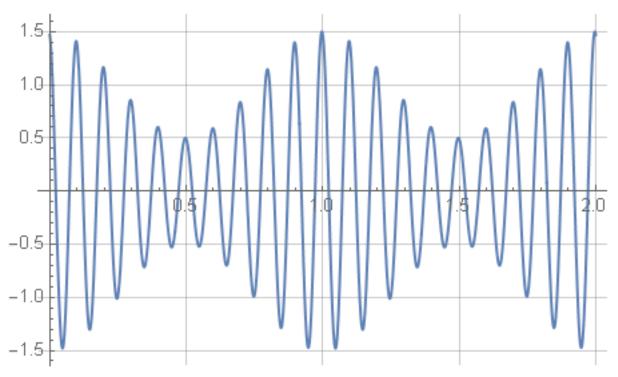
EECS 562 Homework #2

- 1. A message signal is $m(t)=4\cos(20\pi t)$ volts and the carrier wave is $c(t) = 200\cos(1000\pi t)$ volts, the percent modulation (sometimes called modulation index or modulation factor) is 90%
 - a. Find the amplitude sensitivity, k_{a.}
 - b. Plot the RF signal in the time domain to scale.
 - c. What is the total RF transmitted power assume a 100 ohm load.
 - d. What is the power in the carrier wave assume a 100 ohm load.
 - e. What is the RF bandwidth?
 - f. Plot the power spectral density of the RF signal.
- 2. For a sequence of information bits b_i {1,0,1,1,1,0}; i=1..6, the message signal is formed as

$$m(t) = \sum_{i=1}^{6} b_i rect[t - i - 0.5)]$$

- a. Plot m(t)
- b. For 50% AM percent modulation plot the RF time-domain signal (use $f_c=10Hz$)
- c. For 100% AM percent modulation plot the RF time-domain signal (use $f_c=10Hz$)
- 3. 3.28
- 4. Consider a sequence of information bits $b_i \{\dots, 0, 1, 0, 1, 0, 1, 0, 1, \dots\}$, That is, alternating 0's and 1's. A baseband analog message signal m(t) is formed as
 - where $d_i=-2$ if $b_i=0$ and $d_i=+2$ if $b_i=1$
 - a) With $\tau = 1$ ms, plot m(t) for k = -3...3.
 - b) What is the DC (or average value) of m(t)?
 - c) Find the Fourier Series of m(t) and plot its amplitude spectrum.
 - d) DSB-SC modulation is used to transmit m(t) with a carrier wave of carrier wave is $c(t) = 10\cos(2\pi f_c t)$ with $f_c = 100$ kHz. Plot the RF amplitude spectrum. [Hint: from the Fourier Series of m(t) apply the modulation theorem.]
 - e) With $\tau=1$ ms find the average energy per bit. This form of digital modulation is called Phase Shift Keying (PSK) or binary PSK (BPSK).
- 5. Repeat problem 4 d) and e) using DSB-SC with $d_i=0$ if $b_i = 0$ and $d_i=+2$ if $b_i = 1$. This form of digital modulation is called On-Off Keying (OOK).
- 6. Let s(t) be an DSB-SC signal, s(t)= m(t)cos($2\pi f_c t$) with f_c=200kHz and m(t)=cos($2000\pi t$). There is a frequency error in the coherent detector of Δf =10Hz.


Find the output of the coherent detector, y(t) and plot y(t).

- 7. Let s(t) be an DSB-LC (AM) signal. The unmodulated transmitted power is 100 KW. The message signal is $m(t) = cos(2\pi f_m t)$. The modulated transmitted power is 150 KW.
 - a. Find the corresponding A_c and k_a in equation 3.2.
 - b. What is the modulation factor?
 - c. What is the power efficiency?
 - d. What is the RF bandwidth?

- 8. Given a baseband bandwidth of 180 kHz for signals x₁(t), x₂(t), x₃(t)... x_N(t), i.e., B_i=180 kHz for each signal x_i i=1...N. These signals are modulated using DSB-SC modulation. The modulated DSB-SC signals are combined using FDM with assigned RF spectrum of 60 MHz.
 - a. Assuming no guard band find N.
 - b. Assuming a 10 KHz guard band find N.
- 9. An DSB-LC RF signal is plotted in the time domain below. What is the modulation index (modulation factor)?

