
Confined Aquifers
• Aquifer unit bounded above and below by low permeability 

confining units
• Water is pressurized, causing well water levels to rise above the 

top of the aquifer
• Aquifer is of infinite areal extent
• Homogenous, isotropic, constant thickness
• Piezometric surface is level prior to pumping
• Aquifer pumped at constant rate
• Well is fully penetrating and screened over entire thickness of 

aquifer
• Well diameter is small
Unsteady Flow
• Water is released instantaneously from storage as head 

declines



Variables
• Q = pumping rate
• r = distance from well
• s = water-level drawdown
• t = time since pumping began

Parameters
b = aquifer thickness
K = hydraulic conductivity (steady flow)
T = K b = transmissivity
Ss = specific storage (unsteady flow)
S = Ss b = storativity
D = T / S = K / Ss = diffusivity



Example
• Oude Korendijk polder in The Netherlands
• Aquifer is 18 to 25 m below ground surface



Thiem Method (1906)
• Steady, radial flow (there is no “time” in “Thiem”)
• ∆s = s2 – s1 = Q/2πT ln (r2/r1)
• s1 and s2 are drawdowns in piezometers located at 

distances r1 and r2 from a pumped well



Theis Method (1935)
• Radial, unsteady flow
• s = Q/4πT W(u)
• W(u) = -0.5772 – ln u + u – u2/2·2! + u3/3·3! - ...  
• u = r2/4Dt



Jacob Method (1946)
• Unsteady flow for u = r2/4Dt < 0.01 
• Simplification of Theis method for t > 25 r2/D



Unconfined Aquifer
• Top of aquifer is the water table
• Differences from confined aquifers:
• Aquifer thickness is no longer constant
• Combination of elastic storage and lowering of water table. 
• Flow is both horizonal and vertical 



Steady horizontal flow described using
• ∆h2 = h22 – h12 = Q/πK ln r2/r1



Unsteady flow
• Data shows two types of storage:
• early-time (elastic storage, S)
• late-time (water table drainage, Sy)



Example
• “Vennebulten” in the Netherlands
• Shallow (3 m) and deep piezometers (12-19 m)
• Pumped for 25 hours: Q = 873 m3/d
• b = 21 m



Fit two Theis curves, one for early time and second for late time



Leaky aquifers
• Also known as a semi-confined aquifer
• An aquifer whose upper and lower boundaries are aquitards, or one 

boundary is an aquitard and the other is an aquiclude.
• An aquitard is a geological unit that is permeable enough to transmit 

water in significant quantities when viewed over large areas and long 
periods, but its permeability is not sufficient to justify production wells 
being placed in it. Clays, loams, and shales are typical aquitards.



Example
• A deep sedimentary basin where an interbedded system of 

permeable and less permeable layers form a multi-layered aquifer 
system. 



• System consists of two aquifers separated by an aquitard. 
• The lower aquifer rests on an aquiclude. 
• A well fully penetrates the lower aquifer and is screened over the total 

thickness of the aquifer. 
• The well is not screened in the upper unconfined aquifer.
• Leakage (vertical arrows) is proportional to the vertical gradient 

between aquifers 



Response to pumping
• The piezometric surface in the lower confined aquifer will drop.
• The water that the pumped aquifer contributes to the well discharge 

comes from storage within the confined aquifer. 
• The water contributed by the aquitard comes from storage within the 

aquitard and leakage through it from the overlying unpumped, 
unconfined aquifer.

• As pumping continues, more of the water comes from leakage from 
the unconfined aquifer and relatively less from aquitard storage. 

• The flow induced by the pumping is assumed to be vertical in the 
aquitard and horizontal in the pumped aquifer.

• For a proper analysis of a pumping test in a leaky aquifer, 
piezometers are required in the leaky confined aquifer, in the aquitard, 
and in the upper unconfined aquifer.



Pumping Test “Dalem”



• Well discharge eventually equilibrates with aquitard leakage
• This results in a constant (steady) drawdown
• During pumping, the water table in the upper unconfined aquifer 

remains constant
• The rate of leakage from the upper unconfined aquifer into the leaky 

aquifer is proportional to the hydraulic gradient across the aquitard.
• The assumption of a constant water table will only be satisfied if the 

upper unconfined aquifer is recharged by an outside source. 
• Without recharge, the water table will drop due to its water leakance 

through the aquitard into the pumped, confined aquifer.  
• We also ignore aquitard storage, which is justified for steady flow



Hantush-Jacob Method
Uses steady state drawdown data and allows the characteristics of the 
aquifer and the aquitard to be determined.



Walton Method 
• Unsteady flow
• This solution has the same form as the Theis well function, but there 

are two parameters in the integral: u and r/L.
• s = Q/4πT W(u,r/L)
• L = leakance
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Anisotropy
• A common feature in water-laid sedimentary deposits 

(fluvial, clastic lake, deltaic and glacial outwash).  
• Water-lain deposits may exhibit anisotropy on the horizontal 

plain (X,Y if looking down from above)
• Water-laid sedimentary deposits are also “stratified” (have 

layers of alternating stratum, therefore alternating K’s)
• Hydraulic conductivity in the direction of flow tends to be 

greater than that perpendicular to flow, which causes lines 
of equal drawdown to form ellipses rather than circles.

• Any layer with a low K will retard vertical flow, but horizontal 
flow can occur easily through any layer with relatively high 
K.  

• When Kh (parallel to the layer) is larger than Kv
(perpendicular to layer), the aquifer is said to be “vertically 
anisotropic”.



3-D Anisotropy
• When an aquifer exhibits both vertical and horizontal 

anisotropy
• The principal axes are:

• Kx: direction parallel to stream flow
• Ky: direction perpendicular to stream flow
• Kz: the vertical direction

Hantush Approach
• If the principal directions of anisotropy are known

• Drawdown data from two piezometers on different rays 
from the pumped well will be sufficient. 

• If the principal directions of anisotropy are unknown
• Drawdown data must be available from at least three 

rays of piezometers.





Bounded Aquifer
• Either confined or unconfined
• Bounded on one or more sides by either a

• Recharging boundary (e.g., river or canal)
• Barrier boundary (e.g., impermeable valley wall)

• Aquifer pump tests must sometimes be conducted near 
one or more types of boundaries
• Invalidates the assumption that the aquifer is of “infinite 

areal extent”
• The use of image wells and the “principle of 

superposition” are applied to transform an aquifer of 
finite areal extent into one of seemingly infinite extent 
which allows the use of methods from previous chapters
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Image Wells
• Positioned such that that pumping well and image well form mirror 

images of one another:
• Located on the opposite side of boundary from the pumping well
• At the exact distance away from boundary as the pumping well
• Recharge boundary: image well is a recharge well 
• Barrier boundary: image well is a discharge well
• Flow rate is always constant, and is equal to the rate of the real 

pumping well
• By using the law of superposition (i.e., the drawdown from two or 

more wells can be added to find the resulting overall drawdown) 
the drawdown from the real well and the image well will give you 
the actual drawdown 

• More than one boundary?  More than one image well will be 
needed



Image Well Positioning



One straight recharge boundary:



Two straight recharge boundaries at right angles to each other
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Partially Penetrating Wells
• Aquifer is so thick that a fully penetrating well is impractical
• Increased velocity close to well
• Extra head losses
• Effect is inversely related to distance from well

• Negligible at distances r > 2b sqrt(Kb/Kv) 
• Standard methods cannot be used at  r< 2b sqrt(Kb/Kv)





Multilayer Aquifers: Case 1
§ Consists of two or more aquifer layers separated by aquicludes

§ Two confined aquifers
§ An unconfined aquifer overlying a confined aquifer

§ If data on the transmissivity and storativity of the individual layers are 
needed, a pumping test can be performed in each layer as long as the well 
does not fully penetrate the entire system

§ For an aquifer system consisting of multiple confined aquifers separated by 
an aquiclude, use an asymptotic solution for non-steady state flow to a well 
that fully penetrates the system.

§ For an aquifer system that consists of an unconfined aquifer overlying a 
confined aquifer, use a solution for non-steady state flow to a fully 
penetrating well. 



Multilayer Aquifers: Case 2
• Consists of two or more aquifers - each with its own hydraulic 

characteristics - that are separated by interfaces that allow for unrestricted 
flow between them, or crossflow. 

• A response to pumping will be analogous to that of a single-layered 
whose transmissivity and storativity are equal to the sum of the 
transmissivity and storativity of the individual layers. 



Multilayer Aquifers: Case 3
• Consists of multiple aquifers layers separated by aquitards.
• In this leaky system, pumping one layer has measureable effects in other 

layers of the aquifer system. 
• The effects are dependent upon the hydraulic characteristics of the 

individual layers and the aquitards.
• For short pumping tests in these systems, drawdown in the unpumped 

layers can be considered negligible, and we would use previous methods 
to find aquifer properties. 

• For longer pumping times, use a method for the analysis of pumping data 
from leaky two-layered aquifer systems in steady state. 



Matrix Representation

• h is the vector of heads in each layer
• D is the diagonal matrix of hydraulic diffusivities in each layer
• A is a matrix that represents the vertical flow between layers

• Ti = bi Ki are the horizontal transmissivities in each layer
• Ci = Ki’ / bi’ are the vertical conductances between layers 

pumping is limited to partial penetration, or to conditions when multiple,62

non-adjacent intervals are pumped. The solution can also be used to interpret63

tests in aquifers where vertical variations in aquifer properties are expected.64

Data from three sinusoidal aquifer tests conducted at the Waste Isolation Pilot65

Plant (WIPP) near Carlsbad, New Mexico, are used to evaluate whether sinu-66

soidal aquifer tests could provide additional information related to the char-67

acterization of multiple layering present within the Culebra Dolomite Member68

of the Rustler Formation at the WIPP.69

2 Multi-Layer Sinusoidal Flow Solution70

2.1 Problem Description71

Consider a multi-layer confined aquifer with n layers. Transient flow in layer72

i is governed by the partial differential equation:73

Ti

∂2hi

∂x2
= Si

∂hi

∂t
+ qi − qi+1 (1)74

where hi is the hydraulic head, Ti is the transmissivity, and Si is the storativity75

of the ith layer; qi and qi+1 are the inter-layer vertical fluxes, defined as:76

qi = Ci (hi − hi−1) (2)77

where Ci is the interlayer hydraulic conductance (i.e., the reciprocal of hy-78

draulic resistance):79

Ci =
2 Ki−1 Ki

bi−1 Ki + bi Ki−1

(3)80

and where Ki and bi are the vertical hydraulic conductivity and thickness81

of layer i, respectively. This formulation assumes that heads are computed82

at the centers of layers, and the conductance can be approximated using the83

harmonic mean of the intervening material. The top and bottom of the aquifer84

system are impermeable.85

Matrix notation can be used to describe flow through the entire aquifer:86

∇2"h = D−1 ∂"h

∂t
+ A "h (4)87

where "h is a column vector of which component i is the head in layer i; A is88

3the system matrix that accounts for interlayer flow:89
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(5)90

and D is the diagonal hydraulic diffusivity matrix composed of diagonal com-91

ponents Dii which are the diffusivities Di = Ti/Si for layer i.92

The boundary condition for cylindrical flow at the well is:93

!Q = lim
r→0



2πr T
∂!h

∂r



 (6)94

where T is the diagonal transmissivity matrix of which diagonal component95

Tii is the transmissivity Ti for layer i. !Q is is the vector of periodic discharges96

from each layer, which is specified as:97

!Q = !Qo cos ωt (7)98

where !Qo is the vector of amplitudes of !Q, and ω = 2π/p is the pumping99

frequency, where p is the period of the sinusoidal pumping rate. The boundary100

condition at infinity states that pumping effects decay with distance:101

lim
r→∞

!h = 0 (8)102

2.2 Problem Solution103

Periodic flow solutions are customarily derived in complex form (e.g., Townley,104

1995; Bruggeman, 1999; Rasmussen et al., 2003; Bakker, 2004). Following this105

convention, the solution for periodic flow may be written in separated, complex106

form as:107

!h = !φ eıωt (9)108

where !φ accounts for the variation in head with space, the exponential term109

accounts for temporal fluctuations, and ı is the imaginary unit. Substitution110

of Equation (9) for !h in Equation (4) and canceling the exponential functions111

gives:112

∇2!φ = B !φ (10)113

4


