Exercise 2: Show that $2 \sum_{n=-\infty}^{+\infty} \ln \beta^{2}\left[\omega^{2}+\left(\omega_{n}+i \mu\right)^{2}\right]=\sum_{n=-\infty}^{+\infty}\left\{\ln \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]+\ln \beta^{2}\left[\omega_{n}^{2}+(\omega+\mu)^{2}\right]\right\}$

Partition Function for Fermionic Fields

Since both positive and negative frequencies have to be summed over, the latter expression can be put in a form analogous to the above expression in the bosonic case,

$$
\ln Z=\sum_{n} \sum_{\vec{p}}\left\{\ln \left[\beta^{2}\left(\omega_{n}^{2}+(\omega-\mu)^{2}\right)\right]+\ln \left[\beta^{2}\left(\omega_{n}^{2}+(\omega+\mu)^{2}\right)\right]\right\} .
$$

In the further evaluation we can go similar steps as in the bosonic case, with two exceptions: (1) the presence of a chemical potential, splitting the contributions of particles and antiparticles; (2) the Matsubara frequencies are now odd multiples of πT, so that the infinite sum to be exploited reads

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(2 n+1)^{2} \pi^{2}+\Theta^{2}}=\frac{1}{\Theta}\left(\frac{1}{2}-\frac{1}{\mathrm{e}^{\Theta}+1}\right)
$$

Integrating over the auxiliary variable Θ, and dropping terms independent of β and μ, we finally obtain

$$
\ln Z=2 V \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\beta \omega+\ln \left(1+\mathrm{e}^{-\beta(\omega-\mu)}\right)+\ln \left(1+\mathrm{e}^{-\beta(\omega+\mu)}\right)\right] .
$$

Notice that the factor 2 corresponding to the spin- $\frac{1}{2}$ nature of the fermions comes out automatically. Separate contributions from particles (μ) and antiparticles ($-\mu$) are evident. Finally, the zero-point energy of the vacuum also appears in this formula.

Interactions: Hubbard-Stratonovich Trick

A general class of interactions for which the Hubbard-Stratonovich (HS) transformation is immediately applicable, are four-fermion couplings of the current-current type

$$
\begin{equation*}
\mathcal{L}_{i n t}=G(\bar{\psi} \psi)^{2} . \tag{3}
\end{equation*}
$$

A Fermi gas with this typ of interaction serves as a model for electronic superconductivity (Bardeen-Cooper-Schrieffer (BCS) model, 1957) or for chiral symmetry breaking in quark matter (Nambu-Jona-Lasinio (NJL) model, 1961).

The HS-transformation for (3) reads

$$
\exp \left[G(\bar{\psi} \psi)^{2}\right]=\mathcal{N} \int \mathcal{D} \sigma \exp \left[\frac{\sigma^{2}}{4 G}+\bar{\psi} \psi \sigma\right]
$$

and allows to bring the functional integral over fermionic fields into a quadratic (Gaussian) form so that fermions can be integrated out.
This is also called Bosonization procedure.

Bose-Einstein Condensation: Charged Scalar Field

Consider a complex scalar field (two real components ϕ_{1}, ϕ_{2}):

$$
\Phi=\left(\phi_{1}+i \phi_{2}\right) / \sqrt{2}, \quad \Phi^{*}=\left(\phi_{1}-i \phi_{2}\right) / \sqrt{2}
$$

$$
\mathcal{L}=\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi-m^{2} \Phi^{*} \Phi-\lambda\left(\Phi^{*} \Phi\right)^{2},
$$

with $\mathrm{U}(1)$ symmetry: $\Phi \longrightarrow \Phi e^{-i \alpha}$, where α is a real constant. Noether theorem: continuous symmetry \rightarrow conserved current

$$
\begin{aligned}
\mathcal{L} \rightarrow \mathcal{L}^{\prime} & =\partial_{\mu}\left(\Phi^{*} \mathrm{e}^{i \alpha(x)}\right)\left(\partial^{\mu} \Phi \mathrm{e}^{-i \alpha(x)}\right)-m^{2} \Phi^{*} \Phi-\lambda\left(\Phi^{*} \Phi\right)^{2}, \\
& =\mathcal{L}+\Phi^{*} \Phi \partial_{\mu} \alpha \partial^{\mu} \alpha+i \partial_{\mu} \alpha\left(\Phi^{*} \partial^{\mu} \Phi-\Phi \partial^{\mu} \Phi^{*}\right)
\end{aligned}
$$

Equation of motion for the "field" $\alpha(x)$

$$
\partial^{\mu} \frac{\partial \mathcal{L}^{\prime}}{\partial\left(\partial^{\mu} \alpha\right)}=\frac{\partial \mathcal{L}^{\prime}}{\partial \alpha}
$$

Since $\partial \mathcal{L}^{\prime} / \partial \alpha=0$ follows a conserved "current": $\partial \mathcal{L}^{\prime} / \partial\left(\partial^{\mu} \alpha\right)=\Phi^{*} \Phi \partial_{\mu} \alpha-i \Phi \partial_{\mu} \Phi^{*}+i \Phi^{*} \partial_{\mu} \Phi$. Recover original field theory by setting $\alpha=$ constant. Then

$$
j_{\mu}=i\left(\Phi^{*} \partial_{\mu} \Phi-\Phi \partial_{\mu} \Phi^{*}\right), \partial^{\mu} j_{\mu}=0
$$

Full current: $J_{\mu}=\int d^{3} x j_{\mu}(x)$; conserved charge: $Q=\int d^{3} x j_{0}(x)$

Bose-Einstein Condensation: Charged Scalar Field (2)

Decompose the complex $\Phi=\left(\phi_{1}+i \phi_{2}\right) / \sqrt{2}$ into real and imaginary parts: ϕ_{1}, ϕ_{2}.
Conjugate momenta: $\pi_{1}=\partial \phi_{1} / \partial t, \pi_{2}=\partial \phi_{2} / \partial t$ Hamiltonian density and charge:

$$
\mathcal{H}=\frac{1}{2}\left[\pi_{1}^{2}+\pi_{2}^{2}+\left(\nabla \phi_{1}\right)^{2}+\left(\nabla \phi_{2}\right)^{2}+m^{2} \phi_{1}^{2}+m^{2} \phi_{2}^{2}\right]+\frac{\lambda}{4}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}, \quad Q=\int d^{3} x\left(\phi_{2} \pi_{1}-\phi_{1} \pi_{2}\right)
$$

The partition function is
$Z=\int\left[d \pi_{1}\right]\left[d \pi_{2}\right] \int_{\text {periodic }}\left[d \phi_{1}\right]\left[d \phi_{2}\right] \exp \left[\int^{\beta} d^{4} x\left(i \pi_{1} \frac{\partial \phi_{1}}{\partial \tau}+i \pi_{2} \frac{\partial \phi_{2}}{\partial \tau}-\mathcal{H}\left(\pi_{1}, \pi_{2}, \phi_{1}, \phi_{2}\right)+\mu\left(\phi_{2} \pi_{1}-\phi_{1} \pi_{2}\right)\right)\right]$
Integration over conjugate field momenta can be done with the result:

$$
\begin{aligned}
Z= & \left(N^{\prime}\right)^{2} \int_{\text {periodic }}\left[d \phi_{1}\right]\left[d \phi_{2}\right] \exp \left\{\int ^ { \beta } d ^ { 4 } x \left[-\frac{1}{2}\left(\frac{\partial \phi_{1}}{\partial \tau}-i \mu \phi_{2}\right)^{2}-\frac{1}{2}\left(\frac{\partial \phi_{2}}{\partial \tau}-i \mu \phi_{1}\right)^{2}\right.\right. \\
& \left.\left.-\frac{1}{2}\left(\nabla \phi_{1}\right)^{2}-\frac{1}{2}\left(\nabla \phi_{2}\right)^{2}-\frac{1}{2} m^{2} \phi_{1}^{2}-\frac{1}{2} m^{2} \phi_{2}^{2}-\frac{\lambda}{4}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}\right]\right\}
\end{aligned}
$$

Differs from naïve expectation $\mathcal{L}\left(\phi_{1}, \phi_{2}, \partial_{\mu} \phi_{1}, \partial_{\mu} \phi_{2} ; \mu=0\right)+\mu j_{0}\left(\phi_{1}, \phi_{2}, \partial \phi_{1} / \partial \tau, \partial \phi_{2} / \partial \tau\right)$ by $\mu^{2} \Phi^{*} \Phi$

Bose-Einstein Condensation: Charged Scalar Field (3)

In the following: ideal gas $(\lambda=0)$. For $\lambda \neq 0$, perform HS-transformation! (Exercise) Expand components of $\Phi=\left(\phi_{1}+i \phi_{2}\right) / \sqrt{2}$ in Fourier series:

$$
\begin{aligned}
& \phi_{1}(\vec{x}, \tau)=\sqrt{2} \zeta \cos \theta+\left(\frac{\beta}{V}\right)^{1 / 2} \sum_{n=-\infty}^{\infty} \sum_{\vec{p}} \mathrm{e}^{i\left(\vec{p} \vec{x}+\omega_{n} \tau\right)} \phi_{1 ; n}(\vec{p}), \\
& \phi_{2}(\vec{x}, \tau)=\sqrt{2} \zeta \sin \theta+\left(\frac{\beta}{V}\right)^{1 / 2} \sum_{n=-\infty}^{\infty} \sum_{\vec{p}} \mathrm{e}^{i\left(\vec{p} \vec{x}+\omega_{n} \tau\right)} \phi_{2 ; n}(\vec{p}) .
\end{aligned}
$$

Infrared character of Φ carried by ζ and θ, independent of (\vec{x}, τ), so $\phi_{1 ; 0}(\overrightarrow{0})=\phi_{2 ; 0}(\overrightarrow{0})=0$. Possibility of condensation of bosons into the zero-momentum state: finite fraction of particles in $n=0, \vec{p}=\overrightarrow{0}$ state.

$$
\begin{aligned}
Z & =\left(N^{\prime}\right)^{2}\left[\Pi_{n} \Pi_{\vec{p}} \int i d \phi_{1 ; n}(\vec{p}) d \phi_{2 ; n}(\vec{p})\right] \mathrm{e}^{S} \\
S & =\beta V\left(\mu^{2}-m^{2}\right) \zeta^{2}-\frac{1}{2} \sum_{n} \sum_{\vec{p}}\left(\phi_{1 ;-n}(-\vec{p}), \phi_{2 ;-n}(-\vec{p})\right) D\binom{\phi_{1 ; n}(\vec{p})}{\phi_{2 ; n}(\vec{p})} \\
D & =\beta^{2}\left(\begin{array}{lr}
\omega_{n}^{2}+\omega^{2}-\mu^{2} & -2 \mu \omega_{n} \\
2 \mu \omega_{n} & \omega_{n}^{2}+\omega^{2}-\mu^{2}
\end{array}\right)
\end{aligned}
$$

Bose-Einstein Condensation: Charged Scalar Field (4)

Carrying out integrations yields:

$$
\ln Z=\beta V\left(\mu^{2}-m^{2}\right) \zeta^{2}+\ln (\operatorname{det} D)^{-1}
$$

Second term can be handled as:

$$
\begin{aligned}
\ln \operatorname{det} D & =\ln \left\{\Pi_{n} \Pi_{\vec{p}} \beta^{4}\left[\left(\omega_{n}^{2}+\omega^{2}-\mu^{2}\right)^{2}+4 \mu^{2} \omega_{n}^{2}\right]\right\} \\
& =\ln \left\{\Pi_{n} \Pi_{\vec{p}} \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]\right\}+\ln \left\{\Pi_{n} \Pi_{\vec{p}} \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]\right\}
\end{aligned}
$$

Putting all together and evaluating the Matsubara sums, we obtain

$$
\ln Z=\beta V\left(\mu^{2}-m^{2}\right) \zeta^{2}-V \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\beta \omega+\ln \left(1-\mathrm{e}^{-\beta(\omega-\mu)}\right)+\ln \left(1-\mathrm{e}^{-\beta(\omega+\mu)}\right)\right]
$$

Result independent of θ because of $U(1)$ symmetry. Parameter ζ from variation of $\ln Z$.

$$
\frac{\partial \ln Z}{\partial \zeta}=2 \beta V\left(\mu^{2}-m^{2}\right) \zeta=0
$$

implies that $\zeta=0$ unless $|\mu|=m$, when ζ is determined from $\rho=Q / V$

$$
\rho=\frac{T}{V}\left(\frac{\partial \ln Z}{\partial \mu}\right)_{\mu=m}=2 m \zeta^{2}+\rho^{*}(\beta, \mu=m) ; \quad \rho^{*}=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{1}{\mathrm{e}^{\beta(\omega-\mu)}-1}-\frac{1}{\mathrm{e}^{\beta(\omega+\mu)}-1}\right)
$$

Critical temperature T_{c} for condensation from $\rho=\rho^{*}\left(\beta_{c}, \mu=m\right)$.

Bose-Einstein Condensation: ExERCISES

1. Find the critical temperature T_{c} for condensation from $\rho=\rho^{*}\left(\beta_{c}, \mu=m\right)$. Show that the nonrelativistic (NR, $\rho \ll m^{3}$) and ultrarelativistic (UR, $\rho \gg m^{3}$) limits are given by

$$
T_{c, \mathrm{NR}}=\frac{2 \pi}{m}\left(\frac{\rho}{\zeta(3 / 2)}\right)^{2 / 3} ; T_{c, \mathrm{UR}}=\left(\frac{3 \rho}{m}\right)^{1 / 2}
$$

2. For $T<T_{c}$, the value of ζ is the order parameter of the $2^{\text {nd }}$ order condensation phase transition

$$
\zeta^{2}=\left[\rho-\rho^{*}(\beta, \mu=m)\right] /(2 m), \quad T<T_{c} .
$$

At the critical temperature, the expansion $\zeta \sim t^{\nu}$ for small $t=T-T_{c}$ determines a critical exponent ν. Find the value of ν in both cases.
3. Consider the interacting case $\lambda \neq 0$. Perform the Hubbard-Stratonovich transformation by introducing a collective scalar field σ. Discuss the effect of $\lambda \neq 0$ on the thermodynamic potential in the mean-field approximation for σ, i.e. by neglecting the path integral over the σ-fields and determining σ in the thermodynamical equilibrium from a gap equation $\partial \ln Z / \partial \sigma=0$.

Exercise: Calculation of Dirac determinant $\quad \operatorname{det}\left(\gamma_{\mu} p_{\mu}-m^{*}\right), p_{0}=i\left(\omega_{n}+i \mu\right)$

Solution: 1. Use explicit form of gamma matrices (and Pauli matrices)

$$
\begin{array}{lll}
\gamma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; & \gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) & \\
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; & \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; & \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

2. Write down the determinant

$$
\left\|\gamma_{\mu} p_{\mu}-m^{*}\right\|=\left|\begin{array}{rrrr}
\left(p_{0}-m^{*}\right) & 0 & p_{3} & \left(p_{1}-i p_{2}\right) \\
0 & \left(p_{0}-m^{*}\right) & \left(p_{1}+i p_{2}\right) & -p_{3} \\
-p_{3} & \left(-p_{1}+i p_{2}\right) & \left(-p_{0}-m^{*}\right) & 0 \\
\left(-p_{1}-i p_{2}\right) & p_{3} & 0 & \left(-p_{0}-m^{*}\right)
\end{array}\right|
$$

3. Determine the subdeterminants

$$
\begin{array}{ll}
D_{11}=-\left(p_{0}+m^{*}\right) & \left(\vec{p}^{2}+m^{2}-p_{0}^{2}\right) \\
D_{13}= & p_{3}
\end{array} \quad\left(\vec{p}^{2}+m^{2}-p_{0}^{2}\right), ~\left(\vec{p}^{2}\right)
$$

4. Calculate the determinant according to standard rules

$$
\begin{aligned}
\left\|\gamma_{\mu} p_{\mu}-m^{*}\right\| & =\left(p_{0}-m^{*}\right) D_{11}+p_{3} D_{13}-\left(p_{1}-i p_{2}\right) D_{14} \\
& =\left(-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+m^{* 2}\right)\left(\vec{p}^{2}+m^{* 2}-p_{0}^{2}\right) \\
& =\left(\vec{p}^{2}+m^{* 2}-p_{0}^{2}\right)^{2} \\
& =\left[\omega^{2}+\left(\omega_{n}+i \mu\right)^{2}\right]^{2}, \quad \omega^{2}=\vec{p}^{2}+m^{* 2}
\end{aligned}
$$

5. Result:

Exercise 2: Show that $2 \sum_{n=-\infty}^{+\infty} \ln \beta^{2}\left[\omega^{2}+\left(\omega_{n}+i \mu\right)^{2}\right]=\sum_{n=-\infty}^{+\infty}\left\{\ln \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]+\ln \beta^{2}\left[\omega_{n}^{2}+(\omega+\mu)^{2}\right]\right\}$
Solution: 1. Consider an analytic function $F\left(z_{n}\right)$ where $z_{-}=\left(i \omega_{-}-\mu\right)$, with $\omega_{n}=(2 n+1) \pi T$

$$
\begin{gathered}
\sum_{n=-\infty}^{+\infty} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)=\sum_{n=0}^{+\infty} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)+\sum_{n=-\infty}^{-1} F\left(\left(\omega_{n}+i \mu\right)^{2}\right) \\
\sum_{n=-\infty}^{-1} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)=\sum_{n=1}^{\infty} F\left(\left(\omega_{-n}+i \mu\right)^{2}\right)=\sum_{n=0}^{\infty} F\left(\left(\omega_{-n-1}+i \mu\right)^{2}\right)=\sum_{n=0}^{\infty} F\left(\left(-\omega_{-n-1}-i \mu\right)^{2}\right)
\end{gathered}
$$

2. For the fermionic Matsubara frequencies holds $-\omega_{-n-1}=-\pi T(2(-n-1)+1)=\pi T(2 n+1)=\omega_{n}$

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty} F\left(\left(\omega_{n}+i \mu\right)^{2}\right) & =\sum_{n=0}^{+\infty} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)+\sum_{n=0}^{+\infty} F\left(\left(\omega_{n}-i \mu\right)^{2}\right)=\sum_{n=0}^{+\infty} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)+\sum_{n=0}^{+\infty} F^{*}\left(\left(\omega_{n}+i \mu\right)^{2}\right) \\
& =2 \sum_{n=0}^{+\infty} \operatorname{Re} F\left(\left(\omega_{n}+i \mu\right)^{2}\right)
\end{aligned}
$$

3. Using this relationship based on the symmetry of the Matsubara frequencies, transform:

$$
\begin{aligned}
2 \sum_{n=-\infty}^{+\infty} \ln \beta^{2}\left[\omega^{2}+\left(\omega_{n}+i \mu\right)^{2}\right] & =4 \sum_{n=0}^{+\infty} R e \ln \beta^{2}\left[\left(\omega^{2}+\omega_{n}^{2}-\mu^{2}\right)+i\left(2 \omega_{n} \mu\right)\right] \\
& =2 \sum_{n=0}^{+\infty} \ln \beta^{2}\left[\left(\omega^{2}+\omega_{n}^{2}-\mu^{2}\right)^{2}+\left(2 \omega_{n} \mu\right)^{2}\right] \\
& =2 \sum_{n=0}^{+\infty}\left\{\ln \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]+\ln \beta^{2}\left[\omega_{n}^{2}+(\omega+\mu)^{2}\right]\right\} \\
& =\sum_{n=-\infty}^{+\infty}\left\{\ln \beta^{2}\left[\omega_{n}^{2}+(\omega-\mu)^{2}\right]+\ln \beta^{2}\left[\omega_{n}^{2}+(\omega+\mu)^{2}\right]\right\}
\end{aligned}
$$

