PN: @/Aprol/Essen/Docuproject/AprolOPC_PV2 OT=pvar
PD: CD=AprolOPC_PV2 AT=r
LD: VT=boolean IO=BOOL

PN: @/Aprol/Essen/Dokuprojekt/AprolOPC_PV3 OT=pvar
PD: CD=AprolOPC_PV3 AT=rw
LD: VT=string VL=64 IO=STRING

Entry Description
PN:
@/Aprol/Essen/DocProject/
 AprolOPC_PV1 OT=pvar

OPC variable name

PD: CD=AprolOPC_PV1 AT=r Iosys variable:
AT=r output (CAE)
AT=rw input (CAE)
AT=s bidirectional (CAE)

 OPC server
9-11

Entry Description
LD: VT=boolean IO=BOOL Supports OPC types (VT):

- boolean,
- i8, i16, i32,
- u8, u16, u32,
- f32, f64,
-string:
If the data type "string" is selected, then the length must be
additionally given in bytes(VL=64)

Supported CAE types (IO):

- REAL
- STRING
- INT

All other data types in CAE are interpreted as INTEGER variables
(Iosys):
- e.g. BOOL

Notes about OPC variable names:
With some OPC clients, the symbols "/" or "@" are not accepted in OPC variable names. For this
reason, it is necessary to define a replacement character.
This replacement character is entered in the registry. In the scope of the installation, and for this
purpose, the 'NameSep' variable is pre-set with '.' in the registry.

 The variable "NameSep" is found in the Registry under:
HKEY_LOCAL_MACHINE/SOFTWARE/BR_AUTOMATION/APROL/APROLOPC

Example:
From the PN entry: @/Aprol/Essen/Dokuprojekt/AprolOPC_PV1 the configuration file is created on the
OPC page using the replacement character of the OPC item
Aprol.Essen.Dokuprojekt.AprolOPC_PV1.

9.4.1.1 Example of a configuration file

AprolOPC-Server configuration file
generated by Schulte at 2003.10.15 15:20:33

PN: @/Aprol
PD: TR=30 EN=Latin1

PN: @/Aprol/Essen OT=line
PD: CD=iosys
LD: EV=""

PN: @/Aprol/Essen/DocProject OT=conn
PD: IP=runtime
LD: EV=""

PN: @/Aprol/Essen/Dokuprojekt/AprolOPC_PV1 OT=pvar
PD: CD=AprolOPC_PV1 AT=r
LD: VT=boolean

PN: @/Aprol/Essen/Docuproject/AprolOPC_PV2 OT=pvar
PD: CD=AprolOPC_PV2 AT=r
LD: VT=boolean

PN: @/Aprol/Essen/Dokuprojekt/AprolOPC_PV3 OT=pvar
PD: CD=AprolOPC_PV3 AT=r
LD: VT=string VL=64

F1 Drivers for B&R Connections
9-12

9.5 Event Viewer in Windows for diagnosis
With the help of the Event Viewer, you have the possibility to call up the status of the OPC
server and the OPC connection on your Windows-computer for diagnostics purposes, as well as
any error states that may exist.

 Go to the Windows Explorer and open the "Manage" shortcut menu for the "My Computer"
entry.
The select "System Tools/Event Viewer/Application".

The following table contains a short description of all status and error messages according to the
ID:

ID Description

1000 Connection to Iosys has been established on <computer name>.
1001 Connection to Iosys could not be established on <computer name>.
1002 The AprolOpc application has been started.
1003 The AprolOpc application has been stopped.
1004 AprolStringConvert initialized with <Encoding>.
1005 AprolStringConvert -iconv_open failed.
1006 AprolStringConvert -iconv failed.

9.6 Debugging the OPC Server

The OPC server offers the possibility to analyze its actions with a console window and an
additional log file. In order to do this, it is necessary to activate this option by setting the registry
values for 'IosysDebug' and 'IosysDebugFile'.
As of the OPC server package version V3.6.0.0, these registry entries are automatically
set during an APROL OPC server installation.
The activation of this feature has an effect both on the performance of the Windows
computer, and on the available disk space!
The log file is overwritten during each OPC server restart.
Because the OPC server is automatically started when the first client starts, and is stopped
when the last client is stopped, the log file must eventually be backed up.

 This chapter is an internal documentation, which is aimed at experienced users.

The following debug defines are contained at present:

Debug defines Hexadecimal value

DBG_ERRORS 0x00000001
DBG_NORMAL 0x00000002
DBG_IOS_CONN 0x00000004

 OPC server
9-13

Debug defines Hexadecimal value

DBG_IOS_VAR 0x00000008
DBG_IOS_EVT 0x00000010
DBG_EXTENDED 0x00000100

The individual outputs are to be switched on, or off, by carrying out an OR operation with each
bit.
A) The OPC server debug level is activated with the following entry in the registry:
Directory: HKEY_LOCAL_MACHINE\SOFTWARE\BR_Automation\APROL\AprolOP

C\

Item: IosysDebug
Type: DWORD
Default: 0, no debug output

 The registry entry is set back to the value '0' with each new installation of the APROL
OPC server package.

Illustration 31: Activation of the debugging in the registry

If a value that is not equal to null is entered in the IosysDebug field then a console window is
opened, in which the debug output is shown during an OPC server (re-)start.

 The log file is overwritten during each OPC server restart.
Please note that the log file can grow extremely in size, and thus the debug defines are
only allowed to be used for debugging purposes.

F1 Drivers for B&R Connections
9-14

The following overview contains the possible output of the individual debug bits:

Debug defines Hex value / possible output

DBG_ERRORS 0x00000001
- Creation of the iosLib socket failed
- bind to socket failed
- lists on socket failed
- ioctl on socket failed
- accept on socket failed
- connect to Iosys failed
- connection to Iosys lost
- select failed
- Ios_sync failed
- Setting an Iosys variable failed due to a non-supported Iosys type
-
(Here, 'xxx' is to be replaced with 'int', 'real', 'string')

DBG_NORMAL 0x00000002
- IosConn_Delete - Shutdown an Iosys connection
- Start entry in log file with ReconnectRetryTime output
- IosConn_Create - Creates an Iosys connection with IP address,
RetryTime
- Connection established
- IosClient initialize - Output of the start parameter, OK message after
initialization
- IosClient de-initialize - Status message at end
- Message during the creation of an Iosys variable with type
description and return code
- Message during a de-registration of an Iosys variable
- Status message of the Ios_sync thread
- Final status message of the Ios_sync thread with number of pending
changes, which have not yet been compared via "SYNC"
- Iosys debug start message

DBG_IOS_CONN 0x00000004
- IosConn_namespace_new call with parameter output (Creation of a
new Iosys connection)
- De-registration (redundant) Iosys connection
- Release of an Iosys connection object
- Closing of an Iosys connection
- Release of an Iosys variable
- Detection of an IP address from the host name

DBG_IOS_VAR 0x00000008
- IosVar_delete with PV names - De-registration of an Iosys variable
- Registration of an Iosys variable with output of the callback pointer

 OPC server
9-15

Debug defines Hex value / possible output

DBG_IOS_EVT 0x00000010
- IosysReadInt function - Reception of an Iosys event, output of the
PV name and received value
- IosysReadREal function - Reception of an Iosys event, output of the
PV name and received value
- IosysReadString function - Reception of an Iosys event, output of the
PV name and received value
- Setting a variable from the OPC client in the Iosys

DBG_EXTENDED 0x00000100
- Initialization of the select thread
- Select error, when the connection to the Iosys is lost

B) The name and the folder of the OPC server's log file is activated with the following
entry in the registry:
Directory: HKEY_LOCAL_MACHINE\SOFTWARE\BR_Automation\APROL\AprolOP

C\

Item: IosysDebugFile
Type: STRING
Default: c:\AprolOPC.log

9.6.1 Changing of the debugging behavior during runtime
APROL allows the OPC server's debugging settings (according to the registry entries) to be
changed whilst the OPC server is running. The default settings, which are controlled by both
above mentioned registry entries, are preserved.
The APROL OPC server creates two new Iosys variables for this purpose:

 The <Computer name Windows OPC
server>.AprolOPC.dbgFileName Iosys variable is of
the type 'String' and states the log file's storage place.

 The <Computer name Windows OPC
server>.AprolOPC.dbgFilter Iosys variable is of
the type 'Integer' and controls the debug level.

The variables are always supplied by the APROL OPC server and obtain the respective
current value of the debug settings (Registry entries).

It is also possible to change the directory for the log file whilst the APROL OPC server is
running by changing the value of the <Computer name Windows OPC
server>.AprolOPC.dbgFileName variable, with the IosDiagnosticManager or the 'pio'
Iosys tool.
If a change takes place then the current debug file is closed and a new file, corresponding to the
new value is created.

 A file that already exists is overwritten by this procedure! The newly created file stays
open as long as either the OPC server is closed or another debug file is opened.

F1 Drivers for B&R Connections
9-16

Modeled on this, the amount of output during the OPC server runtime can be changed by
changing the <computer name Windows OPC server>.AprolOPC.dbgFilter variable
(via IosDiagnosticManager or 'pio').
The changes that are made to these Iosys variables during runtime is also recorded in the
respective active debugging. A change that has been made to the file name during runtime is
recorded as the last entry in the log file.

 Both registry entries are overwritten their default values upon each new OPC server
installation.

9.6.2 Information about the debug output
DataCallback - VarName <req = 0,1>

is a ChangeEvent (req = 0) or a ChangeRequest (req = 1) for a SYNC variable, which is
received from the Iosys.

Change of Iosys [int|real|string] value

is a change that is made by the Iosys, and changes the value in the OPC client. It is the
consequence of a DataCallback output.

Setting new Iosys [int|real|string] value

is a change that is made by the OPC client, and changes the value in the Iosys
Exception: A ChangeRequest is already present, then this is based on the value adoption from
the controlling OPC server as a result of the request!

Illustration 32: Example log file 'AprolPOC.log'

9.7 OPC Server status variables

 OPC server
9-17

This description is under construction at present.

9.8 Example for OPC clients with the APROL OPC server
Basically, there are several ways to establish a connection with an OPC server. There are
different sorts of clients according to the usage of the variables.
OPC sample client (Development Setup)
Although this client has a limited means of use it can be obtained gratis via download from the
B&R homepage, and is very simply constructed, and thus well suited for testing the APROL
OPC server. It can only be used on the computer where the APROL OPC server is running. A
license for the Automation Studio is also necessary in order to be able to run the OPC Sample
Client for more than 2 hours at one time; it must be started again afterwards.
Example:

 Start the OPC Sample Client with "Start/Programs/B&R Automation/PVI x.x.x/PVI
Developer/Server/OPC Sample Client".

 Choose the OPC server in "OPC/Connect" in the pop-up window and confirm with [OK].

Illustration 33: OPC server choice

 Choose the group settings for the communication in the "OPC/Group Parameters" menu
and confirm with [OK].

F1 Drivers for B&R Connections
9-18

Illustration 34: "Group Parameters" dialog

 Add the desired variables that should be displayed with "OPC/Add Item" , and confirm
with [OK].

Illustration 35: "Add Item" dialog

 If the variable can also be changed then the variable can be written with "OPC/Write
Value to Item" and confirmed with [OK].

Illustration 36: "Write Item Value" dialog

3rd Party clients

 OPC server
9-19

The clients from different companies offer different features, and can be well incorporated in
certain areas, according to the application. The 'Matrikon OPC Explorer' can be recommended
as a free-ware client that offers a very comfortable operation, and has been tested with the
APROL OPC server and has been certified as functioning.
www.matrikonopc.com

Visual Basic applications
OPC applications of any kind can be created with Visual Basic 6.0. Microsoft Office applications
such as Excel supply a Visual basic interface. This interface can be used to read and write data
from an OPC server directly in an Excel file.
You have the possibility to adjust the Visual Basic code yourself. How to proceed in this case,
and which program code is necessary, can be found in point 5 "PVI OPC Programming, in the
Training module TM730 - PVI OPC". Although the programming of OPC servers is described
here with PVI, it is identical with the programming of the APROL OPC server.
Excel
This directory contains an example for an OPC connection from an MS-Excel sheet.

Illustration 37: Example directory in the Windows file system

In order to be able to use the Excel file, you must download and install the necessary 'OPCEx
Excel Add-In' Excel add-in from
http://www.resolvica.com/p1/download.aspx.
The 'AprolOPC_ExcelClient.xls' Excel file has been adjusted to the B&R start-up project. The
Excel file can be used after the B&R start-up project has been installed together with the
APROL OPC server.
The 'AprolOPCDemo_ExcelClient.xls' Excel file has been adjusted to the APROL Demo
project, and can be used with it.
Although this type of OPC client has a very small scope of functionality, you can read and write
process variables in a very simplified manner.

9.9 Additional information about the OPC server
.

9.9.1 Version information

OPC Server version Description

4.0.0.0 APROL OPC server adjustment to the APROL release 4.0.
3.8.0.0 Revised version created with Visual Studio 2010

F1 Drivers for B&R Connections
9-20

3.7.0.0 Error correction:
The browse method always delivers all items, both for the search for
'Nodes' and for the search for 'leaves'.
That leads to problems with the Matrikon Security Gateway. All items
repeat themselves recursively with unlimited depth.
Only 'Leaves' are returned and 'Nodes' do not exist because the
APROL OPC server only supports flat structures.

3.6.2.0 Error correction:
Cyclic connection loss of the OPC server when
- a redundant Iosys connection was configured
- and the master is not running when the OPC server is started.

3.6.1.0 Error correction: OPC server crash with non-existent configuration file.
Update: Connection monitoring between OPC server and Iosys, with
60 second delay.
Update: Delivery of the OPC server with the 'OPC COM Proxy Stub
MergeModules' from the OPC foundation. This contains, amongst
others, the 'OpcEnum' service that allows the OPC clients to find the
installed server.

3.6.0.0 Setting of the debug level and log file during runtime
3.5.0.1 Redundancy configuration,

Setting of "UNCERTAIN" status
3.0.5 Various error corrections

Safeguard of the Iosys against multi-threading
3.0.0 For connection to control computers

(64-bit integer and UTF-8 conversion).
2.4.0 MSI uninstall corrected.

Uninstall mechanism was updated!
2.3.0.1 Memory leak corrected.
2.3.0.0 OpcServer with asynchronous access.
2.2.1 OpcServer with write functionality,

Synchronous access only.
2.2.0 OpcServer "ReadOnly"

Writing values to the Iosys is not supported.

9.9.2 Licensing information about the iconv library
The APROLFehler! Kein Name für eine Eigenschaft übergeben.
OPC server uses the iconv library, which is subject to the LGPL. B+R Industrie-Elektronik
Ges.m.b.H. meets the requirements for recompiling ability that result from this licensing by
providing the complete source code for the shared library AprolStringConvert.dll including the
VisualStudio project files.
This source code is found in compressed form in the installation directory src (in the directory
C:\Aprol as default).

 OPC server
9-21

9.9.3 Literature notes on the topic of 'OPC'
Frank Iwanitz, Jürgen Lange
OPC: Grundlagen, Implementierung und Anwendung
Hüthig-Verlag, Heidelberg
ISBN 3-7785-2866-1

 ProfiboardDriver
10-1

10 ProfiboardDriver

.

10.1 General information about the ProfiboardDriver
This documentation describes the installation and configuration of the software package "FMS-
PROFIBUS DRIVER for APROL with SOFTINGs PROFIboard" in LINUX. The package
consists of the kernel driver that handles access of the hardware, various utilities for
configuration and network analysis and also the APROL driver for communication with the I/O
modules. The installation of the software, the configuration of the hardware and the network
parameters for a few selected network settings are also described in this documentation. This
can be used as an aid when solving problems if errors occur.

 The program package requires a LINUX kernel starting with Version 2.0.36 or Version
2.2.0 (not yet available when this documentation was created). The kernel must be
compiled and started with the option "enable loadable module support" and without the
option "set version information on all symbols for modules". Please check your SuSE
LINUX documentation to see how a corresponding LINUX kernel is structured.

10.2 Hardware configuration
The PROFIBUS card used is a SOFTING product. This is an ISA card that requires a 4 byte IO
area, a free interrupt line as well as a 16 KB address area in the first MB on your PC in order to
operate. The device driver supports parallel operation of two PROFIBUS cards that can share a
common interrupt. The PROFIBUS card is a piece of hardware that supports the following
protocols:

PROFIBUS-FDL (layer 2 communication),

PROFIBUS-FMS (layer 7 communication),

PROFIBUS-DP and

PROFIBUS-DP-V1.

Because of the DP capability, the card has very short reaction times. The card is configured by
setting the IO address using DIP switches. They are directly on the slot bracket. The card
automatically uses four consecutive addresses. The base address for IO when the card is
delivered is address 240h, i.e. the card uses addresses 240h to 243h. If this address is already
being used on your computer or if you are using two PROFIBUS cards at the same time, this
address must be changed on at least one card. The I/O address is represented using 8
switches, i.e. the address is the sum of the switch positions.

F1 Drivers for B&R Connections
10-2

Illustration 38: PROFIboard

The image shows the PROFIboard used with the DIP switch for the I/O addresses (red block on
the top right). An LED that is integrated in the slot bracket (seen on the bottom right) blinks
during operation when the board is active on the bus.
The following table shows the meaning of the individual switches as the hexadecimal address.
The summand is valid if the switch is set to "on".

Switch DIP1 DIP2 DIP3 DIP4 DIP5 DIP6 DIP7 DIP8

Address 200h 100h 80h 40h 20h 10h 8h 4h

According to this, the addresses between 000h and 3FCh can be set. Some of these addresses
are already being used by components on your PC. The following table provides an overview of
the most commonly used addresses and the corresponding DIP switch settings. In general, one
of these addresses should also be able to be used on your PC.

I/0 address DIP1 DIP2 DIP3 DIP4 DIP5 DIP6 DIP7 DIP8

240h on off off on off off off Off
244h on off off on off off off on
300h on on off off off off off off
304h on on off off off off off on
310h on on off off off on off off
314h on on off off off on off on

The software settings for shared memory and the interrupt line are made directly by the device
driver. Please check the "Software configuration" section for detailed information. Five interrupts
are available for the PROFIboard: IRQs 5, 10, 11,12 and 15. These interrupts can be used for
multiple PROFIboards at the same time, but not for other hardware. Some of the interrupts are
already being used according to the how your PC is designed:

IRQ 11 for the graphics card,

 ProfiboardDriver
10-3

IRQ 12 for a PS/2 mouse,

IRQ 15 for the second IDE controller.

The addresses from 0xC8000 to 0xF0000 are available to insert the card in the first megabyte.
The size of the area to be inserted is 16 KBytes (0x04000) for each PROFIboard. These
addresses are only permitted to be used once in the system.

10.3 Installing the PROFIboard software
The software is installed using the YaST installation tool for your SuSE Linux version. It is
necessary that the installation medium is made available to the system. One needs super-user
rights for this.
First, the installation media must be mounted on the existing file system. For installation using
YaST, the mounting point must be a root directory (/suse). If this directory is not yet available on
your computer, it can be created with the following command:
• mkdir /suse
Now the installation media must be mounted there. The device file ID is different for your floppy
drive or CDROM depending on the type of installation media used. The following device files are
conceivable:
• /dev/fd0 - Floppy drive ID a:,
• /dev/fd1 - Floppy drive ID b:,
• /dev/cdrom - CDROM drive ID.

The syntax for the mount command is mount device file / target directory
In your case, the command would be as follows:

• for floppy a: mount /dev/fd0 /suse ,
• or for the CDROM drive mount /dev/cdrom /suse.
If the mount command was carried out without an error, you can now start the YaST installation
tool.
In the YaST main menu, the installation source must be selected. The following menu sequence
must be carried out:

• "Installation settings",
• "Selection of installation source",
• "Installation using a valid directory".
In the "Installation using a valid directory" menu item, enter the directory name /suse and
confirm the entry. Then go back to the main menu. Choose the packets to be installed here. It is
important to confirm the select with "F10" and not to go back "ESC"! After confirming the
selection, you can use the "Define/start installation" or "Change/create configuration" menu
item to select if you want to start a new installation or change a configuration.
For the installation that is to be carried out here, select the packages pccadp1 and pcckd1,
confirm with "F10", go back to the installation menu and start the installation as described above
using the "Start installation" menu item.

F1 Drivers for B&R Connections
10-4

After the installation, YaST makes a few system settings. When the tool is finished doing this,
exit YaST by pressing the "ESC" key several times. After ending YaST, the device driver must
be configured. This procedure is started automatically. Exit the "Install Softing card driver"
selection menu with it set to "Yes". Now start the program "pb_install" to transfer the settings
to the kernel module.
The following queries must be answered:

• input major device number (default 50),
• input no of boards to be installed.

Then for each board that is to be entered:

• enter ram_addr for board x
• enter io_addr for board x
• enter irq for board x
When the settings are made for all boards, they are shown once again in list form. If an entry is
incorrect, the procedure can be repeated by pressing the "ESC" key. Pressing "ENTER" saves
the settings, creates the start script and runs it. If all of the settings are correct, the PROFIboard
is started with the standard settings.

 Remove the PROFIboard from the network before starting for the first time. Otherwise
the network settings can cause your PROFIBUS network to crash.

Use the "pb_manager" utility to check if the PROFIboard has been started correctly.
Select the "Livelist" option here. When the PROFIboard is correctly installed, you find exactly
one station with one station address 0. If you cannot execute the "Livelist" then please go to
section "Error".
Here is a list of the files installed by YaST. A detailed description of the utilities can be found in
chapter "Description of the utilities".

File name Description

/boot/modules/profibus/PROFIboard.org Kernel module without hardware settings

/boot/modules/profibus/PROFIboard.smp.org Multiprocessor kernel module without
hardware settings

/opt/aprol/bin/pb_debug Debugging tool for error analysis
/opt/aprol/bin/pb_init Utility to load the network settings

/opt/aprol/bin/pb_install Utility to patch the hardware settings into
the kernel modules

/opt/aprol/bin/pb_list Utility to read the object list for a B&R
2000 controller

/opt/aprol/bin/pb_manager All-round tool for testing
/opt/aprol/bin/pb_plcreset Utility for resetting a B&R 2000 controller
/opt/aprol/bin/ProfiboardDriver APROLdriver for PROFIBUS FMS
/opt/aprol/bin/pb_taskmgr Tool for downloading controller tasks

 ProfiboardDriver
10-5

File name Description

/opt/aprol/bin/pb_read Utility for reading controller variables via
PROFIBUS

/opt/aprol/bin/pb_netconfig Tool for creating the APROL network
configuration

/opt/aprol/bin/pb_timesync
Tool for activating controller time
synchronization, requires a special
controller task

/opt/aprol/bin/pb_settime
Tool for implementing the control
computer time on a B&R 2000 controller,
requires a controller task

/opt/aprol/bin/pb_history Tool for reading the logbook entries from
a B&R 2000 controller.

/etc/init.d//Profiboard Start script for the APROL driver

/usr/etc/profibus/br.txt Error list for B&R 2000 controller error
numbers

/usr/etc/profibus/nw_pb_32_0.cfg B&R standard configuration for Profibus
address 0

/usr/etc/profibus/nw_pb_32_1.cfg B&R standard configuration for Profibus
address 1

/usr/etc/profibus/profibus0.cfg Example network configuration for board
0

/usr/etc/profibus/profibus0.ov Example object description for board 0
remove.PROFIboard Uninstall script
setup.PROFIboard Installation script
/opt/aprol/lib/libPccPROFIboard.so
(only with APROL) Profibus library for PROFIboard

/opt/aprol/lib/libPccPROFIboard.so.2
(only with APROL) Profibus library for PROFIboard

/opt/aprol/lib/libPccPROFIboard.so.2.1
(only with APROL) Profibus library for PROFIboard

10.4 Description of the start script
.

10.4.1 The start script
The following table shows a printout of the start script used to automatically start two
PROFIboards when booting the computer.

F1 Drivers for B&R Connections
10-6

Startscript for Softing's PROFIBOARD

######################################
BOARD_NO=" 0 1"
echo "Start PROFIboard loadable kernel module ..."
/sbin/rmmod PROFIboard 1/dev/null 2/dev/null
/sbin/insmod -f /boot/modules/PROFIboard/PROFIboard.smp.o -o PROFIboard 1/dev/null 2/dev/null
/sbin/insmod -f /boot/modules/PROFIboard/PROFIboard.o -o PROFIboard 1/dev/null 2/dev/null
for i in $BOARD_NO ; do
 /opt/aprol/bin/pb_init -b $i -f /usr/etc/profibus/profibus$i.cfg -o /usr/etc/profibus/profibus$i.ov -
useFdl
done

The start script for automatically starting the PROFIboards can be found in the directory
/etc/init.d and is named PROFIboard. The entries in /etc/init.d/rc2.d or /etc/init.d/rc3.d are
executed depending on if the computer is operating in runlevel 2 or runlevel 3. The scripts are
started in alphabetical order according to their names, which begin with S for start. Symbolic
links with the name S51PROFI.sh are created for /etc/init.d/PROFIboard in both directories.
The start script and the links are automatically generated using the installation tool "pb_install".
The number of boards to be started is defined with the BOARD_NO=... line. The command
"rmmod" stops a device driver that may already be started. If a device driver is not started, the
error message is sent to /dev/null, i.e. it is suppressed. The next two "insmod" lines
consecutively start the device drivers for multi-processor and single-processor operation. The
mechanism guarantees that the right device driver is started automatically. If the kernel is not
multi-processor capable, then the first device driver is rejected by the kernel and the second one
is started. If the first one can be started, then the second one is rejected with the error message
that a device driver with this name already exists. In principle, a multi-processor capable kernel
can also be used if only one processor is operating in your system. The loop that is then run sets
the network parameters on the card. The network parameters are found in the files that are
named /usr/etc/profibus/profibusx.cfg (x is the number of the board from BOARD_NO= ...).
The object descriptions are in the /usr/etc/profibus/profibusx.ov files. Both files descriptions
are in chapter "Installation of the controller software".

10.5 Software configuration
.

10.5.1 Description of the network parameter file profibusx.cfg
The file profibusx.cfg in the directory /usr/etc/profibus is used to define the network
parameters and connection parameters for PROFIboard x. The x symbol stands for the board
number in the device driver, beginning with 0 for the first board.
Following table: Example configuration for station 0 with connections to stations 1, 2, 3, and 4.

; PROFIBUS - Parameters
; station 0
; board 0
; =====================
0 ; this station
31 ; highest station
255 ; this segment
1 ; in ring desired

 ProfiboardDriver
10-7

4 ; baud rate
0 ; medium redundancy
3500 ; slot time
0 ; quiet time
1 ; setup time
500 ; min station delay
1000 ; max station delay
30000 ; target rotation time
1 ; gap update
3 ; retry count
4096 ; ass_abt_ci
128 ; default sap
9 ; symbol length
0 ; vfd_supported
4 ; no of kbl entries

;
; communication reference list
;
; =============================
2 3 1 255 2 MMAC 0 D 3 3 2 2 300 0 240 240 240 240 FF FF FF FF
FF FF 1 [ST1] 0
3 4 2 255 2 MMAC 0 D 3 3 2 2 300 0 240 240 240 240 FF FF FF FF
FF FF 1 [ST2] 0
4 5 3 255 2 MMAC 0 D 3 3 2 2 300 0 240 240 240 240 FF FF FF FF
FF FF 1 [ST3] 0
5 6 4 255 2 MMAC 0 D 3 3 2 2 300 0 240 240 240 240 FF FF FF FF
FF FF 1 [ST4] 0

Comment lines in the description file begin with a semicolon and run to the end of the line. The
following entries must be in the file:

Position Info Value range Notes

1 Station address of the
PROFIboards in the
network

0 - 31 In the control system, the control
computer is always an active
station on the network

2 Highest station address
in the network, HSA

0 - 31 The highest station address of
an active station in the network

3 Segment size 255 Constant

4 Station active or
passive on the bus 1 Always active in the control

system
5 Baud rate 0 - 12, not 5 0 - 9.6 kBit/s

1 - 19.2 kBits/s
2 - 93.75 kBit/s
3 - 187.5 kBit/s
4 - 500 kBit/s
6 - 1.5 MBit/s
7 - 3 MBits/s
8 - 6 MBit/s
9 - 12 MBit/s

6 Redundancy setting 0 Constant
7 slot time 37 - 16383
8 quiet time 0 - 127

F1 Drivers for B&R Connections
10-8

Position Info Value range Notes

9 setup time 1 - 479

10 min station delay 11 - 1023 Minimum delay between request
and response telegram

11 max station delay 35 - 1023 Maximum delay between request
and response telegram

12 target rotation time 256 - 16777215 Maximum rotation time for a
token cycle.

13 gap update 1 - 255
Number of cycles until a check is
made to see if a new station has
been added on the network

14 retry count 0 - 7 Number of retries if an error
occurs

15 ass_abt_ci 1 - 4294967295 ASS/ABT control interval
16 default sap 128 Constant
17 symbol length <= 15 Maximum length of the symbolic

ID
18 vfd supported 0 Constant
19 Number of connections

in the CRL
= 0 Specifies how many entries

should be utilized in the following
table

The following table describes the structure of a line with the connection parameters, an entry in
the communications relations list, CRL:

Position Info Value range Notes

1

Position number, referred
to as comm_ref for
communication reference in
the utilities.

1 – Number of
connections in
the CRL

In the utilities and in the driver,
connections can be entered
using the CRL number or the
symbolic name. Symbolic
names are not permitted to
begin with a number (for
differentiation)!

2 LSAP
0 - 62
63
128

Local Service Access Point

3 Address of the partner
station

0 - HSA for
Master-Master
connections
0 - 126 for
Master-Slave
connections

When connecting to B&R 2000
controllers, a Master-Master
connection is always used

4 Constant 255 Constant

 ProfiboardDriver
10-9

Position Info Value range Notes

5 DSAP or RSAP
0 - 62
63
128

Destination or Remote Service
Access Point

6 Connection type

MMAC
MSAC
MSAC_SI
MSCY
MSCY_SI

BRCT
MULT

Master-Master acyclic
Master-Slave acyclic
Master-Slave acyclic with slave
initiative
Master-Slave cyclic
Master-Slave cyclic with slave
initiative
Broadcast
Multicast

7 LLI type

8 Connection attribute
D
I
O

Defined connection
Open connection for initiator
Open connection for responder

9 SCC 0 - 20 Maximum number of send
requests for confirmed services

10 RCC 0 - 20
Maximum number of telegrams
that can be received for
confirmed services

11 SAC 0 - 20
Maximum number of send
requests for unconfirmed
services

12 RAC 0 - 20
Maximum number of telegrams
that can be received for
unconfirmed services

13 Connection monitoring 0 - (2^32 - 1)
14 MUL 0 - 255 For cyclic connections

15 SLH 0 - 241 Maximum length for sending
high priority telegrams

16 SLL 0 - 241 Maximum length for sending
low priority telegrams

17 RLH 0 - 241 Maximum length for receiving
high priority telegrams

18 RLL 0 - 241 Maximum length for receiving
low priority telegrams

19 C0 See table supported services client 0
20 C1 supported services client 1
21 C2 supported services client 2
22 S0 supported services server 0
23 S1 supported services server 1
24 S2 supported services server 2
25 VFD 0 - (2^16-1) VFD number

F1 Drivers for B&R Connections
10-10

Position Info Value range Notes

26 Connection name Symbolic name for the
connection

27 Extension Extension for the name

In general, the network parameters and the connection parameters should be set the same on
all stations. If the connection parameters do not match, a connection cannot be established.
Primarily, the Livelist option in the "pb_manager" is used to check if the network parameters
are correct. If not all stations are listed there or a response to the "Livelist" is not sent, this is
mostly because of inconsistencies in the network parameters. The symbolic connection name is
not permitted to begin with a number. The reason for this is that the utilities are expecting the
entry in the communication reference or the connection name. It assumes that a number always
describes a communication reference, and an alphanumeric character is the beginning of a
symbolic name.

Softing recommends the following bus parameters for FMS operation using their hardware:

Baud rate (Kbit/s) 9,6 19,2 93,75 187,5 500

Slottime 100 200 500 1500 3000
minStationDelay 30 60 125 250 500
maxStationDelay 50 100 250 500 1000
SetupTime 5 10 15 25 50
Quiet Time 22 22 22 22 22
TargetRotationTime 10000 15000 30000 50000 100000
GapUpdate 1 1 1 1 1
HSA 126 126 126 126 126
Retry Count 1 1 1 1 1

Remarks:
The services provided by the individual controllers are variable. Some controllers support all
FMS services, other only support a few (but they are enough for control system communication).
When establishing a connection, a check is made to determine if the respective partner provides
the required services. If this is not the case, the connection is not established. The required
services result from carrying out an OR operation on the individual bits in the settings C0 to C2
or S0 to S2. The values C0 to C2 are the services required by the control system on the
controller. The values S0 to S2 are the services provided for the controller. The following table
describes the value for the OR operation and the respective service connected to it:

Bit value in Byte Service

0x01 in C0 / S0 Create-/Delete-Program-Invocation
0x02 in C0 / S0 Request-Domain-Upload
0x04 in C0 / S0 Request-Domain-Download
0x08 in C0 / S0 Domain-Upload
0x10 in C0 / S0 Domain-Download

 ProfiboardDriver
10-11

0x20 in C0 / S0 Put-OD
0x40 in C0 / S0 Unsolicited-Status
0x80 in C0 / S0 Get-OD (extensive variant)

Bit value in the byte Service

0x01 in C1 / S1 Physical-Write
0x02 in C1 / S1 Physical-Read
0x04 in C1 / S1 Write-With-Type
0x08 in C1 / S1 Read-With-Type
0x10 in C1 / S1 Write
0x20 in C1 / S1 Read
0x40 in C1 / S1 Kill-Program-Invocation
0x80 in C1 / S1 Reset-/Resume-/Start-/Stop-Program-Invocation
0x01 in C2 / S2 Addressing-By-Name
0x02 in C2 / S2 Alter-Event-Condition-Monitoring
0x04 in C2 / S2 Acknowledge-Event-Notification
0x08 in C2 / S2 Event-Notification-With-Type
0x10 in C2 / S2 Event-Notification
0x20 in C2 / S2 Define-/Delete-Variable-List
0x40 in C2 / S2 Information-Report-With-Type
0x80 in C2 / S2 Information-Report

Normally, the services FMS-Read and FMS-WRITE (as client services) are enough for
communication from the control system to the controller. This corresponds to the following
combination (in hexadecimal) for C0 to C2 and S0 to S2: 00 30 00 00 00 00
The other required services are fixed and cannot be switched on explicitly.
In the example configuration shown above, all services are switched on for the client and slave
(all bits are set: FF FF FF FF FF FF)

10.5.2 Notes concerning the object file profibusx.ov
The object descriptions are used to provide the network with information about all local
variables. The control system normally does not generate its own Profibus variables and the
driver does not provide corresponding services, therefore you should work with the default file.
The following table shows a printout of the default object description file. A detailed description
of the file can be found in the SOFTING documentation.

;
1 ; VFD-Number
;
;
;OV-Header Objekt
;Parameter description
;_______________________________
1 ;OV-Header Object-Code

F1 Drivers for B&R Connections
10-12

0 ;OV-Header Index
255 ;ROM/RAM Flag
14 ;length of symbolic names
0 ;Access Protection
1 ;OV-Version
FFFFFFFF ;Local Address OV-OB
20 ;ST-OV Length
FFFFFFFF ;Locale Address ST-OV
0xfe00 ;First Index S-OV
100 ;S-OV Length
FFFFFFFF ;Local Address S-OV
0xff00 ;First Index DV-OV
2 ;DV-OV Length
FFFFFFFF ;Local Address DV-OV
0xff64 ;Erster Index DP-OV
5 ;DP-OV Length
FFFFFFFF ;Local Address DP-OV
;
;
;Basis types
;OC Index description
;_______________________
 5 1 [Bool];
 5 2 [Int8];
 5 3 [Int16];
 5 4 [Int32];
 5 5 [Usign8]
 5 6 [Usign16]
 5 7 [Usign32]
 5 8 [Float]
 5 9 [VString]
 5 10 [OString]
 5 11 [Date]
 5 12 [TofDay]
 5 13 [TDiff]
 5 14 [BString]
;
;
;Static Data types
;OC Index #Elems Typ/Length (x #Elems)
;______________________________________
; 6 15 2 5 / 100 6 / 20
; 6 16 3 3 / 2 4 / 4 2 / 1 ;
; 6 17 4 2 / 1 3 / 2 7 / 4 10 / 3 ;
;
;
;Objekte 'Simple variable'
;OC Index Typ Length Pass AccGrp AccR Adr SymName Ext
;__
 7 0xfe00 3 2 17 C0 3303 FFFFFFFF [INFO_RPT] 0
 7 0xfe01 2 200 17 C0 3303 FFFFFFFF [CAE_EVENT] 0
 7 0xfe02 3 1 17 C0 3303 FFFFFFFF [CAE_EVENT] 0
;
;Objekte 'Array'
;OC Index #Elems Typ Length Pass AccGrp AccR Adr SymName Ext
;__
; 8 100 20 3 1 01 01 1000 FFFFFFFF [DB100] 0

 ProfiboardDriver
10-13

10.6 Description of the utilities (ProfiboardDriver)
.

10.6.1 pb_install
The "pb_install" tool is in the /opt/aprol/bin directory. Super-user rights are needed to start it.
With "pb_install", the hardware settings are patched to the device driver, the start script is
generated and the PROFIBUS software is restarted. If the hardware settings are changed, it is
sufficient to start "pb_install" and then make the entries like a new installation.
The following options are supported:

Option Description

-help Shows help information
-nc Starts without curses menu

10.6.2 pb_init
The "pb_init" program is used for loading the network parameters, the connections parameters
and the object description on the card. After running "pb_init", the board is ready for operation
and provides the FMS services. The following options are supported here:

Option Description Default value

-help Shows help information

-b BOARD_NO
Initializes the board
BOARD_NO;
Valid values are 0 to 2

Board 0

-f FILENAME Network and connection
description in FILENAME /usr/etc/profibus/profibus.cfg

-o OBJECTFILE Object description in
OBJECTFILE /usr/etc/profibus/profibus.ov

-d Starts in debug mode and
shows additional information Switched off

-useFdl
Activates layer 2
communication, which is used
by APROL.

Without layer 2 communication

10.6.3 pb_manager
The "pb_manager" utility combines many of the functions of the individual utilities in a menu
driven user interface. This tool provides the most possibilities for analyzing the network and
finding errors. Used together with the hexdump for the device driver, nearly any error can be
found and corrected. The "pb_manager" requires the "ncurses" package from Linux. This
usually comes already installed.
The "pb_managers" is controlled by selecting menu items instead of using start options. The
only start option that is supported is the selection of the board using the -b BOARD_NO option.

F1 Drivers for B&R Connections
10-14

There are five basic menus that you can go to directly using the page number even if the menu
option is not shown. The following section offers a brief description of the individual services.

Menu item Function

SPACEBAR

With the spacebar, you can change the board number in the
individual selection menus die. This corresponds to the start
option -b BOARD_NO. This selection possibility is not shown
in any menu!

Page 1
show device driver version Shows the version number of the kernel driver.

show device area
Shows the contents of the PROFIboard register. This option is
designed for debugging the hardware and has no importance
for the normal user!

show device driver common
area

Shows the contents of the kernel driver variables. This option
is designed for debugging the driver and has no importance
for the normal user!

show board info
(FM7_IDENT_LOC)

Shows the PROFIboard firmware version (among other
things).

Page 2

show network live list

Shows the list of stations on the network. The program detects
this list in two ways. One of the two methods is used by
choosing 'a' or 'A'. Method 'a' only shows the active stations;
method 'A' also shows the passive station.

show local bus parameters Shows the bus parameters currently set

show local crl

Shows an individual communication relationship. This must be
selected by entering the communication reference or the
connection name.

name to commref Shows the communication reference that corresponds to a
symbolic connection name that is to be entered.

Page 3
A connection must be established for all of the services
described here. The possibility to establish a connection can
be tested with FMS INITIATE.

FMS INITIATE

Establishes an FMS connection.
This can be used to test an entry in the communication
relations list. After the connection has been established,
breaking the connection must be triggered by pressing any
key.

FMS IDENTIFY Shows the ID for the communication partner. This ID is
assigned to the hardware by the hardware manufacturer.

VFD STATUS

Shows the status of the communication partner. It is entirely
possible that communication via PROFIBUS is functioning
when the controller is stopped. This type of status can be
requested remotely using this item.

NAME_TO_INDEX With this function, the index of variables can be requested for
variable names on a controller.

 ProfiboardDriver
10-15

Menu item Function

FMS PHYSICAL READ Reading a physical memory area on the controller by entering
the memory address and block length.

FMS_READ
Reading a variable via PROFIBUS. Reading in this way must
be specified precisely. It is possible to read process variables
using the name or index and also variable lists.

FMS_WRITE by index Writing to a variable by entering the index.

Page 4
These services are special functions that only work with a
B&R System 2000 controller! A connection must be
established for all of these services!

controller RESET Triggers a reset on the controller.
also see pb_controllerreset.

KEY POSITION Requests the position of the key switch.

MODULE UPLOAD Uploads a module/task from the controller with the possibility
to save it on the control computer.

MODULE DOWNLOAD

Downloads a file to the controller. This can be a library, a
module, a task or a data module. As an option, the file can be
burned to the controller, i.e. it will still be available after a
reset.

MODULE INFO Requests and displays information about a controller module.
DELETE MODULE Deletes a module from the controller.
OBJECT LIST Displays the objects on the controller. also see pb_list.

controller SET TIME
Sets the computer time on the controller. Unlike the tool
pb_settime, the time is set here without using a special task on
the controller.

DOWNLOAD INFO
Requests information about the last download. This makes it
possible to check if the last download was successful and if
the downloaded module was able to be started.

Page 5: This tests the functionality of layer 2 communication (FDL).
These are used amongst others by APROL.

ACTIVATE LSAP Activates an LSAP on the PROFIboard. This LSAP should
now no longer be used by the FMS.

DEACTIVATE LSAP Switches off an activated LSAP.
INA CONNECT Establishes a connection using APROL communication.

10.6.4 pb_debug
With "pb_debug", individual debug information items can be activated in the device driver. The
individual options can be activated or deactivated by setting or clearing the corresponding bits.

 Please note that the debug flags work in the kernel and can affect the performance of
the computer considerably

F1 Drivers for B&R Connections
10-16

Option Description

-help Shows help information
-s DEBUG_FILTER Sets the debug filter to DEBUG_FILTER
Bit 0: 0x00000001 Outputs error messages
Bit 1: 0x00000002 Outputs warning messages
Bit 2: 0x00000004 Outputs entry messages
Bit 3: 0x00000008 Shows the configuration (only for pb_init)
Bit 4: 0x00000010 Shows sleep messages
Bit 5: 0x00000020 Shows interrupt messages
Bit 8: 0x00000100 Hexdump for the incoming telegram header
Bit 9: 0x00000200 Hexdump for the incoming telegram data
Bit 10: 0x00000400 Hexdump for the outgoing telegram header
Bit 11: 0x00000800 Hexdump for the outgoing telegram data
Bit 28: 0x10000000 Outputs queue information

Debug outputs can be made visible by the super-user using "dmesg".

10.6.5 pb_netconfig
Tool for generating a network configuration file for APROL. This file is created in a format that
can be read by "pb_init". A separate description file PROFIBUSa.CFG (a = number of the
PROFIboard on the computer) in the directory TARGET_DIR/STx (x = station number in the
network) is created for each PROFIboard in the network. The network description file has the
following structure:

Comment lines
One line per station with the following structure
PROFIBUS_ADDRESS/STATION_TYPE/[REDUNDANT]

Profibus addresses in the range from 0 to 31
Station types are 2005, 2010, PROFIBOARD, OTHER
REDU entry 0 = no redundancy, 1 = redundancy (only for PROFIBOARDS)
Example configuration
0/PROFIBOARD/1
1/PROFIBOARD/0
10/2010
11/2005
12/2003
Creates ST0/PROFIBUS0.CFG
ST0/PROFIBUS1.CFG for redundant PROFIboard
ST1/PROFIBUS0.CFG
The APROL standard configuration is expected on the controller side so that a
connection can be established!

The following options were supported by "pb_netconfig":

Option Description Default value

-help Shows help information

 ProfiboardDriver
10-17

Option Description Default value

-c CFG_FILE Reads the network description from
CFG_FILE

None, mandatory
parameter

-p SERVICES Number of parallel services that
should be supported 7

-hsa HSA Highest active station in the network Taken from the network
description

-b BAUDRATE

Baud rate to be used.
also see above.
The network parameters for the
respective baud rate correspond to
the Softing default settings

4

-t TARGET_DIR

The configuration files for all
PROFIboard devices in the network
are stored in the directory
TARGET_DIR/station number.

Local directory

10.6.6 pb_list
Utility that can be used to read the object directory on the controller. The program requests the
object list from the controller and shows the names of the existing variables. The service must
be activated in the CRL on the slave side!

Option Description Default value

-help Shows help information

-b BOARD_NO Initializes the board BOARD_NO;
Valid values are 0 to 2 Board 0

-conn KR
Selects the connection using the
communication reference or the connection
name

None, mandatory
parameter

-area PB_AREA

Lists variables of the type PB_AREA:
Valid values for PB_AREA are:
0: Shows all variables
1: Shows the main types
2: Shows all structures
3: Shows the variable lists
4: Shows the program invocations
5: Shows the domain information
6: Display of the process variables

Shows all variables

10.6.7 pb_history
Tool used to read the history buffer on a B&R System 2000 controller. The tool tries to read the
text messages from a file that is set up using the environmental variable "BR_TEXT_FILE".
Normally, this is the file /usr/etc/profibus/br.txt.

F1 Drivers for B&R Connections
10-18

Option Description Default value

-help Shows help information

-b BOARD_NO Initializes the board BOARD_NO;
Valid values are 0 to 2 Board 0

-conn KR
Selects the connection using the
communication reference or the
connection name

None, mandatory
parameter

-l Displays additional information (long
mode) Not defined

-s START Numb of the first entry to be read,
START <= 39 0

-n NUMBER Number of entries to be read.
NUMBER <= 40 - START 10

10.6.8 pb_controllerreset
Tool used to trigger a reset command on a B&R System 2000 controller via PROFIBUS. The
reset modes Normal, Total and Diagnose are supported.

 Please note that the debug flags work in the kernel and can affect the performance of
the computer considerably

Option Description Default value

-help Shows help information

-conn KR or NAME
Selects the connection using
the communication reference
or the connection name

None, mandatory parameter

-mode RESET MODE

Sets the reset mode
RESET MODE:
0: NORMAL_INIT
1: TOTAL_INIT
32: DIAGNOSTICS

NORMAL_INIT

-d Debug mode, shows
additional information No debug mode

10.6.9 pb_read
Tool to cyclically read one or more variables from the controller. The configuration for reading a
variable is made in the form of a start parameter. If multiple variables are to be read, a
configuration file is required!

Option Description Default value

-help Shows help information

 ProfiboardDriver
10-19

Option Description Default value

-b BOARD_NO
Initializes the board
BOARD_NO;
Valid values are 0 to 2

Board 0

-conn KR or NAME
Selects the connection using
the communication reference
or the connection name

None, mandatory parameter

-cycles CNT Cyclically reads CNT cycles 1 cycle

-delay DELAY Time between two read cycles
in seconds 1 second

-name NAME

Reads the variable NAME or
INDEX if the name begins
with a number.
Ex.:
NAME=TEST
Reads variable TEST
NAME = 0x100
Reads variable with index
0x100

None, mandatory parameter

-format FORMAT

Display format for the
variable:
I: Integer representation in
format signed
U: Integer representation in
format unsigned
F: Float representation

Display in Hex format

-file FILENAME

Configuration file if more than
one variable should be read.
One line must be used per
variable in the format NAME,
space, FORMAT.

10.6.10 pb_timesync
Tool used to distribute the controller time to multiple controllers in order to synchronize the clock
times. This utility is only to be used in connection with a standard APROL task and has no
other effect.

Option Description Default value

-help Shows help information

-b BOARD_NO
Initializes the board
BOARD_NO;
Valid values are 0 to 2

Board 0

-conn KR or NAME
Selects the connection using
the communication reference
or the connection name

None, mandatory parameter

-start Starts clock synchronization

F1 Drivers for B&R Connections
10-20

Option Description Default value

-stop Stops clock synchronization

-sync RATE Synchronization of all RATE
values in seconds 60 seconds

10.6.11 pb_settime
Tool to set the computer time on the controller. This utility is only to be used in connection with a
standard APROL task and has no other effect.

Option Description Default value

-help Shows help information

-b BOARD_NO
Initializes the board
BOARD_NO;
Valid values are 0 to 2

Board 0

-conn KR or NAME
Selects the connection using
the communication reference
or the connection name

None, mandatory parameter

10.6.12 pb_taskmgr
Tool for downloading, uploading or clearing, starting or stopping a task on a B&R System 2000
controller.

Option Description Default value

-help Shows help information

-b BOARD_NO
Initializes the board
BOARD_NO;
Valid values are 0 to 2

Board 0

-conn KR or NAME
Selects the connection using
the communication reference
or the connection name

None, mandatory parameter

-download FILE Loads FILE to the controller

-burn

Saves the task (FILE) on the
controller so that it is still
available after a reset
Only together with the option -
download.

Do not save

-dom_info DOM_NAME Starts the GET-OV service for
the task DOM_NAME

-start
Starts the task DOM_NAME.
Only together with the option
dom_info.

-stop
Stops the task DOM_NAME.
Only together with the option
dom_info.

 ProfiboardDriver
10-21

Option Description Default value

-delete

Deletes the task
DOM_NAME.
Only together with the option
dom_info.

-upload MODULE FILENAME
Loads a module/task
MODULE from the controller
and saves it as FILENAME.

10.7 Configuration of the APROL driver (ProfiboardDriver)
.

10.7.1 General information about the driver configuration
The APROL driver can be configured two ways when starting. Part of the configuration is
transferred to the driver in the form of start options (also see section Description of the InaDriver
launching options), the task and the process variables are configured using a configuration file
(also see the chapter APROL driver configuration file).

10.7.2 Description of the ProfiboardDriver's start options
The following section offers a description of the start options for the driver. The start options can
be combined in any way. Some of the options require additional parameters and some can
simply be called as they are. When parameters are required, symbolic parameter names are
defined that must be replaced by their values. Some of the parameters, such as specification of
the connection name, are mandatory parameters and others are optional.

Start option for the Profiboard
driver

Description

-D Displays the date the driver was created and is then
exited
(optional parameter).

-timeout TIMEOUT_VALUE Sets the time-out time to TIMEOUT_VALUE
milliseconds.
When a driver does not respond to its request telegram
within this time-out time then the request expires and an
error is output.
Allowed values are between 1000 and 10000
milliseconds. Limit violations are corrected
automatically.°
(optional parameter, default value: 2500)

-n DRIVER_NAME Sets the name of the driver in the Iosys to
DRIVER_NAME. The status variables for the
connection states and error indicators are generated
with this name.°
(optional parameter, default value: PROFIBUS)

F1 Drivers for B&R Connections
10-22

Start option for the Profiboard
driver

Description

-run_task The driver assumes that the configured task on the
controller is in a "running" state and immediately begins
communication after starting. This option has no effect
on FMS operation, but is only used in APROL.
(optional parameter, not for FMS driver)

-ignoreCnfPath The driver searches for its configuration file relative to
the present position instead of in the default directory.°
(optional parameter)

-set_id CLIENT_ID This option sets the client ID in the Iosys to the value
CLIENT_ID. Which application has set the value of a
variable can be detected with the output of IosEv using
the client ID.°
(optional parameter, default: 31263)

-l LOGFILE The driver creates a log file with the name LOGFILE.
Start parameters and output status are written here and
can be read during operation.°
(optional parameter)

-i FMS_CONFIG_FILE The driver uses the configuration file
FMS_CONFIG_FILE for its configuration. If the -
ignoreCnfPath option isn't used, the location of the
configuration file refers to the default configuration
directory. Otherwise, it is relative to the start position of
the driver.°
(mandatory parameter for FMS driver).

-c CAE_CONFIG_FILE The driver in the APROL operating mode bases its
configuration on the file CAE_CONFIG_FILE. Also here,
if the -ignoreCnfPath option isn't used, the location of
the configuration file refers to the default configuration
directory, otherwise, it is relative to the start position of
the driver.°
(not for FMS driver)

-conn0 VBG0 The driver uses the connection VBG0 for
communication with the controller. The connection
name specified using VBG0 must have a corresponding
entry in the CRL for the Profibus parameters.
(mandatory parameter)

-conn1 VBG1 The conn1 connection is used as a bus redundant
connection for conn0. If the conn0 connection is lost or
can't be established, the driver attempts communication
via conn1.

 ProfiboardDriver
10-23

Start option for the Profiboard
driver

Description

-conn2 VBG2

The conn2 connection is to be used for controller
redundancy. The driver establishes the connection to
both controllers and decides which one is the master
and communicates via the appropriate connection. If the
master and slave are switched, then the driver uses the
other connection.
Controller redundancy only works in APROL since a
special task must be present on the controller which lets
the driver know whether it (the controller) is the master
or slave.

-conn3 VBG3

The conn3 connection is used as a bus redundant
connection for conn2. If the conn2 connection is lost or
can't be established, the driver attempts communication
via conn3.

-d DEBUG_FILTER The driver is started in the debug mode using the -d
option (i.e. it provides permanent status information
instead of going into the background). The information
is output either to the log file or to the screen via stderr.
To avoid having all of the output on the screen, you can
tell the driver which information to provide and which to
ignore by specifically setting individual bits in the debug
filter. The set bits in the debug filter allow the following
output:
0x00000001: Output of error messages from the state
machine
0x00000002: Output of messages from the state
machine
0x00000004: Output of configuration messages at
startup
0x00000002: Online configuration messages
0x00000010: Hexdump from answer telegrams
0x00000020: Hexdump from request telegrams
0x00000040: Output of the Invoke ID for the request°
0x00000080: Shows APROL event telegrams
0x00000100: Shows VFD status telegrams°
0x00000200: not used
0x00000400: Shows APROL task info telegrams
0x00000800: Display of connection information
0x10000000: Display of the state machine
0x20000000: Display of the IO telegrams
0x40000000: Display of the Iosys events
0x80000000: Display of the process variables

-f DEBUG_FILTER The driver enables the debug information output as
described above. It starts in the background despite the
output.°
(optional parameter)

F1 Drivers for B&R Connections
10-24

Start option for the Profiboard
driver

Description

-delay DELAY_FACTOR The driver evaluates all time settings in the
configuration file as a multiple of the DELAY_FACTOR
in milliseconds. The default setting for
DELAY_FACTOR is 1000 ms. The lowest possible
setting for the DELAY-FACTOR is 100 milliseconds.°
(optional parameter, default value: 1000)

-r The driver is started in redundancy mode.°
(optional parameter)

-reduCheckTime <time [s]>

The driver starts an Iosys timer with the time
"reduCheckTime" in seconds. The corresponding
callback routine checks whether at least one
functioning connection exists.
If there is, the timer is restarted with the time configured
here.
If there is no functioning connection, the driver
returns the master status and restarts itself after the
"restartTime" in seconds.
Value range: [10 – 300]

-restartTime <time [s]>

Using an Iosys timer and the 'reduCheckTime' time, this
parameter checks whether at least one functioning
connection exists.
If there is, the timer is restarted with the
'reduCheckTime' time configured here.
If there is no functioning connection, the driver
returns the master status and restarts itself after the
"restartTime" in seconds.
Value range: [5 – 300]

-a The driver is started in the so called access mode.°
(optional parameter)

 ProfiboardDriver
10-25

Start option for the Profiboard
driver

Description

-t6 TIMER6

The automatically generated VFD task for the driver
executed and updated cyclically every TIMER6 *
DELAY_FACTOR milliseconds.
The VFD task checks the status of the controller at
regular intervals. Two state types are defined under
FMS: the logical state and physical state. The
automatically generated VDF variables (integers)
contain the logical status in the second byte and the
physical status in the third byte (beginning with zero
byte). A value of 0x00000000 means that the controller
is 'running'. A value of 0x0000FFFF is shown if the
actual VFD status cannot be determined because, for
example, a connection cannot be established. All other
values mean that an error has occurred and the
controller must be serviced.
(optional parameter, default value: 10)
The following status values are used
Logical status Meaning
0 Ready for communication, all services allowed
2 Limited services available
4 Loads the object description
5 All connections closed because an object
description is being loaded

Physical Meaning

0 Ready for use
1 Partially ready for use
2 Not ready for use
3 Service required

-board BOARD_NUMBER The driver communicates using the PROFIboard
BOARD_NUMBER. Allowed values are 0 or 1.°
(optional parameter, default value: 0)

-maxPar SERVICE_COUNT Allowed values are between 0 and the scc setting of the
parallel confirmed services for this connection.° Here,
you stipulate how many read requests the driver is
allowed to send in parallel until it must wait for an
answer.° (optional parameter, default value: Connection
settings)

-readTimer READ_TIMER_VALUE Allowed values are between 10 ms and 500 ms.°
(optional parameter, default value: 50)° Specifies how
often the APROL driver attempts to receive telegrams
from the device driver. 50)° Specifies how often the
Fehler! Kein Name für eine Eigenschaft übergeben.
driver attempts to receive telegrams from the device
driver. At the same time, you are changing the system
load, so use this option with care.

F1 Drivers for B&R Connections
10-26

10.7.3 Configuration file of the APROL driver (ProfiboardDriver)
A configuration file is used to configure the driver's tasks and the process variables that will be
used as well as their positions. The name and position of the configuration file are specified in
the driver at startup using the "-i FILENAME" option. The position is relative to the default
setting for driver configurations in APROL. More information can be found in the respective
documentation. This default setting can be ignored by using the "-ignoreCnfPath" option and
FILENAME describes the absolute position of the configuration file.
The driver configuration consists of a list of tasks. Each task consists of a task line and a list of
the process variables used in this task. Each task line begins with the character ^ as code for a
new task. Comment lines begin with the # character and run to the end of the line.

A driver configuration generally looks something like this:

Comment line

^AUFTRAGSART_1/PB_NAME1 oder PB_INDEX1/Task/PB_LÄNGE1/AUFTRAGSZYKLUS1
PV_NAME11 OFFSET11 PV_TYP11 IOSYS_TYP11 LS_LOW11 LS_HIGH11 SPS_LOW11 SPS_HIGH11
PV_NAME12 OFFSET12 PV_TYP12 IOSYS_TYP12 LS_LOW12 LS_HIGH12 SPS_LOW12 SPS_HIGH12
PV_NAME1x OFFSET1x PV_TYP1x IOSYS_TYP1x LS_LOW1x LS_HIGH1x SPS_LOW1x SPS_HIGH1x
^AUFTRAGSART_2/PB_NAME2 oder PB_INDEX2/Task/PB_LÄNGE2/AUFTRAGSZYKLUS2
PV_NAME21 OFFSET21 PV_TYP21 IOSYS_TYP21 LS_LOW21 LS_HIGH21 SPS_LOW21 SPS_HIGH21
PV_NAME22 OFFSET22 PV_TYP22 IOSYS_TYP22 LS_LOW22 LS_HIGH22 SPS_LOW22 SPS_HIGH22
PV_NAME2x OFFSET2x PV_TYP1x IOSYS_TYP2x LS_LOW2x LS_HIGH2x SPS_LOW2x SPS_HIGH2x

The number of tasks in a configuration file is theoretically unlimited, and so is the number of
process variables within a task. The only limitation to the configuration results from the amount
of memory used by the driver.
The meanings of the individual identifiers are described in the following sections.

TASK TYPES:
The driver differentiates between four different types of tasks during FMS communication:

• "FMS_READ",
• "FMS_WRITE",
• "FMS_IWRITE",
• "FMS_READ",

The differences between the types of operation depend on the communication direction.
"FMS_READ" tasks read cyclic variables from the controller and update the process variables in
the Iosys. If the variables are changed (written) by another application, then the values are
overwritten the next time the driver reads the values.
"FMS_WRITE" tasks write data to the controller as soon as the process variable is changed
within the task. Variables that for whatever reason could not be written properly are reset to the
previous value.
"FMS_IWRITE" tasks behave mostly like "FMS_WRITE", but the task must be read just once to
align the control computer with the controller. This read process generally occurs once after
each time the connection is established. If process variables are changed before the alignment
has been made, then the variables are reset to the previous value.

 ProfiboardDriver
10-27

FMS_SYNC tasks allow communication in both directions. This is a combination of cyclic READ
procedures with event-controlled WRITE tasks. Variables can only be written to the controller if
they have been read at least once. If value changes are made before they can be transferred to
the controller, then driver undoes the changes and the previous value is set on the controller.

Task:
To use the driver as an FMS driver, this field must contain a default value (e.g. "Dummy_Task").
When using the driver in APROL, the PVs are organized in tasks; individual tasks can then be
activated and deactivated.

PB_NAME:
This is used to specify the name of the Profibus variables to be read/written on the controller.
The index of a variable can be used as an alternative to the name. The use of names is not
supported by all controllers.

PB_INDEX:
This is used to specify the index of the Profibus variables to be read/written on the controller.
The name of a variable can be used as an alternative to the index if the controller supports using
names.

PB_LENGTH:
This is used to specify the expected size of the variables. If the size received does not match the
size configured, then an error message is output and the telegram is thrown out.
In general, not more than 200 bytes should be read or written!

TASK CYCLE:
The task cycle specifies how often read tasks are to be repeated i.e. the time between them.
The task cycle refers to the time between receiving the last response telegram and sending the
next request telegram. The task cycle is the product of the DELAY_FACTOR and the TASK
CYCLE in milliseconds. For WRITE tasks and IWRITE tasks, TASK CYCLE has no effect.

PV_NAME:
Name of the process variables in Iosys. Using this name, the process variables in the Iosys can
be accessed. Process variable names cannot have more than 64 characters.

OFFSET:
The offset specifies the position of the process variables relative to the beginning of the task
block. It is entered in bytes.

PV_TYPE:
The PV type determines what kind of variable must be found at the position for the offset.
Among other things, the setting for the PV type affects the default measuring range of the
variables.
The following PV types are recognized:

PV type PV length Default measurement range

BIN0 to BIN7 1 bit 0 to 1
INT8 1 byte -128 to 127

F1 Drivers for B&R Connections
10-28

PV type PV length Default measurement range

UINT8 1 byte 0 to 255
INT16 2 Bytes -32768 to 32767
UINT16 2 Bytes 0 to 65535
INT32 4 Bytes -2147483648 to 2147483647
UINT32 4 Bytes 0 to 4294967295
FLOAT 4 Bytes -3E38 to 3E38
S5FLOAT 4 Bytes -3E38 to 3E38

STRINGxx XX bytes None, maximum 64 characters
long

The driver carries out a plausibility check during the configuration. If offset and variable length go
beyond the task block, a corresponding error message is output and the driver is ended.

IOSYS_TYPE:
The Iosys type specifies which type the variable has in the Iosys. Three types are known to the
Iosys:
• Integer (whole numbers),
• Real (floating point numbers),
• String type with a maximum of 64 characters.

The Iosys type is entered in the form of a single character: I for integer, R for real and S for
string. The type of the variables affects the maximum measurement range and the
representation precision. For precision reasons, it doesn't make much sense e.g. to normalize
an integer variable.

SPS_LOW and SPS_HIGH:
Measurement range for the variables on the controller. The measurement range is used for
scaling to determine the multiplication factor and is also used to prevent operating errors. It only
works in the direction from the control computer to the controller. If a variable value is entered in
the control computer that is outside of the permissible measurement range (directly or as a result
of scaling), then the driver resets the variable to the limit value and the limit value is sent to the
controller. A value from the controller that is outside the limits is transferred to the control
computer as is. SPS_LOW and SPS_HIGH are optional. If not otherwise specified, the default
values from the PV type are used. Both of these values must be explicit if scaling is required!

LS_LOW and LS_HIGH:
LS_LOW and LS_HIGH are the control computer's limit values. Together with SPS_LOW and
SPS_HIGH, they are used to compress or stretch (scaling) a variable. They are optional. When
these values are not specified then there is a 1:1 scale. They can only be specified when
SPS_LOW and SPS_HIGH have also been set.
The following formula is used to calculate a variable value:

 ProfiboardDriver
10-29

Configuration for normal FMS services

^TASK/NAME or INDEX/Task_Name/LENGTH in Bytes/DELAY in milliseconds
PV_NAME OFFSET in Bytes PV_TYPE IOS_TYPE [LS_LOW LS_HIGH] [SPS_LOW
SPS_HIGH]

TASK: FMS_READ
FMS_WRITE
FMS_IWRITE
FMS_SYNC

PV_TYP: BIN0 - BIN7
INT8 / UINT8
INT11
INT12
INT16 / UINT16
INT32 / UINT32
FLOAT
S5_FLOAT
STRINGxx (String der Laenge xx Bytes)

IOS_TYP: I fuer Integer
R fuer Real
S fuer String

Optionale Parameter:
SPS_LOW: Messbereichsanfang
SPS_HIGH: Messbereichsende
LS_LOW: Wert im Leitsystem bei SPS_LOW auf SPS
LS_HIGH: Wert im Leitsystem bei SPS_HIGH auf SPS

Bits in Byte
^FMS_SYNC/BTEST1/Dummy/01/1/1/
 BIN00 0 BIN0
 BIN01 0 BIN1
 BIN02 0 BIN2
 BIN03 0 BIN3
 BIN04 0 BIN4
 BIN05 0 BIN5
 BIN06 0 BIN6
 BIN07 0 BIN7
Bits in Wort
^FMS_SYNC/WTEST1/Dummy/01/2/1/ /* auf Words, Byte-Offsets vertauschen */
 BIN00 1 BIN0
 BIN01 1 BIN1
 BIN02 1 BIN2
 BIN03 1 BIN3
 BIN04 1 BIN4
 BIN05 1 BIN5
 BIN06 1 BIN6
 BIN07 1 BIN7
 BIN10 0 BIN0
 BIN11 0 BIN1
 BIN12 0 BIN2
 BIN13 0 BIN3
 BIN14 0 BIN4
 BIN15 0 BIN5
 BIN16 0 BIN6
 BIN17 0 BIN7

F1 Drivers for B&R Connections
10-30

Bits in Long (4 Bytes)
^FMS_SYNC/LTEST1[0]/Dummy/01/4/1/ /* auf Long, Drehen zur Variablenmitte */
 BIN00 3 BIN0
 BIN01 3 BIN1
 BIN02 3 BIN2
 BIN03 3 BIN3
 BIN04 3 BIN4
 BIN05 3 BIN5
 BIN06 3 BIN6
 BIN07 3 BIN7
 BIN10 2 BIN0
 BIN11 2 BIN1
 BIN12 2 BIN2
 BIN13 2 BIN3
 BIN14 2 BIN4
 BIN15 2 BIN5
 BIN16 2 BIN6
 BIN17 2 BIN7
 BIN20 1 BIN0
 BIN21 1 BIN1
 BIN22 1 BIN2
 BIN23 1 BIN3
 BIN24 1 BIN4
 BIN25 1 BIN5
 BIN26 1 BIN6
 BIN27 1 BIN7
 BIN30 0 BIN0
 BIN31 0 BIN1
 BIN32 0 BIN2
 BIN33 0 BIN3
 BIN34 0 BIN4
 BIN35 0 BIN5
 BIN36 0 BIN6
 BIN37 0 BIN7
Position von Bytes und Words in Langwort
^FMS_SYNC/LTEST1[0]/Dummy/01/4/1/
 BYTE00 3 UINT8
 BYTE01 2 UINT8
 BYTE02 1 UINT8
 BYTE03 0 UINT8
 WORD00 2 UINT16 0 1000 -1000 +1000
 WORD01 0 UINT16 0 1000 0 10000
 LONG00 0 UINT32
Sync mit Float-Array
^FMS_SYNC/FLOAT1/Dummy/01/16/1/
 FLOAT00 0 REAL
 FLOAT01 4 REAL
 FLOAT02 8 REAL
 FLOAT03 12 REAL
Lesen einer Strukturvariablen
^FMS_READ/sys_data/Dummy/01/46/1/
 pv.sys.aws_name 0 STRING6
 pv.sys.aws_typ 6 STRING2
 pv.sys.cpu_info 8 UINT32
 pv.sys.ma_global 12 UINT16
 pv.sys.md_global 14 UINT16
 pv.sys.os_len 16 UINT32
 pv.sys.user_len 20 UINT32
 pv.sys.tmp_len 24 UINT32
 pv.sys.eprom 28 UINT32
 pv.sys.fixram 32 UINT32
 pv.sys.battery 36 UINT8
 pv.sys.run 37 UINT8
 pv.sys.init_mode 38 UINT32
 pv.sys.os_version 42 STRING4

 ProfiboardDriver
10-31

10.8 Profiboard driver status variables

The driver creates a few status variables in the Iosys for displaying and analyzing errors. These
are generated and supplied automatically. The driver name is the main part of the status variable
name. The following variables are generated:

Variable name Meaning Type and direction Values

DRIVER_NAME.C
ONN_NAME.conn
ected

Displays the connection
status

Integer, from the
driver

0 = not
connected
1 = establishing
connection
2 = connection
established

DRIVER_NAME.ch
annel

Displays the currently active
connection in redundancy
mode

Integer, from the
driver

0 = conn0
1 = conn1
2 = conn2
3 = conn3

DRIVER_NAME.er
ror

Displays the last error
number

Integer, from the
driver

See error
messages

DRIVER_NAME.ne
g_counter

Counter that is increased by
one with each negative
response

Integer, from the
driver

DRIVER_NAME.po
s_counter

Counter that is increased by
one with each positive
response

Integer, from the
driver

DRIVER_NAME.ac
t_counter

Number of active tasks in
the driver

Integer, from the
driver

DRIVER_NAME.co
nfig_req

Variable for online driver
configuration

Message box, to the
driver Only for APROL

DRIVER_NAME.de
bug_filter

Variable for reading and
setting the driver's current
debugging filter

Integer, from and to
the driver See above

DRIVER_NAME.er
ror_txt

Error text for the most
recent error

String64, from the
driver

See error
messages

DRIVER_NAME.vf
d_status

Variable for evaluating the
controller status.

Integer, from the
driver

F1 Drivers for B&R Connections
10-32

10.9 APROL driver error numbers and error messages
.

10.9.1 Error numbers and messages (ProfiboardDriver)
The utilities and the APROL driver use different error numbers and handling mechanisms.
The APROL driver works with error numbers written to the error variable and partially also
with plain text messages written to the error text variable.
For communication, the utilities use a library whose error numbers are the same for all utilities.
Library errors start at the offset 400. The error numbers from the APROL driver all start at the
offset 1000.
The library error numbers:

Error number Cause of the error

401 Error writing telegram
402 Timeout waiting for the response telegram
403 Negative response telegram received (structure T_ERROR)
404 Error reading telegram
405 Abort indication received from the board with the result: Connection lost
406 Reject telegram received

Possible reason:
service not allowed°
Too many parallel requests

407 Download aborted/ended by error (task not present on controller)
408 Get-OV error, Object not present
409 Cannot open device driver

Possible cause:
Board not recognized/present
Too many applications at the same time

410 Communication reference already occupied by another application
411 Parameter error, Value outside valid range

APROL driver error numbers:

Error number Cause of the error

1001 Task started, but driver is not connected
1002 Incorrect access type for Read task (only APROL)

1003 An unpredictable event has occurred (e.g. timeout too short, response
arrived after timeout)

1004 Timeout, response did not arrive in time

1005 Negative response to request received (e.g. object not present, service
not allowed)

1006 Driver not yet initialized, WRITE task is sent before reading once with
SYNC or IWRITE

 ProfiboardDriver
10-33

Error number Cause of the error

1007 System error (only APROL)
1008 Task not present on the controller (only APROL)
1009 Driver in simulation mode, write not possible
1010 Access to invalid controller memory location (only APROL)

In addition to error numbers, the driver also outputs plain text messages. The following
messages are possible:

Error text Cause of the error

got unexpected length: got %d, exp
%d, %s

The response to a read telegram does not contain as
many bytes as expected. The first selection shows the
number of received bytes, the second shows the
expected number and the third shows the task name

TASK_INFO failed, %s

Negative response to receive for task info telegram. The
first parameter shows the task name. The task is likely
not present on the target system.
Only APROL

SEARCH_TASK failed, %s

Negative response received to search telegram for
controller task. The first parameter shows the task
name. The task is likely not present on the target
system.
Only APROL

out of range: %s The specified variable delivers a value outside of the
defined measurement range.

packet error: %s

A newly defined variable does not fit in the defined task.
Either the beginning or the end or the complete variable
lies outside the defined task block.
Only possible with online configurations.

10.10 Integrating the APROL Profiboard start script
.

10.10.1 The APROL start script
The APROL start script has the following structure:
$HOME/etc/init.d/driverProfiboard.sh
#**
COPYRIGHT 1996 - 1999 PCC GmbH . ALL RIGHTS RESERVED
#**
AUTHOR: DRIEFMEIER
USE FOR: Starting Driver profibus
#**

1.0.0 10.06.1999 LU driverProfiboard.sh erzeugt
VERSION="1.0.0"
VDATE="10.06.1999"
COMP="!= 0"
PROGNAME="ProfiboardDriver"
FILENAME="driverProfiboard.sh"
DEFFILE="$APROL/etc/init.d/globaldefs"

F1 Drivers for B&R Connections
10-34

LOGFILE=$APROL/tmp/$PROGNAME.log
TMPFILE=$APROL/tmp/$PROGNAME.tmp
BIN_DIR="$APROL/bin"
PROGPARAM1=" -n"
PROGPARAM2=" -i"
REDUPROGPARAM1=" -n"
REDUPROGPARAM2=" -r -i"
PROGCNF="$CNF_PATH/$PROGNAME"
LIST="\
ST10 \
"

if [! -f $DEFFILE]; then
 echo "$DEFFILE not found"
 exit 0
else
 . $DEFFILE
fi
$ECHO "call -$FILENAME- with -$1- at $DATE" $LOGFILE
case "$1" in
 'start')
 $ECHO "\t\t$FILENAME $1"
 confcheck $LIST
 for PROGS in $LIST; do
 # check if program exists and cnf file is readable
 if [-x "$BIN_DIR/$PROGNAME" -a -r "$PROGCNF/$PROGS"]; then
 # check if already running ...
 getpidcnf $PROGNAME $PROGS
 if [-z "$PID"]; then
 LOGFILE=$APROL/tmp/$PROGS.L
 TMPFILE=$APROL/tmp/$PROGS.T
 $ECHO "$PROGS<\c"
 getmsg 0002
 # call PROGS
 OLDIR=`pwd`
 cd $BIN_DIR
 # check if redundancy
 redumode
 if [-z "$REDUMODE"]; then
 $PROGNAME -conn0 $PROGS $PROGPARAM1 $PROGS $PROGPARAM2
$PROGCNF/$PROGS/profi.cnf 1 $LOGFILE 2&1
 RET=$?
 else
 getmsg 0030
 getmaster
 showmachinestate
 $PROGNAME -conn0 $PROGS $REDUPROGPARAM1 $PROGS $REDUPROGPARAM2
$PROGCNF/$PROGS/profi.cnf 1 $LOGFILE 2&1
 RET=$?
 fi
 tail -4 $LOGFILE $TMPFILE
 ERROR=`$CAT $TMPFILE |$GREP "error" 2/dev/null`
 if [-n "$ERROR" -o "$RET" $COMP]; then
 error $PROGS
 else
 delay 5
 getpidcnf $PROGNAME $PROGS
 if [-n "$PID"]; then
 $ECHO "start $PROGS $DATE" $LOGFILE
 $ECHO " ok"
 else
 starterror $PROGS
 fi
 fi
 else
 beeper 3
 $ECHO "$PROGS<\c"
 getmsg 0005
 getmsg 0006
 fi
 else
 beeper 2
 getmsg 0007
 getmsg 0009
 fi
 done
 cd $OLDIR
 ;;
 'stop')
 $ECHO "\t\t$FILENAME $1"
 confcheck $LIST
 for PROGS in $LIST; do

 ProfiboardDriver
10-35

 getpidcnf $PROGNAME $PROGS
 if [-z "$PID"]; then
 $ECHO "$PROGS<\c"
 getmsg 0004
 else
 kill $PID
 $ECHO "$PROGS<\c"
 getmsg 0003
 LOGFILE=$APROL/tmp/$PROGS.L
 $ECHO "stop $PROGS $DATE" $LOGFILE
 TMPFILE=$APROL/tmp/$PROGS.T
 rm $TMPFILE
 fi
 done
 ;;
 'restart')
 ($0 stop; getmsg 0012; delay 5; $0 start)
 ;;
 '-ver')
 printver $VERSION
 exit 0
 ;;
 '-version')
 printversion $0 $VERSION $VDATE
 exit 0
 ;;
 '-help')
 getmsg 0001
 exit 0
 ;;
 *)
 getmsg 0001
 exit 1
 ;;
esac

10.11 Error analysis
Error description:
After the installation, the "Livelist" cannot be started with pb_manager.

The following points must be checked:
Is the device driver loaded in the LINUX kernel?
Condition: You are logged in as super user.
Start the "lsmod" command. All modules connected to the kernel are displayed.
A PROFIboard module must be present.
If one is not present, then go to the /boot/modules/PROFIboard directory and start insmod
PROFIboard.o.
Analyze the error message.
Is there any kernel output?
Condition: You are logged in as super user.
Enter the "dmesg" command.
Search the kernel driver output. After "dmesg", you can browse the output using the
"Shift/Page-Up" and "Shift/Page-Down" keys.
The following message should appear after booting. The settings may vary according to your
parameters:

F1 Drivers for B&R Connections
10-36

SOFTING PROFIboard V1.0.x
(c) 1999 by PCC,
 register major number 50
 request region from 0x240-0x243
 request irq 5
 using dpr_addr 0x000d8000

A corresponding error message is displayed if the PROFIboard card was not recognized. The
device driver has probably not been loaded if the output from the first line is not present (see
above).

Are the device files present?
Make sure that the entry files are located in the /dev/PROFIboard directory:
ls -la /dev/PROFIboard/PROFIboard*
If these files are not present or the displayed major number does not match the device drive
message (see inset above: register major number ...) than an error has occurred with
"pb_install". Restart "pb_install" and check the error messages.
Is the start script present?
Make sure that the start script is present and contains a link in the start directories.

ls -la /sbin/init.d/PROFIboard
ls -la /sbin/init.d/rc2.d/S51PROFI.sh
 ls -la /sbin/init.d/rc3.d/S51PROFI.sh

If the start files are not present then an error has occurred with "pb_install". Restart "pb_install"
and check the error messages.
Are the files for network configuration present?
Do the configuration files for the respective PROFIboard exist?

ls -la /usr/etc/profiboardx.cfg
ls -la /usr/etc/profiboardx.ov with x = board number, starting with 0

If the files are not present, then you have to create them and start "pb_init".

Is the PROFIboard on the network?
If the PROFIboard card is already on the network and the bus parameters are not accordingly
adjusted, then it is possible that the card is deactivated to prevent a network interruption. Never
perform a reinstallation with the card is connected directly to the network. Start the Livelist,
which will run cyclically, and wait until the PROFIboard can be seen in the Livelist before
plugging in the cable if necessary. Check the bus parameters again if the Livelist only works until
the cable is plugged in.

Error description:
"pb_init" registers "pb_init failed: ret = 402, errno = 11" after starting

Cause:

 ProfiboardDriver
10-37

It seems as though an interrupt is set, which is already occupied by another component. This
component does not necessarily have to be used in order to block the PROFIboard. In the past,
the onboard Ethernet connections and onboard sound cards were typical sources of errors. This
error can also occur when the interrupt is enabled for PCI in a PnP BIOS.
Switch off the potential sources of error, reboot and check again. Change the interrupt settings if
necessary.

Error description:
"pb_init" registers "devOpen failed, errno = 19" after starting

Cause:
The device drive is not loaded or the major number being used does not match that of the entry
files in /dev/PROFIboard. Furthermore, it is also possible that the device driver did not
recognize the PROFIboard. Perform a test using "dmesg" as described above.

Error description:
"ABORT_INDICATION" appears after attempting to establish a connection.

Cause:
The connection is either already occupied by another application or the settings in the KBL do
not match those of the partner. In this case, the services might be set incorrectly or the bus
parameters are not compatible with each other. For further reading, refer to the Softing
documentation, which also describes the contents of the error telegrams.

10.12 Notes on literature (ProfiboardDriver)

Softing documentation for the PROFIboard available as free download from the Internet at
www.softing.com. Detailed information is provided about the bus parameters and
connection parameters as well as the values for the object descriptions.

The B&R PROFIBUS manual for the 2000 System describes the basics of PROFIBUS
such as cable structure, network settings and connection parameters as well as a special
section about the PROFIBUS hardware in the 2000 System.

PROFIBUS standard, DIN 19245 parts 1/2/3 and the corresponding EU standards

 Process bus redundancy for Ethernet connections
11-1

11 Process bus redundancy for Ethernet connections

..

11.1 General information about process bus redundancy for Ethernet
connections

Process bus redundancy for Ethernet makes it possible to assign TCP/IP addresses twice for
CPUs running on an Intel platform.
Process bus redundancy is implemented when using type CP360, CP380, CP382 CPUs in
combination with an IF781.9 interface module - parallel to the onboard interface. The
configuration and the controller's OS version V0271 is made with help of the Ethernet
settings.

 Note the description about 'Configuration of the Ethernet interface for controllers' in the
APROL documentation, 'E1 Controller & I/O'!

To do this, call the menu option "Ethernet settings" from the shortcut menu in the CPU view of
the CaeManager.

Illustration 39: Configuring the Ethernet settings

 Make sure that both network cards are located in different sub-networks!

Process bus redundancy in relation to the InaDriver, the EventDriver, and the controller cross
communication is described in the following sections.

F1 Drivers for B&R Connections
11-2

11.1.1 Configuring process bus redundancy with the InaDriver
Process bus redundancy is configured for the InaDriver using the following options:

Option Description

-medium [EthernetRedundancy] Activates the redundant Ethernet configuration
-ip_r IP_ADDRESS Entry for the TCP/IP address or the host name of the

connected controller (redundancy connection).
-socket_r SOCKET_NR This option is used to set the socket number which the

driver uses when attempting to connect to the controller
(redundant connection). If this option is not specified,
then the setting for the -socket option is used. For INA, the
default socket is 11159 (0x2b97).

-node_r NODE Setting for the redundant node address of the controller.
-bcast_r <BCAST_ADDR Sets the redundant broadcast address.

 Please note that the "socket" number and the "socket_r" number must be different (z.
B. 11159 und 11160).
These numbers must be the same as those in the controller's Ethernet interface
configuration (INA port number).

After starting, the InaDriver attempts to establish the initial connection. If the communication
level reports "Lost connection" with a redundant configuration, then an attempt is made to reach
the controller via the second connection. If this also fails, then the driver is restarted to enable
process redundancy. This enables a second driver on another computer to address the
controller. This is repeated until a driver is able to reach the controller.
Switching between the first and the second connection occurs exactly one time if it is not
possible to establish a connection. If a connection is established, then the alternative route to the
controller is used a maximum of one time the next time the connection is lost. The driver is
restarted if this does not work.

 Therefore, an InaDriver requires exactly one connection resource from the controller
because two connections are never opened at the same time.

11.1.2 Configuring process bus redundancy with the EventDriver
Process bus redundancy is configured for the EventDriver using the following option:

Option Description

-reduPlcIpAddr IP_ADDRESS The -reduPlcIpAddress option is used to specify an
alternative route to the controller.

First the EventDriver attempts to reach the partner station on the controller via the default
connection (- controllerIpAddr option). If the IP stack from the control computer reports an error,
then an attempt is made to establish a connection via the alternative route. If this fails, the first
connection is tried again. This is repeated until the process redundancy timeout is reached (-
restartTime SECONDS) triggering the control computer driver to start again. This enables a
redundant driver that might be present to access the controller. The presence of the control
computer driver is monitored using a communication timeout because an EventDriver server on
the controller runs exactly once and supports exactly one connection. The socket on the
controller is closed and a new connection is waited for if no telegram is received from the control

 Process bus redundancy for Ethernet connections
11-3

computer within the -timeout MILLISECONDS time range. However, events will still be recorded
and buffered so that they can be sent after reconnecting.

11.1.3 Configuring process bus redundancy with controller cross-
communication

Process bus redundancy affects the drivers ApDrvCross and ApDrvIna.
The redundancy is configured in the CaeManager under the communication tab (ApDrvCross) or
under the APROL connections tab (ApDrvIna).
After creating a connection, the necessary settings for the alternative route and for the
connection timeout <in seconds> can be made under "Redundancy" using the menu option
"New" in the shortcut menu.

Illustration 40: Configuring process bus redundancy with controller-controller connection

Both drivers attempt to reach the partner via the first connection. The alternative connection is
activated if an error is reported or the connection cannot be made within the connection timeout
time. The program switches between both connections repeatedly as long as the connection
cannot be established.
In principle, an attempt is always made to establish a connection via the alternative route. That
means that two INA connections are always active in the ideal situation.

 As a result, it might be necessary to make adjustments according to the number of
connections in the sysconf!

 RK512 driver
12-1

12 RK512 driver

.

12.1 General information about the RK512 driver
In this manual, the installation of the RK512Driver driver package, the configuration of the driver
for the control computer, and the B&R controller are described.
Once the driver has been installed and configured, it can be used in the following ways:
Via 3964R CC Controller Third-party controller
CC X - X
Controller - - -

Via RK512 CC Controller Third-party controller
CC X x X
Controller x x x

Knowledge of how communication protocols work is required to understand the
information contained in this manual. This manual does not contain descriptions of the
RK512 and 3964R communication protocols.

12.2 Information about the RK512Driver driver package
Drivers for the various process control system components are supplied in an RPM package
(normally on a diskette). Once this RPM package has been installed on the corresponding
computers, these drives are ready to be used. The drivers for the controllers are downloaded
from the Engineering system with the DownloadManager.
The RPM package must be installed on a computer that has both the Engineering system and
Runtime system installed.

12.3 Delivery contents of the RK512 driver package

Data medium with the RPM package APROL_RK512Driver-1.0.0-0.noarch.rpm

This documentation -- RK512 / 3964 R drivers -- in PDF format (also on the data medium)

After the installation, the following files will be located on the computer selected for the
installation:

File with path specification Description

/opt/aprol/bin/RK512Driver The driver for the control computer (Runtime
system).

F1 Drivers for B&R Connections
12-2

File with path specification Description

opt/aprol/br/aprol/V*/
 i386/module/ApDrvRK512.br

The driver as module for the controller

/opt/aprol/cnf/RK512Driver/
 R3964/rk512.cnf

3964 R example configuration.

/opt/aprol/cnf/RK512Driver/
 RK512/rk512.cnf

RK512 example configuration.

/opt/aprol/doc/packages/
 RK512Driver/ver.txt

Version information.

/opt/aprol/doc/packages/
 RK512Driver/version.txt

Version information.

/opt/aprol/lib/libRK512.so* Communication library.

12.4 Installing the RK512Driver RPM package

 Installation should be carried out on a PC with a Runtime system and Engineering
system installed since this is where the drivers and utilities will be needed.
The installation can only be carried out by the super-user (root).

The installation procedure:

Step Description

1 Insert the diskette and mount the disk drive to the /media/floppy directory.
2 Then go to the /media/floppy directory.
3 Install the required package(s) with the rpm command.

Example:
rpm –i <RPM-FILENAME> - -nodeps - -force

With the command rpm –e <PACKAGE_NAME>, you can uninstall a package if necessary.

 Please note the difference between RPM-FILENAME and PACKAGE_NAME!

Examples:
Install:
rpm -i APROL_RK512Driver-1.0.0-0.noarch.rpm--nodeps --force

Uninstall:
rpm -e APROL_RK512Driver

After the installation, use umount to remove the disk drive from the file system and take the
diskette out of the drive.

 RK512 driver
12-3

12.5 RK512Driver for the control computer
You can use the RK512Driver, which runs on a runtime system, to connect controllers or other
field devices to the control computer and exchange data. The connected device must be able to
understand the RK512 or 3964R communication protocol.

 In order to use the driver, the RPM package must be installed!

The driver is configured in the CC modules, in the 'APROL system' project part, in the 'Driver'
section.
A maximum of 64 RK512Driver instances can be configured.

Illustration 41: Configuration of the RK512Driver

After the driver has been configured, you will need to create PVs over APROL connections so
that they are available during the engineering phase.
See chapter Creating the rk512.cnf configuration file

12.5.1 Launching options RK512Driver
Individual options are also explained in the online help.

Option Value range Description
-medium <tty |
server>

 This option selects between a physical interface
[tty] and an Ethernet terminal server [server].
It determines whether a serial interface (tty) on the
computer or a terminal server (server) should be
used for communication. The IP connection goes
from the computer to an external interface
converter with a serial interface.

-addr <name | IP> Use only for -medium server. Specifies the IP
address or host name of the terminal server.

F1 Drivers for B&R Connections
12-4

Option Value range Description
-iosys <server1:port
[, server2:port]>

port=[0 - 15] Specifies the IP address / name and port number of
the computer with Iosys. For a redundant Runtime
computer configuration, the redundant Iosys
connection is configured as well. The Iosys port
must always correspond to the Iosys port specified
when the control computer master or slave is
configured.
Examples:
-iosys TEST1:0
Iosys is running on the TEST1 computer at port 0.

-iosys TEST1:0,10.49.80.93:1
Iosys is running on the TEST1 computer at port 0
and redundantly on a computer with the IP address
10.49.80.93 at port 1.

-self <id> The Self ID is a unique identifier for the program
instance and is assigned by the system, which
increments this two-digit number for each instance.
A maximum of 64 RK512Driver instances can be
configured.
If several instances of this application run on the
same computer, these instances can be
differentiated by the different Self IDs.
The Self ID can also be overwritten by a named
string to make it more descriptive.

-type <WuT |
Lantronic>

 Only used with -medium server.
Sets the communication method to one of the
supported terminal servers.
Options:
WuT or Lantronic
(name of the manufacturer of the terminal server).

-port <value> value=[0.0.3] Only used with -medium server and -type
Lantronic.
This setting specifies the IP port on the terminal
server. This selection depends on the selected
type.
WuT Port fixed at 8000
Lantronic Port = 3000 + <value>
Terminal servers usually have several connections
being used simultaneously, so this option can be
used to specify which one is the partner.
WuT stands for Wiesemann and Theiss.

-device </dev/ttySx> x=[0..3] Only used with -medium tty.
Device name and number of the serial interface.
Example: /dev/ttyS0 (corresponds to COM1 in
the Windows world).
and /dev/ttyUSB0 (for USB/serial adapters)

 RK512 driver
12-5

Option Value range Description
-baudrate <value> value = [1200,

2400, 4800,
9600, 19200,
38400, 57600,
115200]

Only used with -medium tty.
Specifies the transfer rate [baud] of the serial
interface.

-parity <even | odd |
none>

 Only with -medium tty.
This option sets the type of parity bits for the serial
interface.

-priority Specifies the priority of the communication. If a
collision occurs (driver and partner want to transmit
at the same time), the partner with the lower priority
yields and answers the one with the higher priority.
Default = high

-retry <value> Number of retries before an error is reported.
Default value: 3

-offlineTime <value> Time until the driver automatically restarts (and sets
up the option of a redundant partner) if constant
connection errors occur.
Configuration errors like data blocks, etc. do not
cause the driver to restart.
Unit: Seconds
Default value: 30

-restart <value> value=[0..20] This option makes it possible to restart the driver
automatically if the application was ended
externally. It is disabled by default.
If the specified value is exceeded, automatic
restarts no longer take place. This mechanism is
only switched back to active after manually
resetting it with the StartManager or carrying out a
new download.

-plc <PLC_NAME> Specifies the subdirectory where the configuration
file rk512.cnf is looked for.
PLC_NAME thus results in:
$HOME/RUNTIME/cnf/RK512Driver/controller_NA
ME/rk512.cnf,
with $HOME as the home directory of the Runtime
system.

-suspendTime
<value>

 Timeout for a task if it couldn't be executed
successfully.
If a task returns an error (e.g. data block not found),
then it will be suspended for the length of value
and only then re-launched.
Unit: Seconds
Default value: 30

F1 Drivers for B&R Connections
12-6

Option Value range Description
-timeout <value> Maximum time that the driver waits for a response

(send permission) from the partner when sending a
send request. If this time is exceeded, the driver
returns an error.
Unit: Milliseconds
Default value: 1000

-time_ext <value> Maximum time that the driver waits for a data
telegram from the partner if a send request was
sent successfully.
Unit: Milliseconds
Default value: 5000

Options for debugging output
Option Value range Description
-nofork The driver doesn't fork (doesn't go on to a

background process), but remains in the foreground
(this option makes sense for debugging output).

-d_errors 1 The driver outputs all error messages.
-d_normal
<LEVEL>

 The driver outputs all status messages in levels <=
LEVEL.

-d_protocol
<LEVEL>

 The driver outputs all communication messages in
levels <= LEVEL.

-d_redu <LEVEL> The driver outputs all status messages in levels <=
LEVEL.

-help The driver outputs the list of all start options and
then quits immediately.

12.5.2 Creating the rk512.cnf configuration file

The driver reads the rk512.cnf configuration file in the Runtime system when the process control
system runtime begins. It contains all of the information needed by the driver to exchange the
engineered data between peripherals and the control computer.
If this configuration file has been created, the APROL system must be recompiled and
generated. After this procedure, the PVs you've created for exchanging data during the
engineering phase are available in the project.
The configuration of the rk512.cnf file takes place in the APROL system, in the APROL
connections tab. Select RK512 connection via the shortcut menu to create a new entry. A
structure is automatically created for this connection.

 Please note that the APROL driver currently only supports the variable type 'Data
block'.

 RK512 driver
12-7

Illustration 42: Illustration Fehler! Es wurde keine Folge festgelegt.:

The list of all data blocks used by the driver must be created under Data blocks. A new entry
with the respective DB number must be created for each data block.
The following value range is valid for the DB number [1 ... 255].
The following fields must be filled for each data block (see image): Len with the number of data
words, Init with the initialization method, Block with the transfer method, and Access with the
type of access (read, write, or read/write).

Illustration 43: Illustration Fehler! Es wurde keine Folge festgelegt.:

If Init is set, the data block may only be written once it has been read successfully once. This is
important for the first synchronization in order that the actual states of the data block are not
destroyed. If Block is set, the complete block is transferred to the controller when a value is
written. Otherwise, only the data words being used by the PV are written.
Next, the PVs to be used should be declared for each data block. When doing so, the name of
the variable during the engineering phase (and therefore the one to be used on the system later
during runtime) should be entered first.

F1 Drivers for B&R Connections
12-8

Illustration 44: Definition of the variables

After all names have been issued, the mandatory fields Mode, Ev, Type, Off and Remote type
must be filled in. The plsMba, plsMbe, controllerMba, and controllerMbe fields can be filled in if
needed. Mode describes the data direction for this PV. It can be used as an input, an output, or
bi-directionally.
Ev specifies whether this PV should be used as an event PV, i.e. written as soon as a change in
value is detected. All PVs that have not been declared as event PVs are simply copied to the
local data area only and sent with the complete block during the next write procedure. However,
it's also possible that they will be overwritten with a read block before the next write takes place.

 This explains why bidirectional PVs should generally be event PVs!

The Type column is used to determine the type in the system. This type must be connected in
CFCs. Off describes which data word of the block this PV begins in. For multi-word PVs, the
smallest data word being used should be specified. Remote Type is used to specify the type of
variable being used by the communication partner. Both of the types declared here don't have to
be the same; the driver converts them according to the configuration.

 Variables that were of data type "REAL" within the framework of the R3964
connection are assigned data type "S5_REAL" within the framework of the
automatic conversion of the RK512 connection.

plsMba and plsMbe determine the measurement limits for the process control system. If a PV is
written to the controller with a value outside of the measurement limits, it will be reset to the
respective limit value and transferred. If a value outside of these limits is read from the controller,
it will not be limited in order for it to be used in alarming!
controllerMba and controllerMbe make it possible to scale PVs. controllerMba and controllerMbe
make it possible to scale PVs. Details about this can be found in chapter Scaling values
The data block tasks are created next. Assign a symbolic name for this task (e.g. READ) and fill
in the fields Type (read or write), Cycle time in milliseconds, Offset for the first data word to be
transferred, Length in DW for the number of data words to be transferred, and the optional
Description (not really necessary but very helpful for documentation purposes).

 The value range for the offset is between [0 ... 255] data words. A maximum of 2048
data word can be transferred (maximum value for "Length").
As a telegram can contain a maximum of 128 bytes of data, longer data ranges are
transferred with subsequent telegrams.

 RK512 driver
12-9

Finally, status variables for the driver and for each task can be created. Simply configure the
name of the PV to be created under the respective function. At runtime, the driver creates and
supplies a corresponding PV of type Integer or String for error texts.

Status variables per driver:

identifier Description

Online variable Variable for monitoring the online state.
Value 1: Connected to the partner.
Value 0: No connection.
Note:
A value of 1 doesn't mean that the tasks are executed without
errors. It only shows that the communication (which might also
contain errors) with the partner is working.

Status variable
(error counter)

Error counter: This counter is incremented each time an error
is found.
Note:
This PV is reset to 0 each time the driver is restarted.

Status variable
(requests)

Variable that outputs status values for each request telegram.
typedef enum {
 RK_IDLE = 5000,
 RK_READY_FETCH,
 RK_READY_FETCH_FOLLOW,
 RK_READY_SEND,
 RK_READY_SEND_FOLLOW,
 RK_READY_WRITE,
 RK_READY_WRITE_FOLLOW,
 RK_READY_RECEIVE,
 RK_READY_RECEIVE_FOLLOW,
 RK_READY,

 RK_REC_HEADER = 5090,
 RK_WRITTING = 5100,
 RK_WRITE_MAIN,
 RK_WRITE_MAIN_REACT,
 RK_WRITE_FOLLOW,
 RK_WRITE_FOLLOW_REACT,
 RK_RECEIVING = 5200,
 RK_RECEIVE_MAIN,
 RK_RECEIVE_MAIN_REACT,
 RK_RECEIVE_FOLLOW,
 RK_RECEIVE_FOLLOW_REACT,
 RK_FETCHING = 5300,
 RK_FETCH_MAIN,
 RK_FETCH_MAIN_REACT,
 RK_FETCH_FOLLOW,
 RK_FETCH_FOLLOW_REACT,

F1 Drivers for B&R Connections
12-10

identifier Description

 RK_SENDING = 5400,
 RK_SEND_MAIN,
 RK_SEND_MAIN_REACT,
 RK_SEND_FOLLOW,
 RK_SEND_FOLLOW_REACT,
 RK_SEND_ERROR = 5500,
 RK_TEMPORARY_STATES = 5900,
 RK_OKAY,
 RK_BUSY,
 RK_ERRORS = 6000,
 RK_ERROR_WRITE_LEN_ZERO,
 RK_ERROR_WRITE_MAIN,
 RK_ERROR_3964R,
 RK_ERROR_UNKNOWN = 6999

} STATE_RK512;

Status variable (responses) Variable that outputs status values with each response
telegram.
Values used: See "Status variable (requests)".

Status variable (last error
message)

Creates a PV of type String for holding plain text error
messages.
Note:
This PV always indicates the last detected error. For this
reason, you must always check the time stamp for when the
error was detected. It is very possible that the error actually
occurred days ago.

Status variable (3964R
protocol)

Specifies the current state of the 3964R state machine.
The following states are defined:
typedef enum {
 R_IDLE = 1000,
 R_READY_SND,
 R_READY_RCV,
 R_READY,
 R_SENDING = 1100,
 R_SEND_BEGIN,
 R_SND_STX,
 R_REC_DLE_STX,
 R_SND_DATA,
 R_REC_DLE_DATA,
 R_SEND_END,
 R_RECEIVING = 1200,
 R_SND_DLE_STX,
 R_REC_DATA,
 R_RECEIVE_END,
 R_TRASH = 1300,
 R_TEMPORARY_STATES = 1900,
 R_OKAY,
 R_BUSY,

 RK512 driver
12-11

identifier Description

 R_ERRORS = 2000,
 R_ERROR_TRASHED,
 R_ERROR_ABBORTED_STX,
 R_ERROR_ABBORTED_NAK,
 R_ERROR_ABBORTED,
 R_ERROR_LEN,
 R_ERROR_BCC,
 R_ERROR_RETRIES_REACHED,
 R_ERROR_WRONG_LEN_DATA,
 R_ERROR_WRONG_LEN_HEADER,
 R_ERROR_TIMEOUT,
 R_ERROR_TIMEOUT_STX,
 R_ERROR_TIMEOUT_DATA,
 R_ERROR_UNEXPECTED,
 R_ERROR_TEL, /* General errors */
 R_ERROR_UNKNOWN = 2999
} STATE_3964R;

Status variables per task:

identifier Description

Trigger variable Variable that can be set externally to activate a cyclic task once non-
cyclically. If the driver detects this setting, it resets the PV and
enables the task as quickly as possible (after the last active task is
finished).

Status variable This variable assumes various status values with regard to the task
(such as started, waiting for response, idle, etc.).

The following values are used:
0 – Task not currently being processed
1 – Task being processed
1000 – Task completed with errors
1001 – Task temporarily cancelled
1002 – Task temporarily not being processed due to errors

In the case of 1002, the task continues operating after the time in
SUSP_TIME (see the driver's start options).

Pos. receive counter Variable that gets incremented with each successful access.

Note:
The value of this variable is reset to 0 at each restart.

Neg. receive counter Variable that gets incremented with each unsuccessful access.

Note:
The value of this variable is reset to 0 at each restart.

F1 Drivers for B&R Connections
12-12

identifier Description

Read access counter This is a status variable from the point of view of the data block.
This counter is incremented whenever the data block is read
(e.g. reading the data block as a response to a read task from the
partner, or reading to prepare write task data).
Note:
The value of this variable is reset to 0 at each restart.

Write access counter This is a status variable from the point of view of the data block.
This counter is incremented whenever the data block is written
(e.g. writing the data block as a response to a read task from the
driver, or receiving a send task from the partner).
Note:
The value of this variable is reset to 0 at each restart.

12.6 RK512 driver status variables

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL
documentation on our internet side www.br-automation.com, in the area Material
related downloads.

12.7 The ApDrvRK512 driver for controllers
The ApDrvRK512 driver is used if the B&R controller should exchange data with 3rd-party
controllers or other field devices using the RK512 or 3964R protocol.

12.7.1 General information about ApDrvRK512

This driver and the additionally required data modules are automatically taken into account when
downloading to the controller in the CPU's Software configuration. If the driver is finished being
configured and the CPU has been regenerated, the PVs are ready for the engineering phase.
The ApDrvRK512 driver is configured in the CaeManager after selecting the CPU under the
APROL connection tab. Configuring the ApDrvRK512
The configuration results in the ApCnfRK512 module, which is loaded when it is downloaded to
the controller.

 A maximum of 8 interfaces are supported.

Create a new configuration for each interface. Correct the default values in the Interface, Mode,
Baud rate, Parity, Stop bits, Priority, and Timeout fields (as well as the description if necessary).

 RK512 driver
12-13

Illustration 45: Starting the configuration for the ApDrvRK512

The interface must be specified in the controller notation and consist of slot, subslot, and
interface number.
CP360 example for a serial interface:
SS1.IF1
The serial interface mode must be specified under Mode (RS232, RS422, RS485, TTY). The
respective hardware manual contains information about modes supported by the interface.
The Baud rate, Parity, and Stop bits fields are self-explanatory.
Priority determines who gets to continue (HI=high) and who needs to relent (LOW=low). Also
see chapter Creation of the configuration file rk512.cnf for the driver in the runtime system.
Timeout determines the time it takes for the task to be cancelled with an error if a response isn't
received from the partner.
Now create the data blocks to be simulated by the controller. Specify the data block number and
the number of data words. The Init field doesn't currently have a function.
The list of PVs to be used is created next. Specify the name, the kind (input or output), the type
on the controller (according to IEC standards), the offset of the smallest respective data word,
and the partner type (also according to IEC standards). A description can also be added if
desired. The PVs created here can be used after the configuration has been enabled in the
charts.
After all PVs have been specified, the tasks for this data block must be configured. Cyclic (tasks)
and non-cyclic (event tasks) read and write tasks can be configured. Specify the task type (read
or write), the offset, and the number of data words per task. The cycle or interval time must be
specified for cyclic tasks. Non-cyclic tasks are started only when needed using a trigger PV
(event variable). If the trigger PV is set, then the driver sets it immediately back to 0 before
starting the accompanying task.
Limit values of the task:
DB number [1 ... 255]
Offset [0 ... 255] Data words
Length [1 ... 2048] Data words

Status variables can then be specified for the driver, each data block, and each task.

 These status variables must already be present on the controller. The driver determines
their memory addresses and writes their status values to them.

F1 Drivers for B&R Connections
12-14

The following status variables need to be created for each driver:

identifier Description

Status variable Specifies the current state of the communication state machine.
See also the process control system driver status variable (3964R
protocol).

Status variable adv. 32-bit variable that displays the DB number, the offset, and the length
of the current block when an error occurs:
DB number DB offset Length high Length low
Bit 31 Bit 0

The following status variables need to be created for each data block:

identifier Description

Status variable (read) This is a status variable from the point of view of the data
block. This counter is incremented whenever the data block is
read
(e.g. reading the data block as a response to a READ task from
the partner, or reading to prepare write task data).

Type: unsigned short, overflow at 65535 +1 = 0

Status variable (write) This is a status variable from the point of view of the data
block. This counter is incremented whenever the data block is
written
(e.g. writing the data block as a response to a read task from the
driver, or receiving a SEND task from the partner).

Type: unsigned short, overflow at 65535 +1 = 0

The following status variables need to be created for each task:

identifier Description

Status variable (neg) Counter that increases by 1 for each unsuccessful task.
Type: unsigned short, overflow at 65535 +1 = 0

Status variable (pos) Counter that increases by 1 for each successful task.
Type: unsigned short, overflow at 65535 +1 = 0

Event variable (for non-
cyclic tasks only)

Triggers a non-cyclic task.
If a value change is detected by the driver, it resets the PV to 0
and starts the task.

12.8 Commissioning and Debugging
The RK512Driver process control driver can be started from the console for testing purposes.
The following call should be adapted to check the configuration to see if it meets your needs:

/opt/aprol/bin/RK512Driver -medium tty -device /dev/ttyS0 -nofork
-d_normal 5 –d_protocol 5 –d_redu 5 -self 01 -priority high
-offlineTime 50000 –controller SPS1

 RK512 driver
12-15

Examples for adaptation:

-plc <controller name>
The configuration file rk512.cnf is expected in the
$HOME/RUNTIME/cnf/RK512Driver/<controller name> directory.

-d_normal, -d_protocol, -d_redu
Unnecessary messages can be hidden by reducing the output level (here, all 5).

-device /dev/ttyS0
If an interface other than COM1 (used here) should be used, this parameter must be
changed.

The driver outputs status messages on the console so that you can check whether
communication is taking place successfully.
With the command:
IosEv –pv PV1 PV2 ... PVn

you can monitor the specified PVs. All read PVs (and SYNC PVs) must have valid values when
the driver is running; all write PVs remain in their previous states. If write PVs are being set with
pio, the values can be seen in advance in IosEv. If the write fails, the driver sets the PV to
invalid; otherwise, nothing happens. The error text PV should also be monitored with IosEv in
case error messages need to be read.

12.9 Scaling values
When scaling controller values to the Runtime system and vice versa, the value range of the one
value is mapped linearly to the value range of the other. This is done according to the following
formula:

Data direction: controller runtime system
plsValue = plsMba + (plsMbe – plsMba) * (controllerValue – controllerMba) /
 (controllerMbe – controllerMba)

plsValue = Value in the process control system
controllerValue = Value on the controller

Note:
When scaling in this direction, the system doesn't check whether the value range on the
controller was adhered to. This allows process control system values that fall outside of the
configured value range.

Data direction: runtime system controller
controllerValue = controllerMba + (controllerMbe – controllerMba) * (plsValue – plsMba) /
 (plsMbe – plsMba)

controllerValue = Value on the controller
plsValue = Value in the process control system

Note:
In this direction, the value in the process control system is checked to see whether it falls within
the valid value range. If not, the driver resets it to the respective limit value and uses this limit
value in the formula!

F1 Drivers for B&R Connections
12-16

for plcMba etc. also see chapter Creation of the configuration file rk512.cnf.

12.10 Scaling values
Scaling is used to convert Iosys variables to suitable values on the controller (or opposite side)
or vice versa. Raw sensor values often fall in an unusable range to be displayed in APROL.
They can only be displayed correctly after being adapted (scaled).

MRB, MRE Measurement range start and end.

If a measurement value falls outside of the limits, it is automatically reverted
to the limit value.

NA, NE Scaling start and scaling end for manual scaling. If NA and NE are not

configured, the values from MRB and MRE are used!

The scaling range NR results from:
NR = NE - NA

 NA and NE may not be the same value!

Controller value:
Controller_VALUE = NA + (NR) * (IOSYS_VALUE - MRB) / (MRE - MRB)

Iosys value:
IOSYS_VALUE = MRB + (MRE - MRB) * (Controller_WERT - NA) / (NR)
Example:
A variable should be supplied with a value between 4 - 20 mA, which corresponds to the
REAL range of 0.004 to 0.020
Therefore:
MRB= 0.004
MRE = 0.020
NA = 4096
NE 16384

 SimaticDriver
13-1

13 SimaticDriver

.

13.1 General information about the SimaticDriver
The driver package containing the Simatic driver for APROL is used to connect Siemens
controller types S5 and S7 to APROL using the TCP/IP protocol. Cyclic read tasks and event-
driven write tasks can be configured.
A combination of both task types build the so called SYNC tasks.
The control computer driver supports both a redundant communication bus and a redundant
control system. Ethernet CPs that support communication via TCP connections (not ISO-on-TCP
connections) must be installed as communication partners. The driver is configured in the
CaeManager using the configuration editor for APROL coupling.
With the controller driver, data can be exchanged between B&R controllers and S5/S7 series
Simatic controllers over the TCP/IP protocol. Corresponding communication processors must be
present on the Simatic controller. Communication over the Simatic HI protocol is not
supported.

13.1.1 SimaticDriver delivery contents
The driver package is contained on the APROL system software CD. It contains the actual
communication driver, an example configuration, and this documentation.

The following files are installed:

/opt/aprol/bin/simaticDriver
The communication driver for coupling the Simatic controllers.

/opt/aprol/cnf/simaticDriver/examples/simaticDriver.cnf
An example configuration file.

/opt/aprol/cnf/simaticDriver/importFiles/drvPlssimaticDriver.imp
/opt/aprol/cnf/simaticDriver/importFiles/drvPlssimaticDriver.imp
Import files for installation of the driver on older APROL releases.

/opt/aprol/doc/packages/SimaticDriver/simaticDriver.pdf
This documentation as online help for the Acrobat Reader

Controller driver (For all supported AR versions Vxxx)

/opt/aprol/br/aprol/Vxxx/i386/module/ApDrvS7.br

13.2 Simatic driver for the control computer
.

13.2.1 Reference values of the Simatic driver for the control computer

up to 512 data words per task

F1 Drivers for B&R Connections
13-2

no support for follow-up telegrams

 Because of the use of the RK512 protocol that demands block numbers with a single
byte, blocks can be addressed to a maximum of 255!

13.2.2 Driver start options
The following table explains the driver's start options.

Option Description

-bitsInBytes The -bitsInBytes option detects the value of a binary
variable from the bit position within a Byte (allowed types
are BIN0 to BIN7).
Without this option, the bit position within a Word is
detected (allowed types are BIN0 to BIN15).

-cfg CONFIGFILE Specifies the name of the configuration file, which must be
located in the directory mentioned above.
This parameter must be set!

-ipMasterAddr ADDR1 Sets the IP address for the master connection to the
controller.
This is a start parameter that must be transferred!
e.g.: -ipMasterAddr 192.168.1.1

-ipSlaveAddr ADDR2 Sets the IP address for the slave connection if the driver is
operated over a redundant bus connection. This start
parameter is optional.

-controller DRIVERNAME This parameter defines the environment where the driver
should be started. The driver searches for its configuration
file in the directory
$HOME/RUNTIME/cnf/simaticDriver/DRIVERNAME.
At the same time, the driver is registered in the system with
this name for the Iosys and forms the name of its status
variables (see below) via DRIVERNAME.
This parameter must be set!

-setConnTimeoutTime T1 Specifies the maximum time the driver waits for a response
telegram from the controller before it reports an error that it
hasn't received a response to a request. T1 is a millisecond
value, the default value is 1000.
This parameter must be set!

-setRecvBufferSize SIZE1 Determines the maximum size for communication.
The default value is 8 KBytes. The parameter should not
be changed!

-setNumRetries NUM1 Determines the maximum number of read attempts the
driver carries out to receive a complete telegram. If all of
the telegram data cannot be received in this time, then an
error message is given and the connection is reinitialized.
The default value is 3, and normally does not need to be
changed.

 SimaticDriver
13-3

Option Description

-writeWholeBlockFirst After a write connection is established, all WRITE tasks are
automatically sent to the controller as a whole if the option
is set. Otherwise, only data in the control system that has
changed is sent to the controller. Additional information
shown below.

-setTcpKeepIdle IDLE The driver monitors its connections using TCP routines. If
no communication takes place in the IDLE time specified
(in seconds), the system itself sends a query to the partner,
asking whether it is still active. The time can be influenced
in this way. The default setting of the driver for this value is
5 seconds.

setTcpKeepIntvl INTERVALL The driver sends the monitoring telegram described above
in cycles of INTERVAL. The default setting is 1 second.

-setTcpKeepCnt COUNT The driver resends the monitoring telegram a maximum of
COUNT times. If it still doesn't get a response, it
reinitializes the connection and outputs an error message.
If necessary, it activates a switch to redundancy. The
default setting for COUNT is 5.

-reduMode REDU_COUNT The driver is started in redundancy mode. It cyclically
checks all configured connections. If it doesn't get the
CONNECT status from any of its connections within
REDO_CPUNT number of times, it goes into slave mode
and leaves the master status to the slave driver.
The cyclic check of the connection takes place every 200
milliseconds and begins two seconds after one of its own
connections is lost at the latest. This results in redundancy
switching after
2 + REDU_COUNT * 0.2 seconds at the latest.
However, the partner driver can only establish a
connection if the controller provides the resources for the
connection. Additional information concerning this topic
can be found in the redundancy section.

-s5Mode The task line in the configuration file is specified in words,
not in bytes!

-s5Offsets The PV offsets in the configuration file are specified in
words, not in bytes!

13.2.3 Description of the configuration file
The driver is configured using the start options together with the configuration file. The
configuration consists of connection, task and process variable settings.
A connection includes the IP address of the partner station as well as the port number of the
socket on the controller used for communication. A separate connection is required for each
data direction (reading from the controller, writing to the controller). Only one connection is
permitted to be selected for writing, multiple connections are permitted for reading and may, in
some circumstances, improve performance.

F1 Drivers for B&R Connections
13-4

A task consists of the task type (read, write or both), description, data to be transferred and, if
applicable, the communication cycle that is to be used. Any number of tasks can be configured
for a connection, as long as they are the same type.
The process variable declaration consists of the PV name, the offset in the telegram, the
variable type on the controller as well as optional scaling information. Process variables are
assigned directly to a task which automatically determines how they can be used in the diagram
(input, output or bidirectional variable).
In the following section, the structure of the configuration file is described in detail using
examples:
This is a comment

^READ/2000/DB100/0/100/500 # Read task, every 500 milliseconds
 READ_PV1_NAME_1 0 BIN0
 READ_PV1_NAME_2 0 BIN14
 READ_PV1_NAME_3 2 INT16
 READ_PV1_NAME_4 4 FLOAT
 READ_PV1_NAME_5 8 INT32
 READ_PV1_NAME_6A 12 INT16 0 1000 0 100
 READ_PV1_NAME_6B 12 INT16 0 1000 0 10000

^READ/2000/DB101/10/100/700 # read task, every 700 milliseconds
 READ_PV2_NAME_1 0 BIN0
 READ_PV2_NAME_2 0 BIN14
 READ_PV2_NAME_3 2 INT16
 READ_PV2_NAME_4 4 FLOAT
 READ_PV2_NAME_5 8 INT32
 READ_PV2_NAME_6A 12 INT16 0 1000 0 100
 READ_PV2_NAME_6B 12 INT16 0 1000 0 10000

^SYNC/2002/DB200/0/50/200 # Read task, every 200 milliseconds

with the write possibilities
using the WRITE connection
 SYNC_PV1_NAME_1 0 BIN0
 SYNC_PV1_NAME_2 0 BIN14
 SYNC_PV1_NAME_3 2 INT16
 SYNC_PV1_NAME_4 4 FLOAT
 SYNC_PV1_NAME_5 8 INT32
 SYNC_PV1_NAME_6A 12 INT16 0 1000 0 100
 SYNC_PV1_NAME_6B 12 INT16 0 1000 0 10000

^WRITE/2001/DB10/0/100/0 # Write channel for pure WRITE tasks

and for writing SYNC variables
 WRITE_PV1_NAME_1 0 BIN0
 WRITE_PV1_NAME_2 0 BIN14
 WRITE_PV1_NAME_3 2 INT16
 WRITE_PV1_NAME_4 4 FLOAT
 WRITE_PV1_NAME_5 8 INT32
 WRITE_PV1_NAME_6A 12 INT16 0 1000 0 100
 WRITE_PV1_NAME_6B 12 INT16 0 1000 0 10000

The previous example contains a configuration for a driver that uses read, write and bidirectional
communication.
The "#" character indicates the start of a comment; all characters in the line including this
character are ignored. Empty lines are also ignored.
Task declarations are introduced with the "^" character. Task line fields are separated from each
other with the "/" character.
Lines that are not interpreted as comment lines or task lines are PV declarations. Here, the
individual fields are separated by spaces or tabs. PV lines always refer to the last configured
task, which is why the lines are never allowed to come before the task lines.
A task line contains the following information:

 SimaticDriver
13-5

Task type Deter
mines
the
comm
unicat
ion
directi
on as
well
as
the
behav
ior of
the
PVs
declar
ed for
this
purpo
se.
Three
key
words
are
define
d for
the
task
types:
READ

cyclic read task

WRIT
E

event-driven write task

SYNC cyclic read with event-driven
write

Port number for the
connection

Represents the connection, together with the IP address of the
target node, and must be configured on the controller
accordingly.

Type and block number Specifies the block type and block number on the controller. If
a type code is not listed, then the module type is Data block
(DB). Type and number must be entered one after the other
without spaces.
The following codes can be used:
DB, MB, EB, AB, PB, ZB, TB, BS, AS, DX, DE, QB

Number of the first data word
used

Specifies the offset on the module where the data can be
found.
Important: The offset is listed in words, 1 word consists of two
bytes.

Number of data words used This specifies how many data words are to be read or written.
Attention: Unused areas in a block are overwritten with zeros
one time during a block write (option –writeWholeBlocks is
set).

F1 Drivers for B&R Connections
13-6

Cycle for cyclic
communication

Cycle for cyclic read tasks in milliseconds. If a cycle time that
is shorter than possible is set, communication takes place as
quickly as possible.
Write tasks are not carried out cyclically, so this value is
ignored.

13.2.4 Mode of operation of the different task types
READ:
Read tasks are called cyclically. The control computer driver sends a read request with address
and number of items to the controller. From there, a response telegram is sent back that
supplies the desired data.
If the response data is not received within a response timeout, then a timeout error is generated
that closes and re-initializes the connection. Afterwards, the read cycle starts from the beginning.
Because the response data do not contain any relation to the request telegram, it is not possible
to send several READ requests simultaneously over the same connection.
I.e. All read tasks for a connection are carried out sequentially so that the minimum cycle time
results from the sum of the read tasks required. That means if 4 read tasks are to be executed
cyclically every 500 milliseconds and each task has a runtime of 300 milliseconds, the real cycle
time is 1200 milliseconds. For this reason, READ tasks can be distributed using two or more
connections at the same time. In this case, the running time for the tasks is limited by the
controller's backplane communication, so more than two connections should not result in an
improvement.

WRITE:
Write tasks are sent "on event". If an Iosys value change is recognized then the driver creates a
write request telegram and sends it to the controller. A receipt telegram that contains the
information regarding error or "no error" is sent from there. Because the response telegram also
contains no relation to the request telegram, it is only possible to send one write request.
The next telegram can only be sent when this has been acknowledged. Incoming events are
hung onto a write queue in order to be written, and are sent according to the FIFO principle (First
In First Out).
If more events are created than can be sent in the long run then the queue grows longer. This is
why the driver's memory usage grows, and the speed with which changes arrive at the target
system gets smaller. Amongst others, the number of change events can be reduced by this as
the control computer task's cycle time has been raised. This also naturally has the effect on the
update time of the entire system.

 The smallest possible unit according to the protocol is transferred whilst writing, 1 to 2
data words with S5, and at least 1 Byte with S7.
Bits that are contained within a data word are therefore always transferred as a whole
word, non-defined Bits within the word are always set to 'Null'. If the non-defined bits in
the target system are being used in another way then they will eventually be overwritten!
A clear separation of read and write variables in separate areas is guaranteed in this
way!

SYNC:
SYNC, or also "bidirectional" tasks, are a combination of READ and WRITE tasks, whereby
different connections are used for this. A connection is configured for the read task, another
connection for the write task. Several SYNC tasks are allowed to use the same write connection,

 SimaticDriver
13-7

whereby the delays that have been described for the write tasks also manifest here for each
write event.
If SYNC tasks are used and no pure WRITE variables are declared, then the WRITE connection
still must be configured without variables so that the write connection is recognized by the driver.

 ^SYNC/2001/DB100/0/100/1000 Task for reading DB100
 from offset 0 the length 100
 Data words every 1000
 Milliseconds
 PV1 ...
 PV2 ...
 PVx ...
 ^WRITE/2002/

The write connection to port umber '2002' is defined here. All changes regarding a SYNC task's
PV are sent over this channel.

13.2.5 Additional notes about the mode of operation

 When using an S7 controller, data is transferred in partial telegrams with ca. 220 bytes
of reference data each. For example, 100 real variables of 4 bytes each need two
individual telegrams.
Depending on the size of the data area to be read, the
 '-setNumRetries' and '-setConnTimeout'
parameters must be adjusted so that the telegram is received completely without a
timeout. The time, which is necessary for the complete reception of the data, depends
on the load of the S7 and the amount of the individual telegrams.
As a partially received packet blocks the driver until it is completely received, it is
recommended to dissect large data areas into partial tasks. There are more request
telegrams because of this, but the reaction time of the driver is shortened due to the
non-blocking and the possibility to process several connections in parallel.

 When using an S7 controller, response telegrams are always dissected into partial
telegrams with a size of about 220 bytes.
For example, 4000 bytes are necessary for reading 1000 REAL variables (Float = 4
byte).
Accordingly, the'-setNumRetries' and '-setConnTimeout' parameters must be raised.
Apart from that, at least 18 (partial telegrams)*50 ms. = 900 ms. communication time is
needed. Almost the entire communication time is used in this example with a reading
cycle of 1 second!
This means that telegrams with a larger size than about 220 bytes are dissected into
partial telegrams and thus the communication time is substantially raised.

The waiting time between a request and acknowledgement telegram is set via '-
setConnTimeout' [in milliseconds]. 1000 ms is used per default. If no response
telegram arrives within this time then this leads to an error with disconnection and
subsequent re-establishment.

F1 Drivers for B&R Connections
13-8

 The timeout time that should be set here depends on the number of words that are to be
transferred, on the controller's load, and on the network. A higher data volume, and thus
more communication between CPU and CP leads to an increased response time.
Details can be found in the documentation of the respective CPs (Communication
processors).

 With large data volumes, the data are transferred in part-telegrams.
In this case the data do not arrive simultaneously at the APROL driver, but after one
another as data 'fragments'. The driver recognizes the arrival of the first fragment and
waits for the completion of the data. A maximum of the retries that are configured via the
"-setNumRetries" option are used for this purpose. A retry is about 50 milliseconds. If
all of the data could not be transferred within the time then the parameter must
eventually be increased.

 You can compare the driver's output in debug mode for this purpose:
"sleeping for data" = Driver is waiting for a further data fragment
"read successfully done" = all data are available
"timeout waiting for data" = Data have not been received within the waiting time
The messages are output when the debug filter is set to 0x3. (See chapter Notes for
starting up the driver).

13.2.6 PV declaration
A PV declaration consists of the following fields:
Name of the PV in Iosys The name of the PV in the Iosys is defined here. These names

must be used to connect the variables in the project plan.
Offset of the PV in the
telegram

The position of the PV in the telegram in BYTES is defined
here, not on the controller. The first PV of a block is always at
offset 0, even if the first data word has offset 10!

PV type on the controller The type, size and measuring range of the PV as well as the
PV type in the Iosys are defined here.
The following types are possible:

 BIN0 to BIN15 Bit 0 to bit 15 in data Word

or

 BIN0 to BIN7 Bit 0 to bit 7
data Byte
(with the option -bitsInBytes)

Both cannot be used with
the -s5Offsets option

 UINT8, INT8 Byte in data word,
signed or unsigned.
Range:
0 – 255 or
-128 – 127

 UINT8L, INT8L
UINT8R, INT8R

left or right byte
(only with option -s5
offsets can be used!

 SimaticDriver
13-9

 UINT16, INT16 Data byte, signed or
unsigned.
Range:
0 – 65535
-32768 - 32767

 INT32 Signed double word.
Range:
-2147483648 up
2147483647

 FLOAT Variable of type IEEE
Floating Point

 S5FLOAT Variable in format S5 Floating
Point

 STRINGxx String with length xx
 The BIN and INT types are stored in the Iosys as integer

variables, the FLOAT types as double variables and the
STRING types as string variables. If INT types are scaled,
they are also stored in the Iosys as double variables!

 The string variables are transferred in C notation from the
APROL point of view, i.e. they must be closed with a null
byte.
Therefore, there is 1 character available for the string and 1
character for the end marking in a STRINGxx with xx being
between 1 and 255 (Transfer length in bytes) xx.
At any rate, the target area on the controller must be able to
handle xx characters.
Unused string characters are written with null bytes, i.e. a
STRING20 with '12345' is comprised of '12345' and 15 null
bytes.

PLS_MBA, PLS_MBE,
SPS_MBA, SPS_MBE

Measurement range in the control system and on the
controller (MBA= start of measurement range, MBE= end of
measurement range). These entries are optional and must be
available as pairs if they are to be used. When writing
variables, they are only sent within the measurement range.
When reading, also values outside the measurement range
are accepted. When scaling, the range on the control system
is represented in the controller range, which allows stretching
or compressing.
If the measurement range is not specified, the measurement
range for the variable types (see above) are used, stretching
or compressing is not carried out.

13.2.7 Scaling formulas
Variables are scaled using the following formulas:

Abbreviations:
PLS_MBA, PLS_MBE: Start and end of measurement range in the process control system (PCS)
controller_MBA, controller_MBE: Start and end of measurement range on the controller

F1 Drivers for B&R Connections
13-10

IOS_VALUE: Variable value in the Iosys
controller_VALUE: Value of the variables on the controller
PLS_RANGE: PLS_MBE – PLS_MBA
controller_RANGE: controller_MBE – controller_MBA

1. Iosys variables for READ/SYNC tasks
IOS_VALUE = PLS_MBA + (controller_VALUE – controller_MBA) / controller_RANGE * PLS_RANGE

2. controller variables for WRITE/SYNC tasks
controller_VALUE = controller_MBA + (IOS_VALUE – PLS_MBA) / PLS_RANGE * controller_RANGE

13.2.8 SimaticDriver's status variables

After starting, the driver automatically creates some status variables in the Iosys. The naming for
these PVs results from the parameter –controller. The following section contains a list of PVs
and a description of their meanings. The parts of the name written in italics are variable types,
which are then described, and the parts written normally are fixed texts.

PV name Description

PlcName_Pid_debugFilter controllerName: Name of the driver, corresponds to the option
–controller
Pid: Process ID for the driver,
 determined using ps ax

With these variables, driver debugging outputs can be
activated. Depending on the bits within the set value,
messages can be shown or hidden.
The
following
list
shows
the bits
and the
messag
e types
activated
by them:
0x00000
001

Activates error outputs

0x00000
002

Activates process
messages

0x00000
004

Messages for connection
monitoring

0x00000
010

Debugging the
configuration according to
cnf file,
one time, deactivates itself

0x00000
020

Output of socket handle
and socket settings

 SimaticDriver
13-11

PV name Description
after the connection has
been established, not if
connection is already
active!

0x00000
100

Hex dump for received
telegram header

0x00000
200

Hex dump for received
telegram data

0x00000
400

Hex dump for sent
telegram header

0x00000
800

Hex dump for sent
telegram data

0x10000
000

Status output for tasks lists,
number of read or write
tasks waiting to be carried
out

Important: After setting the desired bits, the outputs are placed
in the corresponding log file. The outputs must be reset to zero
after the analysis so that the hard drive is not filled up!!!!

controllerName_lastErrorTex
t

ControllerName: Name of the driver, corresponds to the option
–controller:
In this string variable, the driver writes the error texts which
also contain the time stamp for the message.

controllerName_IpAddr_Port
No_connState

controllerName: Name of the driver, corresponds to the option –controller
IpAddr: IP address for the connection to the controller
PortNo: Port number on the controller

This integer variable shows the current state of this connection.

Va
lue

Meaning

0 This connection is not configured
1 The connection is now inactive
2 The connection is being established
4 The connection has been established

The selection of the states has been made so that bit-oriented processing is possible in the plan.

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL
documentation on our internet side www.br-automation.com, in the area Material
related downloads.

13.2.9 Workflow description for the control computer driver
After starting the driver, it reads its configuration file and registers its process variables in the
Iosys. Then it remains inactive in slave mode until it is informed by the redundancy mechanism
that it should become active. Now the driver registers its status variables in the Iosys,
establishes the connections to the controller and starts its cyclic tasks, i.e. READ and SYNC
tasks. WRITE tasks or SYNC tasks that write information are only executed after change events.

F1 Drivers for B&R Connections
13-12

The following notes must be taken into consideration when carrying out a driver analysis:

SYNC variables can only be written if they have been read at least once. After losing the
connection, it is necessary to read them again.

READ and SYNC variables are set to invalid in the Iosys when reading fails (e.g.
connection is lost, or read block on the controller is not available).

WRITE variables are set to invalid in the IOSYS when writing to the controller fails. They
may remain invalid until a required write tasks is carried out.

Write tasks that have failed are not automatically repeated by the driver, this is normally
done using control system logic.

SYNC variables that are written are internally blocked from being read for the duration
of the write task. If a successful read task takes place during an active write task, then
the value read is ignored. If faulty logic allows many changes to take place in a short
period of time, then it may be impossible to read this PV.

A driver in slave mode may register its PVs in the Iosys, but only receives events when
it becomes master. Events set to the slave are thrown out.

If a driver is started with the option -writeWholeBlockFirst, it writes all current control
system values to the controller after a connection is established. Without this option,
only events sent after the connection was made are taken into consideration.

13.2.10 Driver redundancy
The driver makes it possible to implement bus redundancy and computer redundancy.
By configuring two different IP addresses for the controller, it is possible for the driver to reach
the controller using two network cards (and therefore using two network lines). In this case, the
controller must also use two communication processors so that the different network masks can
be linked. When set up accordingly, controller redundancy can also be achieved here, as long as
it is possible to remove the passive controller from the network (or to prevent the CP from
accepting a connection). The driver checks the connections in the order of the configuration and
always attempts to communicate using the first connection and only attempts to communicate
using the second connection if an error has occurred.
The second type of redundancy is process redundancy, which can also be used to support bus
and controller redundancy. The disadvantage of this type of operation is a relative long switching
time because several monitoring cycles are needed before the active driver gives up its status
as master and the passive driver can take over.
This type of operation is configured using the '–reduMode' option together with the entry for the
number of checks that should be made before the driver becomes passive. An active driver
cyclically monitors all configured connections. If communication is not possible on ALL
connections, it starts a countdown. If it is not possible for the driver to reestablish a connection
using one of these connections before the countdown is finished, then it gives up the status as
master, waits for a second to give the partner the chance to become master and then operates
as passive driver once again. Note for calculating the switching time for process redundancy:
The driver checks its connections cyclically every 200 ms until all connections are made. Once
all connections are made, the monitoring cycle is changed by a factor of 10 to 2000 ms. If it then
detects the loss of at least one connection, the cycle is reduced again to 200 ms. The
countdown begins as soon as all connections have been lost (detected after 2000 ms in the
worst case) and lasts for a period of COUNT times 200 ms (Whereby COUNT must be set with
the '–reduMode' option).

 SimaticDriver
13-13

If the COUNT is set to 1, the switching time could still be up to 2 seconds, while bus redundancy
using a driver is switched immediately as long as the parallel connection is established.

13.2.11 Configuration of the driver in CaeManager
The start options for the SimaticDriver are set in the CaeManager using the CC modules in the
'APROL system' project part.
If more than one driver should be started then another driver instance must be created for each
additional driver using the "Create new instance" shortcut menu.

 This menu item is only available when the first driver instance is selected!

Then each driver instance must be configured individually. Make sure that the start option is set
(Start column). The start option is set via double-click.
Then the individual options are configured. There are default options that do not have to be
configured, and options that do not have default values and therefore must be configured.
It is absolutely necessary to configure the options for the master controller IP address, driver
name, which corresponds to the directory with the configuration file, and the Iosys option if the
automatically assigned default value should be changed. After successful configuration and
download to the runtime computer, the corresponding SimaticDrivers are listed in the
StartManager.

Illustration 46: Configuration of the SimaticDrivers

13.2.12 Creating a configuration file with the configuration editor

In order for the simaticDriver instances to be able to communicate, a configuration file must be
created for each driver in the CaeManager, in the 'APROL system' project part (APROL
connections tab).
A valid configuration consists of at least one task and the corresponding process variables.
The data direction (read or write) must be specified as well as the access type used by the driver
for the variables. A separate task must be created for each data block that should be transferred.
If the data to be transferred does not fit in one telegram, several tasks can also be created for a
data block using offsets.

F1 Drivers for B&R Connections
13-14

The procedure will be clarified using an example:
A data block DB100 with data values 0 to 99 should be read once per second from an S7
controller. As an example, 5 PVs will be created which are stored at various positions within this
data block.
Please note that this is an example used to describe the procedure. It doesn't make sense to
transfer all data words when no PVs exist.
In addition to this read task, a write task will be generated that also consists of 5 PVs stored in
various words in DB101.
Now create a new configuration. For this purpose, choose the "APROL connections" entry in
the configuration part of the "APROL system" project part, in the CaeManager.
In "3rd-party connections CC" then choose the "Simatic S5/S7 connection" entry and create
a new connection with the "New" menu item in the shortcut menu.
Enter the name here (must correspond to the parameter -controller in the start options and
therefore the directory name used when saving the configuration file).
In the Explorer view for the coupling list, a corresponding entry will be created with this name.
Under this entry, a field called Task is also automatically created.
Then go to the "New" menu item in the shortcut menu and create the tasks numbers 1 and 2.

Illustration 47: Create the task:

After selecting the task number, you can select the task type (READ, SYNC, WRITE), the port
number of the socket for this connection (this also must be configured in the Simatics software
accordingly!), the number of the data block, the offset, the number of data words to be
transferred and the cycle time in milliseconds.
Enter the following for task number 1:
READ, <Port number Read>, 100, 0, 100, 1000.
Enter the following for task number 2:
WRITE, <Port number Write>, 101, 0, 100, 0.
The write task does not require a cycle time (we only send data when it changes in the control
system, i.e. "on event"). Optionally, a short description can be added for each task.
The PVs can be created for each task using the New menu item in the shortcut menu and the
Variables entry.

 SimaticDriver
13-15

Illustration 48: Creating the variables

If all variable names have been entered, each PV can be defined by going to the Variables field
in the list view of the configuration: Depending on the task type, Input must be selected in the
I/O type column for READ tasks, Output is to be set as I/O type for WRITE tasks and
bidirectional for bidirectional tasks.
The I/O type field specifies the variable type in the logic diagram. This is necessary for correct
wiring. The remote type defines the variable type saved on the controller in this location. You
can select bits within a word, whole words, double words or float variables.
The I/O type has no meaning for the driver, but it is necessary to make sure that the I/O types
match the remote types. The float remote type creates a float variable in the Iosys, therefore
the I/O type must also match the float group. Integer remote types converted using scaling
information are also float types. Integer variables that are not scaled and bits are integer types
and can be represented using all I/O integer types. The Offset field specifies where the
variables are located with reference to the star of the telegram.

 Please note that offsets are stipulated in bytes.

Scaling information can also be entered if necessary.
After all the required entries have been made, the resulting configuration file is shown after
selecting the coupling name below the Configuration preview tab.
A plausibility check is carried out and you will be informed of any configuration errors.
After saving the control computer configuration and then activating, compiling and generating it,
the configuration can be loaded onto the runtime computer and the driver can be started for the
first time.
Using the tool IosEv, you can check if all PVs are read correctly, and using the tool pio, Write
PVs can be written to the controller.

13.2.13 Notes for starting up the driver
When starting up the driver, we recommend starting it manually at first using a suitable
configuration. Set Debug mode using the option –d 0x27 and start from the directory containing
the configuration file with the option –ignoreCnfPath. Now you can analyze the Debug
messages and relatively quickly determine if the connection has been established and if the
telegrams are being answered. If everything is OK, communication can be started using the
AprolLoader.

F1 Drivers for B&R Connections
13-16

13.3 Simatic driver for the controller
.

13.3.1 Reference values of the Simatic driver for the controller
The following briefly summarizes the features of the driver.

16 connections are allowed for the driver.

64 tasks are allowed to be configured on the 16 connections.

Up to 500 data Words can be transferred per task.

The maximum cyclic time is 1000 milliseconds for active tasks.

 Because of the use of the RK512 protocol that demands block numbers with a single
byte, blocks can be addressed to a maximum of 255!

13.3.2 General information about the configuration data module
The driver looks for a data module called ApCnfS7 on the controller. This data module
configures the tasks, external status variables, and shovel tasks for distributing or preparing
data.
It differentiates between task lines, their suitable status lines, and the accompanying variable
lists. This information must be configured in succession. Status lines are optional; theoretically,
variable lists can be any length.

13.3.2.1 Structure of the configuration data module
A task line between with the "^" character. A comment line is set off by a "#" character.
The following task types exist:
READ Active cyclic reading of data blocks of the Simatic controller
READP Passive reading of data blocks of the Simatic controller. The controller sends

telegrams, which contain a header, which then again contains information
about the source data. Telegrams are acknowledged by ourselves, not only
positive, but also negative when the data range is not configured.

WRITE Active cyclic writing of data blocks of the Simatic controller This acknowledges
the receipt of the telegram.

RECV Receipt of raw data (without telegram header) from the Simatic controller. A
receipt is not sent.

SEND Cyclic transmission of raw data (without telegram header) to the Simatic
controller. Receipts are not sent.

Thereby, the following tasks can be configured:
^READ/IP_ADDRESS/PORT/DBNO/OFFS/NUM_DWS/POLL_CYCLE
^READP/IP_ADDRESS/PORT/DBNO/OFFS/NUM_DWS/RECV_TIMEOUT
^WRITE/IP_ADDRESS/PORT/DBNO/OFFS/NUM_DWS/WRITE_CYCLE
^RECV/IP_ADDRESS/PORT/0/0/NUM_DWS/RECV_TIMEOUT

 SimaticDriver
13-17

^SEND/IP_ADDRESS/PORT/0/0/NUM_DWS/WRITE_CYCLE

Note about the syntax of a task line:
IP_ADDRESS IP address of the Simatic controller.
PORT Socket number of the Simatic controller
DBNO Number of the data block on the Simatic controller

(Only data blocks are allowed, no other type of block)
OFFS Number of the first data word to be processed on the Simatic controller
NUM_DWS Number of data words to be transmitted, each is composed of 2 Bytes
POLL_CYCLE Query cycle in milliseconds, relative to the last receipt telegram, or time

out with missing receipt.
RECV_TIMEOUT Maximum time in ms between two telegrams from the Simatic, before

the connection is "reconnected" - 0 means no reconnect
WRITE_CYCLE Send cycle in milliseconds, respective to the last receipt telegram. In the

case of a time out (no receipt), or loss of connection, Retry is set
permanently to 1 second.

The following rules are to be taken into account with respect to the telegram structure:

A SEND and a RECV task can be configured over the same connection, but only
exactly one per type. If more data (or less with receive retries) is received with RECV
than is configured, then these are discarded and the connection is "reconnected". The
mutual SEND task on the same connection is also affected by this.

Several READPs can be configured over the same connection.

Several READs are allowed to be configured over the same connection.

Several WRITEs are allowed to be configured over the same connection.

A connection can always only be simultaneously used for exactly one task, before the
next task is processed. An active task (READ, WRITE) is composed of a request
telegram, and a response from the partner. A response is waited for with a time out of 2
seconds. A time out triggers a reconnect to the partner. With several tasks over the
same connection, the minimum cycle time results from the sum of the individual cycles
of the corresponding tasks. Meaning that taking 3 tasks of each of 300 milliseconds
between request and response into account, the minimum cycle time of each individual
task should be taken as 1 second, independent of the set cycle time. If receipts are
missing, further tasks are delayed respectively.

Mixing task types over a mutual connection is not allowed, apart for SEND/RECV.

 Please note that with a faulty configuration, the load on the controller can be so
great that an INA connection cannot be processed correctly.
The reason for this could be permanent reconnects due to wrong answers, or false
telegram sizes.
At the moment the reconnect loop is 1 second, when not all connections have been
established, and a monitoring time of 5 seconds, as soon as all connections are
established.

Up to 4 status variables can optionally be declared after each task line. The driver can then write
information about its operating state to them. These status variables must be created using

F1 Drivers for B&R Connections
13-18

logic in an APROL task (placed on the input border), and are not made available by the
driver itself.
Status variables begin with the ":" character.
They have the following structure:

:TYPE: EXT_NAME

TYPE Type of status variable.

Permitted types:
REQ_STAT,
REQ_POS_CTR,
REQ_NEG_CTR,
REQ_NEG_DATE
Further information about this can be found in chapter Description and
value range of the status variables.

EXT_NAME Name of the external global variables where the status info should be
written. If these variables aren't present when the driver is started, a cyclic
check takes place every 60 seconds to see if the variables have been
created by downloading the APROL task. Until this is done, the status
information is considered lost. The driver checks the length of the PVs on
the controller and interprets it as a USINT, UINT, or UDINT depending on
the length.

After the desired status variables are configured, the shovel table is created. This table consists
of a list of entries that specify the source/target variables, the offset in the telegram, and the
length in bytes.
Individual elements are separated by a "," (comma):

VAR_NAME, BYTE_OFFSET, BYTE_LEN, CVT_INFO

VAR_NAME Name of the external global variable being used as a source or
destination for the communication. If the variable isn't available by the
time the driver is starter, then every 60 seconds the system attempts to
determine its address.

BYTE_OFFSET Position of the variable in the telegram (regardless of the DB start for the
task).
This is specified in bytes!

BYTE_LEN Number of bytes that should be copied.
It is mandatory that the same variable types are present on the controller
and the Simatic controller. The driver only copies the bytes; it doesn't
interpret the values contained in the telegram.

 SimaticDriver
13-19

CVT_INFO Depending on the byte number BYTE_LEN, the settings 0-15, 1, or "-"
are possible.
0 .. 15: Gateway rule shows BIN0 .. BIN15
Transfers an individual bit (0..15) of a data word to a BOOL variable. This
only affects variables with a BYTE_LEN == 1.
1: Gateway-Regel shows S5FLOAT
Converts two data words from or into the S5 FLOAT format. This only
affects variables with a BYTE_LEN == 4.
-: Gateway rule shows DEFAULT
No type conversion, i.e. source bytes are simply copied to destination
bytes, with swap routines handling the platform-dependent byte ordering.
Unallowable settings such as S5FLOAT with BYTE_LEN==1 are handled
like DEFAULT!

13.3.2.2 Configuration data module example
The following is an example of a configuration data module:
created 2006.04.10 11:39:37 by Hartmann
""
"^WRITE/10.49.80.80/2000/100/0/100/1000
""
"READ/10.49.80.79/2001/101/10/100/1000
" :REQ_STAT: Read_Db_100_reqStat
 ":REQ_POS_CTR: Read_Db_100_posCtr
" :REQ_NEG_CTR: Read_Db_100_negCtr
" :REQ_NEG_DATE: Read_Db_100_negDate
" DB100_PV_0, 0, 1, 0 "
" DB100_PV_1, 1, 1, - "
" DB100_PV_10, 148, 1, 1"
" DB100_PV_2, 2, 1, -"
" DB100_PV_3, 4, 4, -"
" DB100_PV_4, 8, 4, -"
" DB100_PV_5, 12, 4, 1"
" DB100_PV_6, 16, 4, -"
" DB100_PV_7, 20, 64, 0"
" DB100_PV_8, 84, 64, 0"
" DB100_PV_9, 148, 1, 0"

13.3.3 Configuring the driver for the controller

The controller driver ApDrvS7 is configured in the CaeManager in the view of a CPU in the
"APROL connections" tab.

F1 Drivers for B&R Connections
13-20

Illustration 49: Configuration preview in the CaeManager

To create a new configuration for the ApDrvS7 driver for your controller, select the field ApDrvS7
configuration and then select New from the shortcut menu.

 The name 'ApCnfS7' is permanent and cannot be modified!

Then select the Requests field and create a new task from the shortcut menu (New menu item).
Carry out the necessary entries. Then the name of the status variables can be assigned.

 If not names are entered, then the fields are not exported and the driver cannot output
any status information.

Then the variable list for this task must be created.
Up to 64 tasks can be created, but make sure that no more than 16 connections are being used.
In other words, the IP address and socket number values may be different only up to 16 times.

Illustration 50: Task list with two tasks using two connections

 READ- and WRITE tasks generally have to be handled over two different connections.
The necessary settings need to be made on the Simatic controller.

 SimaticDriver
13-21

Illustration 51: Configuring a variable

 Note about VarTyp:
STRING types are interpreted as having 64 bytes only; this corresponds to 32 data
words on the Simatic controller.

After the data has been entered, at least one compilation procedure must be executed for
this controller in order for the data module to be exported!

13.3.4 Workflow description for the controller driver
After the download, the driver creates a "non-cyclic" task, which handles data traffic and is not
tied so tightly to cycle times. The cyclic section remains and subsequently executes a watchdog
function. If no signs of life occur from the non-cyclic task for approx. 30 seconds, it is stopped by
the cyclic section, removed, and restarted.
The non-cyclic task first checks whether the data module is present. If it's found, all tasks are
created internally. Cyclic timers are used to monitor the data module, the connection, each task,
and to determine variable addresses. The latter is repeated until all PV addresses have been
successfully retrieved.
The following defined timer settings are available:
Connection monitoring: 1000 ms if not all connections are established

5000 ms if all connections are established
Data module monitoring: 2000 ms
Detection of the variable addresses: 60000 ms
Timeout for acknowledgements: 2000 ms

Within the framework of the connection monitoring, the socket connection is established as
unblocked and monitored cyclically. If an error occurs, the connection is closed and reopened.
Monitoring the data module checks whether the data module is (still) present and whether it has
the same time stamp as the last time it was checked. If necessary, the driver is stopped and
restarted with the new configuration. If the data module is removed, then the driver also stops
and waits for a new data module. Determining the variable addresses cyclically checks whether
all communication and status variable addresses are known. Determining the variable addresses
cyclically checks whether all communication and status variable addresses are known. Since
only global variables are accessed, it's not dangerous to remove and download APROL tasks.
Global addresses are no longer valid only after recompiling, and the driver must be stopped
before the download. Otherwise, the controller may crash.

F1 Drivers for B&R Connections
13-22

Timeouts for acknowledgements are always carried out after a send telegram is issued. If the
acknowledgement comes before the timer expires, then POS_CTR is incremented and the task
is considered finished. If the timeout expires, then NEG_CTR is incremented and the connection
is closed as a precaution. It generally takes a few seconds after this before the connection can
be reestablished and everything runs normally.
The cyclic task timer is always reverted to when a task has ended. This happens regardless of
the connection status or whether the task was successful. If the connection is not established
when the timer expires, then NEG_CTR is incremented and the task is ended. If a negative
acknowledgement is received, the same thing happens.
If a WRITE task is initiated, then all output data is copied to the telegram buffer, which is then
sent. Copying in the non-cyclic task doesn't guarantee that all data in the telegram has been
taken in at exactly the same point in time of the task class. Due to the cyclic and higher-priority
system, interruptions by the operating system are possible. Only the consistency of 4-byte
variables and smaller are guaranteed; strings are not guaranteed from the same cycle.
For a READ task, the request telegram is sent, and the data is copied to the destination with the
response telegram. The same applies as for WRITE variables here. Variables with a length of 4
bytes or less are shoveled without interruption; strings can be put together from different cycles.

13.3.5 Description and value ranges for status variables
The following tables contain a brief description of the status variables and their value ranges:
REQ_STAT Documents the current state of a request.

The following values can be used:
0: Last task finished without an existing connection
1: Task inactive, waiting for request timer to expire
2: Task sent, waiting for acknowledgement
Passive jobs (READP and RECV) are always set to "1" with an
existing connection.

REQ_POS_CTR Incremented with each task that finishes successfully. The
variable is interpreted as a USINT, UINT, or UDINT and has the
corresponding overflows.

REQ_NEG_CTR Incremented with each task that doesn't finish successfully. The
variable is interpreted as a USINT, UINT, or UDINT and has the
corresponding overflows.

REQ_NEG_DATE Must be of string type at least 32 bytes long. It receives the time
stamp of the last error in text form.

13.4 Configuration using the Simatic software
Here is a short description of the steps required to configure a connection on the S7 page using
the Simatic software.
Our test environment was created with the Step7 software version 5.2 (release V5.2.0.0).
First, a station is created where the corresponding communication modules will be installed. On
the Ethernet modules, TCP connections must be supported. ISO-on-TCP does not work! Using
the Configure Network menu item, go to the NetPro window and click on the CPU (not the
respective CP). A window is shown listing the configured connections.

 SimaticDriver
13-23

Right-click Add New Connection to select a connection with an unspecified station and TCP
connection. The warning that follows can be ignored and you will then see the properties
window for the connection. The name for the connection can be freely selected here. Active
connections must be switched off, the port address must be set locally under the address tab,
the fields for the partner remain empty. Under options, set the operating mode to Fetch
passive for READ tasks for the driver and Write passive for WRITE tasks for the driver.
Additional settings are not necessary, not even in the cyclic program on the CPU.

13.4.1 Configuration of the jobs with step 7 -NCM or INAT for S5

Job on the B&R
controller

configuration with step7-NCM Configuration with INAT f. S5

READ - No active connection
establishment
- Local address and port are to
be configured
- Partner address can remain
empty when any IP addresses
are allowed
- Partner port is always
unspecified
- Operation mode "Fetch
passive"

- Protocol type S5
- Task type "Fetch passive"
- Source/target unused
- Connection establishment
 passive
- Protocol "TCP (safe)"
- No control header
- Life telegram
- Target address 0.0.0.0
- Port address is to be
 configured (S5 port)

WRITE - No active connection
establishment
- Local address and port are to
be configured
- Partner address can remain
empty when any IP addresses
are allowed
- Partner port is always
unspecified
- Operation mode "Write
passive"

- Protocol type S5
- Task type "Write passive"
- Source/target unused
- Connection establishment
 passive
- Protocol "TCP (safe)"
- No control header
- Life telegram
- Target address 0.0.0.0
- Port address is to be
 configured (S5 port)

READP - Protocol type S5
- Task type "Send direct"
- Source/target unused
- Connection establishment
 passive
- Protocol "TCP (safe)"
- No control header
- Life telegram
- Target address 0.0.0.0
- Port address is to be
 configured (S5 port)

SEND - No active connection
establishment
- Local address and port are to
be configured
- Partner address can remain
empty when any IP addresses

- Protocol type "no protocol"
- Task type "Receive direct"
- Source/target unused
- Connection establishment
 passive
- Protocol "TCP (safe)"

F1 Drivers for B&R Connections
13-24

Job on the B&R
controller

configuration with step7-NCM Configuration with INAT f. S5

are allowed
- Partner port is always
unspecified
- Operation mode
"Send/Receive"
- Handling of send data via the
controller program

- No control header
- Life telegram
- Target address 0.0.0.0
- Port address is to be
 configured (S5 port)

RECV - No active connection
establishment
- Local address and port are to
be configured
- Partner address can remain
empty when any IP addresses
are allowed
- Partner port is always
unspecified
- Operation mode
"Send/Receive"
- Handling of received data via
the controller program

- Protocol type "no protocol"
- Task type "Send direct"
- Source/target unused
- Connection establishment
 passive
- Protocol "TCP (safe)"
- No control header
- Life telegram
- Target address 0.0.0.0
- Port address is to be
 configured (S5 port)

 TI-Driver
14-1

14 TI-Driver

.

14.1 General information about the TI driver
.

14.1.1 Important information about the TI driver
The driver package described here is used to connect TI controllers (Texas Instruments) from
the Siemens company to APROL over a serial connection.
The user must be familiar with the TI system documentation in order to connect TI controllers.
The user must know how to connect stations over a serial connection and also be able to define
routing parameters and be familiar with the structure of data points on the controllers!
This driver has been added to an existing APROL release. After updating to a newer release
(if necessary), the TI driver updates are ready in your system.

14.1.2 Description of driver behavior
The TI driver differentiates between cyclic read, cyclic write, and event-driven write tasks. The
various variable ranges on the controller can be addressed as needed. The individual read
access operations are executed consecutively. When doing so, the driver tries to keep to the
configured cycle time. If all of the tasks cannot be executed within the cycle times, then the tasks
are automatically executed as quickly as possible. Write tasks where process control system
variables change are given precedence and then read as quickly as possible.

 The following information should be taken into account during engineering!

Since the driver carries out read access operations for both task types (read and write), it's the
supply for all of its variables. This makes it impossible to connect the pins of display driver
function blocks directly with driver variables to supply the dynamics of the display driver function
block. At least one block must always be placed and connected between the pins of the display
driver function block and the I/O border with the driver variables so that the process control
system task can set the driver variables.
If an error occurs, the driver sets all read PVs from the respective task to invalid.

14.2 Installation of the TI driver software
The installation of the driver is made when the APROL system software is installed, and must
be selected here, in the dialog for driver selection.

F1 Drivers for B&R Connections
14-2

14.2.1 Delivery contents of the driver packet TI driver
The following files are present on computers with the engineering and runtime system after the
installation (path specified as well):

File with path Description

/opt/aprol/bin/TiDriver The driver program.
/opt/aprol/cnf/TiDriver/
 example/TiDriver.cnf

Example of a configuration file for the TI driver.

/opt/aprol/cnf/TiDriver/
 example/TI_Treiber.pdf

This documentation about the TI driver.

14.3 Start options and configuration
.

14.3.1 Description of TI driver start options
The driver must be selected under the CC modules for the Runtime computer and then identified
for starting. It's possible to enable process redundancy with automatic switching when an error
occurs. To influence driver behavior, a number of start options must be configured. The following
table lists values that can be configured in the CaeManager as well as their description:

Option Description

-baudRate Baud rate at which the serial interface is operated. The following baud
rates can be selected:
9600, 19200, 38400, 57600,115200

-databits Number of data bits for communication.
Valid values range from 5 to 8 bits.

-device Name of the serial interface to be used. This can be /dev/ttyS0 to
/dev/ttyS3 for COM1 to COM4 or /dev/ttyUSB0 to /dev/ttyUSB3 for
serial interface modules on the USB port.
Be aware that the serial interfaces requires the rights "RW-RW-RW-"
(666) so that they can be opened by the driver. If this setting has not
been made, the super user must execute chmod 666 DEVICE_NAME.

 TI-Driver
14-3

Option Description

-d Activates the debug mode and ensures that the driver remains in the
foreground when opened via the console, and shows the debug
output.

Bit pattern (DEBUG_FILTER) for debug outputs:
0x00000001: Outputs error messages
0x00000002: Outputs normal messages
0x00000004: Outputs loop messages
0x00000008: Outputs the configuration
0x00000010: Output of Iosys events
0x00010000: Hex input telegram header
0x00020000: Hex input telegram data
0x00040000: Hex output telegram header
0x00080000: Hex output telegram data

Example:
The individual bit patterns are added to output the normal and error
messages.
-d 0x3

-ignoreString A chain of letters that are not permitted to be present in variable
names and are automatically replaced with the character "_" by the
driver.
The following characters are the default for this option:
 &.[]+-*/<>@
This option is useful if old configuration files are to be used.

-iosys Almost every APROL module establishes the connection to Iosys in
the Runtime system via the port (no. 0 to no. 15). The number of the
port and the name of the computer are given when configuring the
default control computer.

-l LOGFILE_NAME All output is routed to a log file named LOGFILE_NAME. Normally, the
driver does not create output. However, it can use the debug filter to
write targeted status messages.

-model Defining the controller type.
This definition is necessary because the various CPU types support
different telegram lengths.
A differentiation is made between types 545, 555, and 565.

-n APP_NAME Changes the default application name for the driver. The default name
is 'TiDriver'.
This name is also found in the names of status process variables.

-noIgnoreString This parameter can be used to disable the replacement of invalid
characters by the character "_" (see option -ignoreString).

-parity Parity setting for serial communication. The following values can be
set:
none, even and odd

F1 Drivers for B&R Connections
14-4

Option Description

-driverName
PLC_NAME

Name of the controller and therefore also the directory name where
the driver's configuration file can be found:
This means:
$HOME_RUNTIME/RUNTIME/cnf/TiDriver/
 PLC_NAME/TiDriver.cnf

-restart The AprolLoader activates the automatic restart function if the driver is
stopped for an unknown reason. The number of automatic restarts
must be specified.

-restartTime T Enables automatic process redundancy switching if successful
communication is not possible for T seconds.
This function is switched off by setting T to NULL.
If the driver is not able to successfully exchange data with the
controller for T seconds, it closes itself and starts again automatically
after one second. In this way, a slave driver has the possibility to take
over handling of communication.
Please note that T cannot be less than shortest cycle time for all tasks!

-self If this option is not changed, a two digit number (instance beginning
with 01 for the computer) is automatically attached to the module
name for each module in the process list that has been started. If the
module is started more than once on a computer, this number is
incremented.

-stopbits Number of stop bits for a data byte. The values 1 and 2 are used.

14.3.2 Creating the configuration file

Select Project connection in the control computer. Select TI-Driver and create a new entry with
the shortcut menu.
Specify the CPU to be connected. Since this CPU is only available as a directory name, it
doesn't have to be engineered in the project.
Now create a task for writing and/or a task for writing for each data type to be acquired. For each
task, specify the type of data and the desired cycle time for reading in seconds.
Then the list of PVs contained in each task needs to be entered for each task. In the Variables
sub-item for the respective task, enter the name of all PVs to be used. The Address info and
Variable type fields must be filled in.
Address info is either the numeric address of the variable or the structure component and
structure number for certain structure types.

Example:
For a variable word of 300, enter 300 and Word.
Enter ALA.6 and Word for an alarm, which means that the ALA field must be transferred by
Alarm 6.
To wire the variables in the chart, an IEC type that fits to the measurement range must be
entered under type. This entry is not significant for the driver and is also not written to the
configuration file.
However, the variable type definitely matters to the Iosys and the engineering.

 TI-Driver
14-5

Controller variables of type Bit are in Iosys integer variables; variables of type String are in Iosys
string variables. All others are variables of type Real (Double in Iosys).
The IEC types must be compatible to the Iosys type so that the events can be analyzed
correctly! If needed, scaling parameter and measurement range limits can be specified for types
that aren't Bit or String.
The number of characters (without null termination) must be configured for string variables.

 The TiSoft controller programming software can be used to configure the number of
words.

After the configuration, you can view the structure of the configuration file under the controller
entry in the configuration preview.

14.3.3 TI driver status variables

Each driver instance of the TI driver creates a pool of status variables in the Iosys that can be
used for diagnostic purposes. The name of these PVs is formed from the name of the application
<A> and the name of the controller <P>.
See also the start options -n and -controller.

Status variable Description

A_P_debugFilter PV that can be used to influence log output. Messages can be enabled or
disabled by setting or deleting individual bits. All messages are usually
disabled. However, if this PV already has a value when the driver is
restarted, then it is used. The messages are output via stderr. This
channel is redirected to a log file if desired.
See also the start options -l and A_P_useLogFile.
The following bit patterns can be combined with each other:

0x00000001: Outputs error messages
0x00000002: Outputs normal messages
0x00000004: Outputs loop messages
0x00000008: Outputs the configuration
0x00000010: Output of Iosys events
0x00010000: Hex input telegram header
0x00020000: Hex input telegram data
0x00040000: Hex output telegram header
0x00080000: Hex output telegram data

A_P_errorText Name of a PV of type String where the driver writes error texts.
Error texts always remain until the next error occurs. For this reason,
always check the data of the occurrence when analyzing errors (IosEv
indicates the date).
Note:
If this PV should be placed in a CFC, it needs to be created in the
configuration editor during configuration!

F1 Drivers for B&R Connections
14-6

Status variable Description

A_P_useLogFile PV of type String. Specifying a valid filename (this can be done e.g. with
pio) tells the driver to create a new log file under this name and redirect its
output to it.
If the PV is filled with an empty string, the output is redirected to the null
device and deleted.
If this PV has a value when the driver is started and the -I option is not set
explicitly, then the file is used as a log file by the driver. If the -l option was
used when started, then this takes priority and the driver overwrites the
value of this PV with the name specified with -l.
Attention! A log file is generally cut and refilled when opened!

A_P_error Name of a PV of type Integer where the driver writes error numbers.
The value 0 means "No error". A value other than zero corresponds to a TI
communication error. The error number applies only for the time until the
next task; at that point, it will change.
Note:
If this PV should be placed in a CFC, it needs to be created in the
configuration editor during configuration!

A_P_status Status PV that can take on two values: 0 - "Everything OK", 1 - "An error
number has occurred".
Note:
If this PV should be placed in a CFC, it needs to be created in the
configuration editor during configuration!

14.3.4 Diagnosis of the driver
Diagnosis of the driver can take place for start-up using the console.
When starting the driver with the option '–d DEBUG_FILTER', various debug output texts can be
read allowing simple analysis.
During normal operation, an analysis of the driver should be carried out using the IosEv status
variables and, if necessary, records in a log file. When using a log file, it is important, for reasons
of space, not to forget to deactivate outputting debug information after the analysis and to divert
the output to /dev/null. Only then can the log file be deleted from the computer and the space on
the hard drive freed up again.
Example call of a driver in debug mode on the console
/opt/aprol/bin/TiDriver -driverName RPSTi1 -device /dev/ttyS0 -baudRate 19200 -parity none -
stopbits 1 -databits 8 -model 555 -d 0x3 -iosys tfredu9:4,tfredu10:4

 The driver connects with a redundant runtime system in this example.

14.3.5 Example configuration file TiDriver.cnf
After the APROL installation, the example TiDriver.cnf configuration file can be found in the
directory /opt/aprol/cnf/TiDriver/example/

 TI-Driver
14-7

System test configuration
Created: 2005.01.11 14:37:02 by aprol
Status variable name: TiDriver_RPSTi1_status
Error variable name: TiDriver_RPSTi1_error
ErrorText variable name: TiDriver_RPSTi1_errorText
^DB 1 ALARM A 10
VAR_RPSTi1_01AHA1 AHA.1 16 5 0 100
VAR_RPSTi1_01AHHA1 AHHA.1 16 5 0 100
VAR_RPSTi1_01ALA1 ALA.1 16 5 0 100
VAR_RPSTi1_01ALLA1 ALLA.1 16 5 0 100
^DB 2 X A 10
VAR_RPSTi1_02X1 1 15
VAR_RPSTi1_02X2 2 15
VAR_RPSTi1_02X3 3 15
VAR_RPSTi1_02X4 4 15
^DB 3 Y A 10
VAR_RPSTi1_03Y1 1 15
VAR_RPSTi1_03Y2 2 15
VAR_RPSTi1_03Y3 3 15
VAR_RPSTi1_03Y4 4 15
^DB 4 WX A 10
VAR_RPSTi1_04WX1 1 16 0 0 100
VAR_RPSTi1_04WX2 2 16 0 0 100
VAR_RPSTi1_04WX3 3 16 0 0 100
VAR_RPSTi1_04WX4 4 16 0 0 100
^DB 5 WY A 10
VAR_RPSTi1_05WY1 1 16 0 0 100
VAR_RPSTi1_05WY2 2 16 0 0 100
VAR_RPSTi1_05WY3 3 16 0 0 100

VAR_RPSTi1_05WY4 4 16 0 0 100
^DB 6 V A 10
VAR_RPSTi1_06V1 1 16 3 0 100
VAR_RPSTi1_06V2 2 16 3 0 100
VAR_RPSTi1_06V3 3 16 3 0 100
VAR_RPSTi1_06V4 4 16 3 0 100
^DB 7 V A 10
VAR_RPSTi1_07V5 5 18 2
^DB 8 STW A 10
VAR_RPSTi1_08STW1 1 16
VAR_RPSTi1_08STW2 2 16
VAR_RPSTi1_08STW3 3 16
VAR_RPSTi1_08STW4 4 16
^DB 9 K A 10
VAR_RPSTi1_09K1 1 16
VAR_RPSTi1_09K2 2 16
VAR_RPSTi1_09K3 3 16
VAR_RPSTi1_09K4 4 16
^DB 10 C A 10
VAR_RPSTi1_10C1 1 15
VAR_RPSTi1_10C2 2 15
VAR_RPSTi1_10C3 3 15
VAR_RPSTi1_10C4 4 15
^DB 11 LOOP A 1
VAR_RPSTi1_11LHA6 LHA.6 16 5 0 2.2
VAR_RPSTi1_11LHHA6 LHHA.6 16 5 0 2.2
VAR_RPSTi1_11LLA6 LLA.6 16 5 0 2.2
VAR_RPSTi1_11LLLA6 LLLA.6 16 5 0 2.2
^DB 12 TMR A 10
VAR_RPSTi1_12V13 13 16 5 0 3200
VAR_RPSTi1_12V14 14 16 5 0 3200
VAR_RPSTi1_12V15 15 16 5 0 32
VAR_RPSTi1_12V16 16 16 5 0 32

 wdpfDriver
15-1

15 wdpfDriver

.

15.1 General information about the wdpfDriver
The APROL wdpfDriver is used to cyclically exchange process data with other applications using
the file system.
The driver supports a READ file, a WRITE file and a SYNC file for bidirectional variables.
Multiple drivers can be operated at the same time so that more than one file can be used. Using
the APROL redundancy concept, the driver can also be started in a redundant manner.
The driver supports variable types BIT, UINT and FLOAT as input types and can represent these
as desired on integer, float, and string Iosys types. It is also possible to rescale the UINT and
FLOAT types.

15.2 wdpfDriver start options
The following table shows a list of the start options supported by the driver with the
corresponding descriptions.

Option Description

-n NAME Sets the internal driver name to NAME. This name will be
used, for example, for the automatic creation of status
variables in Iosys (see status variables in Iosys)

-ignoreCnfPath The driver searches its configuration files relative to the
current directory and not relative to the APROL
environment (see configuration of the driver).

-l LOGFILE The driver creates a log file named LOGFILE and writes its
STDOUT and STDERR output texts to this file. Debug
output texts (which are activated as a supplement) are also
written to this file and can be output using "tail -f".

-ignoreString STRING All STRING characters are replaced in the Iosys variable
names with the character '_'

-setBufferSize SIZE Limits the file size to a maximum of SIZE bytes, the default
is 510 bytes

-setConnTimeout
COMM_TIMEOUT

If an input file is not found after COMM_TIMEOUT
milliseconds, then the Conn Status PV is set to Error, the
default is 3000

-setCheckTime CHECK_TIME The input file is searched for cyclically every CHECK_TIME
milliseconds, the default is 500 milliseconds

-setWriteTime WRITE_TIME The write file is recreated cyclically every WRITE_TIME
milliseconds, the default is 1000 milliseconds

F1 Drivers for B&R Connections
15-2

Option Description

-d DEBUG_FILTER Starts the driver in debug mode with the debug filter
DEBUG_FILTER. With this filter, bit masking can be used to
output various content (output via stderr).

-f DEBUG_FILTER Starts the driver without debug mode with the debug filter
DEBUG_FILTER. With this filter, bit masking can be used to
output various content (output via stderr).

 Bit mask for debug filter

0x00000001: Output of error messages
0x00000002: Output of process messages
0x00000004: Output of extended error messages
0x00000008: Output of extended process messages
0x00000010: Output of the task configuration, can also be
activated online
0x00000020: Output of connection status messages
0x00000100: Hexdump of the input data
0x00000200: Hexdump of the output data

-readCfg READ_CFG_FILE
-syncCfg SYNC_CFG_FILE
-writeCfg WRITE_CFG_FILE

Specifies the name of the configuration file for the various
task types. At least one of these options must be set, and all
three task types are permitted to be set at the same time

-readLen RLEN
-syncLen SLEN
-writeLen WLEN

Specifies the size of the respective communication file if it is
different than the automatically generated size for the
respective configuration files.

Example: If 10 words are defined in READ_CFG_FILE, but
40 bytes (20 words) are written, then RLEN must be set to
40 here.
Example: If 10 words are written in the write task, but the
partner station expects 80 bytes, then WLEN is to be set to
80. The excessive bytes are filled with zeros.

-readFile RNAME
-writeFile WNAME
-syncInFile SINAME
-syncOutFile SONAME

Specifies the name of the respective data file. When doing
this, take note that an input and an output file must be
entered for the bidirectional SYNC data! The absolute file
name must be entered, and is independent of the APROL
environment.

15.3 Configuration of the wdpfDriver
The following section explains the driver's configuration.
Variable name, data type, optional bit number #Comment
Variable name, data type, optional bit number #Comment
Variable name, data type, optional bit number #Comment
Variable name, data type, optional bit number #Commentar
...
...

Variable name:
The variable name is provided as single variable in the WDPF and in APROL. The variable

 wdpfDriver
15-3

name always starts with a letter and does not contain any special characters except for
underline. The length is variable (and limited to 8 characters).
Data type:
Only 3 different data types are needed for the connection to be implemented.
REAL, 32 bit float (in accordance with IEC), shown in APROL using a double/float PV
UINT, 16 bit unsigned integer, shown in APROL using an integer PV
BIT, individual bit, coded using the bit number as part of a 16 bit variable
word, shown in APROL using an integer PV.

Optional bit number:
The optional bit number is only provided with the BIT data type. All other types have lines with
only two columns.
The BIT data type is transferred compressed in a 16 bit variable word. The bit number defines
which bit in the variable word is occupied by the variable.
The bit number can only be defined from 0 - 15. A number larger than 15 is considered a
configuration error.
The individual bit variables are stored in the same variable word as long as the bit number is
ascending (i.e. a new variable word is started if a smaller or identical number follows a bit
number). A new variable word is also started if a different data type follows a bit.

Comment:
A comment is started with the character "#"; all characters after the comment character are cut
out.

15.4 The wdpfDriver status variables

The driver automatically creates a PV in the Iosys for each configured task.
Depending on the type of task, the PV name uses the following the convention:

DRIVERNAME_READ_connState
DRIVERNAME_WRITE_connState
DRIVERNAME_SYNC_connState

DRIVERNAME is equal to the value of the start option "-n".
Status variables are not created for tasks types that are not configured.

The value of the PV in the Iosys provides an overview of the connection status:

0x0000 means that the connection is created, but not yet operated
0x0001 means that this connection currently has an error
(the file for reading is not present after the timeout time, cannot be opened, cannot be
written, etc.)

0x0002 means that there are currently no errors

The driver also creates a PV with the name:

DRIVERNAME_debugFilter

This PV is used to activate debugging online. Please refer to the start options for the meaning of
the bits in this PV.

F1 Drivers for B&R Connections
15-4

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL
documentation on our internet side www.br-automation.com, in the area Material
related downloads.

15.5 Debugging
If the status variable for a connection is set to error (value equal to 1) and the cause of error is
unknown, then the online debugging can be activated using pio:
For this

pio -pv DRIVER-NAME_debugFilter -set 15

entered into the console, the driver's text output can now be viewed in the driver's output file for
stderr and fix the cause of error by determining the error text.

 It is important to deactivate debugging after the error has been corrected, so that
the messages do not fill up the hard drive:

pio -pv DRIVER-NAME_debugFilter -set 0

15.6 Additional notes
Please take the following information into consideration:

Start files are not sent to the driver.

The driver must be integrated in the project via "customer applications"
(see corresponding documentation).

 HPC
19-1

16 HPC

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

17 Dflt
.

17.1 Dflt in CC

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

17.2 Dflt in Plc

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

18 DrvEthDp

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

19 Et200

F1 Drivers for B&R Connections
19-2

This description is under construction at present.
Please inform yourself in regular intervals about the current APROL documentation on our internet
side www.br-automation.com, in the area Material related downloads.

F1 Drivers for B&R Connections
20-2

20 Appendix

.

20.1 Typical reported problems / solutions (FAQ)

.
The following overview contains frequently asked questions (FAQ) which concern the
interfaces between control computers / controllers and the connection of foreign systems
via the APROL standard drivers.

The list is not sorted by themes (drivers) and will be extended on the basis of support queries.

1 Problem report:

 A serial APROL driver which accesses an external serial interface that is on a
POWERLINK bus coupler via POWERLINK bus, seems to be slow.

 Solution approach:

 As comparison, two almost identical CAE projects are used where the POWERLINK bus
cycle times are configured differently (with the factor 5).
The increase in the POWERLINK bus cycle time had an effect in the same magnitude of
the response times on the serial (MODBUS) driver.
The problem described here surely affects other non-serial drivers which do not have
their communication interface on the same hardware where the driver is running.

In order to restore the previous response times of the slave station, the POWERLINK
bus cycle time must be set back to the original value.

 Appendix
20-3

20.2 Revision history

Manual version Date Change Author /
checked by

4.06 25.08.2014 New chapter ApDrvAnsl diagnosis
(ANSL cross-communication)

MHa

4.05 12.08.2014 Launching options ModbusPlus
driver: Link to manual 'X99 CC
Modules'

KSc

4.04 12.05.2014 Revision of chapter Modbus
Controller Driver.

KSc
ALu

4.03 04.03.2014 Hyperlinks for connections RN
4.02 28.01.2014 Revision of the chapter

EventDriver
KSc
MHa

4.01 13.12.2013 Update of chapter 'OPC server' KSc
10.12.2013 Format to DIN A4 RN

4.00 21.10.2013 Revision of chapter AnslDriver KSc
MHa, MM

03.09.2013 New chapter AnslDriver KSc
13.02.2013 New chapter Typical reported

problems / solutions (FAQ)
KSc

25.01.2013 New names for the system
variables chapter Status variables
of the EventDriver

RN
EM

14.12.2012 Revision of chapter TI driver KSc
MM

06.09.2012 Revision of terms (APROL system
/ CC-Account)

KSc

3.07 05.12.2011 Simatic driver for the control
computer:
Extension of the chapter PV
declaration

KSc
MHa

3.06 25.11.2011 Actualization of the chapter
EventDriver's status variables

KSc
MHa

3.05 15.06.2011 Update of chapter Modbus
Controller Driver. New field
'Address' and 'Ample time'

KSc / ALu

14.06.2011 Actualizing of chapter InaDriver
status variables

KSc

24.05.2011 Expansion of the chapter Event
variables in external tasks: Use of
the 'EventLink mode' per C
function block

EM

F1 Drivers for B&R Connections
20-4

Manual version Date Change Author /
checked by

3.04 11.03.2011 Update of chapter OPC server
(V3.7.0.0)

KSc
MHa

04.10.2010 Update of chapter OPC server
(V3.6.1.0)

KSc
MHa

3.03 12.08.2010 Revision of terms: ST, SFC, CFC RN
3.02 17.05.2010 Chapter Simatic driver for the

control computer and chapter
Simatic driver for the controller
Addressing up to 255 blocks

KSc
MHa

3.01 17.12.2009 Extension of the chapter
EventDriver

KSc
MHa

3.00 23.11.2009 Note about telegram size in
chapter Additional notes about
mode of operation

RN
MHa

09.10.2009 Revision of the chapter
EventDriver

KSc
MHa

05.10.2009 Expansion of the chapter
Debugging the OPC server

KSc
MHa, JRu, BS

14.09.2009 Change: "Module view" tab to
"Software configuration" tab

KSc

2.07 30.07.2009 Revision of the chapter Simatic
driver for the control computer

KSc
MHa

2.06 17.07.2009 Actualization of the chapter
InaDriver's status variables

RN
JF

17.07.2009 New chapter Debugging the OPC
Server

KSc
MHa, JR

09.06.2009 Update of chapter OPC server RN
JR, BS, MSc

2.05 06.04.2009 Correction of the chapter
Dispatcher start options

KSc

2.04 06.02.2009 Chapter Description of the
InaDriver's start options
Default value for "-delay" option
changed.

KSc

20.01.2009 Chapter FMS coupling removed KSc
2.03 10.10.2008 SimaticDriver: Chapter Driver start

options revised
KSc
MHa

08.10.2008 Revision of chapter RK512Driver
launching options (maximum
possible number of instances).

KSc

2.02 24.09.2008 Chapter Reference values of the
Simatic driver for the control
computer extended

MSa
MHa

 Appendix
20-5

Manual version Date Change Author /
checked by

2.01 14.07.2008 Chapter RK512Driver (driver
reference values)

KSc
MHa

2.00 25.06.2008 Chapter InaDriver status variables
revised

KSc
RP, JF

File name of this documentation: APROL_R40_F1_DriversBRCouplings_001.pdf

F1 Drivers for B&R Connections
20-6

20.3 Document information

Version: ManVersion 4.06
Date: ManDatum 25.08.2014

 Glossary
21-1

21 Glossary

.

Module
Has several meanings.
When referring to B&R controller software, a module is a file that can be loaded to the
controller.
The following software modules are used:
System module, data module, configuration module, task, driver module, and when referring to
B&R controller hardware in the area hardware, a module is an insert card that can be mounted
to the backplane or plugged into another module. See also "Mixed module".

Event
Event. Any change to a process variable (status or value) is considered an event.

PV
Abbreviation for process variable

RPM package
A special memory format for files. Files with similar functions are saved in a packaged for
installation by YaST.

runtime system
This system contains all APROL programs required for a process control system. These
programs are used to acquire, distribute, archive, and control the data in a process control
system. A Linux login and an APROL login must exist for this system. The data for the
Runtime system is determined by and downloaded from the Engineering system.

Drivers
A program that enables communication (data exchange) via a communication level between two
units in the process control system.

 Glossary
21-1

.

	1 AnslDriver
	1.1 Basic method of operation of the AnslDriver
	1.1.1 General information about client redundancy
	1.1.2 Notes for operation of the driver
	1.1.3 What are 'READ', 'WRITE' and 'SYNC' variables?
	1.1.4 What is the benefit of the TCP/IP protocol which is used in comparison to the INA UDP/IP protocol?
	1.1.5 How is the connection monitoring implemented, so that the large TCP/IP timeouts do not have a negative effect?
	1.1.6 How are event variables updated on the controller and what effect does the client redundancy have on the event variables?
	1.1.7 Which benefits does the poll mode have in comparison to the event mode?
	1.1.8 Which system variables are basically made available and where do they get their information?

	1.2 AnslDriver in CC
	1.3 ApDrvAnsl diagnosis (ANSL cross-communication)

	2 dcs2000Driver
	2.1 General information about dcsDriver driver package
	2.2 Installation of the dcsDriver software
	2.2.1 Installing the dcsDriver driver package
	2.2.2 Delivery contents of the dcsDriver driver package
	2.2.3 Configuration after the installation

	2.3 Description and start options for the tools
	2.3.1 General information about the start options for the tools
	2.3.2 Communication parameters
	2.3.3 The tools and their options
	2.3.3.1 aprolArcnetInstall
	2.3.3.2 dcsDpDir
	2.3.3.3 dcsDpRead
	2.3.3.4 dcsDpWrite
	2.3.3.5 dcsExport
	2.3.3.6 dcsDriver

	2.4 Configuration of the PVs for the dcsDriver
	2.4.1 Configuration of the PVs in the engineering system
	2.4.1.1 Description of the types file
	2.4.1.2 Description of the dcsDriver configuration file
	2.4.1.3 Operation of the dcsDriver driver

	2.4.2 Configuration with dcsExport

	2.5 Debugging and error handling
	2.5.1 The dcsDriver status variables
	2.5.2 dcsDriver error numbers and error messages

	3 dcsEventDriver
	3.1 General information - dcsEventDriver
	3.2 Configuration of the dcsEventDriver
	3.2.1 Structure of the configuration file on the control computer

	3.3 Interfaces
	3.4 Procedure from the configuration to active connection
	3.5 dcsEventDriver status messages

	4 Dispatcher
	4.1 General information about the Dispatcher
	4.1.1 Functionality of the Dispatcher
	4.1.2 Requirements / Limitations
	4.1.3 Dispatcher delivery contents

	4.2 Configuration of the Dispatcher on the control computer
	4.2.1 Dispatcher start options
	4.2.2 Configuration of the Dispatcher
	4.2.3 Configuration of the Dispatcher jobs
	4.2.4 Configuration of the Dispatcher groups

	4.3 Possible diagnostics when implementing the Dispatcher on the control computer
	4.4 Driver configuration example (Dispatcher)
	4.5 Dispatcher status variables

	5 EventDriver
	5.1 General information about the EventDriver
	5.1.1 Using the EventDriver
	5.1.2 EventDriver operation
	5.1.3 Technical note about the usage on the controller
	5.1.4 Schematic overview for EventDriver

	5.2 Contents of the RPM package
	5.2.1 Description of the files included in the package

	5.3 Configuration
	5.3.1 Configuration of the EventDrivers
	5.3.2 Configuration of the driver in the APROL system

	5.4 EventDriver status variables
	5.5 Event variables in external tasks
	5.5.1 Transferring event variables with their own time stamp
	5.5.2 Configuration of the user variables with the Gateway editor
	5.5.3 Testing the software
	5.5.4 Limitations
	5.5.5 ApEvtLink.h
	5.5.6 ApEvtLink.c
	5.5.7 ApDrvLink.c
	5.5.8 Example configuration for the APROL EventDriver
	5.5.9 Creating a task with Automation Studio
	5.5.10 Using the driver with a C block

	6 InaDriver
	6.1 General information about the InaDriver
	6.2 Description of the PC hardware
	6.2.1 Softing PROFIboard
	6.2.2 B&R PC Profibus card
	6.2.3 PC Ethernet card
	6.2.4 Serial interfaces

	6.3 Installation of the PC software
	6.4 Configuration of the controller hardware
	6.4.1 System settings

	6.5 Installation of the controller software
	6.5.1 Description of the individual modules

	6.6 Description of the utilities (InaDriver)
	6.6.1 InaCmd
	6.6.2 CfgInaDriver
	6.6.3 InaConnect

	6.7 Configuration of the APROL driver (InaDriver)
	6.7.1 Description of the InaDriver's start options
	6.7.2 Configuration file of the APROL driver (InaDriver)

	6.8 InaDriver status variables
	6.9 Error
	6.9.1 Error numbers and messages (InaDriver)

	6.10 The InaDriver start script
	6.10.1 Structure

	6.11 Error analysis and handling
	6.11.1 Profibus connection
	6.11.2 Ethernet connection

	6.12 Notes on literature (InaDriver)

	7 Modbus controller driver
	7.1 General information about the Modbus controller driver
	7.1.1 Key data of the Modbus controller driver

	7.2 Data module structure
	7.2.1 Description of the data module entries

	7.3 Creating the data module with the configuration editor
	7.4 Example
	7.5 Modbus controller driver status variables

	8 ModbusPlus driver package
	8.1 General information about the ModbusPlus driver
	8.1.1 Contents of delivery ModbusPlus
	8.1.2 Supported hardware

	8.2 Configuration of the APROL driver on the control computer
	8.3 kMbpManager and mbpManager
	8.4 Possible diagnostics when implementing the driver on the control computer
	8.5 Driver configuration example (ModbusPlus)
	8.6 ModbusPlus driver status variables

	9 OPC server
	9.1 Definition of terms for OPC
	9.1.1 General Information about OPC
	9.1.2 Information about the APROL OPC server

	9.2 Installing and registering the OPC server
	9.3 Information about the configuration file
	9.4 Structure of the configuration file
	9.4.1 Structure of an example configuration file
	9.4.1.1 Example of a configuration file

	9.5 Event Viewer in Windows for diagnosis
	9.6 Debugging the OPC Server
	9.6.1 Changing of the debugging behavior during runtime
	9.6.2 Information about the debug output

	9.7 OPC Server status variables
	9.8 Example for OPC clients with the APROL OPC server
	9.9 Additional information about the OPC server
	9.9.1 Version information
	9.9.2 Licensing information about the iconv library
	9.9.3 Literature notes on the topic of 'OPC'

	10 ProfiboardDriver
	10.1 General information about the ProfiboardDriver
	10.2 Hardware configuration
	10.3 Installing the PROFIboard software
	10.4 Description of the start script
	10.4.1 The start script

	10.5 Software configuration
	10.5.1 Description of the network parameter file profibusx.cfg
	10.5.2 Notes concerning the object file profibusx.ov

	10.6 Description of the utilities (ProfiboardDriver)
	10.6.1 pb_install
	10.6.2 pb_init
	10.6.3 pb_manager
	10.6.4 pb_debug
	10.6.5 pb_netconfig
	10.6.6 pb_list
	10.6.7 pb_history
	10.6.8 pb_controllerreset
	10.6.9 pb_read
	10.6.10 pb_timesync
	10.6.11 pb_settime
	10.6.12 pb_taskmgr

	10.7 Configuration of the APROL driver (ProfiboardDriver)
	10.7.1 General information about the driver configuration
	10.7.2 Description of the ProfiboardDriver's start options
	10.7.3 Configuration file of the APROL driver (ProfiboardDriver)

	10.8 Profiboard driver status variables
	10.9 APROL driver error numbers and error messages
	10.9.1 Error numbers and messages (ProfiboardDriver)

	10.10 Integrating the APROL Profiboard start script
	10.10.1 The APROL start script

	10.11 Error analysis
	10.12 Notes on literature (ProfiboardDriver)

	11 Process bus redundancy for Ethernet connections
	11.1 General information about process bus redundancy for Ethernet connections
	11.1.1 Configuring process bus redundancy with the InaDriver
	11.1.2 Configuring process bus redundancy with the EventDriver
	11.1.3 Configuring process bus redundancy with controller cross-communication

	12 RK512 driver
	12.1 General information about the RK512 driver
	12.2 Information about the RK512Driver driver package
	12.3 Delivery contents of the RK512 driver package
	12.4 Installing the RK512Driver RPM package
	12.5 RK512Driver for the control computer
	12.5.1 Launching options RK512Driver
	12.5.2 Creating the rk512.cnf configuration file

	12.6 RK512 driver status variables
	12.7 The ApDrvRK512 driver for controllers
	12.7.1 General information about ApDrvRK512

	12.8 Commissioning and Debugging
	12.9 Scaling values
	12.10 Scaling values

	13 SimaticDriver
	13.1 General information about the SimaticDriver
	13.1.1 SimaticDriver delivery contents

	13.2 Simatic driver for the control computer
	13.2.1 Reference values of the Simatic driver for the control computer
	13.2.2 Driver start options
	13.2.3 Description of the configuration file
	13.2.4 Mode of operation of the different task types
	13.2.5 Additional notes about the mode of operation
	13.2.6 PV declaration
	13.2.7 Scaling formulas
	13.2.8 SimaticDriver's status variables
	13.2.9 Workflow description for the control computer driver
	13.2.10 Driver redundancy
	13.2.11 Configuration of the driver in CaeManager
	13.2.12 Creating a configuration file with the configuration editor
	13.2.13 Notes for starting up the driver

	13.3 Simatic driver for the controller
	13.3.1 Reference values of the Simatic driver for the controller
	13.3.2 General information about the configuration data module
	13.3.2.1 Structure of the configuration data module
	13.3.2.2 Configuration data module example

	13.3.3 Configuring the driver for the controller
	13.3.4 Workflow description for the controller driver
	13.3.5 Description and value ranges for status variables

	13.4 Configuration using the Simatic software
	13.4.1 Configuration of the jobs with step 7 -NCM or INAT for S5

	14 TI-Driver
	14.1 General information about the TI driver
	14.1.1 Important information about the TI driver
	14.1.2 Description of driver behavior

	14.2 Installation of the TI driver software
	14.2.1 Delivery contents of the driver packet TI driver

	14.3 Start options and configuration
	14.3.1 Description of TI driver start options
	14.3.2 Creating the configuration file
	14.3.3 TI driver status variables
	14.3.4 Diagnosis of the driver
	14.3.5 Example configuration file TiDriver.cnf

	15 wdpfDriver
	15.1 General information about the wdpfDriver
	15.2 wdpfDriver start options
	15.3 Configuration of the wdpfDriver
	15.4 The wdpfDriver status variables
	15.5 Debugging
	15.6 Additional notes

	16 HPC
	17 Dflt
	17.1 Dflt in CC
	17.2 Dflt in Plc

	18 DrvEthDp
	19 Et200
	20 Appendix
	20.1 Typical reported problems / solutions (FAQ)
	20.2 Revision history
	20.3 Document information

	21 Glossary
	Module
	Event
	PV
	RPM package
	runtime system
	Drivers

