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Strongly altered gangue, containing rich crystalline aggregates of parsonsite, was recently found at the outcrop parts 
of the Červené žíly vein system, the Jáchymov ore district, Czech Republic. Mineralogical research proved that in 
the crystal structure of parsonsite from Jáchymov is present a higher content of molecular water than expected. This 
conclusion is supported by the results of thermogravimetric analysis and infrared spectroscopy. The weight loss obtained 
from TG curve is 3.70 wt. %, corresponding to 1.93 mols of H2O. The presence of a broad vibration band reflecting the 
O–H stretching vibrations of molecular water was ascertained in the infrared spectrum of studied parsonsite sample, 
suggesting that H2O molecules are involved in the hydrogen-bonding network in the crystal structure of studied par-
sonsite. Inferred hydrogen bond lengths can vary in the range 2.6–3.0 Å, which is consistent with the distance between 
possible position of the molecular water and nearest neighbouring oxygen atom in the crystal structure of the synthetic 
parsonsite given in the literature. The chemical composition of the studied parsonsite from Jáchymov, 47.27 PbO, 
13.38 P2O5, 1.60 As2O5, 0.16 SiO2, 32.61 UO3, 3.70 H2O, total 98.71 wt. %, can be expressed as Pb1.99(UO2)1.07 [(PO4)1.77 
(AsO4)0.13(SiO4)0.03]Σ1.93

.1.93 H2O, based on electron microprobe and thermal analyses. Its refined unit-cell parameters for 
triclinic space group P-1, a 6.860(2), b 10.404(3), c 6.665(3) Å, α 101.46(3)o, β 98.30(3)o, γ 86.29(2)o, V 461.0(3) Å3 
agree very well with the published data.
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1.	Introduction

A detailed knowledge of crystal chemistry of uranyl 
minerals, i.e. hydrated oxysalts dominantly with layered 
structure, is of key importance in understanding their 
physical and chemical properties, such as stability and 
solubility (Schindler and Hawthorne 2008). These prop-
erties influence behaviour of the given mineral under 
oxidation conditions at surface and near-surface parts of 
the Earth’s crust. Study of these phases is important in the 
context of uranium use as nuclear fuel. Related problems 
include sites of old mining, ore dressing settling pits, 
mine dumps or even spent nuclear fuel (“SNF”) manage-
ment (Finch and Ewing 1992; Wronkiewicz et al. 1992, 
1996; Finn et al. 1996; Murakami et al. 1997; Finch et al. 
1999; Fayek et al. 2000; Čejka 2002; Shueneman et al. 
2003; Catalano et al. 2004; Pittauerová and Goliáš 2006; 
Catalano et al. 2006; Procházka 2007; Procházka et al. 
2009). Uranyl phosphates occur commonly as abundant 
phases in the supergene zones of most uranium deposits 
(Finch and Murakami 1999). Some uranyl phosphates 

are remarkably stable and persist during prolonged stor-
age in dumps or in bedrock outcrops (Pittauerová and 
Goliáš 2005).

Parsonsite is a member of the group of uranyl phos-
phates and arsenates with crystal structures based upon 
infinite chains of uranyl-anion polyhedra (Burns 2000; 
Locock et al. 2005). A similar uranyl-anion topology of 
crystal structure was reported for moctezumite (Swihart 
et al. 1993), derriksite (Ginderow and Cesbron 1983a), 
demesmakerite (Ginderow and Cesbron 1983b), walpurg-
ite (Mereiter 1982), orthowalpurgite (Krause et al. 
1995) and particularly for hallimondite, which probably 
represents an As-analogue of parsonsite (Locock et al. 
2005). Even after extensive work on parsonsite crystal 
chemistry (Vochten et al. 1991; Burns 2000; Locock et 
al. 2005; Frost et al. 2006; Plášil et al. 2009), the role of 
molecular water in parsonsite remained problematic. This 
study aims to clarify these problems by a detailed miner-
alogical study of parsonsite from a new occurrence in the 
area of the Červené žíly veins in Jáchymov, Erzgebirge, 
western Bohemia.
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2.	Background information

Schoep (1923; 1930) estimated a chemical formula 
Pb2[(UO2)(PO4)2](H2O) for natural parsonsite based on 
classic (wet) chemical analyses. Frondel (1950; 1958) 
mentioned parsonsite as Pb2[(UO2)(PO4)2](H2O)2, based on 
analogy to hallimondite. Branche et al. (1951) studied a 
parsonsite sample from Reliez, Lachaux, Puy-de-Dôme, 
France, containing 2.1 wt. % H2O. Bignand (1955) 
synthesized a phase corresponding to parsonsite which, 
however, was anhydrous. Guillemin (1958) also assumed 
parsonsite from Shinkolobwe, Katanga, to be anhydrous. 
Mazzi et al. (1959) presented the first crystal structure 
investigation on parsonsite. They estimated positions of 
heavy atoms only (U and Pb) in the crystal structure. De-
liens et al. (1981) characterized parsonsite as dihydrate. 
Smith (1984) ascribed to parsonsite a chemical formula 
Pb2(UO2)(PO4)2.nH2O. Vochten et al. (1991) prepared 
synthetic parsonsite crystals and provided results of 
thermogravimetric analysis, which indicated a formula 
Pb2[(UO2)(PO4)2](H2O)0.5.

Burns (2000) reported refined crystal structure of 
natural parsonsite originating from a classic European 
locality, La Feye in France. According to Burns (2000), 
parsonsite structure consists of infinite chains of uranyl-
phosphate polyhedra and does not contain any molecular 
water. These results are based on final difference Fourier 
maps that do not reveal any additional maxima connected 
with O of possible H2O groups. 

Later, Locock et al. (2005) published refined crystal 
structures of both end-member phases, synthetic par-
sonsite and its As-analogue, hallimondite. Based on 
study of synthetic parsonsite carried out by Locock et 
al. (2005), presence of molecular water in the parsonsite 
crystal structure is not evident. Their ATR-FTIR study 
did not prove the presence of O–H or H–O–H stretch-
ing and bending vibrations, in contrast to the synthetic 
hallimondite. Analysis of cavities in the crystal structure 
of synthetic parsonsite resulted in the fact that a void at 
special position 0, 0, 1/2 (like in synthetic hallimondite) 
is large enough for weakly bonded molecular water. 
Locock et al. (2005) commented the study by Vochten 
et al. (1995) with a note that content of molecular water 
in parsonsite is variable. It could be expressed by the 
structural formula Pb2[(UO2)(PO4)2](H2O)n, where n is 
reliably proven in the range 0 ≤ n ≤ 0.5.

Infrared and Raman spectra of parsonsite from the 
Ranger Mine (Australia) and La Feye (France) were 
published by Frost et al. (2006). Their conclusion was 
that the studied samples contained adsorbed water. Plášil 
et al. (2009) reported the content of 2 H2O molecules for 
natural parsonsite from the Medvědín deposit (Czech 
Republic), based on result of TG analysis, with corre-
sponding weight loss of c. 4 wt. %. Its refined unit-cell 

parameters were slightly larger than those listed by Lo-
cock et al. (2005) for the synthetic parsonsite. The infra-
red spectrum of parsonsite from Medvědín contains bands 
probably belonging to stretching (3407 cm–1) and bending 
(1643 cm–1) vibrations of O–H bonds (Plášil et al. 2009). 
The uncertainty concerning the molecular water content 
in parsonsite is seen also in mineralogical compendia: 
Anthony et al. (2000) mentioned parsonsite as containing 
2 molecules of molecular water but Back and Mandarino 
(2008) reported parsonsite as an anhydrous species.

3.	Experimental

3.1.	X-ray powder diffraction

The X-ray powder pattern of parsonsite from Jáchymov 
was collected on the powder diffractometer PANana-
lytical X’Pert Pro equipped with a secondary graphite 
monochromator and solid-state X’Celerator detector, us-
ing CuKα radiation and operating at 40 kV and 30 mA. 
Sample was grinded and placed from acetone suspension 
onto a zero-background silicon holder. The powder pat-
tern was collected in the Bragg–Brentano geometry in the 
range 7–60° 2θ, step width of 0.02° and counting time of 
300 s per step; the sample was rotated with a frequency 
of 2  s–1. The position of each diffraction maxima was 
refined using Pearson VII profile function in the software 
Xfit (Coelho and Cheary 1997). Theoretical diffraction 
pattern of parsonsite, based on the structural data given 
by Locock et al. (2005), was calculated using PowderCell 
software (Krause and Nolze 2000). The experimental dobs 
of the observed diffractions were assigned on the basis of 
the theoretical pattern hkl indices. Unit-cell parameters 
were refined by the least-square algorithm using software 
Celref (Laugier and Bochu 2002). 

3.2.	Electron microprobe analysis (WDS)

Chemical composition of parsonsite from Jáchymov 
was studied by Cameca SX100 microprobe (Laboratory 
of Electron Microscopy and Microanalysis the Masaryk 
University in Brno and Czech Geological Survey, opera-
tors R. Škoda and J. Sejkora), operating at accelerating 
voltage of 15 kV, beam current of 10 nA and beam 
diameter of 5 μm. For measurement, the following 
X‑ray lines and standards were used, Kα: Si (sanidine), 
P (fluorapatite); Lα: As (InAs); Mα: Pb (vanadinite);  
Mβ: U (U). Counting times (CT) at each of the diffraction 
positions were 20 s, counting time at background points 
was 1/2 CT. Measured intensities were re-calculated to 
element concentrations using “PAP” program (Pouchou 
and Pichoir 1985).
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Fig. 1 Old mining dump at the area of Červené žíly vein system outcrops, the Jáchymov ore district, Czech Republic. Photo by J. Tvrdý, November 
2009. 

3.3.	Thermogravimetric analysis

Thermogravimetric study was undertaken on Stanton 
Redcroft Thermobalance TG 750 (Central Laborato-
ries, Institute of Chemical Technology, Prague, analyst 
J.  Ederová). Heating rate was set to 10 °C  min–1 in 
dynamic air atmosphere, with cooling rate 10 ml min–1. 
Sample weight was 0.818 mg.

3.4.	Infrared spectroscopy

Micro-DRIFTS spectrum of parsonsite was recorded 
by FTIR spectrometer Nicolet Magna 760 (in the range 
4000–600 cm–1, resolution 4 cm–1, 128 scans, Happ–
Genzel apodization) equipped with Spectra Tech In-
spectIR micro-FTIR accessory. Crystals of parsonsite 
were mildly ground with KBr, without using pressure 
and immediately analyzed. The same KBr was used as a 
reference. Spectral manipulation was done using Omnic 
Spectra Tools software. For the decomposition of the 
spectra, Gauss–Lorentz profile function was applied. 
During the band fitting, the statistical agreement factors 
were checked until the fit converged to the final minimal 
value for the difference function.

4.	Results

4.1.	Description of the occurrence and  
samples

Sample of mainly quartz gangue (30×20×15 cm), contain-
ing the later detected parsonsite, was found on the dump 

of an old mining work – a shallow shaft probably origi-
nating from the 1st half of the 16th century in Jáchymov 
(St. Joachimsthal). The shaft is located on the outcrop of 
the vein cluster known as the Červené žíly system (area 
to the north of the shaft No. 14), Jáchymov ore district, 
Czech Republic (Fig. 1). A more detailed description of 
the vein is not possible, because of a complex situation 
of mining works and a lack of accurate archive materials 
and information. Parsonsite occurs as crystalline aggre-
gates consisting of long prismatic, translucent to trans-
parent crystals of yellow–orange to orange colour, up to 
2 mm long (Fig. 2). It was found in the association with 
metatorbernite crystalline aggregates, locally strongly al-
tered. The best-developed crystal of parsonsite was found 
in a most altered part of the gangue in layers with black, 
probably amorphous, ferric oxy-hydroxides.

4.2. X-ray powder diffraction

The powder X-ray diffraction pattern of parsonsite from 
Jáchymov (Tab. 1) is in excellent agreement both with 
theoretical diffraction data calculated from the parsonsite 
crystal structure (Locock et al. 2005) and other pub-
lished data (e.g., Plášil et al. 2009). Observed intensities 
deviate only negligibly from the theoretical ones due to 
preferred orientation effect, which is induced by a very 
good cleavage of parsonsite crystals. Given the fact that 
in the powder pattern was detected only a single phase, 
without any admixture, the powder sample was further 
used for infrared and thermal analyses. Unit-cell param-
eters of parsonsite from Jáchymov (Tab. 2), refined based 
on positions of 35 diffractions, are consistent with data 
presented in the literature.
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Tab. 1 Powder X-ray diffraction pattern of parsonsite from Jáchymov

Iobs h k l dobs dcalc

27 0 1 0 10.18 10.19
10 –1 0 0 6.78 6.78

1 0 0 1 6.47 6.47
3 0 –1 1 6.01 6.01
9 –1 –1 0 5.75 5.75

16 0 2 0 5.10 5.09
3 –1 0 1 5.03 5.03
2 –1 –1 1 4.87 4.87

16 –1 1 1 4.23 4.23
13 1 –1 1 4.20 4.20
17 –1 –2 0 4.15 4.15

4 –1 –2 1 3.94 3.95
2 0 2 1 3.68 3.68

100 0 3 0 3.40 3.40
3 0 –3 1 3.28 3.28

31 –2 –1 0 3.26 3.25
3 –2 1 0 3.18 3.18
5 1 2 1 3.16 3.17

13 –2 –1 1 3.15 3.16
5 1 3 0 3.08 3.08
3 0 –2 2 3.00 3.01
3 –1 1 2 2.803 2.803
9 –2 2 0 2.775 2.776
2 2 1 1 2.709 2.708
2 1 –2 2 2.610 2.609
1 1 3 1 2.559 2.560
2 –2 –1 2 2.550 2.550
1 1 4 0 2.414 2.414
1 1 –4 0 2.356 2.356
1 –3 0 0 2.262 2.261
3 –3 0 1 2.231 2.230
1 –2 –4 1 2.129 2.128
5 –1 –5 0 1.9723 1.9719
2 1 –5 0 1.9322 1.9320
2 –2 –3 3 1.8481 1.8479

Fig. 2 Long prismatic parsonsite crystals in the cavity of the altered 
gangue. The width of photo is 0.8 mm. Photo by J. Sejkora (Nikon 
SMZ1500).

4.3.	Chemical composition

A characteristic feature of the chemical composition of the 
studied parsonsite (Tab. 3) is the isomorphic substitution 
of the dominant (PO4)

3– anions in the tetrahedral posi-
tions by (AsO4)

3– anions up to ~10 mol. % in the position 
(Fig. 3). This substitution is characteristic of the isotypic 
series parsonsite–hallimondite (Locock et al. 2005). Inter-
esting are also contents of (SiO4)

4– groups, even if they are 
very low (up to 0.16 wt. % SiO2). With regard to detection 
limits and errors, the Si content is considered as reliable. 
According to Locock (2007), the anions (SiO4)

4– should 
not theoretically enter the uranyl-anion layers. A similar 
phenomenon has already been observed for a few other 
uranyl phosphates and arsenates (e.g., Sejkora and Čejka 
2007; Sejkora et al. 2007; Plášil et al. 2009). Chemical 
composition of parsonsite from Jáchymov can be ex-
pressed by empirical formula (mean of three analyses, 
based on sum of atoms = 5 apfu): 
Pb1.99(UO2)1.07 [(PO4)1.77(AsO4)0.13(SiO4)0.03]Σ1.93

.1.93H2O.
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Fig. 3 The ternary diagram of anion contents (molar %) at tetrahedral 
sites of the studied parsonsite from Jáchymov.
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Tab. 3 Chemical composition of parsonsite from Jáchymov

mean 1 2 3
PbO 47.27 47.78 46.85 47.17
SiO2 0.16 0.16 0.08 0.24
As2O5 1.60 1.53 1.23 2.04
P2O5 13.38 12.33 14.16 13.64
UO3 32.61 33.39 31.59 32.85
H2O 3.70 – – –
Total 98.71
Pb 1.995      
Si 0.025
As 0.131
P 1.775
Σ T site 1.931      
U 1.074
H2O 1.93      

Tab. 2 Unit-cell parameters of parsonsite from Jáchymov compared with published data (for the triclinic space group P-1)

Mineral parsonsite parsonsite parsonsite parsonsite
Locality Jáchymov Jáchymov Synt. La Feye (France)
Reference This work Ondruš et al. (1997) Locock et al. (2005) Burns (2000)
T site P1.84, As0.13,Si0.03 P P P
n H2O ~ 1.93 Not analyzed 0 ≤ n ≤ 0.5 0
a [Å] 6.860(2) 6.873(6) 6.8432(5) 6.842(4)
b [Å] 10.404(3) 10.416(5) 10.4105(7) 10.383(6)
c [Å] 6.665(3) 6.684(3) 6.6718(4) 6.670(4)
α [°] 101.46(3) 101.41(6) 101.418(1) 101.26(7)
β [°] 98.30(3) 98.358(7) 98.347(2) 98.17(7)
γ [°] 86.29(2) 86.39(1) 86.264(2) 86.38(7)
V [Å3] 461.0(3) 463.8 460.64(5) 459.8(7)
Mineral parsonsite parsonsite hallimondite
Locality Medvědín synt. synt.
Reference Plášil et al. (2009) Vochten et al. (1991) Locock et al. (2005)
T site P1.66, As0.30, Si0.04 P As
n H2O 2 0.5 0.29
a [Å] 6.852(6) 6.8487(2) 7.1153(8)
b [Å] 10.395(7) 10.3599(4) 10.478(1)
c [Å] 6.669(6) 6.6712(2) 6.8571(8) 
α [°] 101.20(6) 101.843(3) 101.178(2) 
β [°] 98.12(7) 98.233(3) 95.711(3) 
γ [°] 86.39(7) 86.361(3) 86.651(3)
V [Å3] 461.0(6) 458.2 498.64(3)

4.4.	Thermogravimetric analysis 

Thermogravimetric study of parsonsite from Jáchymov 
(Fig. 4) proved that with increasing temperature parson-
site looses its weight in several steps. Strictly speaking, 
the weight loss in the range of 20–280 °C can be de-
scribed in three, relatively distinct steps. Its weight loss 
up to 300 °C, that is up to the temperature, where the 
molecular water release can be expected, corresponds to 
~ 3.70 wt. %. This value equals to ~ 2 H2O molecules. 
The same result has been obtained in case of thermal 
analysis of the sample from Medvědín (Plášil et al. 
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Fig. 4 The thermogravimetric curve (TG) and its derivation (DTG) for 
parsonsite sample from Jáchymov.

2009). Contrary to the Medvědín sample, the TG curve 
of parsonsite from Jáchymov is better defined and each 
decomposition steps is visible. The first step is present in 
the range 20–100 °C (with the corresponding maximum 
on DTG curve at ~ 40 °C). This weight loss corresponds 
to approximately 0.2 wt. % (~ 0.1 mol H2O). This change 
can be connected with release of adsorbed water. The 
dehydration step, which follows, significantly differs 
(different slope of TG curve) and proceeds approximately 
in the temperature range of 100–200 °C, with a weight 
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ν1 (PO4)
3– and the antisymmetric stretching vibration ν3 

(AsO4)
3–. At lower values (~860–800 cm–1) occur overlap-

ping bands of the antisymmetric stretching vibration ν3 
(UO2)

2+ and a symmetric stretching vibration ν1 (UO2)
2+ 

with stretching modes ν of (AsO4)
3–. The position of the 

stretching vibration bands of (UO2)
2+ was calculated on 

the basis of the empirical relations carried out by Bartlett 
and Cooney (1989), using the bond length U–Our pub-
lished by Locock et al. (2005) for synthetic parsonsite 
and by Burns (2000) for natural parsonsite (1.78 Å). 
The position of the antisymmetric stretching vibration 
ν3 (UO2)

2+ 906 cm–-1 and the symmetric stretching vibra-
tion ν1 (UO2)

2+ 831 cm–1 corresponds to these empirical 
relations. Towards the low-wavenumber region, the split-
ting bending modes ν4 (δ) (PO4)

3– and libration modes of 
H2O occur. The vibration bands of weak intensity below 
1500 cm–1 are probably overtones. Although this assign-
ment is the most probable one, we have to point out that 
the wavenumbers of these bands are similar with those 
of U–OH deformations. But presence of the hydroxyls 

loss 1.68 wt. %, corresponding to 0.88 mol H2O (~ 1 mol 
H2O). Weight loss in the range 200–280 °C corresponds 
to ~ 1.82 wt. %, i.e. 0.95 mol H2O (~ 1 mol H2O). De-
composition is not finished until the highest observed 
temperature 920 °C, with weight loss of 4.31 wt. %. This 
process is connected with destruction of the parsonsite 
crystal structure and probable formation of polyphosphate 
phases. This weight loss is probably a result of As2O3 and 
O2 release from decomposition of As2O5 and O2 release 
from decomposition of UO3 to UO2.67. 

4.5.	Infrared spectroscopic study

The infrared spectrum of parsonsite from Jáchymov 
is comparable to the results of Frost et al. (2006) and 
Plášil et al. (2009). Dominating vibration bands in the 
parsonsite spectrum (Fig. 5) correspond to the antisym-
metric stretching vibration ν3 (PO4)

3– (~ 1050 cm1–). In 
the range of ~1000 to 860 cm–1 are present vibration 
bands belonging to the symmetric stretching vibration 

Fig. 5 The infrared spectrum of parsonsite from Jáchymov with assigned and displayed fundamental vibration modes with wavenumbers for 
clarity.
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within the sheet is not possible since the OH groups were 
not detected by the single crystal studies (Burns 2001; 
Locock et al. 2005). 

Broad, to the lower wavenumbers positioned asym-
metric vibration band, occurring at ~ 3400 cm–1, corre-
sponds to stretching ν1 and ν3 O–H of the H2O molecules 
(Fig. 5). As a mathematical deconvolution of the spec-
trum in this region shown in Fig. 6 indicates, this broad 
band possibly consists of several overlapping bands. The 
nature and structure of this broad band suggests that H2O 
molecules, responsible for these vibrations, are involved 
into hydrogen bonding network (Čejka 1999). The em-
pirical relation (Libowitzky 1999) describes the depen-
dence of stretching frequencies (wavenumber) ν O–H on 
bond lengths O…O in relevant hydrogen bonds O–H…O. 
The approximate range of hydrogen bond lengths present 
in the crystal structure of parsonsite from Jáchymov is 
2.6 to 3.0 Å. The lengths of hydrogen bonds (based on 
bond length O…O), determined by structure analysis in 
an analogous case of synthetic hallimondite, are in the 

range of 2.5–2.9 Å. A vibration band at 1632 cm–1 (Fig. 5) 
belongs to the deformation vibrations ν2 (δ) H–O–H, 
definitely due to the molecular water. It is a symmetric, 
non-splitting band of lower intensity, which is neverthe-
less clearly defined.

5.	Discussion

Locock et al. (2005) presented refined crystal structures 
both of parsonsite and hallimondite, two isostrutural 
phases. In case of hallimondite, the oxygen atom, cor-
responding to the molecular water, was found at special 
position. Inspecting Fig. 7, we can easily compare both 
structures. Hallimondite contains molecular water within 
the channels in its crystal structure, while parsonsite does 
not, although it exhibits the same nature of the struc-
ture. Locock (personal communication, 2009) derived a 
distance from the possible atom (centre) in the special 
position (0, 0, 1/2), within the void/cavity in a parsonsite 
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Fig. 6 Decomposition of the parsonsite spectrum in the region of the ν OH stretching vibrations.
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Fig. 7 Crystal structures of isostructural parsonsite (left) and hallimondite (right) after Locock et al. (2005) in a perspective projection along a 
axis. The unit-cell edges are marked by solid black line. Uranium atoms are of black colour, phosphorus/arsenic atoms are green, oxygen atoms 
are red and oxygen atoms belonging to the molecular water are blue.

crystal structure, to the neighbouring oxygen atom in the 
following range: 2.5–2.9 Å. This value is very similar to 
that obtained for the parsonsite from Jáchymov, based 
on the position of the OH stretching band in the infrared 
spectrum. It is highly probable that the molecular water is 
located along these structural channels and that its content 
in parsonsite is variable, depending on many variables 
(conditions of forming, relative humidity in the air etc.).

7.	Conclusions

Parsonsite, recently found at the Jáchymov ore district, 
has clearly defined contents of molecular water. This 
feature is based on the results of thermal analysis (TG) 
and infrared spectroscopic study and corresponds to the 
structural arrangement of parsonsite. The weight loss ob-
tained from the thermal analysis nevertheless underlines 
the fact that molecular water content in parsonsite can be 
slightly higher. The obtained weight loss is 3.7 wt. % up 
to 280 °C, corresponding to 1.91 mol H2O (~ 2 mol H2O). 
Asymmetric, differentiated broad band of the stretching 
O–H vibrations and their wavenumbers suggest that the 
water molecules are involved in the hydrogen bonding 
network with possible O…O bond lengths of 2.6–3.0 
Å. Therefore, we propose that the chemical formula of 
parsonsite can be better described as Pb2[(UO2)(PO4)2]
(H2O)n, 0 ≤ n ≤ 2. 
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