Confined Aquifers
Aquifer unit bounded above and below by low permeability
confining units
Water is pressurized, causing well water levels to rise above the
top of the aquifer
Aquifer is of infinite areal extent
Homogenous, isotropic, constant thickness
Piezometric surface is level prior to pumping
Aquifer pumped at constant rate
Well is fully penetrating and screened over entire thickness of
aquifer
Well diameter is small

Unsteady Flow
Water is released instantaneously from storage as head
declines



Variables

- Q = pumping rate

- r = distance from well

- s = water-level drawdown

- t = time since pumping began

piezometric surface before
start of pumping

'e

Parameters

b=
K
T

aquifer thickness
hydraulic conductivity (steady flow)
K b = transmissivity

S, = specific storage (unsteady flow)

S =
D =

S, b = storativity
T/S =K/ S, = diffusivity

»

piezometric surface ofter

stort of pumping
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Example
- Oude Korendijk polder in The Netherlands
- Aquifer is 18 to 25 m below ground surface
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Figure 3.2 Lithological cross-section of the pumping-test site "Oude Korendijk', The Netherlands (after
Wit 1963)



Thiem Method (1906)

- Steady, radial flow (there is no “time” in “Thiem”)

- AS =8, — 5, = Q/21TT In (ry/ry)

- S84 and s, are drawdowns in piezometers located at
distances r, and r, from a pumped well
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Theis Method (1935)

- Radial, unsteady flow

- s = Q41T W(u)

- W(u) =-0.5772 - Inu + u—u4/2-2! + u3/3-3! - ...
- U = r2/4Dt
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Figure 3.6 Analysis of data from pumping test ‘Oude Korendijk® with the Theis method, Procedure 3.3



Jacob Method (1946)
- Unsteady flow for u = r¢/4Dt < 0.01
- Simplification of Theis method for t > 25 r2/D
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Unconfined Aquifer

- Top of aquifer is the water table

- Differences from confined aquifers:
- Aquifer thickness is no longer constant
- Combination of elastic storage and lowering of water table.
- Flow is both horizonal and vertical
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Steady horizontal flow described using
- Ah? = h,2 — h,?2 = Q/TTK In ry/r,
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Unsteady flow
- Data shows two types of storage:
- early-time (elastic storage, S)
- late-time (water table drainage, S,)
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Example

- “Vennebulten” in the Netherlands

- Shallow (3 m) and deep piezometers (12-19 m)
- Pumped for 25 hours: Q = 873 m3/d
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Fit two Theis curves, one for early time and second for late time
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Leaky aquifers
- Also known as a semi-confined aquifer

- An aquifer whose upper and lower boundaries are aquitards, or one
boundary is an aquitard and the other is an aquiclude.

- An aquitard is a geological unit that is permeable enough to transmit
water in significant quantities when viewed over large areas and long
periods, but its permeability is not sufficient to justify production wells
being placed in it. Clays, loams, and shales are typical aquitards.

LEAKY AQUIFER LEAKY AQUIFER




Example

- A deep sedimentary basin where an interbedded system of
permeable and less permeable layers form a multi-layered aquifer
system.

MULTI-LAYERED LEAKY AQUIFER SYSTEM
E water leve! water lewvel




- System consists of two aquifers separated by an aquitard.
- The lower aquifer rests on an aquiclude.

- A well fully penetrates the lower aquifer and is screened over the total
thickness of the aquifer.

- The well is not screened in the upper unconfined aquifer.

- Leakage (vertical arrows) is proportional to the vertical gradient
between aquifers




Response to pumping
The piezometric surface in the lower confined aquifer will drop.

The water that the pumped aquifer contributes to the well discharge
comes from storage within the confined aquifer.

The water contributed by the aquitard comes from storage within the
aquitard and leakage through it from the overlying unpumped,
unconfined aquifer.

As pumping continues, more of the water comes from leakage from
the unconfined aquifer and relatively less from aquitard storage.

The flow induced by the pumping is assumed to be vertical in the
aquitard and horizontal in the pumped aquifer.

For a proper analysis of a pumping test in a leaky aquifer,
piezometers are required in the leaky confined aquifer, in the aquitard,
and in the upper unconfined aquifer.



Pumping Test “Dalem”
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Well discharge eventually equilibrates with aquitard leakage
This results in a constant (steady) drawdown

During pumping, the water table in the upper unconfined aquifer
remains constant

The rate of leakage from the upper unconfined aquifer into the leaky
aquifer is proportional to the hydraulic gradient across the aquitard.

The assumption of a constant water table will only be satisfied if the
upper unconfined aquifer is recharged by an outside source.

Without recharge, the water table will drop due to its water leakance
through the aquitard into the pumped, confined aquifer.

We also ignore aquitard storage, which is justified for steady flow



Hantush-Jacob Method

Uses steady state drawdown data and allows the characteristics of the
aquifer and the aquitard to be determined.
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Walton Method
- Unsteady flow

- This solution has the same form as the Theis well function, but there
are two parameters in the integral: u and r/L.
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Anisotropy

A common feature in water-laid sedimentary deposits
(fluvial, clastic lake, deltaic and glacial outwash).

Water-lain deposits may exhibit anisotropy on the horizontal
plain (X,Y if looking down from above)

Water-laid sedimentary deposits are also “stratified” (have
layers of alternating stratum, therefore alternating K's)

Hydraulic conductivity in the direction of flow tends to be
greater than that perpendicular to flow, which causes lines
of equal drawdown to form ellipses rather than circles.

Any layer with a low K will retard vertical flow, but horizontal
flow can occur easily through any layer with relatively high
K.

When K, (parallel to the layer) is larger than K,
(perpendicular to layer), the aquifer is said to be “vertically
anisotropic”.



3-D Anisotropy

When an aquifer exhibits both vertical and horizontal
anisotropy

The principal axes are:
K,: direction parallel to stream flow
K,: direction perpendicular to stream flow
K,: the vertical direction
Hantush Approach
If the principal directions of anisotropy are known

Drawdown data from two piezometers on different rays
from the pumped well will be sufficient.

If the principal directions of anisotropy are unknown

Drawdown data must be available from at least three
rays of piezometers.
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Bounded Aquifer
Either confined or unconfined
Bounded on one or more sides by either a

Recharging boundary (e.g., river or canal)

Barrier boundary (e.g., impermeable valley wall)
Aquifer pump tests must sometimes be conducted near
one or more types of boundaries

Invalidates the assumption that the aquifer is of “infinite

areal extent”

The use of image wells and the “principle of

superposition” are applied to transform an aquifer of

finite areal extent into one of seemingly infinite extent
which allows the use of methods from previous chapters



Recharging Boundary
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A) A recharging boundary;
D) A barrier boundary.
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Image Wells

Positioned such that that pumping well and image well form mirror
images of one another:

Located on the opposite side of boundary from the pumping well
At the exact distance away from boundary as the pumping well
Recharge boundary: image well is a recharge well

Barrier boundary: image well is a discharge well

Flow rate is always constant, and is equal to the rate of the real
pumping well

By using the law of superposition (i.e., the drawdown from two or
more wells can be added to find the resulting overall drawdown)

the drawdown from the real well and the image well will give you
the actual drawdown

More than one boundary? More than one image well will be
needed



Image Well Positioning
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One straight recharge boundary:
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Two straight recharge boundaries at right angles to each other
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Standard Plot
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Partially Penetrating Wells

Aquifer is so thick that a fully penetrating well is impractical
Increased velocity close to well
Extra head losses
Effect is inversely related to distance from well
Negligible at distances r > 2b sqrt(Kb/Kv)
Standard methods cannot be used at r< 2b sqrt(Kb/Kv)
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Figure 10.5 Cross-section of an unconfined anisotropic aquifer pumped by a partially penetrating well



Multilayer Aquifers: Case 1
Consists of two or more aquifer layers separated by aquicludes
Two confined aquifers
An unconfined aquifer overlying a confined aquifer

If data on the transmissivity and storativity of the individual layers are
needed, a pumping test can be performed in each layer as long as the well
does not fully penetrate the entire system

For an aquifer system consisting of multiple confined aquifers separated by
an aquiclude, use an asymptotic solution for non-steady state flow to a well
that fully penetrates the system.

For an aquifer system that consists of an unconfined aquifer overlying a
confined aquifer, use a solution for non-steady state flow to a fully
penetrating well.



Multilayer Aquifers: Case 2

- Consists of two or more aquifers - each with its own hydraulic
characteristics - that are separated by interfaces that allow for unrestricted
flow between them, or crossflow.

- A response to pumping will be analogous to that of a single-layered
whose transmissivity and storativity are equal to the sum of the
transmissivity and storativity of the individual layers.
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Multilayer Aquifers: Case 3
- Consists of multiple aquifers layers separated by aquitards.

- In this leaky system, pumping one layer has measureable effects in other
layers of the aquifer system.

- The effects are dependent upon the hydraulic characteristics of the
individual layers and the aquitards.

- For short pumping tests in these systems, drawdown in the unpumped
layers can be considered negligible, and we would use previous methods
to find aquifer properties.

- For longer pumping times, use a method for the analysis of pumping data
from leaky two-layered aquifer systems in steady state.
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Matrix Representation

oh .
— 4+ A
5 +Ah

Vh=D"'
h is the vector of heads in each layer
D is the diagonal matrix of hydraulic diffusivities in each layer

A is a matrix that represents the vertical flow between layers
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T; = b; K, are the horizontal transmissivities in each layer
C, = K’/ b are the vertical conductances between layers

_ G
T

_ G G140y

b

_ 0O
T3

0
_ 0y
b

C2+Cs
T3

0

0

_Cs
13

Cn—l Cn—l

Tn

Tn |




