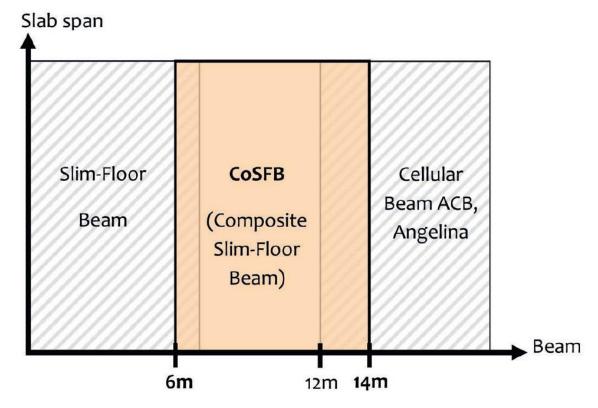


Slim-Floor Construction - CoSFB

German Technical Approval "CoSFB-Betondübel"


CoSFB-Betondübel = reinforced concrete dowel, new method to assure composite action

Fits perfectly to slim-floor construction (= integrated beams) Allows for significant increase of the beam span (up to 14m)

CoSFB – Application Range

CoSFB is perfectly closing the gap between non-composite slim-floor construction and cellular beams

CoSFB – Technical Approval

Deutsches Institut für Bautechnik

Allgemeine bauaufsichtliche Zulassung

Zulassungsnummer: Z-26.4-59

Antragsteller:

ArcelorMittal Belval & Differdange S.A. 66, rue de Luxembourg 4009 ESCH-SUR-ALZETTE LUXEMBURG

Zulassungsgegenstand: CoSFB-Betondübel

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum:Geschäftszeichen:29.07.2014I 31.1-1.26.4-8/10Geltungsdauer

vom: 29. Juli 2014 bis: 29. Juli 2019

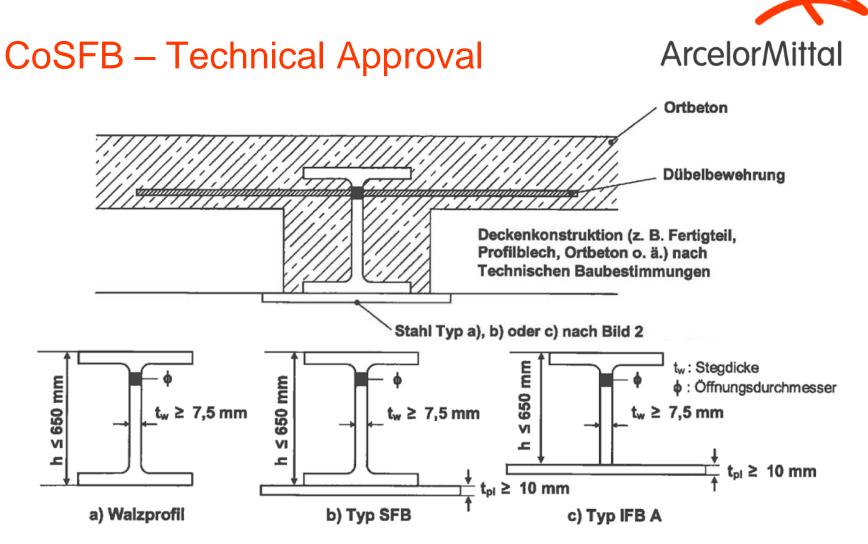


Bild 2 : Zulässige Querschnittsformen der Stahlträger

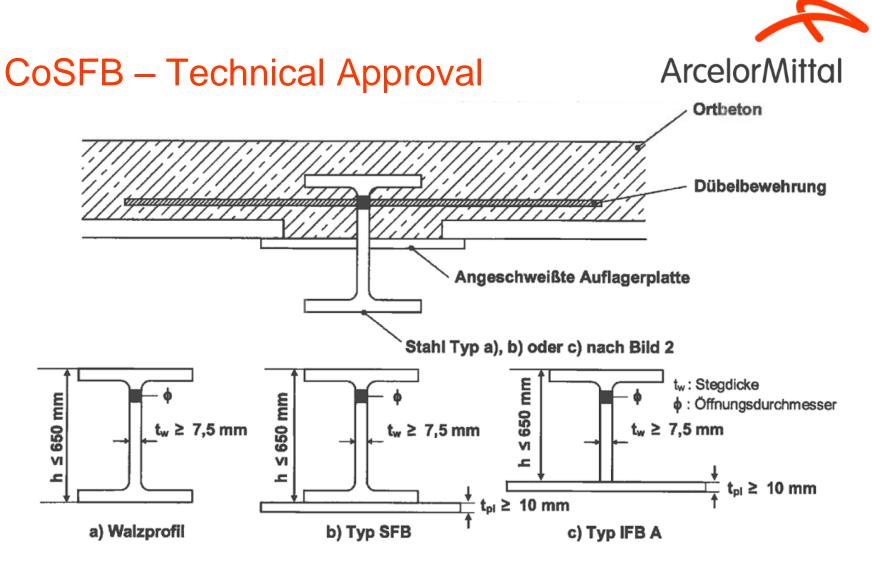


Bild 2 : Zulässige Querschnittsformen der Stahlträger

CoSFB – Technical Approval

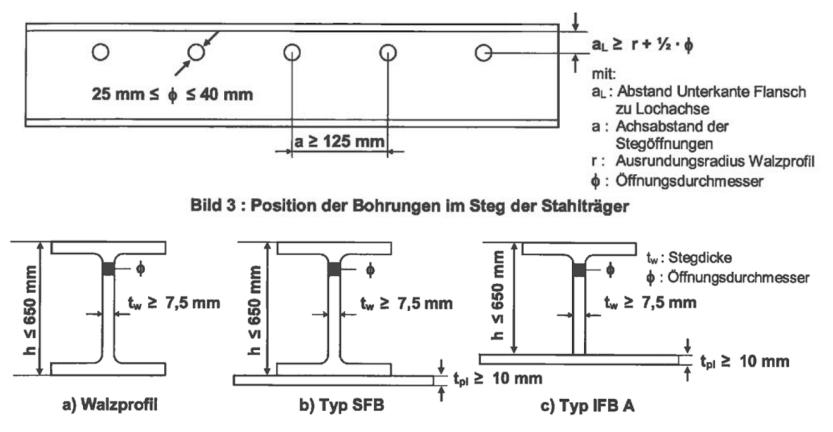


Bild 2 : Zulässige Querschnittsformen der Stahlträger

CoSFB – Technical Approval

Tabelle 1: Charakteristische Werte der Längsschubtragfähigkeit je Ausnehmung P_{Rk} in [kN]

Betondruckfestigkeitsklasse/ Stegdicke	C25/30	C30/37	C35/45	C40/50 bis C55/67
7,5 mm ≤ t _w < 15,5 mm	117	125	135	122
15,5 mm ≤ t _w	148	157	166	122

Der Bemessungswert der Verbundtragfähigkeit P_{Rd} ist durch Division der charakteristischen Tragtragfähigkeit P_{Rk} mit dem Teilsicherheitsbeiwert γ_{ν} = 1,25 zu bestimmen.

Sustainability on the floor: Base grade S355 for sections

ArcelorMittal Europe Long Products - Technical Advisory January 2014

Sustainability on the floor

It is common knowledge that building materials with higher strength enables to build with less material and thus more sustainable.

In practice typically design and execution is done "as always", which means quite often by using only low strength steel S235 or S275 (understood as cheapest per ton).

Innovations and material improvements like S460 are often unknown, not considered or denied in the worst case.

History of steel production

Main characteristics of former steel grades (before 1950):

- Poor mechanical properties (yield strength 210-320 MPa)
- Low toughness at low temperatures
- Limited weldability due to high carbon equivalent

Industrial development

- Improvements in steel production and rolling of beams:
 - Upcycling of lower strength steels due to scrap input in EAF electric arc furnace
 - Continuous casting
 - Rolling at lower temperatures with strong rolling stands
 - Selective cooling of heavy sections
 - QST (Quenching and Self Tempering) process

Normative situation

- Steel grades for sections from S235 to S460 covered by
 - design standard EN1993
 - product standard EN10025
 - execution standard EN1090

CE-mark for steel vs. CE mark for steel structures

EN10025 <u>applies to hot-rolled products of structural steel</u>, thus to (unfinished) products like sections and merchant bars leaving steel mills for being shipped to warehouses of distributors or to shops of steel fabricators.

EN1090-2 standard applies to execution of steel structures, thus this standard applies to structural steel members supplied by the steel fabricators to the construction jobsite.

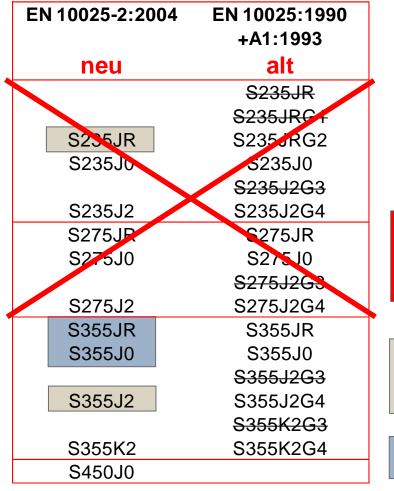
 \rightarrow Conclusion: steel mills (of constituent products) certify their deliveries to EN10025, but not to EN1090-2.

CE-mark for steel vs. CE mark for steel structures

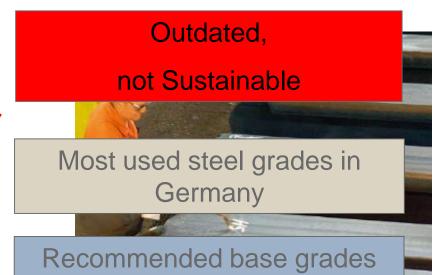
EN1090-2, chapter 5 : Concerning constituent products, execution classes (EXC) of EN1090-2 require customers to order specific certificates (EN10204) and options of EN10025 as appropriate.

Steel Grade (EN10025)	Execution class of component (EN1090-2)	Certificate (EN 10204)			
S235 JR / J0, S275 JR / J0	EXC1-EXC2-EXC3-EXC4	→ 2.2			
S235 J2, S275 J2	EXC1-EXC2-EXC3-EXC4	→ 3.1			
S355 JR / J0	EXC1	→ 2.2			
	EXC2 - EXC3 - EXC4	→ 3.1			
S355 J2 / K2 / M / ML, HISTAR355 / 355L	EXC1-EXC2-EXC3-EXC4	→ 3.1			
S450 J0, S460 M / ML, HISTAR460 / 460L	EXC1-EXC2-EXC3-EXC4	→ 3.1			
Summary of EN10025-2 Appay B (Table B 1) EN1000-2 (Table 1) and EN1002 Appay 10					

Summary of EN10025-2 Annex B (Table B.1), EN1090-2 (Table 1) and EN1993 Annex 10



Steel grades - History and Outlook


	« yesterday »	« today »	« tomorrow »
« low strength »	-	-	S235/S275
« standard »	St37 / A36	S235 / 236	S355 / Gr 50
« higher strength »	-	S355 / Gr 50	S460 / Gr65
« high-strength »	St52 / Gr50	S460 / Gr 65	S500 / Gr 70

Today's steel grades in EN

EN 10025-4:2004	EN 10113-3: 1993
neu	alt
S355M	S355M
S355ML	S355ML
S460M	S460M
S460ML	S460ML

Market share 2011/2012

Rolled sections	S235, S275 / A36 (250 MPa)	S355 / Grade 50 (345 MPa)	S420, S460 / Grade 65 (450MPa)	Steel in building construction*
USA, Canada	< 1%	> 95%	> 1%	60%
UK	10%	90%	< 1%	70%
Scandinavia	10%	90%	< 1%	40%
Italy	50%	50%	< 1%	10%
Poland	60%	40%	< 1%	30%
Germany	80%	20%	< 1%	10%
France	90%	10%	< 1%	10%
Spain	90%	10%	< 1%	10%
* estimated				

Is there a correlation of the market share of steel if grades of higher strength are typically used?

Material efficiency = Cost efficiency = Sustainability

European context

The trend towards S355 as base-grade can be monitored for the majority of the European markets.

S460 is used project based for value-engineering and optimization.

Driven by cost effective construction the material consumption is reduced with higher strength steels. The less material is used the lower is the environmental impact.

S235 and S275 should not be used by the designers and steel fabricators anymore.

In order to accelerate and stimulate the change this information need to be made available to the designers and steel fabricators.

IPO's to get actively involved (e.g. all publications in S355 and S460).

Further advantage: Improved traceability

Steel grade (EN10025, ETA-10/0156)	Execution class of component (EN1090-2)	Certificate (EN 10204)	
S235 JR / J0, S275 JR / J0	EXC1 EXC2 EXC3 EXC4	> 2.2	
<u>S235 J2, S275 J2</u>	EXC1 EXC2 EXC3 EXC4	> 3.1	
S355 JR / J0	EXC1 ?	> 2.2	
	EXC2 - EXC3 - EXC4	→ 3.1	
S355 J2 / K2 / M / ML, HISTAR355 / 355L	EXC1-EXC2-EXC3-EXC4	→ 3.1	
S450 J0, S460 M / ML, HISTAR460 / 460L	EXC1-EXC2-EXC3-EXC4	→ 3.1	

Inspection documents EN 10204: 2004

EN 10204	Desig	signation of the document type		Document	Document
Reference	English version	German version	French version	content	validated by
Type 2.1	Declaration of compliance with the order	Werksbeschei- nigung	Attestation de conformité à la commande	Statement of compliance with the order	The manufacturer
Type 2.2	Test report	Werkszeugnis	Relevé de contrôle	Statement of compliance with the order, with indication of results of non- specific inspection	The manufacturer
Type 3.1	Inspection certificate 3.1	Abnahmeprüf- zeugnis 3.1	Certificat de réception 3.1	Statement of compliance with the order, with indication of results of specific inspection	The manufacturer's authorized inspection representative independent of the manufacturing department
Type 3.2	Inspection certificate 3.2	Abnahmeprüf- zeugnis 3.2	Certificat de réception 3.2	Statement of compliance with the order, with indication of results of specific inspection	The manufacturer's authorized inspection representative independent of the manufacturing department and either the purchaser's authorized inspection representative or the inspector designated by the official regulations

Table A.1 — Summary of inspection documents

Too good to be true ?

Steel grade	Cost	Strength	Material reduction	Trace- ability	Weld- ability	Mill availabilty
S235	100%	100%	100%	Non- specific	Good	Good
S275	101%	117%	85%	Non- specific	Good	Good
S355	105%*	150%	70%	Specific	Good	Good
S460	115%	196%	50%	Specific	Good	> 300 sizes upon agreement

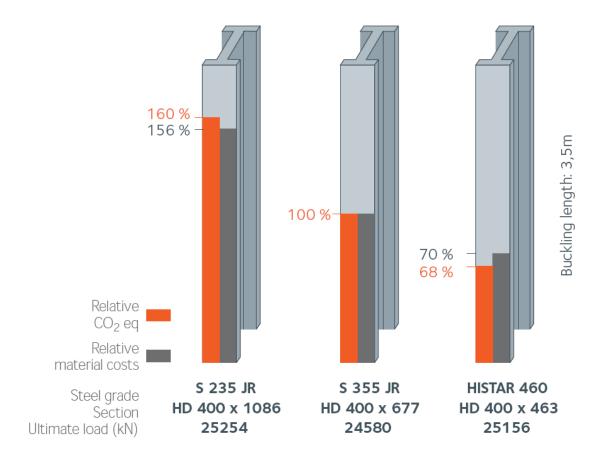
* Grade extra is expected to disappear once S355 is base grade for sections

Summary steel grades

Recommendable steel specification for sections -

Rule of thumb related to member weight

Member type	Steel grade	Weight	Section
Ordinary steel work:	S355J0 or S355J2	< 100 kg/m	IPE 80 – IPE 750
Standard columns	(EN10025-2)		HE 100 – HE 320
Floor beams			UB 127 – UB 1016
Roof girder			UC 152 – UC 254
•			
	or equivalent ASTM grades		or equivalent ASTM sizes
Large projects:	S355M or S355ML,	≥ 100 kg/m	≥ IPE 600
Heavy columns	S460M or S460ML		≥ HE 260
Transfer beams	(EN10025-4)		≥ HL 920
Bridge girder			≥ HD 260
Trusses			≥ UB 610
Cellular beams			≥ UC 254
•			
	or equivalent ASTM grades		or equivalent ASTM sizes


Comparison reinforcing steel – lacking behind state of the art

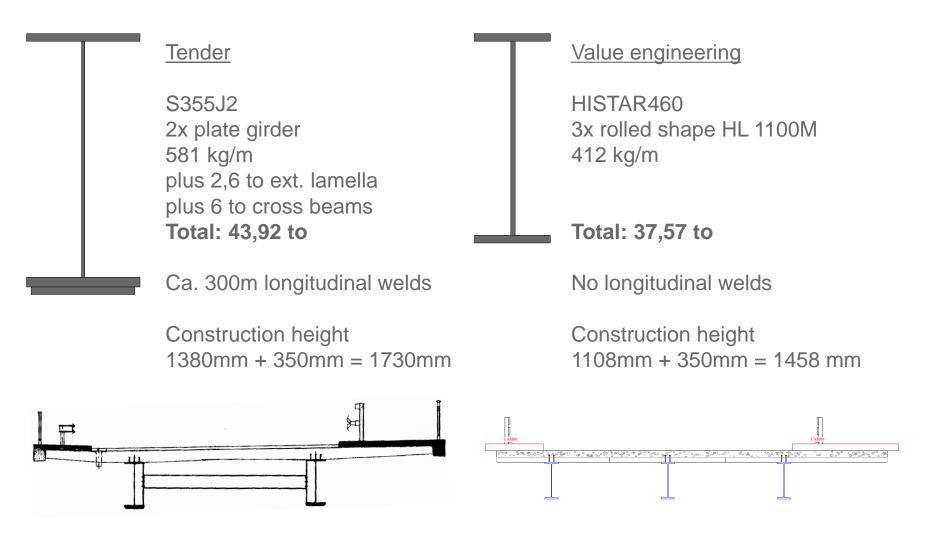
Reinforcing steel grade	Strength	Availability	Comparable steel grade for sections
BSt 22/34 FeB 220	220 MPa	Out of use	S235
BSt 34/50 FeB 400	360 MPa	Out of use	S355
BSt 500 FeB 500	500 MPa	Basis	S460

CO₂ reduction of high-strength steels in heavy columns

Reference project – Milan / Italy

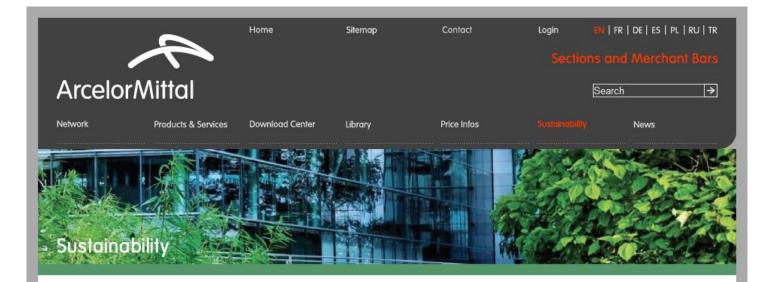
Torre Diamante

Height 130 m - 30 floors


Architect: Kohn Pedersen Fox – USA Fabricator: Stahlbau Pichler – Italy

700t HD column sections in S460M made in Luxembourg out of 100% Western European recycled steel scrap

LEED Gold certificate


Reference project – Sinzig bridge / Germany

Thank You! www.arcelormittal.com/sections

Sustainability

Steel: an eco-friendly material.

Thanks to its ability to recover the original properties without loss of quality after melting makes steel the most recycled material in the world.

In the built environment, 99% of the hot-rolled steel sections can be re-used or recycled at their end of life. Being flexible and adaptable, the functional life of steel sections can be extended in refurbished and new constructions. As 100% of the recovered scrap will be used as a raw material in the steel industry and thus provides between 65% and 95% energy savings compared to primary production, recycling process contributes to resources savings and a better environment.

Life Cycle Assessment (LCA) of steel sections such as the Environmental Product Declaration (<u>EPD-BFS-20130094-IBG1</u>) based on World Steel Association database are built on the most appropriate "End-of-Life recycling rate" methodology which takes into account the environmental benefits of the re-use and the recycling. As stated in ISO 14025, those LCA were reviewed by independent verifiers to confirm that all these calculations are in line with the standard ISO 14040-44.

Sustainable hot-rolled steel solutions