DOI: http://dx.doi.org/10.18782/2320-7051.2337

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **4** (**4**): 26-32 (2016)

Research Article

Identification of the Substance Bioactive Leaf Extract *Piper caninum* Potential as Botanical Pesticides

Ni Luh Suriani*

Department of Biology, Faculty of mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran Bali, Indonesia

*Corresponding Author E-mail: niluhsurianisuriani@yahoo.com Received: 13.07.2016 | Revised: 25.07.2016 | Accepted: 30.07.2016

ABSTRACT

Based on the preliminary test of the 37 types of plants found that the crude extract of the leaves of P. caninum able to inhibit the growth of Pyricularia oryzae fungus the cause of rice blast disease on rice in vitro on PDA with inhibition zone diameter of 44 mm, but it is not certain bioactive substances. For these conditions, this study is a follow-up study, conducted to determine the content of bioactive substances potentially as botanical pesticides. The method used is the method of column chromatography and thin layer, and GCMS. The study states that the extract of Piper caninum containing 4 secondary metabolites are alkaloids, folifenol, steroids and flavonoids and results analysis using GCMS there are 10 active compound is benzene; dodecanoic hexadecanoic xvlene: tetradecane; acid; *heptadecane;* acid; octadecamethylocyclononasiloxane; phtalic acid; 8,11, 14-decosatrienoic acid; and 1,2benzenedicarboxylic acid. Based on the existing references, of 10 compounds 6 compounds are: benzene; tetradecane; dodecanoic acid, hexadecanoic acid, benzenedicarboxylic acid, octadecamethylocyclononasiloxane, an active substance that serves as an antifungal and four other compounds unknown function.

Key words: Piper caninum, extracts, bioactive substances, botanical pesticides

INTRODUCTION

Indonesia is a country rich in biodiversity, either used as a source of food, medicine and as a botanical pesticide. Currently uses the plant as a pesticide plant developed, because it is one factor in supporting organic agriculture. The widespread use of synthetic pesticides causes environmental damage because it is not easily broken down in the environment. A total of 37,000 species of flora in Indonesia has potential as botanical pesticides. Semangun¹¹ found that an extract of the plant serves as a botanical pesticide if the plant extract can inhibit the development of a disease, because these plants contain bioactive substances such as flavonoids, polyphenols, alkaloids, saponins and tannins. Research Suriani *et al*¹⁴, stated that the forest chilli leaf extract (*Piper caninum*) can inhibit the fungus *Pyricularia oryzae* causes rice blast disease.

Cite this article: Suriani, N.L., Identification of the Substance Bioactive Leaf Extract *Piper caninum* Potential as Botanical Pesticides, *Int. J. Pure App. Biosci.* **4(4):** 26-32 (2016). doi: http://dx.doi.org/10.18782/2320-7051.2337

Int. J. Pure App. Biosci. 4 (4): 26-32 (2016)

P. caninum is a creeper and climbing in a tree with a round stem, bark blackish green and hairy (Figure 1). *P. caninum* is found in tropical and subtropical regions, spreading

from the lowlands to the highlands (1,100 asl). This plant likes height 600-800 meters above sea level³.

Fig. 1: *Piper caninum* (Source: private collection, 2014)

According to Maj *et al*⁷, that *P. caninum* has an antimicrobial phytochemicals that act as antioxidants and as the 77.9 % found in the leaves and 87 % found in the trunk . This plant has antimicrobial activity against Staphylococcus **Bacillus** subtilis, aureus, Pseudomonas aeruginosa, Pseudomonas putida, Escherichia coli, Candida albicans, and Aspergillus niger . All Piper contain phytochemical compounds evalonik acid types, cinanamoyl alkhyl amides, amides, aristolaktam,, flavones, dehidroflavone dehidrochalcone , dehidroflavonoid⁷. In addition, this plant extract can inhibit the growth of fungus because it contains 4, 5dioxoaporphine alkaloid cepharadione A^7 . He said that Piper spp. (Piperaceae) contain bioactive substances include substances phenylpropanoids, lignoids, and plavonoids. Phenylpropanoids compounds act as insecticides, especially compounds dimethoxy -4,5- mthylenodioxy - allelbenzene (dilallpiol).

Crude extract of leaves of P. caninum able to inhibit the growth of *P. oryzae* fungus in vitro on PDA with inhibition zone diameter of 44 mm, but it is not certain

Copyright © August, 2016; IJPAB

bioactive substances. For these conditions, this study is a follow-up study, conducted to determine the content of bioactive substances potentially as botanical pesticides.

MATERIALS AND METHODS

P. caninum leaves were collected from plants grown in the Village of Senganan, Penebel District, Tabanan Regency Bali. The leaves collected were mature leaves number 3 from top to bottom⁵. Collected leaves were washed with clean water to remove contaminants, then cut to small pieces and wind dried for 3 days in the shade. The materials were then macerated in methanol at a ratio of 1:10 (weight / volume) for 48 hours in the dark, at room temperature. The filtrate was obtained by filtering, using 4 layers of gauze followed by filtration using Whatman filter paper No. 1. The maceration process was done 3 times with methanol. The filtrate obtained were combined and then evaporated using a rotary evaporator (Iwaki, Tokyo) at 40° C to separate the solvent (methanol) and the extract. The crude extract obtained was ready for the next test.

Extract separation of methanol and hexane phases

Crude extract of p. caninum leaf as much as 4 ml was dissolved in 200 ml of methanol and 200 ml of hexane. The mixture was shaken in a separating funnel so that it was evenly mixed. This suspension was allowed to stand some time until visible phase separation between methanol and hexane phase. The two phases were separated and each phase with the solvent was evaporated in a rotary vacuum evaporator thus obtaining methanol and hexane extracts. Both extracts were tested for inhibitory against P. oryzae on PDA with the well diffusion method. Extracts showinggreater inhibition of activity were further fractionated by column chromatography.

Fractionation of active components

Extracts showed fungicidal activity against *P. oyzae* fractionated by column chromatography. Extract as much as 10 g dissolved in 40 ml of hexan. Once completely dissolved, add 10 g of silica gel 60 (0.063 to 0.200 mm) for column chromatography (70-230 mesh ASTM) Merck KGaA, 64271 Damstadt, Germany. The mixture was then evaporated to crumb using a rotary vacuum evaporator.

Crumbs extract on silica gel was put into chromatography column with the length of 59 cm and a diameter of 3.2 cm. The column had previously been charged with 115 grams of silica gel (Wako gel, particle size 75-150 m) and mixed in 350 ml of hexane. To get a fraction of the crude extract, the column was skipped with eluent (solvent) with the polarity of different levels, from the non-polar (hexane) followed by solvents that were more polar.

The eluent used in column chromatography in the order of polarity, from nonpolar to polar, in the following order:

- 1. Hexane, hexane: dichloromethane, dichloromethane, dichloromethane: ethyl acetate, ethyl acetate, ethyl acetate: acetone, Acetone, Acetone: propanol, propanol, propanol: ethanol, Ethanol, Ethanol: methanol, Methanol.
- 2. The eluate was collected each 50 ml in a bottle container. First as a bottle bin, the

next bin as the second bottle and so on. Each eluate was evaporated. Then antifungal testwas done. The most active fractions were then used for the isolation and identification of chemical compounds.

Phytochemical test

Phytochemical test was performed to determine the compound⁵ of the active fraction obtained, using a reagent of specific classes of compounds. Test for alkaloids, flavonoids, steroids, triterpenoids, phenol, saponins and tannins.

Analysis GC-MS (Gas Chromatografhy-Mass Spectrofotometry)

GC-MS analysis was conducted to identify active compounds which have antifungal activity against *P. oryzae* fungus, the cause of blast diseasein rice. Footage fractions which were most active and relatively pure were analyzed by GC-MS. Through the suitability of the molecular weight and fragmentation pattern of the isolated compounds with compounds in the library on GC-MS system, so that the isolated compounds were known of their structure. This test was conducted in the the Joint Laboratory of Faculty of Mathematics and Natural Sciences, Udayana Univerity.

RESULTS AND DISCUSSION

Inhibiting activities of partition result of forest chili leaf extract

Results partitions with counter current distribution method, using 2 types of solvents are hexan (non-polar) and methanol (polar) showed that the leaf extract of forest chili methanol phase showed inhibition against *P. oryzae* fungus and the hexan phase does not show any inhibition, Diameter zone barriers generated by the methanol extract phase is 28 mm. These results indicate that the bioactive compounds contained in extracts of *P. caninum* including polar compounds.

This is consistent with the statement Manjappa⁶ that extracts of the ethanol and methanol *Chromoluena odorata L*. plants can inhibit the growth of fungal mycelia of *P*.

Suriani	Int. J. Pure App. Biosci. 4 (4): 26-32 (2016)	ISSN: 2320 – 7051	
oryzae at a concentration	of 2.5% by the	The size of the inhibition	of a plant extract	
inhibition of respectively 7	0.6% and 46.8%.	against fungus varies greatly	y depending on the	
Likewise Suprapta ¹³ states th	at methanol of the	type and concentration of c	compounds ¹² . Cem-	
plant Thymus vulgaris extra	ct can inhibit the	cem leaf extract (Spondias p	oinnata) can inhibit	
growth of pathogenic fungus	in tomato.	the growth of bacteria Erv	vinia chrysantheni,	
Results Fractionation Active Components		the bacterium that causes soft rot in aloe vera,		
Fractionated results	with column	with 27.55 mm zone of inl	nibition, because it	
chromatography obtained tw	o active fractions,	contains a condensed tan	nin potential as a	
namely fraction 16 and fr	caction 17 which	botanical pesticides ¹ .		
showed inhibition against	P. oryzae with a	Phytochemical test		
zone diameter of each inhibit	tion of 10 mm and	The test results showed that	the forest chili leaf	

The test results showed that the forest chili leaf extract contains several phytochemicals groups of compounds such as alkaloids, steroids, polyphenol and flavonoids (Table1).

Phytochemicaltest	Reaction result	Conclusion	
Alkaloid	chocolatesediment	Alkaloid (+)	
Triterpenoid and Steroid	Chocolate	Steroid (+)	
Phenolat	Blackish blue	Polyphenol (+)	
Flavonoid	yellow	Flavonoid (+)	
Saponin	Foamis not Constant	Saponin (-)	
Tannin	No sediment is formed	Tannin (-)	

 Table 1: Phytochemical test results of combined fraction

Crude extract *Epicoccum sp.* can inhibit the growth and spore colonies of *M. oryzae* because they contain secondary metabolites of flavinine types. Secondary metabolites such as alkaloids and flavonoids are potential as antimicrobial and antifungal⁴. This statement is supported by Nadri *et al*⁸, that the methanol extract of *P. caninum* containing 108.43 phenolic compounds, ethyl acetate extract containing 51.73 phenolic compounds. Salleh *et al*¹⁰., reported *P. caninum* bark extract contains flavonoid compounds that have inhibitory effect on the microbial species *Escherichia coli*, *Staphylococcus aureus*,

30 mm. Furthermore, fraction 17 was active at

TLC. The nicest results TLC was using

dichloromethane: ethyl acetate 1: 1, obtained

three stains or spots with each Rf value 0.93;

0.83, and 0.71.

Copyright © August, 2016; IJPAB

Bacillus substilis, Pseudomonas aeroginosa, and P. putida of 125-1000 mg / ml.

Identification results of active antifungal compounds by gas chromatography–mass spectroscopy (GC-MS).

Fractionation results with column chromatography results of which showed antifungal activity against *P. oryzae* were then analyzed using GC-MS. Chromatogram analysis results obtained showed 10 peaks (Figure 2), each peak was identified further by mass spectroscopy. Results of the analysis of the mass spectrum of the chromatogram are presented in Table 2. Int. J. Pure App. Biosci. 4 (4): 26-32 (2016)

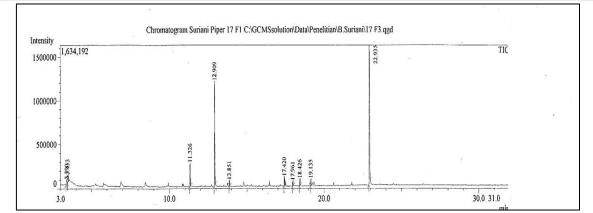


Fig. 2: Chromatogram compound in forest chili extract GS-MS analytical results

The identification was done by comparing the mass spectrum of each peak in the mass spectrum of compounds that are already known to exist in the GC-MS library. According to Appuaka *et al*², the utility of the benzene compound is the most important thing as a solvent and as a raw material for making aromatic compounds other which are derivatives of benzene. These compounds act as antioxidants, antifungal and antimicrobial. Compound tetradecane hydrocarbon is used as a solvent and as a standard, as a raw material in chromatographic analysis. This material can cause lung damage if swallowed and vapors drowsiness mav cause and dizziness. Tetradecane compounds including compounds act as antimicrobial and antifungal. Warsinah¹⁵ reported that dodecanoic acid contained in the harp bark extract has biological activity as an

Suriani

antifungal. Dodecanoic acid is a fatty acid is generally known as lauric acid. Warsinah¹⁵ reported that dodecanoic acid contained in the harp bark extract has biological activity as an antifungal. Dodecanoic acid is a fatty acid is generally known as lauric acid. 1.2-Benzenedicarboxylic acid ethyl ester is a compound that is commonly known as monoetilhexil phthalate. Raman et al^9 ., reported that, 2-benzenedicarboxylic acid has biological activity as antimicrobial. antioxidant and anticancer. According to Appuaka *et al*², that the hexane extract of leaves of neem (Azadirachta indica) containing 1.2 -benzenedicarboxylic acid compound is an anti-fungal compounds for the fungus Candida albicans, antibacterial for the bacterium Salmonella typhi.

	forest chill rear extract								
No.	Peak	MW (molecule weight)	FM (Rms molecule)	Retention time (minute)	Area	Active compoundbased on MS database			
1	Peak 1	106	C ₈ H ₁₀	3,300	47688	Benzene			
2	Peak 2	166	$C_{10}H_{14}O_2$	3,457	40974	Xylene			
3	Peak 3	198	$C_{14}H_{30}$	11,32	111881	Tetradecane			
4	Peak 4	214	$C_{13}H_{26}O_2$	12,909	454456	Dodecanoic acid			
5	Peak 5	398	$C_{21}H_{14}$	13,851	24038	Heptadecane			
6	Peak 6	270	$C_{17}H_{34}O2$	17,420	36460	Hexadecanoic acid			
7	Peak 7	666	$C_{18}H_{54}O_9S_{19}$	17,963	12973	Octadecamethylcyclononasiloxane			
8	Peak 8	292	$C_{17}H_{24}O_4$	18,426	34013	Phthalic acid			
9	Peak 9	348	$C_{23}H_{40}O_2$	19,136	8641	8,11, 14-Docosatrienoic acid			
10	Peak 10	278	$C_{16}H_{22}O_4$	22,935	82,531	1,2-Benzenedicarboxy1lic acid			

 Table 2: Active compounds from each of the peaks in the chromatogram of active fraction antifungal in forest chili leaf extract

Copyright © August, 2016; IJPAB

CONCLUSION The leaf extract of *P. caninum* contains several

phytochemicals groups of compounds such as alkaloids, steroids, polyphenol and flavonoids. The compound contained in the active fraction of leaf extract of P. caninum as many as 10 compounds are: benzene; xylene; tetradecane; doecanoic acid; heptadecane; hexadecanoic octadecamethylocyclononasiloxane; acid: phtalic acid; 8,11, 14-decosatrienoic acid; and 1,2-benzenedicarboxylic acid. Out of the 10 compounds compounds, the 6 namely benzene: tetradecane: dodecanoic acid. hexadecanoic acid, benzenedicarboxylic acid, octadecamethylocyclononasiloxane, based on the literature, they are active substances that serve as antifungal and 4 other compounds have unknown functions.

Acknowledgement

Further studies are needed to separate the compounds present in the active fraction of forest chili leaves by using LC-MS because GC-MS uses the column temperature of 310° C, so that compounds having a boiling point above 310° C are undetected. In addition, there should be further testing and refining to identify what compounds among the compounds found in the leaf extract play the greatest role in antifungal activity against *P. oryzae*.

REFERENCES

- Ariati, N.K., Aktivitas Bakterisida Ekstrak Cem-cem (Spodias pinnata)i terhadap Bakteri Erninia chrysantheni Penyebab penyakit Busuk Lunak pada Lidah Buaya. Jurnal Kimia, 6(1): 88-92 (2012).
- Appuaka, A., Ekwenchi, M.M., Adashak, D.A. and Dildar, Biological Activities of Characteristized Isolates of H-Hexane Extract of *Azadirachta indica* A. Jus (Neem) Leaves. J. Nature and Science, 11(5): 141-147 (2013).
- Astuti, I.P. dan Munawaroh, E., Catatan Baru persebaran *Piper Lowong* Blume di Sumatra Utara.Pusat Kajian Tumbuhan Kebun Raya Bogor. LIPI *Proseding Seminar* 7(2010): 81-84 Malang. Indonesia. (2010).

- Galvan, I.J., Mir-Rashed, N., Jessulat, N., Ataya, M., Golshani, A.T., Boekhout, T., Summerbell, R., Anarsn, J.T. and Smith, M.L., Antifungal and Antioksidan Activities of the Phytomedecine Pipsissewa. *Phytochemistry*, 69(3): 738-746.
- Harborne, J.B., Metode Fitokimia. Penuntun Cara Modern Menganalisis Tumbuhan(terjemahan). Padmawinata, K.,Soediro, I., penerjemah. Bandung: ITB (1987).
- Manjappa, K., Evaluation of Antifungal Properties of Eupatorium (*Chromolaena* odorata L.) Plant Exstract Against*Pyricularia oryzae*Causing Blast Disease in Rice Crop. Asean Journal of Pharmaceutical Science and Technology, 5(1): 79-81 (2013).
- Maj Jones, S.H., Marshall, R., Johnson, R.K. and Hecht, S.M., A DNA-damaging oxoaporphine alkaloid from Piper caninum. Departments of Chemistry and Biology.University of Virginia. USA (2004).
- 8. Nadri, M.H., Naser, M.A., Zulkifli, R.M., muhamad, I.I., Ahmad, F., Salle, W.M.N.H.W. Sirat, H.M., Antioxidant Activity Piper caninum and Cyclooxygenase-2 Inhibition by Methoxylated Flavones. Afr J Tradit Complement Altern Med., 12(2): 120-125 (2015).
- Raman, B.V., Samuel, L.A., Saradhi, P.M., Rao, N.B., Krishna, N.V.A., Sudhakar, M. and Radhakrishnan, T.M., Antibacteria, antioxidant activity and GC-MS analysis of *Eupatorium odoratum*. *Asian Journal of Pharmaceutical and Clinical Research*, 5(2): 99-106 (2012).
- Salleh, W.M.N.H.W., Ahmand, F., Yen, K.H., Chemical Constituens from *Piper caninum* Antibacterial Activity. Journal of Applied Pharmaceutical Science. 5(06): 020-025 (2015).
- 11. Semangun, H., *Penyakit-penyakit Tanaman Pangan di Indonesia.*. Yogyakarta: UGM-Press. (2006).
- 12. Suprapta, D.N., Sudana, M. and Arya, N., Application of Plant Extracts to Control

Int. J. Pure App. Biosci. 4 (4): 26-32 (2016)

Ceratocystis Fruit Rot in Snake Fruit (*Salacca edulis*).*J. ISSAA*, **S7:** 10-16 (2001).

- 13. Suprapta, D.N., *PestisidaNabati Potensi dan Prospek Pengembangan*. Pelawa Sari. Denpasar (2014).
- 14. Suriani, N.L., Suprapta, D.N., Sudana, I.M., Temaja, R.M., Antifungal activity of *Piper caninum* against *Pyricularia oryzae*

Cav. the cause of rice blast disease on rice. Journal of Biology, Agriculture and Healthcare, **5(8):** 72-78 (2015).

 Warsinah Kusumawati, E. Sunarto, Identifikasi Senyawa Antifungi dari Kulit Batang Kecapi (*Sondaricum koefjape*) dan Aktivitasnya terhadap *Candida albicans*. *Majalah Obat Tradisional.*, 16(3): 165-173 (2011).