

Dept. of Horticulture, Cornell University Geneva, NY

Brazil Apple Orchards

Poliana Francescatto

Apple Producing Countries

World Apple Production

2013 - 80,82 million ton

Apple Production in Brazil 66 million bushels

Varieties produced in Brazil

Fresh Apple in Brazil

Brazilian consumers know basically three types of apple

'Gala', 'Fuji' and "Argentina"

Apple picking season in Brazil

Cultivar	Dez	Jan	Fev	Mar	Abr	Mai	Jun
Gala/clones col.							
Fuji/clones col.							

Evolution of Apple Crop in Brazil

Brazilian Apple growers

<u>State</u>	Growers		
Santa Catarina	1.622	67%	
Rio G. do Sul	698	29%	
<u>Paraná</u>	100	<u>4%</u>	
Total	2.420	100%	

Main companies:

Schio Agropecuaria	8,250 acres		
Fischer S/A	6,250 acres		
Rasip	2,750 acres		
Sanjo	2,750 acres		

Climate Conditions

Average annual precipitation:

Geneva – 33 inches Fraiburgo – 71 inches

Chilling hours accumulation <45°F

Apple producing cities in Brazil

Consumers prefer medium-sized apples Fruit size produced in Brazil is around 130-150g in average

Adapting to low chilling conditions

Brazilian growers had to adapt new growing methods to be able to grow apples under threshold conditions

(mild winters, wet spring/summer)

Limiting factors and Challenges to grow apples in

- **Brazil**
- Lack of adapted cultivars (recent releases);
- Low chilling accumulation "weak buds", poor bud break, irregular flowering;
- Fruit size and quality;
- Color (warm nights);
- Long season vigor;
- Harvest management (large blocks 2 varieties concentrated harvest);
- Lack of labor associated to low quality work;
- Consumers preference.

Consequences of low chilling accumulation

How do we survive??

Dormancy induction

- As an adaptive process, temperate crops (fruit, grape) go through a dormant period.
- In sub-temperate climates, trees are not prepared for and thus present active metabolism during winter (leaves on shoot tips).
- Defoliation:
 - Urea
 - Cooper
 - ABA !!!

Daily maximum and minimum temperatures during winter

Dec

Jan

Fev

Mar

0

Nov

Dormancy Breaking Compounds

Silver tip stage: Hydrogen Cyanamide (Dormex) Inorganic Nitrogen (Erger) Glutamic Acid (Syncron) Mineral oil Lime sulfur

Mechanisms of adaptation to "poor" winter conditions

Mechanisms Of Adaptation To Poor Fruit Set Conditions

TDZ – Cytokinin 10-15 ppm – Baloon stage $(E_2 - F)$;

AVG – Retain (1/2 pouch to 2 pouch)

Prohexadione calcium – Apogee – 2-14 oz (Full bloom);

- Trunk Girdling

Thinning Strategies for Gala

Fruit diameter

Thinning Strategies for Fuji

Fruit diameter

Warm and rainy summers – regrowth problems

Prohexadione Calcium (Viviful) Trinexapac-ethyl – (Moddus)

Long growing season Vigor control

Prohexadione-Ca

Main apple diseases in Brazil

European cancker (*Nectria galligena*)

Since 2002 Boom – 2012 to nowdays

Gala e Fuji Joaquina e Catarina

Orchard Systems

Central Leader

Hilly and Flat areas

Our largest Gala apples are located in the terminal bud of a one year old shoot

Gala

Pruning

Otawa3 x Robusta 5

- Similar vigor to M.26;
- High density orchards (>800 trees/acre);
- requires tree support;
- few root suckers and no burrknots;

- High resistance to crown rot and wooly apple aphid; lesser susceptible to white root rot than M.9 e M.26;
- Shows good performance at replanting areas;
- Good branching and bud break, flatter and thinner branches than M.9;
- -Very promising for Brazil!!!

G.213

- Similar vigor to M.7
- Medium density orchards;
- Resistant to crown rot;
- Resistant to woolly apple aphid;
- few root suckers;
- no burrknots;
- Great performance in replanting areas;
- Requires tree support.

Stoolbed

Good rooting

Good things about G.874

No suckers and no burrknots

High precocity and yield

Good things about G.874

However...

It requires tree support

G.874

M-58/07 on CG-874

M-58/07 on Maruba/M-9

<u>Marubakaido</u>

- Very vigorous rootstock Rocky and infertile soils
- Strong root system, great adaptation to any type of soil;
- Easy propagation cuttings;
- Too many root suckers, mainly if M9 is used as interstock;
- Resistant to crown rot and wholly apple aphid;
- No burrknots;
- Low to medium density orchards
- Good in replanting soil
- Good for Spur varieties;
- Sensitive to viruses.
- Not precocious

Marubakaido/M9

- Similar vigor to M-7;
- Both rootstocks balance vigor and soil diseases,
 M9 induces good yields

-6-8 inches long of rooted Marubakaido plus 6-8 inches long of M-9 cutting. Scion will be grafted in the following year;

- Depending on soil type and rooting level there is no need of tree support;
- High cost of production;

Maruba/M.9 Suckering; Burrknots & Woolly apple aphid in the M.9

Maruba

TREE SPACING ACCORDING TO ROOTSTOCK/SCION Recommendation for Brazil

Destates	Vigorous	cultivar	Standard (semi-vigorous)		
KOOLSLOCK	Tree spacing	Trees/acre	Tree spacing	Trees/acre	
Dwarfs	12 x 3	1,210	11 x 3	1,400	
M-9, M-26,	12 x 4	908	12 x 3	1,210	
CG.4213	13 x 5	670	13 x 4	838	
Semi-dwarfs	13 x 5	670	13 x 3	1,117	
M-7, MM-106	16 x 5	545	15 x 7	415	
CG.874,	16 x 7	389	16 x 7	389	
Semi-vigorous	16 x 8	340	16 x 8	340	
MM-111	20 x 10	218	18 x 8	303	
Vigorous	18 x 10	242	18 x 10	242	
Marubakaido	20 x 11	200	20 x 10	218	

PAST AND CURRENT SITUATION OF THE APPLE PLANTING SYSTEMS, TREE DENSITY AND YIELD EFFICIENCY IN BRAZIL

>1400 trees/acre 1,300 - 1,700 bu/acre

Thank you!

Muito Obrigado!