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PARTITION FUNCTION FOR FERMIONIC FIELDS

Since both positive and negative frequencies have to be summed over, the latter expression
can be put in a form analogous to the above expression in the bosonic case,

InZ = zz {111 [IHE (.ui + (w — p:]g)} + In [ﬁg (.ui + (w + ,u,)g)} } :

In the further evaluation we can go similar steps as in the bosonic case, with two exceptions:
(1) the presence of a chemical potential, splitting the contributions of particles and antiparti-
cles; (2) the Matsubara frequencies are now odd multiples of T, so that the infinite sum to be
exploited reads

SRR BT
2n+1)2+602 e\2 £+1)°

n=—00 :

Integrating over the auxiliary variable ©, and dropping terms independent of 5 and p, we finally
obtain

d*p | .
— 2V r —Blw—p) —Blw+p)
InZ =2V / )3 [ﬁ.u +In(l1+e )+ In(1 +e jl] :
Notice that the factor 2 corresponding to the spin-; nature of the fermions comes out automat-
ically. Separate contributions from particles () and antiparticles (-u) are evident. Finally, the
zero-point energy of the vacuum also appears in this formula.



INTERACTIONS: HUBBARD-STRATONOVICH TRICK

A general class of interactions for which the Hubbard-Stratonovich (HS) transformation is im-
mediately applicable, are four-fermion couplings of the current-current type

Lins = G()* . 3)

A Fermi gas with this typ of interaction serves as a model for electronic superconductivity
(Bardeen-Cooper-Schrieffer (BCS) model, 1957) or for chiral symmetry breaking in quark mat-
ter (Nambu—Jona-Lasinio (NJL) model, 1961).

The HS-transformation for (3) reads

52
exp [G(YY)] =N /I}J exp LG + ’ip’i,yﬂ]

and allows to bring the functional integral over fermionic fields into a quadratic (Gaussian) form
so that fermions can be integrated out.

This is also called Bosonization procedure.



BOSE-EINSTEIN CONDENSATION: CHARGED SCALAR FIELD

Consider a complex scalar field (two real components ¢,, ¢-):

O = (¢ +id2)/V2, O* = (d1—id2)/V2
L=0,970"P — m*®*d — \(d*P)*,

with U(1) symmetry: ® — ®e*, where a is a real constant.
Noether theorem: continuous symmetry — conserved current

L— L = 8,(9%e ) (grde ™)) — m?*d — \(0* D)%
= L+ 3*®5,00"a + i8,0(D* "D — D5*D")
Equation of motion for the “field” «(z)
oc' oL
apa(am) ~ da

Since 0L'/da =0 follows a conserved “current™ 4.L'/d(0%a) = ¢*P0,a — i90,P* +iD*0,P .
Recover original field theory by setting o =constant. Then

j = i(®°8,® — ©9,0%) , &j, =0
Full current: J, = [ d*zj,(z); conserved charge: Q = [ d*zjo(z)




BOSE-EINSTEIN CONDENSATION: CHARGED SCALAR FIELD (2)

Decompose the complex ® = (¢, + i¢,)/+/2 into real and imaginary parts: ¢, ¢,.
Conjugate momenta: m; = d¢,/0t, m = doo /0t
Hamiltonian density and charge:

H= % [T+ + (V6" + (Véo)" + mPgp + midy] + %(qfﬁ +42)", Q= / d’z(¢om — ¢1my)

The partition function is

B
= f[dﬂl][d?fz] [d¢b1][depa] exp [f d'z (Wlii + m?% — H(m, m2, é1, o) + pldrm — ¢’lﬁ2))]
periodic T

Integration over conjugate field momenta can be done with the result:

Z = (N')? fpm&m[dqﬁ [deba] exp { f d'z[— (aﬂ? i#ﬁf’z)i —%(%—wl)z

1 9 2,2
—(Ver)* - —{v@) - —m 67 — E”” ¢ — E{f;ﬂn + )7} -

Differs from naive expectation L(¢y,¢a,0ud1, 0o = 0) + pjoldy, o, 0y /T, O /OT)
by p*o*d



BOSE-EINSTEIN CONDENSATION: CHARGED SCALAR FIELD (3)

In the following: ideal gas (A = 0). For A +# 0, perform HS-transformation! (Exercise)
Expand components of & = (¢, +i¢,)/v/2 in Fourier series:

1/2 oo
Qﬁl{sz) - ‘/ﬁCCGEH—I— (%) Z Zei{ﬁ+%Tj¢l;n(ﬁ 3

-

n=—oc §@

1/2 oo
‘;ﬁ?{f;'?_:l = \/ECEIHH-I— (%) Z Zei{ﬁ_l-%ﬂ@;n(ﬁ} .

n=—oc p
Infrared character of ® carried by ¢ and @, independent of (#,7), SO &1.0(0) = ¢a0(0) = 0.
Possibility of condensation of bosons into the zero-momentum state: finite fraction of particles
inn =0, 7= 0 state.

Z — (N'}? [nﬂnf ] idgi:l;ﬂ{p_)dqﬁgm[ﬁ}] o5

1 P1:n(P) )
S = BV(p* —mH (¢ — = —n(—P), P2 _n(— D( :
BV (u* —m*)¢ gggm (=P bun(=PND{ "5 |

o (Wl +w?—p? — 24,
D=2p 2 2 2 2 |-
Hen Wi 4w — p



BOSE-EINSTEIN CONDENSATION: CHARGED SCALAR FIELD (4)

Carrying out integrations yields:
In Z = BV (p* — m*)¢* + In(det D)
Second term can be handled as:
Indet D = In {IL,[;3" [(w? + w® — p®)* + 4p*w?2] }
= In {IL.11;8” [w; + (w — p)°] } + I {01087 [wr + (w — p)°] }
Putting all together and evaluating the Matsubara sums, we obtain

3
nZ = BV(u*—m?)¢* -V f g;;a[ﬁu +In(1 — e P@=H) 4 In(1 — e Plotr))]
Result independent of § because of U/(1) symmetry. Parameter ¢ from variation of In Z.
olnz 5 -
implies that { = 0 unless || = m, when ( is determined from p = Q/V
T (8InZ A Y B 1 1
=7 ( o )Fm =2m¢"+p'(Bp=m); p" = f 21 ) (eg{u_p;. 1 Bl 1)

Critical temperature 7. for condensation from p = p*( 3., p = m).



BOSE-EINSTEIN CONDENSATION: EXERCISES

1. Find the critical temperature T. for condensation from p = p*( 3., u = m).
Show that the nonrelativistic (NR, p <« m?®) and ultrarelativistic (UR, p > m?) limits are

given by
o 2t o 2/3 | - 3p 1/2
T () o (3)

2 For T < T,, the value of ¢ is the order parameter of the 2"¢ order condensation phase
transition

C=p-p(B,p=m)]/(2m), T<T,.

At the critical temperature, the expansion ¢ ~ t” for small ¢ = T' — T, determines a critical
exponent v. Find the value of v in both cases.

3. Consider the interacting case A # 0. Perform the Hubbard-Stratonovich transformation by
introducing a collective scalar field o. Discuss the effect of A # 0 on the thermodynamic
potential in the mean-field approximation for o, i.e. by neglecting the path integral over

the o-fields and determining o in the thermodynamical equilibrium from a gap equation
dln Z/80 = (.







Exercise: Calculation of Dirac determinant ~ det(y,p, — m*)  py =

i(wn + i)

Solution: 1. Use explicit form of gamma matrices (and Pauli matrices)

o 1 0 _ o 0 o
0 — 0 —1 : i — — 0 0
S ﬂ —I - J

2. Write down the determinant

(po — ") 0 ps  (p1—ip)
v, — m* || = 0 (po—m*) (p1+ip2) —ps
TR | —ps (—=p1+ip2) (=po—m*) 0
(—p1 — i) D3 0 (—po—m*)
3. Determine the subdeterminants Di= —(po+m") (7+m’—p)

(ﬁz +m? — JJE)

—(p1 +ipo) (p +m* — j')g)

D3 = P3
Dl4 =

4. Calculate the determinant according to standard rules

(po —m")Dyy + psDys — (p1 — ",UﬂDH
( ;JG + p + ,u;, + ,ug +m” ) (p +m* — ;Jﬁ)
2
= (;’JQ +m* — pﬂ)

5. Result: = [u,z

[P =m0 =

,L—l—:,u r, W =
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Exercise 2: Show that 2 f In F2w? + (wp+ip)?] = > {]11 Bl + (w— p)’] + In 8w’ + (w + p) j}
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Solution: 1. Consider an analytic function F(z)) where z_ = (iw_— u), with w_=(2n+1)mT
+o

1
| > OF ((u,n + i) ) Z F ( Wy, + i) ) Z F ((u;.ﬁL + -rﬂ,u.)?)
1 s s} o0 0o
Z F ((wn — !:UJE) = Z F ((L'AJ T + !:UJE) = Z‘]F ((w n—1 + 'f:u)z) = Z F ((_w n—1 — ".u)z)
= —00 =1 = =0
2. For the fermionic Matsubara frequencies holds —w ,, 1 = —7T(2(-n— 1)+ 1) = 7T (2n + 1) = w,

Zm F ((wn+ip)?) = Zf(m,ﬁm )+Zf(% in)’) = Zf(uijf,u ) + ZF*(U,,NL?:H)?)

T=—00 =0 i—0 =0 =10}

= ZZHGF(( ,L—Hp))

=i}

3. Using this relationship based on the symmetry of the Matsubara frequencies, transform:

400
2 Y I+ (w,+ip)?’] = 4 Z Re In [(w® + w2 — p*) + i (2w )]

=00 =0

+o0
= 2% InfF[(w +w) — 1) + Cwup)’]
rt.—l}

- 2 Z {]11 Bl + (w— p)?’]+In FPlw? + (w+ ,u.]'zj}

=0

o

= Y {]11 _,ﬂg[w.z + (w — 1)’ | +1In 3’ [ + (w+ F“')QJ}
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