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Babánekite, Cu3(AsO4)2∙8H2O, a new member of the vivianite group was found in material originating from the Geister 
vein, Rovnost mine, Jáchymov, Western Bohemia, Czech Republic. It occurs as a supergene alteration mineral in asso-
ciation with members of the lindackerite supergroup (veselovskýite, hloušekite, pradetite and lindackerite), lavendulan, 
gypsum and an X-ray amorphous Cu–Al–Si–O–H phase. Crystals of babánekite are pinkish to peach-colored, elongated, 
prismatic and up to 2 mm in length. They exhibit the forms {010}, {100}, {110}, {101} and less frequently also {001}. 
Crystals are transparent to translucent with a vitreous luster. The mineral has a light pinkish streak. Estimated Mohs hard-
ness is between 1.5 and 2. The cleavage is perfect on {010}. The calculated density is 3.192 g/cm3. Electron-microprobe 
analysis yielded CoO 8.89, NiO 4.06, CuO 15.31, ZnO 10.87, P2O5 0.16, As2O5 39.79, SO3 0.13, H2O 24.78 (calc.), total 
103.99 wt.% giving the empirical formula (Cu1.12Zn0.78Co0.69Ni0.32)Σ2.91[(AsO4)2.01(PO4)0.01(SO4)0.01]Σ2.03∙8H2O based on 16 
O apfu. The ideal end-member formula of babánekite is Cu3(AsO4)2 ∙8H2O, which requires CuO 38.95, As2O5 37.52, 
H2O 23.53, total 100.00 wt.%. Babánekite is monoclinic, C2/m, with a = 10.1729(3), b = 13.5088(4), c = 4.7496(1) Å, 
β = 105.399(2)°, V = 629.28(3) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 
7.936(11)(110), 6.743(100)(020), 3.231(14)(13-1), 2.715(11)(041), 2.3331(10)(15-1), 2.0819(5)(350), 1.6862(16)(080) 
and 1.6107(4)(55-1). The crystal structure of babánekite, refined to R1 = 2.18 % for 864 unique observed reflections, 
confirmed that the atomic arrangement is similar to other members of the vivianite group of minerals. The mineral is 
named for Ing. František Babánek (1836–1910), Czech mining and geological expert, who worked in the Jáchymov 
and Příbram mines.
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As-dominant member of the vivianite group that was 
found in the Rovnost mine, Jáchymov, Czech Republic. 
The new mineral honors the Senior Mining Counselor 
(“Oberbergrath”) František Babánek (born October 10, 
1836, in Kamenný Přívoz near Jílové, Bohemia; died 
February 25, 1910, in Prague). František Babánek was 
a Czech mining expert, geologist and mineralogist. 
During his active service, he worked in Příbram and 
later in Jáchymov, the two most important mining dis-
tricts in Bohemia, then a part of the Austro-Hungarian 
Empire. 

The new mineral was approved by the CNMNC IMA 
under the code IMA 2012-007. The type specimen is 
deposited in the collections of the Department of Min-
eralogy and Petrology of the National Museum, Prague, 
Czech Republic, catalog number: P1P 8/2011.

1. Introduction

The vivianite group unifies hydrated arsenates and 
phosphates with the generalized structural formula 
Me3(XO4)2(H2O)8, where Me designates sites that are 
occupied by various divalent cations and X the site oc-
cupied by As5+ or P5+. To date, six As-dominant members 
of this group are known: annabergite (Ni), erythrite (Co), 
hörnesite (Mg), manganohörnesite (Mn), köttigite (Zn) 
and parasymplesite (Fe). In addition, four P-dominant 
members have been described: arupite (Ni), barićite 
(Mg, Fe), pakhomovskyite (Co) and vivianite (Fe). Broad 
solid-solutions taking place at the cationic sites have been 
established especially for As-dominant members.

In this work we report on the new mineral species 
babánekite, ideally Cu3(AsO4)2∙8H2O. It is a Cu- and 
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2. Occurrence

The Jáchymov ore district (Western Bohemia, Krušné 
hory Mountains, Czech Republic) presents a classic ex-
ample of Ag–As–Bi–Co–Ni–U hydrothermal vein-type 
mineralization (Ondruš et al. 2003; Hloušek et al. 2014). 
The ore-bearing veins cut medium-grade metasedimen-
tary rocks of Cambrian to Ordovician age, which sur-
round a Variscan granitic pluton. The majority of the 
primary ore minerals were deposited from mesothermal 
fluids during Variscan mineralizing processes. More 
than 430 minerals have been described from Jáchymov, 
including an extremely diverse assemblage of supergene 
minerals (see Ondruš et al. 1997, 2003; Hloušek et al. 
2014 for review).

Babánekite was found in an old ore-stope on the Geis-
ter vein at the 3rd Geister level of the Rovnost (former 
Werner) mine. The particular locality, Geister vein, was 
opened by old mining workings from the surface down 
to the level of the Daniel drainage adit, at the 1st, 3rd, 
6th, Barbora and Daniel levels. This vertical sequence 
mostly represents a supergene oxidation zone of the vein 
opened by mining workings, with the very rich zones of 
the supergene cementation Ag–Hg mineralization at the 
two last mentioned adit levels (Vogl 1854; Škácha et al. 
2014). 

The old, near-surface workings (from the 1st to the 6th 
level), originating partly from the 16th century, were re-
opened during the first half of the 19th century. The main 
aim was mining for U, used for glass-staining, and later 
mostly for extraction of radium. The re-opening of the 3rd 
and 6th Geister levels was well documented by the min-
ing official Josef Florian Vogl, after whom the mineral 
voglite is named (Haidinger 1853; Ondruš et al. 1997). 
Vogl (1856a, b) described in detail a varied supergene 
mineral association from the Geister vein constituted 
by arsenates of the vivianite group and lindackerite su-

pergroup, as well as supergene uranyl-bearing minerals. 
The richness of the locality results from the occurrence 
of both the recently/sub-recently formed minerals con-
nected with the post-mining processes and the supergene 
minerals formed in-situ in the oxidation zone (association 
of uranyl arsenates and vanadates; association of Pb–Cu 
supergene minerals and minerals containing Y + REE). 

Babánekite was found by one of the authors (PŠ) in 
an old mining field informally called the “lindackerite 
stope” by mineral collectors. The name is due to frequent 
occurrences of the lindackerite-supergroup minerals: lin-
dackerite, veselovskýite (Sejkora et al. 2010), hloušekite 
(Plášil et al. 2014a), pradetite (unpublished data of the 
authors) and klajite (Plášil et al. 2014b; Hloušek et al. 
2014). These minerals crystallize on the strongly altered 
ore-body consisting mainly of massive tennantite, galena 
and chalcopyrite with disseminated uraninite in quartz. 
Babánekite aggregates grow in cavities and on the surface 
of ore fragments. In close association with babánekite, 
members of the lindackerite supergroup, lavendulan, 
gypsum and X-ray amorphous Cu–Al–Si–O–H material 
were detected, overgrowing relics of the primary minerals 
partly cemented by supergene mineralization.

3. Physical and optical properties

Babánekite forms elongated, prismatic crystals (Fig. 1) 
up to 1.5 mm in length, grouped in hemispherical ag-
gregates up to 2 mm (Fig. 2). Crystals exhibit the forms 
{010}, {100}, {110}, {101} and less frequently also 
{001}. Crystals, transparent to translucent, are pinkish 
to peach in color and have a vitreous luster. Babánekite 
has a light pink streak. The Mohs hardness is estimated 
between 1.5 and 2.5 (in analogy with other As-dominant 
members of the vivianite group). Prismatic crystals show 
perfect cleavage on {010}. A density of 3.192 g/cm3 was 
calculated using the empirical formula and unit-cell pa-
rameters obtained from single-crystal X-ray diffraction. 
Direct density measurements were not undertaken due to 
paucity of pure material. Babánekite is non-fluorescent 
under short- or long-wave UV radiation. Optical prop-
erties could not be determined due to zonation of the 
babánekite crystals available (Fig. 3); the calculated 
(Gladstone–Dale rule) average n is 1.6615.

4. Chemical composition

The chemical composition of babánekite was determined 
at Masaryk University in Brno using a Cameca SX100 
electron microprobe (WDS mode, 15 kV, 5 nA, and 10 
µm beam diameter). The following X-ray lines and stan-
dards were selected: Kα lines: P (fluorapatite), Zn (ZnO), 
Cu (lammerite), Co (metallic Co), Ni (Ni) and S (baryte), 

Fig. 1 Detail of babánekite crystals. Secondary electron (SE) image 
(Hitachi 3700N), 150 μm wide.
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Lα line: As (lammerite). Other elements, including Al, 
Bi, Ca, Cl, Fe, K, Mg, Mn, Na, Pb, Si and V, were also 
sought, but not found (the detection limits for these ele-
ments are ~0.05–0.10 wt.% at the analytical conditions 
used). Peak counting times were 10–20 s and the counting 
time for the background their half. The measured intensi-
ties were processed for matrix effects using the “PAP” 
correction routine (Pouchou and Pichoir 1985). The H2O 
content (8 pfu) was calculated based on the stoichiometry 
obtained from the structure data and by analogy with 
other vivianite-group minerals.

An aggregate removed from the holotype specimen – 
that was also used for single-crystal and powder X-ray 
diffraction experiments – is characterized by the presence 
of slightly Cu2+-dominated crystals (0.80–1.47 apfu Cu) 
with sectors/zones enriched by Zn2+ (up to 1.03) or Co2+ 
(up to 0.84) or Ni2+ (up to 0.50 apfu) (Fig. 3). In any case, 
Cu2+ is significantly prevailing in all zones (Fig. 4). The 
results of electron microprobe analyses of this aggregate 
(11 point analyses) are summarized in Tab. 1. 

The empirical formula of babánekite (calculated on 
the basis of 16 O apfu) is (Cu1.12Zn0.78Co0.69Ni0.32)Σ2.91 
[(AsO4)2.01(PO4)0.01(SO4)0.01]Σ2.03 ∙ 8H2O. This formula 
shows a certain Me2+-deficiency and thus it is not fully 
charge balanced (having 0.26 of negative charge excess). 
The possible presence of other cations (Ca, Pb, Fe, 
Mg, Mn...) in concentrations under detection limits of 
the measurement is then the most suitable explanation. 
The results of crystal structure study do not indicate a 
presence of OH groups in this mineral. The ideal end-
member formula of babánekite is Cu3(AsO4)2∙8H2O, 
which requires CuO 38.95, As2O5 37.52 and H2O 23.53, 
total 100.00 wt. %.

Subsequently, we also determined the chemical 
composition of other crystal aggregates from the holo-
type sample and also from four additional samples of 
babánekite from the same locality (Geister vein, Jáchy-

Fig. 2 Babánekite crystal aggregates 
consisting of elongated prismatic crys-
tals of dominating {010} faces. The 
bluish material is a PXRD-amorphous 
Cu–Al–Si–O–H phase; metallic miner-
als are tennantite and chalcopyrite. The 
width of the image is 3.5 mm.

Fig. 3 Zonation of babánekite crystals mainly due to variable Zn con-
tents. Back-scattered electron (BSE) image (Cameca SX100).

Tab. 1 Chemical composition of babánekite from Jáchymov

Constituent Mean of 11 spots (wt. %) Range SD
CoO 8.89 6.48–10.65 0.04
NiO 4.06 1.20–6.26 0.09
CuO 15.31 10.72–20.01 3.47
ZnO 10.87 8.70–14.51 2.20
P2O5 0.16 0.10–0.24 0.04
As2O5 39.79 39.01–40.58 0.57
SO3 0.13 0.00–0.37 0.11
H2O* 24.78
Total 103.99
* H2O content was calculated from stoichiometry (8 H2O) derived from 
the crystal-structure study
SD – standard deviation
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mov), preserved mostly in collections of private mineral 
collectors. Additional analyses of crystals removed later 
from the holotype specimen resemble original analy-
ses used for the mineral proposal for CNMNC of IMA 
(Fig. 4). Apparently, the Cu2+ content correlates nega-
tively both with Ni2+ and Co2+, but not with Zn2+. Other 
samples of babánekite from Geister vein investigated by 
EMPA differ significantly particularly in the Zn2+ contents 
(Fig. 5), which do not exceed 0.14 Zn apfu, along with 
the even more dominating Cu2+ than for holotype speci-

men, reaching up to 1.78 Cu pfu. The Cu2+ contents again 
correlate negatively with Ni2+ (or Ni + Co).

5. X-ray crystallography and crystal   
structure

The X-ray powder diffraction pattern of babánekite 
(Tab. 2) was obtained from a hand-picked sample utiliz-
ing a Bruker D8 Advance diffractometer (National Mu-

seum, Prague) with a solid-state 
1D LynxEye detector using 
CuKα radiation (40 kV, 40 mA). 
For minimizing the background 
of the scan, the powder sample 
was placed onto the surface of a 
flat silicon wafer from acetone 
suspension. Powder data were 
collected in the Bragg–Bren-
tano geometry covering the 
range 5–70° 2θ, with the step 
size of 0.01° and counting time 
of 30 s per step (total time of 
experiment about three days). 
Positions and intensities of dif-
fraction maxima were found 
and refined using the Pear-
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and Ni (all in apfu) for the holotype 
sample of babánekite from Jáchymov.
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sonVII profile-shape function 
of the ZDS program package 
(Ondruš 1995), and the unit-cell 
parameters were refined by the 
least-squares algorithm imple-
mented by Burnham (1962).

Refined unit-cell parame-
ters are a = 10.1850(6), b = 
13.4852(6), c = 4.7484(3) Å, 
β = 105.316(5)º, with V  = 
629.01(6) Å3. Some observed 
differences (in the range 0.001–
0.02 Å) between parameters ob-
tained from powder and single-
crystal data are probably caused 
by the slightly different chemi-
cal composition of the samples 
(i.e., zonation; see Figs 3 and 4) 
by these studies.

A 0.097 × 0.037 × 0.034 mm 
prismatic crystal of babánekite 
was selected for single-crystal 
X-ray diffraction experiment 
using an Oxford diffraction 
Gemini single-crystal four-cir-
cle diffractometer. Graphite-
monochromatized MoKα ra-
diation (λ = 0.71073 Å) from 
a conventional sealed X-ray tube was collimated 
with a fiber-optics Mo-Enhance collimator and 
detected with an Atlas CCD detector. The unit cell 
of babánekite was refined from 3645 reflections 
by the least-squares algorithm of the Crysalis-
Pro package giving a monoclinic cell with: a = 
10.1742(2), b = 13.5104(3), c = 4.7489(1) Å, β = 
105.416(2)° and V = 629.29(3) Å3, Z = 2. From 
the total of 5722 measured reflections, 1005 
were unique, and 864 were classified as unique 
observed with the criterion [Iobs > 3σ(I)]. An em-
pirical (multi-scan) correction for absorption was 
applied. The summary of data collection, crystal-
lographic data and refinement are listed in Tab. 3.

The crystal structure of babánekite was re-
fined from the single-crystal X-ray data using the 
known structure model for erythrite (Wildner et 
al. 1996) and the full-matrix least-squares algo-
rithm of the Jana2006 software (Petříček et al. 
2014) based on F2. All non-H atoms were refined 
anisotropically. In the last cycles of the refine-
ment, the occupancies of the Cu sites were also 
refined. The refined site occupancy of the Cu sites, 
giving a sum of 2.92 atoms per unit cell, suggests 
that Cu is mixed at the sites with lighter atoms 
such as Co or Ni and also heavier, as Zn, as well. 

Tab. 2 Powder X-ray diffraction data for babánekite

Irel dobs dcalc Icalc h k ℓ Irel dobs dcalc Icalc h k ℓ
11 7.936 7.940 37 1 1 0 3 2.1965 2.1966 4 1 5 1

100 6.743 6.743 100 0 2 0 3 2.1965 2.1969 6 2 2 –2
2 4.909 4.912 10 2 0 0 5 2.0819 2.0818 12 3 5 0
1 4.581 4.580 5 0 0 1 1 2.0437 2.0437 1 2 6 0
3 4.394 4.394 15 1 1 –1 1 2.0171 2.0177 2 0 6 1
4 4.087 4.087 5 1 3 0 1 1.9822 1.9822 3 4 4 –1
1 3.969 3.970 2 2 2 0 1 1.9503 1.9499 5 3 3 –2
2 3.903 3.903 14 2 0 –1 1 1.9443 1.9441 4 5 1 0
1 3.644 3.645 8 1 1 1 2 1.9105 1.9102 11 1 3 2
4 3.370 3.371 2 0 4 0 1 1.8331 1.8333 3 5 3 –1

14 3.231 3.231 41 1 3 –1 <1 1.7942 1.7944 1 2 6 1
2 3.181 3.182 8 3 1 0 1 1.7854 1.7856 2 3 5 1
5 2.999 2.999 19 3 1 –1 2 1.7795 1.7796 3 1 7 –1
5 2.980 2.980 26 2 0 1 16 1.6862 1.6856 8 0 8 0
4 2.779 2.780 7 2 4 0 3 1.6618 1.6620 10 1 5 2
5 2.725 2.726 24 2 2 1 4 1.6107 1.6106 4 5 5 –1

11 2.715 2.715 19 0 4 1 1 1.5909 1.5910 3 6 2 0
5 2.646 2.647 17 3 3 0 1 1.5524 1.5524 4 5 3 1
1 2.601 2.601 1 1 5 0 <1 1.5376 1.5378 4 6 0 –2
3 2.551 2.551 6 2 4 –1 1 1.5105 1.5105 4 6 4 –1
3 2.4510 2.4506 17 4 0 –1 2 1.4900 1.4899 5 4 0 2

10 2.3331 2.3327 17 1 5 –1 2 1.4672 1.4672 5 2 8 1
1 2.3040 2.3032 7 4 2 –1 1 1.4103 1.4101 3 5 5 1
2 2.2474 2.2475 1 0 6 0 2 1.3888 1.3888 3 4 8 –1
1 2.2325 2.2327 2 2 4 1

d values quoted in Å

Tab. 3 Crystallographic data and refinement details for babánekite

Structural formula Cu3(AsO4)2(H2O)8

a, b, c [Å] 10.1729(3), 13.5088(4), 4.7496(1)
β [°] 105.399(2)
V [Å3] 629.28(3)
Z 2
Dcalc [g/cm3] 3.206
Space group C2/m
Temperature 298 K
Detector; wavelength Atlas CCD; MoKα (0.71073 Å)
Crystal dimensions [mm] 0.097 × 0.037 × 0.034
Collection mode ω rotational scans
Limiting θ angles [°] 3.02–31.13°
Limiting Miller indices –13<h<14, –18<k<19, –6<l<6
No. of reflections 5722
No. of unique reflections 1005
No. of observed reflections (criterion) 864 [Iobs>3σ(I)]
Rint, coverage 0.033, 95%
Absorption correction (mm–1), method 10.20, multi-scan
Transmission (min/,max) 0.514/0.730
F000 589
Refinement	by	Jana2006	on	F2

Parameters refined, constraints, restraints 69, 4, 6
R1,	wR2 (obs) 0.0218, 0.0508
R1,	wR2 (all) 0.0277, 0.0527
GOF obs/all 1.47/1.40
Δρmin, Δρmax (eÅ–3) –0.70, 0.65
Weighting scheme, details σ, w = 1/(σ2(I) + 0.0004I2)
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Regarding the fact that Co, Ni, Cu and Zn (confirmed 
by the microprobe analysis) have very similar scattering 
curves, only Cu was used in the later refinement as a 
proxy. Both the constrained and unconstrained refine-
ment, which took into account the presence of all atoms 
mentioned above (and also allowing some degree of the 
ordering) in the cationic octahedral sites, did not lead ei-
ther to better or more reasonable results. The constrained 
refinement fixing the composition, expressed by the em-
pirical formula obtained from the electron-microprobe 
study, converged to the much worse indices of agreement 
(R = 0.0290, wR = 4.01, GOF = 2.41 for 864 unique ob-
served reflections) compared to the fit using just the Cu at 
the sites. Positions of the hydrogen atoms were localized 
from difference-Fourier maps. The distance between the 
H atom and the corresponding donor O atom was con-
strained during the refinement (with a soft constraint of 
0.90 Å with a certain weight, that produced D–H lengths 
in the range 0.74(3)–0.86(3) Å). The displacement pa-
rameters of the H atoms were set to be 1.2 × Uiso of the 
corresponding donor O atom. The final cycles converged 
with R = 0.0218, wR = 0.0508 and GOF = 1.47 for 864 
observed unique reflections. The correctness of the re-
fined structure model was confirmed by an independent 
structure solution employing the charge-flipping method 
(Palatinus and Chapuis 2007). This independent solution 
obtained differs from the model based on Wildner et al. 
(1996) only in the order of the estimated errors. Atom 
positions, displacement parameters and results of the 
bond valence analysis are listed in Tabs 4 to 5. Some 
of the geometrical characteristics (also given in Tab. 4) 
were calculated using the program Vesta (Momma and 
Izumi 2008). The bond-valence analysis was carried out 
following the procedure of Brown (2002). The CIF file, 
also containing a block with the reflections, is deposited 
at the Journal’s web page www.jgeosci.org.

5.1. crystal structure

The refined structure of babánekite shows character-
istic features of the vivianite-type minerals and syn-
thetic compounds, characterized by the general formula 
Me2+

3(XO4)2∙8H2O (Me = Mg, Fe, Co, Ni, Zn; X = P, As) 
(Mori and Ito 1950; Cesbron et al. 1977; Hill 1979; Fejdi 
et al. 1980; Giuseppetti and Tadini 1982; Dormann et al. 
1982; Takagi et al. 1986; Riou et al. 1989; Bartl 1989; 
Wildner et al. 1996; Yakubovich et al. 2001; Capitelli et al. 
2007, 2012; Assani et al. 2010; Yoshiasa et al. 2016; An-
tao and Dhaliwal 2017). Vivianite-type structures consist 
of MelO2(H2O)4 octahedra and dimers of Me22O6(H2O)4 
octahedra that are linked via XO4 tetrahedra (where X = 
P, As and probably can be also V) and hydrogen bonds to 
form complex layers parallel to (010). Adjacent layers are 
linked by hydrogen bonds only (Fig. 6).Ta
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The Me2+ cations, in babánekite dominantly Cu2+, occupy 
two symmetrically distinct sites with the site-symmetries 
2/m and 2 (Wyckoff sites 2d and 4h of 
the space group C2/m). The Cu1-centred 
(Me1) polyhedron forms a monomeric 
entity, which is linked via arsenate group 
to the dimer of Cu2-centred (Me2) poly-
hedra. The Cu1-centred polyhedron is 
considerably more irregular (in the terms 
of “effective coordination number”, 
ECoN = 5.07, bond-length distortion 
index Δ = 0.05) than the Cu2-centred 
polyhedron (ECoN = 6.00, Δ = 0.003). 
This is a general feature also observed 
for other members of the vivianite-group 
of minerals (e.g., Giuseppetti and Tadini 
1982, Yakubovich et al. 2001). It is prob-
ably caused due to less-firmly bonded 
ligands to the Me1 site: only two atoms 
are O2– cations, the rest of the ligands 
represent the H2O groups. The bonding 
in dimers of the Me2-centered polyhedra 
is much more rigid: only four of the ten 
ligands belong to the H2O groups. 

6. Discussion: the vivianite 
group of minerals –  
nomenclature issues

The present description of babánekite 
enlarges the family of As-dominant 

members in the vivianite group to seven. In Tab. 6, a 
general comparison of these members is given based on 

Tab. 5 Selected interatomic distances (in Å) in the crystal structure of babánekite

Cu1–O1 1.961(2) Cu2–O2 2.084(2)
Cu1–O1iv 1.961(2) Cu2–O2vi 2.084(2)
Cu1–O4 2.201(2) Cu2–O3vii 2.099(1)
Cu1–O4iv 2.201(2) Cu2–O3viii 2.099(1)
Cu1–O4v 2.201(2) Cu2–O5 2.101(2)
Cu1–O4i 2.201(2) Cu2–O5vi 2.101(2)
<Cu1–O> 2.122 <Cu1–O> 2.094
VP 12.59 VP 12.19
σ2 7.18 σ2 6.95
Δ 0.051 Δ 0.003
ECoN 5.067 ECoN 5.998

As–O1 1.712(3)
As–O2 1.684(2)
As–O2i 1.684(2)
As–O3 1.676(2)

<As1–O> 1.690
H–bonds

D∙∙∙H D–A <D–H∙∙∙A>
O4–H4a···O1vii 0.98(2) 2.753(3) 151(3)
O4–H4b···O2 0.973(16) 2.725(2) 164(3)
O5–H5a···O4xv 0.97(2) 2.899(3) 167.7(18)
O5–H5b···O2vii 0.982(14) 2.833(3) 151(2)
Δ, Bond-length distortion after Brown and Shannon (1973); σ2, bond-angle distortion after 
Robinson et al. (1971); ECoN, effective coordination number after Hoppe (1979); VP, polyhedral 
volume (in Å3)
Calculations by Vesta (Momma and Izumi 2008)
Symmetry codes: (i) x, –y, z; (ii) x, y, z–1; (iii) x, 2y, z–1; (iv) –x+1, y, –z+1; (v) –x+1, –y,  
–z+1; (vi) –x, y, –z+1; (vii) x, y, z+1; (viii) –x, y, –z; (ix) –x, y, –z–1; (x) x+1/2, –y+1/2, z;  
(xi) –x+1/2, –y+1/2, –z+1; (xii) –x+1/2, –y+1/2, –z+2; (xiii) –x+1, y, –z+2; (xiv) –x, y, –z+2; 
(xv) x–1/2, –y+1/2, z

Me1 Me2

Me2

Me1

b

a

c

Fig. 6 The crystal structure of babánekite. a – Part of infinite sheet viewed along [010] consisting of vertex-sharing Me1 and Me2 distorted octa-
hedra and AsO4 tetrahedra (in green). b – The stacking of infinite sheets perpendicular to [010]; adjacent sheets are linked by H-bonds (H atoms 
and bonds omitted for clarity). Unit-cell edges are outlined in black solid lines.
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the available data from the literature 
and the current study. For all these 
minerals, a broad cationic isomorphy 
is observed (Jambor and Dutrizac 1995, 
and others). The Me2+ cations occupy 
two symmetrically distinct sites in their 
crystal structure. On the one hand, par-
tial ordering of cations at the Me1/Me2 
sites was documented by the structure 
studies for some of the Mg-containing 
members of the vivianite group (Gi-
useppetti and Tadini 1982; Rojo et al. 
1996; Wildner et al. 1996; Yakubovich 
et al. 2001). On the other hand, for the 
members containing Co, Zn, Ni or Cu 
(Hill 1979; Wildner et al. 1996; Capi-
telli et al. 2007; this study) no such a 
preference for a certain site was found. 
Theoretically this can be an artefact, 
caused by the problematic refinement 
due to the very similar scattering curves 
of Co, Ni, Cu and Zn, and therefore im-
possibility to discern them successfully 
using X-rays at the same site. Based on 
current study, the preference of Cu2+ for 
the Cu1 site, which is far more irregular 
than the Cu2 site (stronger effect of the 
Jahn-Teller distortion), even though 
highly probable, also cannot be reli-
ably documented from current X-ray 
diffraction data. However, the possible 
preferential entering of the cations 
was discussed in the study of Antao 
and Dhaliwal (2017) who documented 
dominance of the heavier cations (Co, 
Ni, Zn) at Me1 site and lighter cations 
(Fe2+) at the Me2 site. Nowadays, the 
classification of the particular mineral 
member of the vivianite group is based 
on the dominant cation at both sites (i.e. 
Σ(Me1+Me2): Sturman and Mandarino 
1976; Giuseppetti and Tadini 1982; 
Yakubovich et al. 2001).

There have been several descrip-
tions of the increased Cu2+ contents in 
mineral members of the vivianite group. 
A significant Cu2+ content in erythrite 
from Silberberg, near Rattenberg, Tyrol 
(Austria) was reported by Putz et al. 
(2012) and from Leogang, Salzburg by 
Auer (2017). Babánekite has been also 
found in Germany in the Clara mine 
(Blaß and Draxler 2015). Recently, we 
studied other samples from the Geister 
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vein, Jáchymov (Czech Republic) and also determined 
Cu-enriched köttigite (up to 0.99 Cu pfu), erythrite (up 
to 0.98 Cu pfu) and annabergite (up to 0.41 Cu pfu). The 
research on these mineral varieties is still ongoing and 
the results will be the subject of a forthcoming paper.
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