

Print : ISSN 0970-7662

Journal of Tree Sciences online available at www.ists.in

Volume 33

No.1

June, 2014

Vegetation Pattern of Commercially Important Trees in Evergreen Forests of Baratang Island, Andamans

Thiru Selvan

Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, Agartala-799002, INDIA.

ABSTRACT

Baratang Island, spread over an area of 238 km² and one of the main constituents of the 'Great Andaman' group are characterized by dense tropical forests. The Tropical Evergreen Forests was studied for its regeneration status, composition and species diversity of commercial tree species both in the felled (worked) and un-felled (unworked) areas. It was noticed that the tree layer in evergreen unworked forest was dominated by Dipterocarpus spp. with the highest IVI of 28.76 and the second most dominant species is Knema andamanica with IVI 26.21 followed by Myrstica andamanica with IVI 18.16 but in worked area Dipterocarpus spp. retained its dominance with highest IVI of 55.36 while Knema and amanica occupied second position with IVI 27.20 followed by Pometia pinnata with IVI 20.90. It was found that felled areas have more number of tree species (84) than the unfelled. The composition of the species need to be maintained to manage these fragile areas so that the biodiversity rich areas are intact in its natural form.

INTRODUCTION

Tropical Rain Forests are bestowed with a wide variety of species richness and diversity patterns (Alwyn and Calaway, 1987; Jacobs, 1988).The Baratang Island is one of the constituent Islands of the Andaman group situated in the eastern coast of India in junction of Bay of Bengal, and Indian Ocean.It harbours lush green tropical rain forests. They are the diverse and highly productive of all the ecosystems. Its unique geographical set up has resulted in evolution of variety of species with high degree of endemism. During the last few decades Andaman Islands has been experiencing modification and loss in biodiversity due to the indiscriminate exploitation of the rich biodiversity by the immigrant population and developmental pressure. Sustainability of these forests is critical for the existence of the *Jarawas* (original Tribes of A&N Islands) who depend on these resources since ages and the overall ecosystem of these Islands.

Quantitative inventories help in identification of economically useful species as well as species of special concern and thus to quantify conservation worthiness of the candidate sites (Keel *et al.*, 1993). The diversity of trees is fundamental to total rainforest biodiversity, because trees provide resources and habitat structure for almost all other rainforest species (Cannon *et al.*, 1998). The results of the quantitative inventory have enormous significance for the conservation and management of tropical

Keywords:

IVI, moist deciduous, phytosociology, regeneration, semievergreen forests (Campbell 1994). There have been many attempts in the past to explore the flora of the Andaman Islands (Parkinson 1923; Vasudevarao 1986; Lakshminarasimhan and Rao 1996; Mathew 1998; Hajra et al. 1999; Reddy and Dutt 2003) but many areas still are unexplored. In addition, attempts have been made to study the community structure of different vegetation types based on onscreen visual interpretation (Padalia, et al. 2004); study of some specific areas like the flora of Saddle Peak: Middle Andaman: North Andaman (Tripathi et al. 2004; Reddy and Prasad 2008) or to study the spatial distribution of some specific plant groups like rattans and palms; climbing plants (Nagabhatla et al. 2007; Ghosh 2013). But till date no attempt have been made to study the distributional pattern of commercially important trees by distinguishing the forest areas with regard to areas which are already felled (worked) or unfelled (unworked).

This paper is an attempt to study the regeneration status and vegetation pattern of the commercially important trees of Baratang Island for population structure, density, dominance, frequency and species richness of the felled and unfelled forest areas so as to analyse the deviation in species composition of the managed areas from the natural unfelled forest areas. This paper will act as a guide to bring back the felled and monoculture plantation areas to near natural profile as far as possible through conservation measures.

MATERIALS AND METHODS

Study area

Andaman and Nicobar are two important districts of the Andaman and Nicobar Islands. Andaman is a set of five big island groups viz. North Andaman, Middle Andaman, Baratang, South Andaman and Little Andaman islands besides the several small islands distributed around each of them. The study area, Baratang Island lies between $11^{\circ} 46^{\prime} 10^{\circ}$ to $12^{\circ} 18^{\circ} 35^{\circ}$ N latitude and $92^{\circ} 32^{\circ} 35^{\circ}$ to $92^{\circ} 10^{\circ} 40^{\circ}$ E Longitude and covers an area of 238 km²(Fig. 1). The islands have a typical tropical climate. Soils are acidic in nature with a high amount of clay (40 per cent). There are no rivers, but small streams run in all directions over the islands. The coastline is broken by several deep

indentations of creeks. The topography is undulating, with high elevations and steep slopes. Champion and Seth (1968) classified the forests of these islands into Andaman Tropical Evergreen Forest - IA/C2, Andaman Semi Evergreen Forest -2A/C1, Andaman Moist Deciduous Forest-3A/C1/2S1 and Tidal Swamp Forest - 4B/TS2.

Methodology

After reconnaissance survey representative sample plots of 1 ha measuring 250 x 40 m were laid out in different forest types of felled and unfelled area. Length of the plot was aligned along the fertility gradient. In total 12 sample plots of 1 ha each in different forests types (two sample plots in each forest type) namely Evergreen, Semievergreen, and Moist deciduous forest area were laid out. Each sample plot was further divided into 20 quadrats of 20 x 25 m (500 m^2) and overall 240 (80 plots per forest type of which 40 plots each in felled and unfelled) plots were sampled. These were laid based on the experience of earlier studies. All the trees having 10 cm dbh (diameter at breast height) and above were measured and species wise data tabulated for each quadrat of the plot separately. In addition regeneration status survey of the seedlings was carried out over a period of 10 years in both the felled and unfelled areas in forest areas of South Creek, M/Dera, Lorojig, Adajig, Gandhighat and SukhaKhari.

Identification was facilitated by the inclusion of local people and field staff of the forest department having reasonably good knowledge of forests and plant species. Most of the specimens collected were identified in the field station with the help of Parkinson Flora (1923) and collected material available at Botanical Survey of India (BSI), Andaman and Nicobar Circle. However, some of them could be identified only to genus level or local names. The unidentified specimens were preserved and later identified in herbaria at BSI, Port Blair, India.

Data analysis

Quantitative data collected were analysed to compute the frequency, abundance, density (Curtis and McIntosh 1950), basal area and importance value index – IVI (sum of relative density, relative frequency and relative dominance of the species)(Curtis 1959). Further, ecological indices like Co-efficient of similarity proposed by Sorensen (1948) was used for comparing the surveys from floristic point of view and similarity index (common species shared between the two forest types) for the area under study was done. Species richness was calculated as number of species encountered in all the quadrats.All these analyses were performed using MS-excel (Kindt and Coe 2005).

RESULTS AND DISCUSSION

Regeneration status

The results of the regeneration status survey of commercial as well as miscellaneous species in the felled (old natural regeneration areas) and unfelled forests of Baratang are presented in Table 1. From the data it has been observed that

Table1: Regeneration status of felled and unfelledforests in Baratang forest division (number per ha)

	Cor		rcial \$ nber/	Specie ha)	es	Miscellaneous Species (number/ha)				
Forest Area	R & UE	Е	PL	U G	OG	R & UE	Е	PL	U G	O G
Felled area	613	145	71	40	77	205	38	23	12	14
Unfelled	206	66	41	19	44	187	157	60	16	18

Note: R – Recruit, UE – Un-established, E – Established, PL – Pole crop from 60 cm to 89 cm in girth, UG – Under Girth from 90 cm to 119 cm OG – Over girth 120 cm and above.

recruits and unestablished seedlings of commercial species in felled area are more than the unfelled areas. Even the established, pole crop, under girth and over girth crop for commercial species are higher than unfelled area. This is indicative of preferential treatment given to the commercial species, which were on demand in the past. Thus, modification in the present silvicultural practices is absolutely necessary to achieve the objectives of regeneration management so as to bring back the vegetation to the near natural state.

Phyto-sociological analysis

The number of species recorded from felled and un-felled area of each forest type is mentioned in Table 2. The species which are not present in felled and unfelled areas of each forest type are also presented in Table 2. The results clearly indicate that the number of species established was more in worked area in all the major forest types. Analysis further indicated that among the major forest vegetation classes, Evergreen Forest was the most diverse supporting more plant species per hectare. Tree species diversity in tropical forests varied greatly from place to place. The tree layer in Evergreen un-worked forests is dominated by Dipterocarpus spp. with the highest IVI of 28.76 followed by Knema and amanica with IVI 26.21 and Myrstica and amanica with IVI 18.16 but in worked area Dipterocarpus spp. retained its dominance with highest IVI of 55.36 while Knema andamanica occupied second position with IVI 27.20 followed by *Pometia pinnata* with IVI 20.90 (Table 3 and 4).

In Moist Deciduous un-worked forests dominant species was *Cinnamomum bejolghota* with highest IVI 24.90 followed by *Pterocarpus dalbergioides* with IVI 23.25 and *Diospyros marmorata* with IVI 16.60. In worked area the species dominating this forest is found to be *Diospyros marmorata* with IVI 18.39 followed by *Pterocarpus dalbergioides* with IVI 17.66 and *Aglaia andamanica* with IVI 13.64.

In Semi-evergreen un-worked forests tree layer is found to be dominated by *Knema andamanica* with highest IVI of 39.69 followed by *Dipterocarpus spp*. with IVI 26.69 and *Lagerstroemia hypoleuca* with IVI 15.81. On the other hand in worked forests area dominant species was *Pterocarpus dalbergioides* with highest IVI of 17.73 followed by *Diospyros pyrrhocarpa* with IVI 17.10 and *Diospyros montana* with IVI 16.94.

Co-efficient of similarity

The species richness in all the forest types, both for felled and unfelled category is quiet high and has been fairly constant. The richness of floristic composition is well within the range of species recorded for the same type of forests elsewhere in the world. Floristically, identical stands gave a K_s of 100, those which differ completely with one another will have a K_s of 0. For all the three types of forests the co-efficient of similarity between worked and un-worked areas of each forest type is

Description	Evergreen (64	en (64*)	Semiever	Semievergreen (63*)	Moist Deci	Moist Deciduous (53*)
	Felled	Unfelled	Felled	Unfelled	Felled	Unfelled
No. of species recorded	83	80	LL	75	75	65
No. of species not	16	19	12	14	12	22
recorded	Ailanthus kurzii,	Albizia stipulata,	Aglaia gangoo,	Adenan	Alstonia kurzii,	Ailanthus kurzii,
	Alstonia kurzii,	Atlantia	Ailanthus kurzii,	therapavonina,	Canarium	Amoora wallichii,
	Champeria	monophylla,	Amoora wallichii,	Albizia stipulata,	euphyllum,	Artocarpusgomezian
	mainillana,	Bischofia	Antidesma acidum,	Bassia butyracea,	Diospyros	a, Champeria
	Hibiscus tiliaceus,	javanica, Dillenia	Artocarpus	Bischofia javanica,	variegata,	mainillana,
	Hopea odorata,	pentagyna,	gomeziana,	Gmelina arborea	Endospermum	Dipterocarpus spp.,
	Leea acuminata,	Dracaena	Buchanania	Mallotus peltatus,	chinense,	Garcinia
	Miliusa tectona,	pachyphylla,	platyneura,	Mimusop selengi,	Ganophyllum	xanthochymus,
	Nauclea gageana,	Endospermum	Pisoniaum	Nauclea gageana,	falcatum,	Gmelina arborea,
	Oroxylum	chinense,	bellifera, Pometia	Prunus	Mangifera sylvatica,	Knema andamanica,
	indicum,	Garcinia cowa,	pinnata,	martabanica,	Mimusops elengi,	Leea acuminata,
	Pterocarpus	Gyrocarpus spp.,	Sideroxylon	Mistriphora,	Parishia insignis,	Pajenalia fheedii,
	dalbergioides,	Macaranga	longepetiolatum,	Pathmauna,	Spondius mangifera,	Planchonia
	Sideroxylonlonge	tanarius, Orophia	Syzygium	JungliAmrooth,	Hibiscus tiliaceus,	andamanica,
	petiolatum,	hexandra,	claviflorum,	Parsa, Khiya	JungliSapota,	Randi aexaltata,
	Tabernaemontana	Pajenalia rheedii,	Junglilasoon,		Mistriphora	Semecarpus kurzii,
	crispa,	Pisoniaum	Gum phal			Xanthophyllum
	Terminalia	bellifera,				andamanicum,
	bialata,	Sterculia alata,				Banya,
	Surmaipatti,	Trema				GolKhatta,
	Gum phal,	ambionensis,				Hara Patti,
	Tooth	Walsura				Kao Phal,
		hypoleuca,				KerelaKhatta,
		Junglilasoon,				Pathwan,
		Mistriphora,				Thooth,
		ZerawaChilka				Surmai Patti
		Daubanga				

 Table 2: Number of species and their similarity recorded in each forest type

(*) No. of species common in both felled and un-felled forest area of the same type.

16

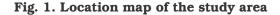
Thiru Selvan / J Tree Sci 33 (1): 12-21, 2014

SI.	Botanical Name	Common Name				
No.			Rd	RD	RF	IVI
1	Ailanthus kurzii	Ailanthus	0.361	0.112	0.706	1.177
2	Aglia andamanica	Letauk	2.600	3.091	3.415	9.106
3	Alstonia kurzii	Chattiyan	0.498	0.265	0.870	1.632
4	Amoora wallichii	Lal Chinni	0.367	2.646	0.679	3.691
5	Anthocephalus chinensis	Kadam	0.236	0.125	0.488	0.849
6	Antidesma acidum	Khatta Phal	0.859	0.561	1.358	2.776
7	Artocarpus chaplasa	Toungpinne	1.350	2.773	2.253	6.376
8	Artocarpus gomeziana	Lakuch	0.491	0.396	0.679	1.566
9	Bassia butyracea	Mohwa	1.418	1.570	1.463	4.451
10	Bombax insigne	Didu	0.367	1.058	0.679	2.104
11	Buchanania platyneura	Char	0.249	0.040	0.435	0.724
12	Callophyllum inophyllum	Poon	0.236	0.296	0.488	1.021
13	Canarium euphyllum	White Dhup	1.673	5.156	2.386	9.216
14	Celtis phillippensis	Bada Tej Pathi	3.888	3.378	4.831	12.096
15	Champeriama inillana	Mitta Bajii	1.244	0.316	2.174	3.734
16	Cinnamomum bejolghota	ChotaTej Pathi	3.123	1.823	2.551	7.496
17	Cleidion nitidum	Khattal Balli	0.859	0.387	1.140	2.385
18	Dillenia andamanica	Korkot	0.473	0.053	0.488	1.014
19	Diospyros marmarata	Kala Lakri	0.236	0.167	0.488	0.891
20	Diospyros montana	Yellow Agia	0.598	0.139	1.193	1.929
21	Diospyrous kurzii	Chota Pathi Tendu	0.498	0.728	0.870	2.095
22	Diospyrous pyrrhocarpa	Bada Pathi Tendu	1.841	0.961	2.227	5.028
23	Diospyros variegata	Fanda Balli	4.019	1.553	5.366	10.938
24	Dipterocarpus spp.	Gurjan	6.636	17.890	4.237	28.763
25	Dysoxylum arborescens	Jungli Jamun	2.974	1.052	3.579	7.605
26	Evodia glabra	Lal Balli	1.238	0.540	1.983	3.760
27	Ficus spp	Bargat	0.498	0.898	0.870	2.265
28	Ficus hispida	Gular	0.709	0.461	1.463	2.633
29	Ganophyllum falcatum	Jungli Neem	0.709	4.270	0.976	5.955
30	Garcenia xanthochymus	Rakath Phal	0.498	0.074	0.870	1.441
31	Gmelina arborea	Yemnae	0.249	0.024	0.435	0.708
32	Goniothalamus macranthus	Button Balli	1.418	0.716	1.463	3.597
33	Grewia callophylla	Mariyum Khatta	0.971	1.085	1.384	3.439
34	Grewia microcos	Metha	1.655	0.890	2.439	4.984
35	Hibiscus tilliaceus	Safed Chilka	0.740	0.326	1.331	2.397
36	Homonio cariparis	Surmai patti	0.746	0.085	1.304	2.136
37	Hopeao dorata	White Thingan	0.498	0.574	0.870	1.942
38	Knema andamanica	ChottaPathiJaiphal	15.786	4.475	5.944	26.205
39	Lannea coromandelica	Nabbe	0.952	3.198	1.437	5.587

Thiru	Selvan	/J	Tree	Sci 3	33 (1)): 12	-21.	2014

40	Lagerstroemia hypoleuca	Pyinma	2.488	2.161	1.739	6.388
41	Leea acuminata	Hara buti	0.746	0.113	0.435	1.294
42	Mallotus peltatus	Banga	0.361	0.049	0.462	0.872
43	Mangifera andamanica	Aam Chotta pathi	0.746	0.334	1.304	2.384
44	Mangifera sylvatica	Aam Bada Pathi	0.249	0.018	0.435	0.701
45	Memexylon ovatum	Lohra Lakri	0.473	0.154	0.976	1.602
46	Miliusa tectona	Jungli Sagwan	0.236	0.167	0.488	0.891
47	Morus laevigata	Posa	0.236	0.359	0.488	1.083
48	Murraya exotica	Malai Lakri	0.249	0.018	0.435	0.701
49	Myrstica andamanica	Bada Pathi Jaiphal	9.698	4.796	3.664	18.157
50	Nauclea gageana	Theinkala	0.734	0.596	0.679	2.009
51	Oroxylum indicum	Burma Phali	0.361	0.181	0.462	1.003
52	Parishia insignis	Lal Dhup	2.514	6.370	3.309	12.192
53	Planchonia andamanica	Lal Bombwe	3.191	4.249	4.046	11.485
54	Polyalthia parkinsonii	Neva	3.533	0.914	3.690	8.137
55	Pometia pinnata	Thitkandu	2.830	6.372	2.063	11.265
56	Prunus martabanica	Lal Thingan	0.498	1.775	0.870	3.142
57	Pterocarpus dalbergioides	Padauk	0.486	0.454	0.679	1.618
58	Pterospermum aceroides	Makchund	1.220	0.870	1.384	3.473
59	Pubistylus andamanensis	Haddi Balli	0.491	0.097	0.896	1.484
60	Rathmonnia pulcherimma	Papra	0.473	0.154	0.976	1.602
61	Sagerea elliptica	Chooi	0.479	0.420	0.949	1.847
62	Semecarpus kurzii	Jungli Kaju	2.084	0.665	2.741	5.490
63	Sideroxylon longepetiolatum	Lamba Patti	1.493	1.983	1.739	5.215
64	Spondius mangifera	Ambra	1.344	1.606	2.036	4.986
65	Sterculia companulata	Papita	1.319	0.807	1.655	3.780
66	Sterculia villosa	Lal Chilka	7.565	5.574	4.390	17.529
67	Strebulus taxoides	Kaksi	0.746	0.340	0.435	1.521
68	Tabernaemontana crispa	Corriya	0.598	0.094	0.949	1.640
69	Terminalia bialata	White Chuglum	1.182	2.236	0.976	4.393
70	Terminalia manii	Black Chuglum	0.622	0.330	1.087	2.039
71	Terminalia procera	Badam	0.491	1.119	0.896	2.506
72	Tetrameles nudiflora	Thitpok	0.361	1.246	0.706	2.312
73	Vitex diversifolia	Charai Gudwa	0.249	0.590	0.435	1.274
74	Xanthophyllum andamanica	Laphew	3.980	2.934	4.783	11.697
75	-	Gum Phal	0.722	1.210	1.193	3.124
76	-	Tooth	0.746	0.529	0.870	2.144
77	-	Jungli Kusum	0.249	0.162	0.435	0.845
78	-	Jungli Sapota	1.244	0.343	1.304	2.891
79	-	Khadi Balli	0.249	0.067	0.435	0.751
80	-	Gandauk	0.236	1.434	0.488	2.158

Note: Rd- Relative Density RD- Relative Dominance RF- Relative Frequency IVI- Importance Value Index


17

18

Thiru Selvan / J Tree Sci 33 (1): 12-21, 2014

SI.	Botanical Name	Common name	Species profile				
No.			Rd	RD	RF	IVI	
1	Aglia andamanica	Letauk	0.770	0.337	1.515	2.621	
2	Albizia stipulata	Bombeza	0.198	0.302	0.377	0.878	
3	Amoora wallichii	Lal Chinni	0.747	0.799	1.341	2.887	
4	Anthocephalus chinensis	Kadam	0.299	0.343	0.775	1.418	
5	Antidesma acidum	Khatta Phal	1.720	0.468	2.504	4.692	
6	Artocarpus chaplasa	Toungpienne	1.741	2.803	2.678	7.221	
7	Artocarpus gomeziana	Lakuch	0.150	0.249	0.388	0.787	
8	Atalantia monophylla	Jungli Nimbhu	0.198	0.017	0.377	0.593	
9	Bassia butyracea	Mohwa	0.299	1.163	0.775	2.238	
10	Bischofia javanica	Pani Padauk	0.198	0.017	0.377	0.593	
11	Bombax insigne	Didu	0.595	1.754	1.132	3.481	
12	Buchanania platyneura	Char	0.324	0.362	0.770	1.455	
13	Calophyllum inophyllum	poon	0.599	0.350	1.550	2.500	
14	Canarium euphyllum	White Dhup	0.994	3.722	1.719	6.434	
15	Celtis phillippensis	Bada Tej Pathi	0.397	0.061	0.755	1.212	
16	Cinnamomum bejolghota	Chota Tej Pathi	1.664	1.431	1.515	4.610	
17	Cleidion nitidum	Khattal Balli	0.150	0.047	0.388	0.585	
18	Daubanga	Duabanga	0.150	0.297	0.388	0.834	
19	Dillenia andamanica	Korkot	0.174	0.059	0.383	0.616	
20	Dillenia pentagyna	Korkot	0.150	0.101	0.388	0.638	
21	Diospyros montana	Yellow Agia	1.861	0.486	1.326	3.672	
22	Diospyros kurzii	Chota Pathi Tendu	0.174	0.133	0.383	0.690	
23	Diospyros marmarata	Kala Lakri	0.595	0.186	0.755	1.536	
24	Diospyros pyrrhocarpa	Bada Pathi Tendu	1.067	0.379	1.515	2.960	
25	Diospyros variegata	Fanda Balli	7.387	2.540	5.936	15.863	
26	Dipterocarpus spp.	Gurjan	22.167	26.673	6.518	55.358	
27	Dracaena pachyphylla	Surmai Patti	0.150	0.025	0.388	0.563	
28	Dysoxylum arborescens	Jungli Jamun	2.265	1.443	2.678	6.385	
29	Endospermum chinense	Bakota	0.599	0.447	0.775	1.821	
30	Evodia glabra	Lal Balli	2.564	1.451	3.264	7.279	
31	Ficus spp.	Bargat	0.198	0.827	0.377	1.403	
32	Ficus hispida	Gular	0.871	1.026	1.913	3.809	
33	Ganophyllum falcatum	Jungli Neem	0.449	0.335	0.775	1.559	
34	Garcenia cowa	Kao Phal	0.324	0.434	0.770	1.528	
35	Garcenia xanthochymus	Rakath Phal	0.397	0.034	0.755	1.185	
36	Gmelina arborea	Yemnae	0.150	0.042	0.388	0.579	
37	Goniothalamus macranthus	Button Balli	0.150	0.087	0.388	0.624	
38	Grewia callophylla	Mariyum Khatta	1.190	1.544	1.887	4.622	
39	Grewia microcos	Metha	0.994	0.588	1.525	3.107	
40	Gyrocarpus	Gyrocarpus	0.198	0.270	0.377	0.846	
41	Knema andamanica	Chotta Pathi Jaiphal	14.076	7.377	5.748	27.201	
42	Lannea coromandelica	Nabbe	0.249	1.136	0.576	1.961	

43	Lagestroemia hypoleuca	Pyinma	1.071	1.835	0.959	3.864
44	Macaranga tanarius	Gol Pathi	1.198	0.809	2.326	4.332
45	Mallotus peltatus	Banga	1.389	0.369	1.887	3.644
46	Mangifera andamanica	Jungli Aam ChottaPathi	0.447	0.486	0.954	1.887
47	Mangifera sylvatica	Jungli Aam BadaPathi	0.198	0.041	0.377	0.617
48	Memexylon ovatum	LohraLakri	0.198	0.152	0.377	0.728
49	Morus laevigata	Posa	0.150	1.187	0.388	1.725
50	Murraya exotica	Malai Lakri	0.198	0.041	0.377	0.617
51	Myrstica andamanica	Bada Pathi Jaiphal	2.763	4.185	1.336	8.283
52	Orophia hexandra	-	0.150	0.668	0.388	1.205
53	Pajenaliar hedii	Jhingam	0.299	0.254	0.388	0.941
54	Parishia insignis	Lal Dhup	1.842	3.516	2.111	7.469
55	Pisonia umbellifera	Banya	0.150	0.561	0.388	1.098
56	Planchonia valida	Lal Bombwe	4.308	3.840	5.365	13.513
57	Polyalthia parkinsonii	Neva	1.168	0.345	1.714	3.226
58	Pometia pinnata	Thitkandu	3.777	12.924	4.202	20.903
59	Prunus martabanica	Lal Thingan	0.150	0.249	0.388	0.787
60	Pterospermum aceroides	Makchund	0.770	0.955	1.138	2.861
61	Pubistylus andamanensis	HaddiBalli	0.571	0.126	0.760	1.457
62	Rathmonnia pulcherimma	Papra	0.348	0.224	0.765	1.337
63	Sagerea elliptica	Chooi	0.794	0.104	1.509	2.407
64	Schleichera oleosa	Jungli Kusum	0.796	0.431	1.331	2.557
65	Semecarpus kurzii	Jungli Kaju	1.292	0.164	1.714	3.169
66	Spondius mangifera	Amdra	1.990	3.456	3.448	8.892
67	Sterculia alata	Letkok	0.397	0.060	0.755	1.212
68	Sterculia companulata	Papita	2.433	0.833	2.856	6.122
69	Sterculia villosa	Lal Chilka	1.022	1.242	1.734	3.998
70	Strebulus taxoides	Kaksi	0.770	0.301	1.326	2.396
71	Terminalia manii	Black Chuglum	1.389	2.840	2.264	6.493
72	Terminaliaprocera	Badam	0.397	0.034	0.377	0.808
73	Tetrameles nudiflora	Thitpok	0.547	0.132	0.576	1.255
74	Trema ambionensis	Bakri Patti	0.150	0.042	0.388	0.579
75	Vitex diversifolia	Charai Gudwa	0.249	0.093	0.576	0.918
76	Walsura hypoluca	-	0.599	2.033	1.163	3.795
77	Xanthophyllum andamanica	Letphew	0.597	0.220	1.148	1.964
78	-	Jungli Lasoon	1.497	1.854	3.876	7.227
79	-	Gundak	0.150	0.178	0.388	0.716
80	-	Jungli Sapota	1.044	0.610	1.913	3.567
81	-	Khadi Balli	0.623	0.309	1.352	2.284
82	-	Mistri Phora	1.587	0.148	3.019	4.754
83	-	Zera wachilka	0.198	0.017	0.377	0.593
Note 1	Rd- Relative Density RD- Relativ	ve Dominance RF- Relative	Frequency IV	I- Importance	Value Indev	
1,010.1	Keiner Density KD- Keidti		r requeriey rv			

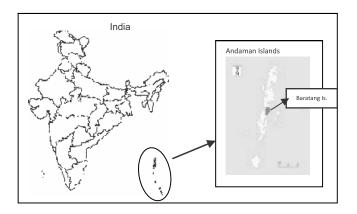
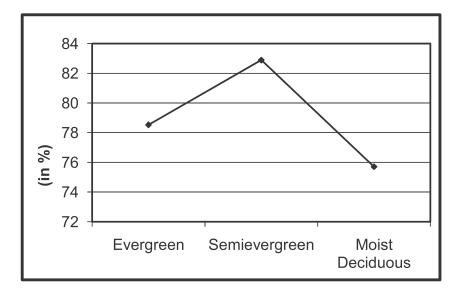



Fig. 2. Coefficient of similarity between felled and unfelled area

more than 75 % and highest in Semi-evergreen Forest type with 82.89% from the analysis of 12 sample plots. The above analysis shows that difference between worked and unworked area with reference to floristic composition is quite narrow (Fig. 2).

REFERENCES

- Alwyn HG, and Calaway D 1987 Contribution non trees to species richness of a tropical rain forest. Biotropica 19(2): 149–156.
- Campbell DG 1994 Scale and patterns of community structure in Amazonian forests. In:Larger-scales Ecologyand Conservation Biology(eds. Edwards, P. J., May, R. M. and Webb N. R.), Blackwell, Oxford.

- Cannon CH, Peart DR and Leighton M 1998 Tree species diversity in commercially logged Bornean rainforest. Science 28: 1366–1368.
- Champion HG and Seth SK 1968 A Revised Survey of the Forest Type of India. Govt. of India Publications, New Delhi.
- Curtis JT and McIntosh RP 1950 The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31: 434-455.
- Curtis JT 1959 The Vegetation of Wisconsin- An Ordination of Plant Communities.University Wisconsin Press, Madison. Wisconsin.
- Ghosh A 2013 Diversity and distribution of climbing plants in littoral forest of North Andaman North

Andaman Islands, India.Indian Journal of Plant Sciences 2(3): 35-42.

- Hajra PK, Uniyal BP and Rao PSN 1999 Flora of Andaman and Nicobar Islands. Vol. I . Botanical Survey of India, Kolkata.
- Jacobs M 1988 The tropical rainforests: A first encounter. Berlin: Springer. 295 pp.
- Keel S, Gentry AH and Spinzi L 1993 Using vegetation analysis to facilitate the selection of conservation sites in Eastern Paraguay. Conserv Biol 7: 66–75.
- Kindt R and Coe R 2005 Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92
 9 0 5 9 1 7 9 X . URLhttp://www.worldagroforestry.org/treesand markets/treediversityanalysis.asp
- Lakshminarasimhan P and Rao PSN 1996 A supplementary list of angiosperms recorded (1983-1993) from Andaman and Nicobar Islands. J. Econ. Tax. Bot. 20: 175-185.
- Mathew SP 1998 Supplementary reporton the flora and vegetation of the Bay Islands, India.J. Econ. Taxon Bot 22: 249-272.
- Nagabhatla N, Roy PS and Jagdale R 2007.Monitoring spatial distribution of commercial rattans and palms in the tropical forest of Baratang Islands (Andaman and Nicobar Islands).Ind. J. Trad.

Know. 6(4): 630-635.

- Padalia H, Chauhan N, Porwal MC and Roy PS 2004 Phytosociological observations on tree species diversity of Andaman Islands, India. Curr Sci 87(6): 25.
- Parkinson CE 1923 A Forest Flora of the Andaman Islands. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- Reddy CS and Dutt CBS 2003 Some interesting additions to the Flora of Andaman and Nicobar Islands from North Andaman. J Bombay Nat Hist Soc 102: 133-135.
- Reddy CS and Prasad PRC 2008 Tree Flora of Saddle Peak National park, Andaman, India. J Plant Sci 3(1): 1-17.
- Sorenson T 1948 A method of establishing groups of equal amplitude in a plant society based on similarity of species content. K. Dan.Vidensk. Selsk.5: 1–34.
- Tripathi KP, Tripathi S, Selvan T, Kumar K, Mehrotra S and Pushpangandan P 2004 Community Structure and species diversity of Saddle Peak forests in Andaman Island. Tropical Ecology. 45(2): 241-250.
- Vasudevrao MK 1986 A Preliminary report on the angiosperms of Andaman-Nicobar Islands. J Econ Tax Bot 8: 107-184.